amdtp-stream.c 24.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 * Audio and Music Data Transmission Protocol (IEC 61883-6) streams
 * with Common Isochronous Packet (IEC 61883-1) headers
 *
 * Copyright (c) Clemens Ladisch <clemens@ladisch.de>
 * Licensed under the terms of the GNU General Public License, version 2.
 */

#include <linux/device.h>
#include <linux/err.h>
#include <linux/firewire.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <sound/pcm.h>
15
#include <sound/pcm_params.h>
16
#include "amdtp-stream.h"
17 18 19 20 21

#define TICKS_PER_CYCLE		3072
#define CYCLES_PER_SECOND	8000
#define TICKS_PER_SECOND	(TICKS_PER_CYCLE * CYCLES_PER_SECOND)

22
#define TRANSFER_DELAY_TICKS	0x2e00 /* 479.17 microseconds */
23

24 25
/* isochronous header parameters */
#define ISO_DATA_LENGTH_SHIFT	16
26 27
#define TAG_CIP			1

28
/* common isochronous packet header parameters */
29 30
#define CIP_EOH_SHIFT		31
#define CIP_EOH			(1u << CIP_EOH_SHIFT)
31
#define CIP_EOH_MASK		0x80000000
32 33 34 35 36 37
#define CIP_SID_SHIFT		24
#define CIP_SID_MASK		0x3f000000
#define CIP_DBS_MASK		0x00ff0000
#define CIP_DBS_SHIFT		16
#define CIP_DBC_MASK		0x000000ff
#define CIP_FMT_SHIFT		24
38
#define CIP_FMT_MASK		0x3f000000
39 40
#define CIP_FDF_MASK		0x00ff0000
#define CIP_FDF_SHIFT		16
41 42 43
#define CIP_SYT_MASK		0x0000ffff
#define CIP_SYT_NO_INFO		0xffff

44
/* Audio and Music transfer protocol specific parameters */
45
#define CIP_FMT_AM		0x10
46
#define AMDTP_FDF_NO_DATA	0xff
47 48 49 50 51

/* TODO: make these configurable */
#define INTERRUPT_INTERVAL	16
#define QUEUE_LENGTH		48

52
#define IN_PACKET_HEADER_SIZE	4
53 54
#define OUT_PACKET_HEADER_SIZE	0

55 56
static void pcm_period_tasklet(unsigned long data);

57
/**
58 59
 * amdtp_stream_init - initialize an AMDTP stream structure
 * @s: the AMDTP stream to initialize
60
 * @unit: the target of the stream
61
 * @dir: the direction of stream
62
 * @flags: the packet transmission method to use
63
 * @fmt: the value of fmt field in CIP header
64 65
 * @process_data_blocks: callback handler to process data blocks
 * @protocol_size: the size to allocate newly for protocol
66
 */
67
int amdtp_stream_init(struct amdtp_stream *s, struct fw_unit *unit,
68
		      enum amdtp_stream_direction dir, enum cip_flags flags,
69 70 71
		      unsigned int fmt,
		      amdtp_stream_process_data_blocks_t process_data_blocks,
		      unsigned int protocol_size)
72
{
73 74 75 76 77 78 79
	if (process_data_blocks == NULL)
		return -EINVAL;

	s->protocol = kzalloc(protocol_size, GFP_KERNEL);
	if (!s->protocol)
		return -ENOMEM;

80
	s->unit = unit;
81
	s->direction = dir;
82 83 84
	s->flags = flags;
	s->context = ERR_PTR(-1);
	mutex_init(&s->mutex);
85
	tasklet_init(&s->period_tasklet, pcm_period_tasklet, (unsigned long)s);
86
	s->packet_index = 0;
87

88 89 90 91
	init_waitqueue_head(&s->callback_wait);
	s->callbacked = false;
	s->sync_slave = NULL;

92
	s->fmt = fmt;
93
	s->process_data_blocks = process_data_blocks;
94

95 96
	return 0;
}
97
EXPORT_SYMBOL(amdtp_stream_init);
98 99

/**
100 101
 * amdtp_stream_destroy - free stream resources
 * @s: the AMDTP stream to destroy
102
 */
103
void amdtp_stream_destroy(struct amdtp_stream *s)
104
{
105 106 107 108
	/* Not initialized. */
	if (s->protocol == NULL)
		return;

109
	WARN_ON(amdtp_stream_running(s));
110
	kfree(s->protocol);
111 112
	mutex_destroy(&s->mutex);
}
113
EXPORT_SYMBOL(amdtp_stream_destroy);
114

