amdtp-stream.c 28.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 * Audio and Music Data Transmission Protocol (IEC 61883-6) streams
 * with Common Isochronous Packet (IEC 61883-1) headers
 *
 * Copyright (c) Clemens Ladisch <clemens@ladisch.de>
 * Licensed under the terms of the GNU General Public License, version 2.
 */

#include <linux/device.h>
#include <linux/err.h>
#include <linux/firewire.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <sound/pcm.h>
15
#include <sound/pcm_params.h>
16
#include "amdtp-stream.h"
17 18 19 20 21

#define TICKS_PER_CYCLE		3072
#define CYCLES_PER_SECOND	8000
#define TICKS_PER_SECOND	(TICKS_PER_CYCLE * CYCLES_PER_SECOND)

22 23 24 25
/* Always support Linux tracing subsystem. */
#define CREATE_TRACE_POINTS
#include "amdtp-stream-trace.h"

26
#define TRANSFER_DELAY_TICKS	0x2e00 /* 479.17 microseconds */
27

28 29
/* isochronous header parameters */
#define ISO_DATA_LENGTH_SHIFT	16
30
#define TAG_NO_CIP_HEADER	0
31 32
#define TAG_CIP			1

33
/* common isochronous packet header parameters */
34 35
#define CIP_EOH_SHIFT		31
#define CIP_EOH			(1u << CIP_EOH_SHIFT)
36
#define CIP_EOH_MASK		0x80000000
37 38 39 40
#define CIP_SID_SHIFT		24
#define CIP_SID_MASK		0x3f000000
#define CIP_DBS_MASK		0x00ff0000
#define CIP_DBS_SHIFT		16
41 42
#define CIP_SPH_MASK		0x00000400
#define CIP_SPH_SHIFT		10
43 44
#define CIP_DBC_MASK		0x000000ff
#define CIP_FMT_SHIFT		24
45
#define CIP_FMT_MASK		0x3f000000
46 47
#define CIP_FDF_MASK		0x00ff0000
#define CIP_FDF_SHIFT		16
48 49 50
#define CIP_SYT_MASK		0x0000ffff
#define CIP_SYT_NO_INFO		0xffff

51
/* Audio and Music transfer protocol specific parameters */
52
#define CIP_FMT_AM		0x10
53
#define AMDTP_FDF_NO_DATA	0xff
54 55 56 57 58

/* TODO: make these configurable */
#define INTERRUPT_INTERVAL	16
#define QUEUE_LENGTH		48

59
#define IR_HEADER_SIZE		8	// For header and timestamp.
60
#define OUT_PACKET_HEADER_SIZE	0
61
#define HEADER_TSTAMP_MASK	0x0000ffff
62

63 64
static void pcm_period_tasklet(unsigned long data);

65
/**
66 67
 * amdtp_stream_init - initialize an AMDTP stream structure
 * @s: the AMDTP stream to initialize
68
 * @unit: the target of the stream
69
 * @dir: the direction of stream
70
 * @flags: the packet transmission method to use
71
 * @fmt: the value of fmt field in CIP header
72 73
 * @process_data_blocks: callback handler to process data blocks
 * @protocol_size: the size to allocate newly for protocol
74
 */
75
int amdtp_stream_init(struct amdtp_stream *s, struct fw_unit *unit,
76
		      enum amdtp_stream_direction dir, enum cip_flags flags,
77 78 79
		      unsigned int fmt,
		      amdtp_stream_process_data_blocks_t process_data_blocks,
		      unsigned int protocol_size)
80
{
81 82 83 84 85 86 87
	if (process_data_blocks == NULL)
		return -EINVAL;

	s->protocol = kzalloc(protocol_size, GFP_KERNEL);
	if (!s->protocol)
		return -ENOMEM;

88
	s->unit = unit;
89
	s->direction = dir;
90 91 92
	s->flags = flags;
	s->context = ERR_PTR(-1);
	mutex_init(&s->mutex);
93
	tasklet_init(&s->period_tasklet, pcm_period_tasklet, (unsigned long)s);
94
	s->packet_index = 0;
95

96 97 98
	init_waitqueue_head(&s->callback_wait);
	s->callbacked = false;

99
	s->fmt = fmt;
100
	s->process_data_blocks = process_data_blocks;
101

102 103
	return 0;
}
104
EXPORT_SYMBOL(amdtp_stream_init);
105 106

/**
107 108
 * amdtp_stream_destroy - free stream resources
 * @s: the AMDTP stream to destroy
109
 */
110
void amdtp_stream_destroy(struct amdtp_stream *s)
111
{
112 113 114 115
	/* Not initialized. */
	if (s->protocol == NULL)
		return;

116
	WARN_ON(amdtp_stream_running(s));
117
	kfree(s->protocol);
118 119
	mutex_destroy(&s->mutex);
}
120
EXPORT_SYMBOL(amdtp_stream_destroy);
121

122
const unsigned int amdtp_syt_intervals[CIP_SFC_COUNT] = {
123 124 125 126 127 128 129 130 131 132
	[CIP_SFC_32000]  =  8,
	[CIP_SFC_44100]  =  8,
	[CIP_SFC_48000]  =  8,
	[CIP_SFC_88200]  = 16,
	[CIP_SFC_96000]  = 16,
	[CIP_SFC_176400] = 32,
	[CIP_SFC_192000] = 32,
};
EXPORT_SYMBOL(amdtp_syt_intervals);