115
const unsigned int amdtp_syt_intervals[CIP_SFC_COUNT] = {
116 117 118 119 120 121 122 123 124 125
	[CIP_SFC_32000]  =  8,
	[CIP_SFC_44100]  =  8,
	[CIP_SFC_48000]  =  8,
	[CIP_SFC_88200]  = 16,
	[CIP_SFC_96000]  = 16,
	[CIP_SFC_176400] = 32,
	[CIP_SFC_192000] = 32,
};
EXPORT_SYMBOL(amdtp_syt_intervals);

126
const unsigned int amdtp_rate_table[CIP_SFC_COUNT] = {
127 128 129 130 131 132 133 134 135 136
	[CIP_SFC_32000]  =  32000,
	[CIP_SFC_44100]  =  44100,
	[CIP_SFC_48000]  =  48000,
	[CIP_SFC_88200]  =  88200,
	[CIP_SFC_96000]  =  96000,
	[CIP_SFC_176400] = 176400,
	[CIP_SFC_192000] = 192000,
};
EXPORT_SYMBOL(amdtp_rate_table);

137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
/**
 * amdtp_stream_add_pcm_hw_constraints - add hw constraints for PCM substream
 * @s:		the AMDTP stream, which must be initialized.
 * @runtime:	the PCM substream runtime
 */
int amdtp_stream_add_pcm_hw_constraints(struct amdtp_stream *s,
					struct snd_pcm_runtime *runtime)
{
	int err;

	/*
	 * Currently firewire-lib processes 16 packets in one software
	 * interrupt callback. This equals to 2msec but actually the
	 * interval of the interrupts has a jitter.
	 * Additionally, even if adding a constraint to fit period size to
	 * 2msec, actual calculated frames per period doesn't equal to 2msec,
	 * depending on sampling rate.
	 * Anyway, the interval to call snd_pcm_period_elapsed() cannot 2msec.
	 * Here let us use 5msec for safe period interrupt.
	 */
	err = snd_pcm_hw_constraint_minmax(runtime,
					   SNDRV_PCM_HW_PARAM_PERIOD_TIME,
					   5000, UINT_MAX);
	if (err < 0)
		goto end;

	/* Non-Blocking stream has no more constraints */
	if (!(s->flags & CIP_BLOCKING))
		goto end;

	/*
	 * One AMDTP packet can include some frames. In blocking mode, the
	 * number equals to SYT_INTERVAL. So the number is 8, 16 or 32,
	 * depending on its sampling rate. For accurate period interrupt, it's
171
	 * preferrable to align period/buffer sizes to current SYT_INTERVAL.
172
	 *
173 174
	 * TODO: These constraints can be improved with proper rules.
	 * Currently apply LCM of SYT_INTERVALs.
175 176 177 178 179 180 181 182 183 184 185 186
	 */
	err = snd_pcm_hw_constraint_step(runtime, 0,
					 SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 32);
	if (err < 0)
		goto end;
	err = snd_pcm_hw_constraint_step(runtime, 0,
					 SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 32);
end:
	return err;
}
EXPORT_SYMBOL(amdtp_stream_add_pcm_hw_constraints);

187
/**
188 189
 * amdtp_stream_set_parameters - set stream parameters
 * @s: the AMDTP stream to configure
190
 * @rate: the sample rate
191
 * @data_block_quadlets: the size of a data block in quadlet unit
192
 *
193
 * The parameters must be set before the stream is started, and must not be
194 195
 * changed while the stream is running.
 */
196 197
int amdtp_stream_set_parameters(struct amdtp_stream *s, unsigned int rate,
				unsigned int data_block_quadlets)
198
{
199
	unsigned int sfc;
200

201
	for (sfc = 0; sfc < ARRAY_SIZE(amdtp_rate_table); ++sfc) {
202
		if (amdtp_rate_table[sfc] == rate)
203 204 205 206
			break;
	}
	if (sfc == ARRAY_SIZE(amdtp_rate_table))
		return -EINVAL;
207 208

	s->sfc = sfc;
209
	s->data_block_quadlets = data_block_quadlets;
210
	s->syt_interval = amdtp_syt_intervals[sfc];
211 212 213 214 215 216

	/* default buffering in the device */
	s->transfer_delay = TRANSFER_DELAY_TICKS - TICKS_PER_CYCLE;
	if (s->flags & CIP_BLOCKING)
		/* additional buffering needed to adjust for no-data packets */
		s->transfer_delay += TICKS_PER_SECOND * s->syt_interval / rate;
217

218
	return 0;
219
}
220
EXPORT_SYMBOL(amdtp_stream_set_parameters);
221 222

/**
223 224
 * amdtp_stream_get_max_payload - get the stream's packet size
 * @s: the AMDTP stream
225 226
 *
 * This function must not be called before the stream has been configured
227
 * with amdtp_stream_set_parameters().
228
 */
229
unsigned int amdtp_stream_get_max_payload(struct amdtp_stream *s)
230
{
231 232 233 234 235 236
	unsigned int multiplier = 1;

	if (s->flags & CIP_JUMBO_PAYLOAD)
		multiplier = 5;

	return 8 + s->syt_interval * s->data_block_quadlets * 4 * multiplier;
237
}
238
EXPORT_SYMBOL(amdtp_stream_get_max_payload);
239

240
/**
241 242
 * amdtp_stream_pcm_prepare - prepare PCM device for running
 * @s: the AMDTP stream
243 244 245
 *
 * This function should be called from the PCM device's .prepare callback.
 */
246
void amdtp_stream_pcm_prepare(struct amdtp_stream *s)
247 248 249 250
{
	tasklet_kill(&s->period_tasklet);
	s->pcm_buffer_pointer = 0;
	s->pcm_period_pointer = 0;
251
	s->pointer_flush = true;
252
}
253
EXPORT_SYMBOL(amdtp_stream_pcm_prepare);
254

255 256
static unsigned int calculate_data_blocks(struct amdtp_stream *s,
					  unsigned int syt)
257 258 259
{
	unsigned int phase, data_blocks;

260 261 262 263 264 265 266 267
	/* Blocking mode. */
	if (s->flags & CIP_BLOCKING) {
		/* This module generate empty packet for 'no data'. */
		if (syt == CIP_SYT_NO_INFO)
			data_blocks = 0;
		else
			data_blocks = s->syt_interval;
	/* Non-blocking mode. */
268
	} else {
269 270 271 272 273
		if (!cip_sfc_is_base_44100(s->sfc)) {
			/* Sample_rate / 8000 is an integer, and precomputed. */
			data_blocks = s->data_block_state;
		} else {
			phase = s->data_block_state;
274 275 276 277 278 279 280 281 282

		/*
		 * This calculates the number of data blocks per packet so that
		 * 1) the overall rate is correct and exactly synchronized to
		 *    the bus clock, and
		 * 2) packets with a rounded-up number of blocks occur as early
		 *    as possible in the sequence (to prevent underruns of the
		 *    device's buffer).
		 */
283 284 285 286 287 288 289 290 291 292 293
			if (s->sfc == CIP_SFC_44100)
				/* 6 6 5 6 5 6 5 ... */
				data_blocks = 5 + ((phase & 1) ^
						   (phase == 0 || phase >= 40));
			else
				/* 12 11 11 11 11 ... or 23 22 22 22 22 ... */
				data_blocks = 11 * (s->sfc >> 1) + (phase == 0);
			if (++phase >= (80 >> (s->sfc >> 1)))
				phase = 0;
			s->data_block_state = phase;
		}
294 295 296 297 298
	}

	return data_blocks;
}

299
static unsigned int calculate_syt(struct amdtp_stream *s,
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
				  unsigned int cycle)
{
	unsigned int syt_offset, phase, index, syt;

	if (s->last_syt_offset < TICKS_PER_CYCLE) {
		if (!cip_sfc_is_base_44100(s->sfc))
			syt_offset = s->last_syt_offset + s->syt_offset_state;
		else {
		/*
		 * The time, in ticks, of the n'th SYT_INTERVAL sample is:
		 *   n * SYT_INTERVAL * 24576000 / sample_rate
		 * Modulo TICKS_PER_CYCLE, the difference between successive
		 * elements is about 1386.23.  Rounding the results of this
		 * formula to the SYT precision results in a sequence of
		 * differences that begins with:
		 *   1386 1386 1387 1386 1386 1386 1387 1386 1386 1386 1387 ...
		 * This code generates _exactly_ the same sequence.
		 */
			phase = s->syt_offset_state;
			index = phase % 13;
			syt_offset = s->last_syt_offset;
			syt_offset += 1386 + ((index && !(index & 3)) ||
					      phase == 146);
			if (++phase >= 147)
				phase = 0;
			s->syt_offset_state = phase;
		}
	} else
		syt_offset = s->last_syt_offset - TICKS_PER_CYCLE;
	s->last_syt_offset = syt_offset;