133
const unsigned int amdtp_rate_table[CIP_SFC_COUNT] = {
134 135 136 137 138 139 140 141 142 143
	[CIP_SFC_32000]  =  32000,
	[CIP_SFC_44100]  =  44100,
	[CIP_SFC_48000]  =  48000,
	[CIP_SFC_88200]  =  88200,
	[CIP_SFC_96000]  =  96000,
	[CIP_SFC_176400] = 176400,
	[CIP_SFC_192000] = 192000,
};
EXPORT_SYMBOL(amdtp_rate_table);

144 145 146 147 148 149
static int apply_constraint_to_size(struct snd_pcm_hw_params *params,
				    struct snd_pcm_hw_rule *rule)
{
	struct snd_interval *s = hw_param_interval(params, rule->var);
	const struct snd_interval *r =
		hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_RATE);
150 151
	struct snd_interval t = {0};
	unsigned int step = 0;
152 153 154
	int i;

	for (i = 0; i < CIP_SFC_COUNT; ++i) {
155 156
		if (snd_interval_test(r, amdtp_rate_table[i]))
			step = max(step, amdtp_syt_intervals[i]);
157 158
	}

159 160 161
	t.min = roundup(s->min, step);
	t.max = rounddown(s->max, step);
	t.integer = 1;
162 163 164 165

	return snd_interval_refine(s, &t);
}

166 167 168 169 170 171 172 173
/**
 * amdtp_stream_add_pcm_hw_constraints - add hw constraints for PCM substream
 * @s:		the AMDTP stream, which must be initialized.
 * @runtime:	the PCM substream runtime
 */
int amdtp_stream_add_pcm_hw_constraints(struct amdtp_stream *s,
					struct snd_pcm_runtime *runtime)
{
174
	struct snd_pcm_hardware *hw = &runtime->hw;
175 176
	int err;

177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
	hw->info = SNDRV_PCM_INFO_BATCH |
		   SNDRV_PCM_INFO_BLOCK_TRANSFER |
		   SNDRV_PCM_INFO_INTERLEAVED |
		   SNDRV_PCM_INFO_JOINT_DUPLEX |
		   SNDRV_PCM_INFO_MMAP |
		   SNDRV_PCM_INFO_MMAP_VALID;

	/* SNDRV_PCM_INFO_BATCH */
	hw->periods_min = 2;
	hw->periods_max = UINT_MAX;

	/* bytes for a frame */
	hw->period_bytes_min = 4 * hw->channels_max;

	/* Just to prevent from allocating much pages. */
	hw->period_bytes_max = hw->period_bytes_min * 2048;
	hw->buffer_bytes_max = hw->period_bytes_max * hw->periods_min;

195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
	/*
	 * Currently firewire-lib processes 16 packets in one software
	 * interrupt callback. This equals to 2msec but actually the
	 * interval of the interrupts has a jitter.
	 * Additionally, even if adding a constraint to fit period size to
	 * 2msec, actual calculated frames per period doesn't equal to 2msec,
	 * depending on sampling rate.
	 * Anyway, the interval to call snd_pcm_period_elapsed() cannot 2msec.
	 * Here let us use 5msec for safe period interrupt.
	 */
	err = snd_pcm_hw_constraint_minmax(runtime,
					   SNDRV_PCM_HW_PARAM_PERIOD_TIME,
					   5000, UINT_MAX);
	if (err < 0)
		goto end;

	/* Non-Blocking stream has no more constraints */
	if (!(s->flags & CIP_BLOCKING))
		goto end;

	/*
	 * One AMDTP packet can include some frames. In blocking mode, the
	 * number equals to SYT_INTERVAL. So the number is 8, 16 or 32,
	 * depending on its sampling rate. For accurate period interrupt, it's
219
	 * preferrable to align period/buffer sizes to current SYT_INTERVAL.
220
	 */
221 222
	err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
				  apply_constraint_to_size, NULL,
223
				  SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
224 225 226 227 228
				  SNDRV_PCM_HW_PARAM_RATE, -1);
	if (err < 0)
		goto end;
	err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
				  apply_constraint_to_size, NULL,
229
				  SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
230 231 232
				  SNDRV_PCM_HW_PARAM_RATE, -1);
	if (err < 0)
		goto end;
233 234 235 236 237
end:
	return err;
}
EXPORT_SYMBOL(amdtp_stream_add_pcm_hw_constraints);

238
/**
239 240
 * amdtp_stream_set_parameters - set stream parameters
 * @s: the AMDTP stream to configure
241
 * @rate: the sample rate
242
 * @data_block_quadlets: the size of a data block in quadlet unit
243
 *
244
 * The parameters must be set before the stream is started, and must not be
245 246
 * changed while the stream is running.
 */
247 248
int amdtp_stream_set_parameters(struct amdtp_stream *s, unsigned int rate,
				unsigned int data_block_quadlets)
249
{
250
	unsigned int sfc;
251

252
	for (sfc = 0; sfc < ARRAY_SIZE(amdtp_rate_table); ++sfc) {
253
		if (amdtp_rate_table[sfc] == rate)
254 255 256 257
			break;
	}
	if (sfc == ARRAY_SIZE(amdtp_rate_table))
		return -EINVAL;
258 259

	s->sfc = sfc;
260
	s->data_block_quadlets = data_block_quadlets;
261
	s->syt_interval = amdtp_syt_intervals[sfc];
262 263 264 265 266 267

	/* default buffering in the device */
	s->transfer_delay = TRANSFER_DELAY_TICKS - TICKS_PER_CYCLE;
	if (s->flags & CIP_BLOCKING)
		/* additional buffering needed to adjust for no-data packets */
		s->transfer_delay += TICKS_PER_SECOND * s->syt_interval / rate;
268

269
	return 0;
270
}
271
EXPORT_SYMBOL(amdtp_stream_set_parameters);
272 273

/**
274 275
 * amdtp_stream_get_max_payload - get the stream's packet size
 * @s: the AMDTP stream
276 277
 *
 * This function must not be called before the stream has been configured
278
 * with amdtp_stream_set_parameters().
279
 */
280
unsigned int amdtp_stream_get_max_payload(struct amdtp_stream *s)
281
{
282
	unsigned int multiplier = 1;
283
	unsigned int header_size = 0;
284 285 286

	if (s->flags & CIP_JUMBO_PAYLOAD)
		multiplier = 5;
287 288
	if (!(s->flags & CIP_NO_HEADER))
		header_size = 8;
289

290 291
	return header_size +
		s->syt_interval * s->data_block_quadlets * 4 * multiplier;
292
}
293
EXPORT_SYMBOL(amdtp_stream_get_max_payload);
294

295
/**
296 297
 * amdtp_stream_pcm_prepare - prepare PCM device for running
 * @s: the AMDTP stream
298 299 300
 *
 * This function should be called from the PCM device's .prepare callback.
 */
301
void amdtp_stream_pcm_prepare(struct amdtp_stream *s)
302 303 304 305 306
{
	tasklet_kill(&s->period_tasklet);
	s->pcm_buffer_pointer = 0;
	s->pcm_period_pointer = 0;
}
307
EXPORT_SYMBOL(amdtp_stream_pcm_prepare);
308

309 310
static unsigned int calculate_data_blocks(struct amdtp_stream *s,
					  unsigned int syt)
311 312 313
{
	unsigned int phase, data_blocks;

314 315 316 317 318 319 320 321
	/* Blocking mode. */
	if (s->flags & CIP_BLOCKING) {
		/* This module generate empty packet for 'no data'. */
		if (syt == CIP_SYT_NO_INFO)
			data_blocks = 0;
		else
			data_blocks = s->syt_interval;
	/* Non-blocking mode. */
322
	} else {
323 324 325 326 327
		if (!cip_sfc_is_base_44100(s->sfc)) {
			/* Sample_rate / 8000 is an integer, and precomputed. */
			data_blocks = s->data_block_state;
		} else {
			phase = s->data_block_state;
328 329 330 331 332 333 334 335 336

		/*
		 * This calculates the number of data blocks per packet so that
		 * 1) the overall rate is correct and exactly synchronized to
		 *    the bus clock, and
		 * 2) packets with a rounded-up number of blocks occur as early
		 *    as possible in the sequence (to prevent underruns of the
		 *    device's buffer).
		 */
337 338 339 340 341 342 343 344 345 346 347
			if (s->sfc == CIP_SFC_44100)
				/* 6 6 5 6 5 6 5 ... */
				data_blocks = 5 + ((phase & 1) ^
						   (phase == 0 || phase >= 40));
			else
				/* 12 11 11 11 11 ... or 23 22 22 22 22 ... */
				data_blocks = 11 * (s->sfc >> 1) + (phase == 0);
			if (++phase >= (80 >> (s->sfc >> 1)))
				phase = 0;
			s->data_block_state = phase;
		}
348 349 350 351 352
	}

	return data_blocks;
}

353
static unsigned int calculate_syt(struct amdtp_stream *s,
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
				  unsigned int cycle)
{
	unsigned int syt_offset, phase, index, syt;

	if (s->last_syt_offset < TICKS_PER_CYCLE) {
		if (!cip_sfc_is_base_44100(s->sfc))
			syt_offset = s->last_syt_offset + s->syt_offset_state;
		else {
		/*
		 * The time, in ticks, of the n'th SYT_INTERVAL sample is:
		 *   n * SYT_INTERVAL * 24576000 / sample_rate
		 * Modulo TICKS_PER_CYCLE, the difference between successive
		 * elements is about 1386.23.  Rounding the results of this
		 * formula to the SYT precision results in a sequence of
		 * differences that begins with:
		 *   1386 1386 1387 1386 1386 1386 1387 1386 1386 1386 1387 ...
		 * This code generates _exactly_ the same sequence.
		 */
			phase = s->syt_offset_state;
			index = phase % 13;
			syt_offset = s->last_syt_offset;
			syt_offset += 1386 + ((index && !(index & 3)) ||
					      phase == 146);
			if (++phase >= 147)
				phase = 0;
			s->syt_offset_state = phase;
		}
	} else
		syt_offset = s->last_syt_offset - TICKS_PER_CYCLE;
	s->last_syt_offset = syt_offset;