331
	if (syt_offset < TICKS_PER_CYCLE) {
332
		syt_offset += s->transfer_delay;
333 334
		syt = (cycle + syt_offset / TICKS_PER_CYCLE) << 12;
		syt += syt_offset % TICKS_PER_CYCLE;
335

336
		return syt & CIP_SYT_MASK;
337
	} else {
338
		return CIP_SYT_NO_INFO;
339
	}
340 341
}

342 343 344
static void update_pcm_pointers(struct amdtp_stream *s,
				struct snd_pcm_substream *pcm,
				unsigned int frames)
345 346 347
{
	unsigned int ptr;

348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
	ptr = s->pcm_buffer_pointer + frames;
	if (ptr >= pcm->runtime->buffer_size)
		ptr -= pcm->runtime->buffer_size;
	ACCESS_ONCE(s->pcm_buffer_pointer) = ptr;

	s->pcm_period_pointer += frames;
	if (s->pcm_period_pointer >= pcm->runtime->period_size) {
		s->pcm_period_pointer -= pcm->runtime->period_size;
		s->pointer_flush = false;
		tasklet_hi_schedule(&s->period_tasklet);
	}
}

static void pcm_period_tasklet(unsigned long data)
{
	struct amdtp_stream *s = (void *)data;
	struct snd_pcm_substream *pcm = ACCESS_ONCE(s->pcm);

	if (pcm)
		snd_pcm_period_elapsed(pcm);
}

static int queue_packet(struct amdtp_stream *s,
			unsigned int header_length,
			unsigned int payload_length, bool skip)
{
	struct fw_iso_packet p = {0};
375 376 377 378
	int err = 0;

	if (IS_ERR(s->context))
		goto end;
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404

	p.interrupt = IS_ALIGNED(s->packet_index + 1, INTERRUPT_INTERVAL);
	p.tag = TAG_CIP;
	p.header_length = header_length;
	p.payload_length = (!skip) ? payload_length : 0;
	p.skip = skip;
	err = fw_iso_context_queue(s->context, &p, &s->buffer.iso_buffer,
				   s->buffer.packets[s->packet_index].offset);
	if (err < 0) {
		dev_err(&s->unit->device, "queueing error: %d\n", err);
		goto end;
	}

	if (++s->packet_index >= QUEUE_LENGTH)
		s->packet_index = 0;
end:
	return err;
}

static inline int queue_out_packet(struct amdtp_stream *s,
				   unsigned int payload_length, bool skip)
{
	return queue_packet(s, OUT_PACKET_HEADER_SIZE,
			    payload_length, skip);
}

405 406 407 408 409 410
static inline int queue_in_packet(struct amdtp_stream *s)
{
	return queue_packet(s, IN_PACKET_HEADER_SIZE,
			    amdtp_stream_get_max_payload(s), false);
}

411 412
static int handle_out_packet(struct amdtp_stream *s, unsigned int data_blocks,
			     unsigned int syt)
413 414
{
	__be32 *buffer;
415
	unsigned int payload_length;
416
	unsigned int pcm_frames;
417 418
	struct snd_pcm_substream *pcm;

419
	buffer = s->buffer.packets[s->packet_index].buffer;
420
	pcm_frames = s->process_data_blocks(s, buffer + 2, data_blocks, &syt);
421

422
	buffer[0] = cpu_to_be32(ACCESS_ONCE(s->source_node_id_field) |
423
				(s->data_block_quadlets << CIP_DBS_SHIFT) |
424
				s->data_block_counter);
425 426 427 428
	buffer[1] = cpu_to_be32(CIP_EOH |
				((s->fmt << CIP_FMT_SHIFT) & CIP_FMT_MASK) |
				((s->fdf << CIP_FDF_SHIFT) & CIP_FDF_MASK) |
				(syt & CIP_SYT_MASK));
429 430 431

	s->data_block_counter = (s->data_block_counter + data_blocks) & 0xff;

432
	payload_length = 8 + data_blocks * 4 * s->data_block_quadlets;
433 434
	if (queue_out_packet(s, payload_length, false) < 0)
		return -EIO;
435

436 437 438
	pcm = ACCESS_ONCE(s->pcm);
	if (pcm && pcm_frames > 0)
		update_pcm_pointers(s, pcm, pcm_frames);
439 440 441

	/* No need to return the number of handled data blocks. */
	return 0;
442 443
}

444
static int handle_in_packet(struct amdtp_stream *s,
445
			    unsigned int payload_quadlets, __be32 *buffer,
446
			    unsigned int *data_blocks, unsigned int syt)
447 448
{
	u32 cip_header[2];
449
	unsigned int fmt, fdf;
450
	unsigned int data_block_quadlets, data_block_counter, dbc_interval;
451 452
	struct snd_pcm_substream *pcm;
	unsigned int pcm_frames;
453
	bool lost;
454 455 456 457 458 459

	cip_header[0] = be32_to_cpu(buffer[0]);
	cip_header[1] = be32_to_cpu(buffer[1]);

	/*
	 * This module supports 'Two-quadlet CIP header with SYT field'.
460
	 * For convenience, also check FMT field is AM824 or not.
461 462
	 */
	if (((cip_header[0] & CIP_EOH_MASK) == CIP_EOH) ||
463
	    ((cip_header[1] & CIP_EOH_MASK) != CIP_EOH)) {
464 465 466
		dev_info_ratelimited(&s->unit->device,
				"Invalid CIP header for AMDTP: %08X:%08X\n",
				cip_header[0], cip_header[1]);
467
		*data_blocks = 0;
468
		pcm_frames = 0;
469 470 471
		goto end;
	}

472 473 474
	/* Check valid protocol or not. */
	fmt = (cip_header[1] & CIP_FMT_MASK) >> CIP_FMT_SHIFT;
	if (fmt != s->fmt) {
475 476 477 478 479 480
		dev_info_ratelimited(&s->unit->device,
				     "Detect unexpected protocol: %08x %08x\n",
				     cip_header[0], cip_header[1]);
		*data_blocks = 0;
		pcm_frames = 0;
		goto end;
481 482
	}

483
	/* Calculate data blocks */
484
	fdf = (cip_header[1] & CIP_FDF_MASK) >> CIP_FDF_SHIFT;
485
	if (payload_quadlets < 3 ||
486
	    (fmt == CIP_FMT_AM && fdf == AMDTP_FDF_NO_DATA)) {
487
		*data_blocks = 0;
488 489
	} else {
		data_block_quadlets =
490
			(cip_header[0] & CIP_DBS_MASK) >> CIP_DBS_SHIFT;
491 492
		/* avoid division by zero */
		if (data_block_quadlets == 0) {
493
			dev_err(&s->unit->device,
494 495
				"Detect invalid value in dbs field: %08X\n",
				cip_header[0]);
496
			return -EPROTO;
497
		}
498 499
		if (s->flags & CIP_WRONG_DBS)
			data_block_quadlets = s->data_block_quadlets;
500

501
		*data_blocks = (payload_quadlets - 2) / data_block_quadlets;
502 503 504
	}

	/* Check data block counter continuity */
505
	data_block_counter = cip_header[0] & CIP_DBC_MASK;
506
	if (*data_blocks == 0 && (s->flags & CIP_EMPTY_HAS_WRONG_DBC) &&
507 508 509
	    s->data_block_counter != UINT_MAX)
		data_block_counter = s->data_block_counter;

510 511 512
	if (((s->flags & CIP_SKIP_DBC_ZERO_CHECK) &&
	     data_block_counter == s->tx_first_dbc) ||
	    s->data_block_counter == UINT_MAX) {
513 514
		lost = false;
	} else if (!(s->flags & CIP_DBC_IS_END_EVENT)) {
515
		lost = data_block_counter != s->data_block_counter;
516
	} else {
517
		if ((*data_blocks > 0) && (s->tx_dbc_interval > 0))
518 519
			dbc_interval = s->tx_dbc_interval;
		else
520
			dbc_interval = *data_blocks;
521

522
		lost = data_block_counter !=
523 524
		       ((s->data_block_counter + dbc_interval) & 0xff);
	}
525 526

	if (lost) {
527 528 529
		dev_err(&s->unit->device,
			"Detect discontinuity of CIP: %02X %02X\n",
			s->data_block_counter, data_block_counter);
530
		return -EIO;
531 532
	}

533
	pcm_frames = s->process_data_blocks(s, buffer + 2, *data_blocks, &syt);
534

535 536 537 538
	if (s->flags & CIP_DBC_IS_END_EVENT)
		s->data_block_counter = data_block_counter;
	else
		s->data_block_counter =
539
				(data_block_counter + *data_blocks) & 0xff;
540 541
end:
	if (queue_in_packet(s) < 0)
542
		return -EIO;
543