385
	if (syt_offset < TICKS_PER_CYCLE) {
386
		syt_offset += s->transfer_delay;
387 388
		syt = (cycle + syt_offset / TICKS_PER_CYCLE) << 12;
		syt += syt_offset % TICKS_PER_CYCLE;
389

390
		return syt & CIP_SYT_MASK;
391
	} else {
392
		return CIP_SYT_NO_INFO;
393
	}
394 395
}

396 397 398
static void update_pcm_pointers(struct amdtp_stream *s,
				struct snd_pcm_substream *pcm,
				unsigned int frames)
399 400 401
{
	unsigned int ptr;

402 403 404
	ptr = s->pcm_buffer_pointer + frames;
	if (ptr >= pcm->runtime->buffer_size)
		ptr -= pcm->runtime->buffer_size;
405
	WRITE_ONCE(s->pcm_buffer_pointer, ptr);
406 407 408 409 410 411 412 413 414 415 416

	s->pcm_period_pointer += frames;
	if (s->pcm_period_pointer >= pcm->runtime->period_size) {
		s->pcm_period_pointer -= pcm->runtime->period_size;
		tasklet_hi_schedule(&s->period_tasklet);
	}
}

static void pcm_period_tasklet(unsigned long data)
{
	struct amdtp_stream *s = (void *)data;
417
	struct snd_pcm_substream *pcm = READ_ONCE(s->pcm);
418 419 420 421 422

	if (pcm)
		snd_pcm_period_elapsed(pcm);
}

423 424
static int queue_packet(struct amdtp_stream *s, unsigned int header_length,
			unsigned int payload_length)
425 426
{
	struct fw_iso_packet p = {0};
427 428 429 430
	int err = 0;

	if (IS_ERR(s->context))
		goto end;
431 432

	p.interrupt = IS_ALIGNED(s->packet_index + 1, INTERRUPT_INTERVAL);
433
	p.tag = s->tag;
434
	p.header_length = header_length;
435 436 437 438
	if (payload_length > 0)
		p.payload_length = payload_length;
	else
		p.skip = true;
439 440 441 442 443 444 445 446 447 448 449 450 451 452
	err = fw_iso_context_queue(s->context, &p, &s->buffer.iso_buffer,
				   s->buffer.packets[s->packet_index].offset);
	if (err < 0) {
		dev_err(&s->unit->device, "queueing error: %d\n", err);
		goto end;
	}

	if (++s->packet_index >= QUEUE_LENGTH)
		s->packet_index = 0;
end:
	return err;
}

static inline int queue_out_packet(struct amdtp_stream *s,
453
				   unsigned int payload_length)
454
{
455
	return queue_packet(s, OUT_PACKET_HEADER_SIZE, payload_length);
456 457
}

458 459
static inline int queue_in_packet(struct amdtp_stream *s)
{
460
	return queue_packet(s, IR_HEADER_SIZE, s->max_payload_length);
461 462
}

463 464
static int handle_out_packet(struct amdtp_stream *s,
			     unsigned int payload_length, unsigned int cycle,
465
			     unsigned int index)
466 467
{
	__be32 *buffer;
468 469
	unsigned int syt;
	unsigned int data_blocks;
470
	unsigned int pcm_frames;
471 472
	struct snd_pcm_substream *pcm;

473
	buffer = s->buffer.packets[s->packet_index].buffer;
474 475
	syt = calculate_syt(s, cycle);
	data_blocks = calculate_data_blocks(s, syt);
476
	pcm_frames = s->process_data_blocks(s, buffer + 2, data_blocks, &syt);
477

478 479 480 481
	if (s->flags & CIP_DBC_IS_END_EVENT)
		s->data_block_counter =
				(s->data_block_counter + data_blocks) & 0xff;

482
	buffer[0] = cpu_to_be32(READ_ONCE(s->source_node_id_field) |
483
				(s->data_block_quadlets << CIP_DBS_SHIFT) |
484
				((s->sph << CIP_SPH_SHIFT) & CIP_SPH_MASK) |
485
				s->data_block_counter);
486 487 488 489
	buffer[1] = cpu_to_be32(CIP_EOH |
				((s->fmt << CIP_FMT_SHIFT) & CIP_FMT_MASK) |
				((s->fdf << CIP_FDF_SHIFT) & CIP_FDF_MASK) |
				(syt & CIP_SYT_MASK));
490

491 492 493
	if (!(s->flags & CIP_DBC_IS_END_EVENT))
		s->data_block_counter =
				(s->data_block_counter + data_blocks) & 0xff;
494
	payload_length = 8 + data_blocks * 4 * s->data_block_quadlets;
495

496
	trace_out_packet(s, cycle, buffer, payload_length, data_blocks, index);
497

498
	if (queue_out_packet(s, payload_length) < 0)
499
		return -EIO;
500

501
	pcm = READ_ONCE(s->pcm);
502 503
	if (pcm && pcm_frames > 0)
		update_pcm_pointers(s, pcm, pcm_frames);
504 505 506