544 545 546
	pcm = ACCESS_ONCE(s->pcm);
	if (pcm && pcm_frames > 0)
		update_pcm_pointers(s, pcm, pcm_frames);
547

548
	return 0;
549 550
}

551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
/*
 * In CYCLE_TIMER register of IEEE 1394, 7 bits are used to represent second. On
 * the other hand, in DMA descriptors of 1394 OHCI, 3 bits are used to represent
 * it. Thus, via Linux firewire subsystem, we can get the 3 bits for second.
 */
static inline u32 compute_cycle_count(u32 tstamp)
{
	return (((tstamp >> 13) & 0x07) * 8000) + (tstamp & 0x1fff);
}

static inline u32 increment_cycle_count(u32 cycle, unsigned int addend)
{
	cycle += addend;
	if (cycle >= 8 * CYCLES_PER_SECOND)
		cycle -= 8 * CYCLES_PER_SECOND;
	return cycle;
}

569 570 571 572 573 574 575
static inline u32 decrement_cycle_count(u32 cycle, unsigned int subtrahend)
{
	if (cycle < subtrahend)
		cycle += 8 * CYCLES_PER_SECOND;
	return cycle - subtrahend;
}

576
static void out_stream_callback(struct fw_iso_context *context, u32 tstamp,
577 578
				size_t header_length, void *header,
				void *private_data)
579
{
580
	struct amdtp_stream *s = private_data;
581
	unsigned int i, syt, packets = header_length / 4;
582
	unsigned int data_blocks;
583
	u32 cycle;
584

585 586 587
	if (s->packet_index < 0)
		return;

588 589 590 591
	cycle = compute_cycle_count(tstamp);

	/* Align to actual cycle count for the last packet. */
	cycle = increment_cycle_count(cycle, QUEUE_LENGTH - packets);
592

593
	for (i = 0; i < packets; ++i) {
594 595
		cycle = increment_cycle_count(cycle, 1);
		syt = calculate_syt(s, cycle);
596 597
		data_blocks = calculate_data_blocks(s, syt);

598 599 600 601 602
		if (handle_out_packet(s, data_blocks, syt) < 0) {
			s->packet_index = -1;
			amdtp_stream_pcm_abort(s);
			return;
		}
603
	}
604

605
	fw_iso_context_queue_flush(s->context);
606 607
}

608
static void in_stream_callback(struct fw_iso_context *context, u32 tstamp,
609 610 611 612
			       size_t header_length, void *header,
			       void *private_data)
{
	struct amdtp_stream *s = private_data;
613 614
	unsigned int p, syt, packets;
	unsigned int payload_quadlets, max_payload_quadlets;
615
	unsigned int data_blocks;
616
	__be32 *buffer, *headers = header;
617
	u32 cycle;
618

619 620 621
	if (s->packet_index < 0)
		return;

622 623 624
	/* The number of packets in buffer */
	packets = header_length / IN_PACKET_HEADER_SIZE;

625 626 627 628 629
	cycle = compute_cycle_count(tstamp);

	/* Align to actual cycle count for the last packet. */
	cycle = decrement_cycle_count(cycle, packets);

630 631 632
	/* For buffer-over-run prevention. */
	max_payload_quadlets = amdtp_stream_get_max_payload(s) / 4;

633
	for (p = 0; p < packets; p++) {
634
		cycle = increment_cycle_count(cycle, 1);
635 636 637 638 639
		buffer = s->buffer.packets[s->packet_index].buffer;

		/* The number of quadlets in this packet */
		payload_quadlets =
			(be32_to_cpu(headers[p]) >> ISO_DATA_LENGTH_SHIFT) / 4;
640 641 642 643 644 645 646 647
		if (payload_quadlets > max_payload_quadlets) {
			dev_err(&s->unit->device,
				"Detect jumbo payload: %02x %02x\n",
				payload_quadlets, max_payload_quadlets);
			s->packet_index = -1;
			break;
		}

648
		syt = be32_to_cpu(buffer[1]) & CIP_SYT_MASK;
649
		if (handle_in_packet(s, payload_quadlets, buffer,
650
						&data_blocks, syt) < 0) {
651 652 653 654 655 656
			s->packet_index = -1;
			break;
		}

		/* Process sync slave stream */
		if (s->sync_slave && s->sync_slave->callbacked) {
657 658 659 660 661
			if (handle_out_packet(s->sync_slave,
					      data_blocks, syt) < 0) {
				s->packet_index = -1;
				break;
			}
662
		}
663 664
	}

665 666
	/* Queueing error or detecting discontinuity */
	if (s->packet_index < 0) {
667 668
		amdtp_stream_pcm_abort(s);

669 670 671 672 673 674 675 676 677 678 679 680
		/* Abort sync slave. */
		if (s->sync_slave) {
			s->sync_slave->packet_index = -1;
			amdtp_stream_pcm_abort(s->sync_slave);
		}
		return;
	}

	/* when sync to device, flush the packets for slave stream */
	if (s->sync_slave && s->sync_slave->callbacked)
		fw_iso_context_queue_flush(s->sync_slave->context);

681 682 683
	fw_iso_context_queue_flush(s->context);
}

684
/* processing is done by master callback */
685
static void slave_stream_callback(struct fw_iso_context *context, u32 tstamp,
686 687 688 689 690 691 692 693
				  size_t header_length, void *header,
				  void *private_data)
{
	return;
}

/* this is executed one time */
static void amdtp_stream_first_callback(struct fw_iso_context *context,
694
					u32 tstamp, size_t header_length,
695 696 697 698 699 700 701 702 703 704 705 706 707
					void *header, void *private_data)
{
	struct amdtp_stream *s = private_data;

	/*
	 * For in-stream, first packet has come.
	 * For out-stream, prepared to transmit first packet
	 */
	s->callbacked = true;
	wake_up(&s->callback_wait);

	if (s->direction == AMDTP_IN_STREAM)
		context->callback.sc = in_stream_callback;
708
	else if (s->flags & CIP_SYNC_TO_DEVICE)
709 710 711 712
		context->callback.sc = slave_stream_callback;
	else
		context->callback.sc = out_stream_callback;

713
	context->callback.sc(context, tstamp, header_length, header, s);
714 715
}

716
/**
717 718
 * amdtp_stream_start - start transferring packets
 * @s: the AMDTP stream to start
719 720 721 722
 * @channel: the isochronous channel on the bus
 * @speed: firewire speed code
 *
 * The stream cannot be started until it has been configured with
723 724
 * amdtp_stream_set_parameters() and it must be started before any PCM or MIDI
 * device can be started.
725
 */
726
int amdtp_stream_start(struct amdtp_stream *s, int channel, int speed)
727 728 729 730 731 732 733 734 735 736 737 738 739
{
	static const struct {
		unsigned int data_block;
		unsigned int syt_offset;
	} initial_state[] = {
		[CIP_SFC_32000]  = {  4, 3072 },
		[CIP_SFC_48000]  = {  6, 1024 },
		[CIP_SFC_96000]  = { 12, 1024 },
		[CIP_SFC_192000] = { 24, 1024 },
		[CIP_SFC_44100]  = {  0,   67 },
		[CIP_SFC_88200]  = {  0,   67 },
		[CIP_SFC_176400] = {  0,   67 },
	};
740 741
	unsigned int header_size;
	enum dma_data_direction dir;
742
	int type, tag, err;
743 744 745

	mutex_lock(&s->mutex);

746
	if (WARN_ON(amdtp_stream_running(s) ||
747
		    (s->data_block_quadlets < 1))) {
748 749 750 751
		err = -EBADFD;
		goto err_unlock;
	}

752 753 754 755 756
	if (s->direction == AMDTP_IN_STREAM &&
	    s->flags & CIP_SKIP_INIT_DBC_CHECK)
		s->data_block_counter = UINT_MAX;
	else
		s->data_block_counter = 0;
757 758 759 760
	s->data_block_state = initial_state[s->sfc].data_block;
	s->syt_offset_state = initial_state[s->sfc].syt_offset;
	s->last_syt_offset = TICKS_PER_CYCLE;

761 762 763 764 765 766 767 768 769 770
	/* initialize packet buffer */
	if (s->direction == AMDTP_IN_STREAM) {
		dir = DMA_FROM_DEVICE;
		type = FW_ISO_CONTEXT_RECEIVE;
		header_size = IN_PACKET_HEADER_SIZE;
	} else {
		dir = DMA_TO_DEVICE;
		type = FW_ISO_CONTEXT_TRANSMIT;
		header_size = OUT_PACKET_HEADER_SIZE;
	}
771
	err = iso_packets_buffer_init(&s->buffer, s->unit, QUEUE_LENGTH,
772
				      amdtp_stream_get_max_payload(s), dir);
773 774 775 776
	if (err < 0)
		goto err_unlock;

	s->context = fw_iso_context_create(fw_parent_device(s->unit)->card,
777
					   type, channel, speed, header_size,
778
					   amdtp_stream_first_callback, s);
779 780 781 782
	if (IS_ERR(s->context)) {
		err = PTR_ERR(s->context);
		if (err == -EBUSY)
			dev_err(&s->unit->device,
783
				"no free stream on this controller\n");
784 785 786
		goto err_buffer;
	}