	/* No need to return the number of handled data blocks. */
	return 0;
507 508
}

509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
static int handle_out_packet_without_header(struct amdtp_stream *s,
			unsigned int payload_length, unsigned int cycle,
			unsigned int index)
{
	__be32 *buffer;
	unsigned int syt;
	unsigned int data_blocks;
	unsigned int pcm_frames;
	struct snd_pcm_substream *pcm;

	buffer = s->buffer.packets[s->packet_index].buffer;
	syt = calculate_syt(s, cycle);
	data_blocks = calculate_data_blocks(s, syt);
	pcm_frames = s->process_data_blocks(s, buffer, data_blocks, &syt);
	s->data_block_counter = (s->data_block_counter + data_blocks) & 0xff;

	payload_length = data_blocks * 4 * s->data_block_quadlets;
526 527 528 529

	trace_out_packet_without_header(s, cycle, payload_length, data_blocks,
					index);

530 531 532
	if (queue_out_packet(s, payload_length) < 0)
		return -EIO;

533
	pcm = READ_ONCE(s->pcm);
534 535 536 537 538 539 540
	if (pcm && pcm_frames > 0)
		update_pcm_pointers(s, pcm, pcm_frames);

	/* No need to return the number of handled data blocks. */
	return 0;
}

541
static int handle_in_packet(struct amdtp_stream *s,
542
			    unsigned int payload_length, unsigned int cycle,
543
			    unsigned int index)
544
{
545
	__be32 *buffer;
546
	u32 cip_header[2];
547
	unsigned int sph, fmt, fdf, syt;
548
	unsigned int data_block_quadlets, data_block_counter, dbc_interval;
549
	unsigned int data_blocks;
550 551
	struct snd_pcm_substream *pcm;
	unsigned int pcm_frames;
552
	bool lost;
553

554
	buffer = s->buffer.packets[s->packet_index].buffer;
555 556 557 558 559
	cip_header[0] = be32_to_cpu(buffer[0]);
	cip_header[1] = be32_to_cpu(buffer[1]);

	/*
	 * This module supports 'Two-quadlet CIP header with SYT field'.
560
	 * For convenience, also check FMT field is AM824 or not.
561
	 */
562 563 564
	if ((((cip_header[0] & CIP_EOH_MASK) == CIP_EOH) ||
	     ((cip_header[1] & CIP_EOH_MASK) != CIP_EOH)) &&
	    (!(s->flags & CIP_HEADER_WITHOUT_EOH))) {
565 566 567
		dev_info_ratelimited(&s->unit->device,
				"Invalid CIP header for AMDTP: %08X:%08X\n",
				cip_header[0], cip_header[1]);
568
		data_blocks = 0;
569
		pcm_frames = 0;
570 571 572
		goto end;
	}

573
	/* Check valid protocol or not. */
574
	sph = (cip_header[0] & CIP_SPH_MASK) >> CIP_SPH_SHIFT;
575
	fmt = (cip_header[1] & CIP_FMT_MASK) >> CIP_FMT_SHIFT;
576
	if (sph != s->sph || fmt != s->fmt) {
577 578 579
		dev_info_ratelimited(&s->unit->device,
				     "Detect unexpected protocol: %08x %08x\n",
				     cip_header[0], cip_header[1]);
580
		data_blocks = 0;
581 582
		pcm_frames = 0;
		goto end;
583 584
	}

585
	/* Calculate data blocks */
586
	fdf = (cip_header[1] & CIP_FDF_MASK) >> CIP_FDF_SHIFT;
587
	if (payload_length < 12 ||
588
	    (fmt == CIP_FMT_AM && fdf == AMDTP_FDF_NO_DATA)) {
589
		data_blocks = 0;
590 591
	} else {
		data_block_quadlets =
592
			(cip_header[0] & CIP_DBS_MASK) >> CIP_DBS_SHIFT;
593 594
		/* avoid division by zero */
		if (data_block_quadlets == 0) {
595
			dev_err(&s->unit->device,
596 597
				"Detect invalid value in dbs field: %08X\n",
				cip_header[0]);
598
			return -EPROTO;
599
		}
600 601
		if (s->flags & CIP_WRONG_DBS)
			data_block_quadlets = s->data_block_quadlets;
602

603 604
		data_blocks = (payload_length / 4 - 2) /
							data_block_quadlets;
605 606 607
	}

	/* Check data block counter continuity */
608
	data_block_counter = cip_header[0] & CIP_DBC_MASK;
609
	if (data_blocks == 0 && (s->flags & CIP_EMPTY_HAS_WRONG_DBC) &&
610 611 612
	    s->data_block_counter != UINT_MAX)
		data_block_counter = s->data_block_counter;

613 614 615
	if (((s->flags & CIP_SKIP_DBC_ZERO_CHECK) &&
	     data_block_counter == s->tx_first_dbc) ||
	    s->data_block_counter == UINT_MAX) {
616 617
		lost = false;
	} else if (!(s->flags & CIP_DBC_IS_END_EVENT)) {
618
		lost = data_block_counter != s->data_block_counter;
619
	} else {
620
		if (data_blocks > 0 && s->tx_dbc_interval > 0)
621 622
			dbc_interval = s->tx_dbc_interval;
		else
623
			dbc_interval = data_blocks;
624

625
		lost = data_block_counter !=
626 627
		       ((s->data_block_counter + dbc_interval) & 0xff);
	}
628 629

	if (lost) {
630 631 632
		dev_err(&s->unit->device,
			"Detect discontinuity of CIP: %02X %02X\n",
			s->data_block_counter, data_block_counter);
633
		return -EIO;
634 635
	}

636 637
	trace_in_packet(s, cycle, buffer, payload_length, data_blocks, index);

638 639
	syt = be32_to_cpu(buffer[1]) & CIP_SYT_MASK;
	pcm_frames = s->process_data_blocks(s, buffer + 2, data_blocks, &syt);
640

641 642 643 644
	if (s->flags & CIP_DBC_IS_END_EVENT)
		s->data_block_counter = data_block_counter;
	else
		s->data_block_counter =
645
				(data_block_counter + data_blocks) & 0xff;
646 647
end:
	if (queue_in_packet(s) < 0)
648
		return -EIO;
649

650
	pcm = READ_ONCE(s->pcm);
651 652
	if (pcm && pcm_frames > 0)
		update_pcm_pointers(s, pcm, pcm_frames);
653

654
	return 0;
655 656
}

657
static int handle_in_packet_without_header(struct amdtp_stream *s,
658
			unsigned int payload_length, unsigned int cycle,
659 660 661
			unsigned int index)
{
	__be32 *buffer;
662
	unsigned int payload_quadlets;
663 664 665 666 667
	unsigned int data_blocks;
	struct snd_pcm_substream *pcm;
	unsigned int pcm_frames;

	buffer = s->buffer.packets[s->packet_index].buffer;
668
	payload_quadlets = payload_length / 4;
669
	data_blocks = payload_quadlets / s->data_block_quadlets;
670 671 672 673

	trace_in_packet_without_header(s, cycle, payload_quadlets, data_blocks,
				       index);

674 675 676 677 678 679
	pcm_frames = s->process_data_blocks(s, buffer, data_blocks, NULL);
	s->data_block_counter = (s->data_block_counter + data_blocks) & 0xff;

	if (queue_in_packet(s) < 0)
		return -EIO;

680
	pcm = READ_ONCE(s->pcm);
681 682 683 684 685 686
	if (pcm && pcm_frames > 0)
		update_pcm_pointers(s, pcm, pcm_frames);

	return 0;
}

687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
/*
 * In CYCLE_TIMER register of IEEE 1394, 7 bits are used to represent second. On
 * the other hand, in DMA descriptors of 1394 OHCI, 3 bits are used to represent
 * it. Thus, via Linux firewire subsystem, we can get the 3 bits for second.
 */
static inline u32 compute_cycle_count(u32 tstamp)
{
	return (((tstamp >> 13) & 0x07) * 8000) + (tstamp & 0x1fff);
}

static inline u32 increment_cycle_count(u32 cycle, unsigned int addend)
{
	cycle += addend;
	if (cycle >= 8 * CYCLES_PER_SECOND)
		cycle -= 8 * CYCLES_PER_SECOND;
	return cycle;
}

static void out_stream_callback(struct fw_iso_context *context, u32 tstamp,
706 707
				size_t header_length, void *header,
				void *private_data)
708
{
709
	struct amdtp_stream *s = private_data;
710
	unsigned int i, packets = header_length / 4;
711
	u32 cycle;
712

713 714 715
	if (s->packet_index < 0)
		return;

716 717 718 719
	cycle = compute_cycle_count(tstamp);

	/* Align to actual cycle count for the last packet. */
	cycle = increment_cycle_count(cycle, QUEUE_LENGTH - packets);
720

721
	for (i = 0; i < packets; ++i) {
722
		cycle = increment_cycle_count(cycle, 1);
723
		if (s->handle_packet(s, 0, cycle, i) < 0) {
724
			s->packet_index = -1;
725 726 727
			if (in_interrupt())
				amdtp_stream_pcm_abort(s);
			WRITE_ONCE(s->pcm_buffer_pointer, SNDRV_PCM_POS_XRUN);
728 729
			return;
		}
730
	}
731

732
	fw_iso_context_queue_flush(s->context);
733 734
}

735
static void in_stream_callback(struct fw_iso_context *context, u32 tstamp,
736 737 738 739
			       size_t header_length, void *header,
			       void *private_data)
{
	struct amdtp_stream *s = private_data;
740
	unsigned int i, packets;
741
	unsigned int payload_length, max_payload_length;
742
	__be32 *ctx_header = header;
743

744 745 746
	if (s->packet_index < 0)
		return;

747
	/* The number of packets in buffer */
748
	packets = header_length / IR_HEADER_SIZE;
749

750
	/* For buffer-over-run prevention. */
751
	max_payload_length = s->max_payload_length;
752

753
	for (i = 0; i < packets; i++) {
754 755 756 757 758
		u32 iso_header = be32_to_cpu(ctx_header[0]);
		unsigned int cycle;

		tstamp = be32_to_cpu(ctx_header[1]) & HEADER_TSTAMP_MASK;
		cycle = compute_cycle_count(tstamp);
759

760
		/* The number of bytes in this packet */
761
		payload_length = iso_header >> ISO_DATA_LENGTH_SHIFT;
762
		if (payload_length > max_payload_length) {
763
			dev_err(&s->unit->device,
764 765
				"Detect jumbo payload: %04x %04x\n",
				payload_length, max_payload_length);
766 767 768
			break;
		}