787
	amdtp_stream_update(s);
788

789
	s->packet_index = 0;
790
	do {
791 792 793 794
		if (s->direction == AMDTP_IN_STREAM)
			err = queue_in_packet(s);
		else
			err = queue_out_packet(s, 0, true);
795 796 797
		if (err < 0)
			goto err_context;
	} while (s->packet_index > 0);
798

799
	/* NOTE: TAG1 matches CIP. This just affects in stream. */
800 801 802 803
	tag = FW_ISO_CONTEXT_MATCH_TAG1;
	if (s->flags & CIP_EMPTY_WITH_TAG0)
		tag |= FW_ISO_CONTEXT_MATCH_TAG0;

804
	s->callbacked = false;
805
	err = fw_iso_context_start(s->context, -1, 0, tag);
806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
	if (err < 0)
		goto err_context;

	mutex_unlock(&s->mutex);

	return 0;

err_context:
	fw_iso_context_destroy(s->context);
	s->context = ERR_PTR(-1);
err_buffer:
	iso_packets_buffer_destroy(&s->buffer, s->unit);
err_unlock:
	mutex_unlock(&s->mutex);

	return err;
}
823
EXPORT_SYMBOL(amdtp_stream_start);
824

825
/**
826 827
 * amdtp_stream_pcm_pointer - get the PCM buffer position
 * @s: the AMDTP stream that transports the PCM data
828 829 830
 *
 * Returns the current buffer position, in frames.
 */
831
unsigned long amdtp_stream_pcm_pointer(struct amdtp_stream *s)
832
{
833
	/* this optimization is allowed to be racy */
834
	if (s->pointer_flush && amdtp_stream_running(s))
835 836 837
		fw_iso_context_flush_completions(s->context);
	else
		s->pointer_flush = true;
838 839 840

	return ACCESS_ONCE(s->pcm_buffer_pointer);
}
841
EXPORT_SYMBOL(amdtp_stream_pcm_pointer);
842

843
/**
844 845
 * amdtp_stream_update - update the stream after a bus reset
 * @s: the AMDTP stream
846
 */
847
void amdtp_stream_update(struct amdtp_stream *s)
848
{
849
	/* Precomputing. */
850
	ACCESS_ONCE(s->source_node_id_field) =
851 852
		(fw_parent_device(s->unit)->card->node_id << CIP_SID_SHIFT) &
								CIP_SID_MASK;
853
}
854
EXPORT_SYMBOL(amdtp_stream_update);
855 856

/**
857 858
 * amdtp_stream_stop - stop sending packets
 * @s: the AMDTP stream to stop
859 860 861 862
 *
 * All PCM and MIDI devices of the stream must be stopped before the stream
 * itself can be stopped.
 */
863
void amdtp_stream_stop(struct amdtp_stream *s)
864 865 866
{
	mutex_lock(&s->mutex);

867
	if (!amdtp_stream_running(s)) {
868 869 870 871
		mutex_unlock(&s->mutex);
		return;
	}

872
	tasklet_kill(&s->period_tasklet);
873 874 875 876 877
	fw_iso_context_stop(s->context);
	fw_iso_context_destroy(s->context);
	s->context = ERR_PTR(-1);
	iso_packets_buffer_destroy(&s->buffer, s->unit);

878 879
	s->callbacked = false;

880 881
	mutex_unlock(&s->mutex);
}
882
EXPORT_SYMBOL(amdtp_stream_stop);
883 884

/**
885
 * amdtp_stream_pcm_abort - abort the running PCM device
886 887 888 889 890
 * @s: the AMDTP stream about to be stopped
 *
 * If the isochronous stream needs to be stopped asynchronously, call this
 * function first to stop the PCM device.
 */
891
void amdtp_stream_pcm_abort(struct amdtp_stream *s)
892 893 894 895
{
	struct snd_pcm_substream *pcm;

	pcm = ACCESS_ONCE(s->pcm);
896 897
	if (pcm)
		snd_pcm_stop_xrun(pcm);
898
}
899
EXPORT_SYMBOL(amdtp_stream_pcm_abort);