769
		if (s->handle_packet(s, payload_length, cycle, i) < 0)
770
			break;
771 772

		ctx_header += IR_HEADER_SIZE / sizeof(__be32);
773 774
	}

775
	/* Queueing error or detecting invalid payload. */
776
	if (i < packets) {
777
		s->packet_index = -1;
778 779 780
		if (in_interrupt())
			amdtp_stream_pcm_abort(s);
		WRITE_ONCE(s->pcm_buffer_pointer, SNDRV_PCM_POS_XRUN);
781 782 783
		return;
	}

784 785 786
	fw_iso_context_queue_flush(s->context);
}

787 788
/* this is executed one time */
static void amdtp_stream_first_callback(struct fw_iso_context *context,
789
					u32 tstamp, size_t header_length,
790 791 792
					void *header, void *private_data)
{
	struct amdtp_stream *s = private_data;
793
	__be32 *ctx_header = header;
794 795
	u32 cycle;
	unsigned int packets;
796 797 798 799 800 801 802 803

	/*
	 * For in-stream, first packet has come.
	 * For out-stream, prepared to transmit first packet
	 */
	s->callbacked = true;
	wake_up(&s->callback_wait);

804
	if (s->direction == AMDTP_IN_STREAM) {
805 806 807
		tstamp = be32_to_cpu(ctx_header[1]) & HEADER_TSTAMP_MASK;
		cycle = compute_cycle_count(tstamp);

808
		context->callback.sc = in_stream_callback;
809 810 811 812
		if (s->flags & CIP_NO_HEADER)
			s->handle_packet = handle_in_packet_without_header;
		else
			s->handle_packet = handle_in_packet;
813 814
	} else {
		packets = header_length / 4;
815
		cycle = compute_cycle_count(tstamp);
816
		cycle = increment_cycle_count(cycle, QUEUE_LENGTH - packets);
817
		context->callback.sc = out_stream_callback;
818 819 820 821
		if (s->flags & CIP_NO_HEADER)
			s->handle_packet = handle_out_packet_without_header;
		else
			s->handle_packet = handle_out_packet;
822 823 824
	}

	s->start_cycle = cycle;
825

826
	context->callback.sc(context, tstamp, header_length, header, s);
827 828
}

829
/**
830 831
 * amdtp_stream_start - start transferring packets
 * @s: the AMDTP stream to start
832 833 834 835
 * @channel: the isochronous channel on the bus
 * @speed: firewire speed code
 *
 * The stream cannot be started until it has been configured with
836 837
 * amdtp_stream_set_parameters() and it must be started before any PCM or MIDI
 * device can be started.
838
 */
839
int amdtp_stream_start(struct amdtp_stream *s, int channel, int speed)
840 841 842 843 844 845 846 847 848 849 850 851 852
{
	static const struct {
		unsigned int data_block;
		unsigned int syt_offset;
	} initial_state[] = {
		[CIP_SFC_32000]  = {  4, 3072 },
		[CIP_SFC_48000]  = {  6, 1024 },
		[CIP_SFC_96000]  = { 12, 1024 },
		[CIP_SFC_192000] = { 24, 1024 },
		[CIP_SFC_44100]  = {  0,   67 },
		[CIP_SFC_88200]  = {  0,   67 },
		[CIP_SFC_176400] = {  0,   67 },
	};
853 854
	unsigned int header_size;
	enum dma_data_direction dir;
855
	int type, tag, err;
856 857 858

	mutex_lock(&s->mutex);

859
	if (WARN_ON(amdtp_stream_running(s) ||
860
		    (s->data_block_quadlets < 1))) {
861 862 863 864
		err = -EBADFD;
		goto err_unlock;
	}

865
	if (s->direction == AMDTP_IN_STREAM)
866 867 868
		s->data_block_counter = UINT_MAX;
	else
		s->data_block_counter = 0;
869 870 871 872
	s->data_block_state = initial_state[s->sfc].data_block;
	s->syt_offset_state = initial_state[s->sfc].syt_offset;
	s->last_syt_offset = TICKS_PER_CYCLE;

873 874 875 876
	/* initialize packet buffer */
	if (s->direction == AMDTP_IN_STREAM) {
		dir = DMA_FROM_DEVICE;
		type = FW_ISO_CONTEXT_RECEIVE;
877
		header_size = IR_HEADER_SIZE;
878 879 880 881 882
	} else {
		dir = DMA_TO_DEVICE;
		type = FW_ISO_CONTEXT_TRANSMIT;
		header_size = OUT_PACKET_HEADER_SIZE;
	}
883
	err = iso_packets_buffer_init(&s->buffer, s->unit, QUEUE_LENGTH,
884
				      amdtp_stream_get_max_payload(s), dir);
885 886 887 888
	if (err < 0)
		goto err_unlock;

	s->context = fw_iso_context_create(fw_parent_device(s->unit)->card,
889
					   type, channel, speed, header_size,
890
					   amdtp_stream_first_callback, s);
891 892 893 894
	if (IS_ERR(s->context)) {
		err = PTR_ERR(s->context);
		if (err == -EBUSY)
			dev_err(&s->unit->device,
895
				"no free stream on this controller\n");
896 897 898
		goto err_buffer;
	}

899
	amdtp_stream_update(s);
900

901 902 903
	if (s->direction == AMDTP_IN_STREAM)
		s->max_payload_length = amdtp_stream_get_max_payload(s);

904 905 906 907 908
	if (s->flags & CIP_NO_HEADER)
		s->tag = TAG_NO_CIP_HEADER;
	else
		s->tag = TAG_CIP;

909
	s->packet_index = 0;
910
	do {
911 912 913
		if (s->direction == AMDTP_IN_STREAM)
			err = queue_in_packet(s);
		else
914
			err = queue_out_packet(s, 0);
915 916 917
		if (err < 0)
			goto err_context;
	} while (s->packet_index > 0);
918

919
	/* NOTE: TAG1 matches CIP. This just affects in stream. */
920
	tag = FW_ISO_CONTEXT_MATCH_TAG1;
921
	if ((s->flags & CIP_EMPTY_WITH_TAG0) || (s->flags & CIP_NO_HEADER))
922 923
		tag |= FW_ISO_CONTEXT_MATCH_TAG0;

924
	s->callbacked = false;
925
	err = fw_iso_context_start(s->context, -1, 0, tag);
926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942
	if (err < 0)
		goto err_context;

	mutex_unlock(&s->mutex);

	return 0;

err_context:
	fw_iso_context_destroy(s->context);
	s->context = ERR_PTR(-1);
err_buffer:
	iso_packets_buffer_destroy(&s->buffer, s->unit);
err_unlock:
	mutex_unlock(&s->mutex);

	return err;
}
943
EXPORT_SYMBOL(amdtp_stream_start);
944

945
/**
946 947
 * amdtp_stream_pcm_pointer - get the PCM buffer position
 * @s: the AMDTP stream that transports the PCM data
948 949 950
 *
 * Returns the current buffer position, in frames.
 */
951
unsigned long amdtp_stream_pcm_pointer(struct amdtp_stream *s)
952
{
953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969
	/*
	 * This function is called in software IRQ context of period_tasklet or
	 * process context.
	 *
	 * When the software IRQ context was scheduled by software IRQ context
	 * of IR/IT contexts, queued packets were already handled. Therefore,
	 * no need to flush the queue in buffer anymore.
	 *
	 * When the process context reach here, some packets will be already
	 * queued in the buffer. These packets should be handled immediately
	 * to keep better granularity of PCM pointer.
	 *
	 * Later, the process context will sometimes schedules software IRQ
	 * context of the period_tasklet. Then, no need to flush the queue by
	 * the same reason as described for IR/IT contexts.
	 */
	if (!in_interrupt() && amdtp_stream_running(s))
970
		fw_iso_context_flush_completions(s->context);
971

972
	return READ_ONCE(s->pcm_buffer_pointer);
973
}
974
EXPORT_SYMBOL(amdtp_stream_pcm_pointer);
975

976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
/**
 * amdtp_stream_pcm_ack - acknowledge queued PCM frames
 * @s: the AMDTP stream that transfers the PCM frames
 *
 * Returns zero always.
 */
int amdtp_stream_pcm_ack(struct amdtp_stream *s)
{
	/*
	 * Process isochronous packets for recent isochronous cycle to handle
	 * queued PCM frames.
	 */
	if (amdtp_stream_running(s))
		fw_iso_context_flush_completions(s->context);

	return 0;
}
EXPORT_SYMBOL(amdtp_stream_pcm_ack);

995
/**
996 997
 * amdtp_stream_update - update the stream after a bus reset
 * @s: the AMDTP stream
998
 */
999
void amdtp_stream_update(struct amdtp_stream *s)
1000
{
1001
	/* Precomputing. */
1002 1003
	WRITE_ONCE(s->source_node_id_field,
                   (fw_parent_device(s->unit)->card->node_id << CIP_SID_SHIFT) & CIP_SID_MASK);
1004
}
1005
EXPORT_SYMBOL(amdtp_stream_update);
1006 1007

/**
1008 1009
 * amdtp_stream_stop - stop sending packets
 * @s: the AMDTP stream to stop
1010 1011 1012 1013
 *
 * All PCM and MIDI devices of the stream must be stopped before the stream
 * itself can be stopped.
 */
1014
void amdtp_stream_stop(struct amdtp_stream *s)
1015 1016 1017
{
	mutex_lock(&s->mutex);

1018
	if (!amdtp_stream_running(s)) {
1019 1020 1021 1022
		mutex_unlock(&s->mutex);
		return;
	}

1023
	tasklet_kill(&s->period_tasklet);
1024 1025 1026 1027 1028
	fw_iso_context_stop(s->context);
	fw_iso_context_destroy(s->context);
	s->context = ERR_PTR(-1);
	iso_packets_buffer_destroy(&s->buffer, s->unit);

1029 1030
	s->callbacked = false;

1031 1032
	mutex_unlock(&s->mutex);
}
1033
EXPORT_SYMBOL(amdtp_stream_stop);
1034 1035

/**
1036
 * amdtp_stream_pcm_abort - abort the running PCM device
1037 1038 1039 1040 1041
 * @s: the AMDTP stream about to be stopped
 *
 * If the isochronous stream needs to be stopped asynchronously, call this
 * function first to stop the PCM device.
 */
1042
void amdtp_stream_pcm_abort(struct amdtp_stream *s)
1043 1044 1045
{
	struct snd_pcm_substream *pcm;

1046
	pcm = READ_ONCE(s->pcm);
1047 1048
	if (pcm)
		snd_pcm_stop_xrun(pcm);
1049
}
1050
EXPORT_SYMBOL(amdtp_stream_pcm_abort);