core.c 68.2 KB
Newer Older
1 2 3 4
/*
 * core.c  --  Voltage/Current Regulator framework.
 *
 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5
 * Copyright 2008 SlimLogic Ltd.
6
 *
7
 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 9 10 11 12 13 14 15 16 17 18
 *
 *  This program is free software; you can redistribute  it and/or modify it
 *  under  the terms of  the GNU General  Public License as published by the
 *  Free Software Foundation;  either version 2 of the  License, or (at your
 *  option) any later version.
 *
 */

#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/device.h>
19
#include <linux/slab.h>
20 21 22
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/suspend.h>
23
#include <linux/delay.h>
24 25 26 27
#include <linux/regulator/consumer.h>
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>

28 29
#include "dummy.h"

30 31 32 33 34
#define REGULATOR_VERSION "0.5"

static DEFINE_MUTEX(regulator_list_mutex);
static LIST_HEAD(regulator_list);
static LIST_HEAD(regulator_map_list);
35
static int has_full_constraints;
36
static bool board_wants_dummy_regulator;
37

38
/*
39 40 41 42 43 44
 * struct regulator_map
 *
 * Used to provide symbolic supply names to devices.
 */
struct regulator_map {
	struct list_head list;
45
	const char *dev_name;   /* The dev_name() for the consumer */
46
	const char *supply;
47
	struct regulator_dev *regulator;
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
};

/*
 * struct regulator
 *
 * One for each consumer device.
 */
struct regulator {
	struct device *dev;
	struct list_head list;
	int uA_load;
	int min_uV;
	int max_uV;
	char *supply_name;
	struct device_attribute dev_attr;
	struct regulator_dev *rdev;
};

static int _regulator_is_enabled(struct regulator_dev *rdev);
67 68
static int _regulator_disable(struct regulator_dev *rdev,
		struct regulator_dev **supply_rdev_ptr);
69 70 71 72 73 74
static int _regulator_get_voltage(struct regulator_dev *rdev);
static int _regulator_get_current_limit(struct regulator_dev *rdev);
static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
static void _notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data);

75 76 77 78 79 80 81 82 83 84
static const char *rdev_get_name(struct regulator_dev *rdev)
{
	if (rdev->constraints && rdev->constraints->name)
		return rdev->constraints->name;
	else if (rdev->desc->name)
		return rdev->desc->name;
	else
		return "";
}

85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
/* gets the regulator for a given consumer device */
static struct regulator *get_device_regulator(struct device *dev)
{
	struct regulator *regulator = NULL;
	struct regulator_dev *rdev;

	mutex_lock(&regulator_list_mutex);
	list_for_each_entry(rdev, &regulator_list, list) {
		mutex_lock(&rdev->mutex);
		list_for_each_entry(regulator, &rdev->consumer_list, list) {
			if (regulator->dev == dev) {
				mutex_unlock(&rdev->mutex);
				mutex_unlock(&regulator_list_mutex);
				return regulator;
			}
		}
		mutex_unlock(&rdev->mutex);
	}
	mutex_unlock(&regulator_list_mutex);
	return NULL;
}

/* Platform voltage constraint check */
static int regulator_check_voltage(struct regulator_dev *rdev,
				   int *min_uV, int *max_uV)
{
	BUG_ON(*min_uV > *max_uV);

	if (!rdev->constraints) {
		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
115
		       rdev_get_name(rdev));
116 117 118 119
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
		printk(KERN_ERR "%s: operation not allowed for %s\n",
120
		       __func__, rdev_get_name(rdev));
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
		return -EPERM;
	}

	if (*max_uV > rdev->constraints->max_uV)
		*max_uV = rdev->constraints->max_uV;
	if (*min_uV < rdev->constraints->min_uV)
		*min_uV = rdev->constraints->min_uV;

	if (*min_uV > *max_uV)
		return -EINVAL;

	return 0;
}

/* current constraint check */
static int regulator_check_current_limit(struct regulator_dev *rdev,
					int *min_uA, int *max_uA)
{
	BUG_ON(*min_uA > *max_uA);

	if (!rdev->constraints) {
		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
143
		       rdev_get_name(rdev));
144 145 146 147
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
		printk(KERN_ERR "%s: operation not allowed for %s\n",
148
		       __func__, rdev_get_name(rdev));
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
		return -EPERM;
	}

	if (*max_uA > rdev->constraints->max_uA)
		*max_uA = rdev->constraints->max_uA;
	if (*min_uA < rdev->constraints->min_uA)
		*min_uA = rdev->constraints->min_uA;

	if (*min_uA > *max_uA)
		return -EINVAL;

	return 0;
}

/* operating mode constraint check */
static int regulator_check_mode(struct regulator_dev *rdev, int mode)
{
166 167 168 169 170 171 172 173 174 175
	switch (mode) {
	case REGULATOR_MODE_FAST:
	case REGULATOR_MODE_NORMAL:
	case REGULATOR_MODE_IDLE:
	case REGULATOR_MODE_STANDBY:
		break;
	default:
		return -EINVAL;
	}

176 177
	if (!rdev->constraints) {
		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
178
		       rdev_get_name(rdev));
179 180 181 182
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
		printk(KERN_ERR "%s: operation not allowed for %s\n",
183
		       __func__, rdev_get_name(rdev));
184 185 186 187
		return -EPERM;
	}
	if (!(rdev->constraints->valid_modes_mask & mode)) {
		printk(KERN_ERR "%s: invalid mode %x for %s\n",
188
		       __func__, mode, rdev_get_name(rdev));
189 190 191 192 193 194 195 196 197 198
		return -EINVAL;
	}
	return 0;
}

/* dynamic regulator mode switching constraint check */
static int regulator_check_drms(struct regulator_dev *rdev)
{
	if (!rdev->constraints) {
		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
199
		       rdev_get_name(rdev));
200 201 202 203
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
		printk(KERN_ERR "%s: operation not allowed for %s\n",
204
		       __func__, rdev_get_name(rdev));
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
		return -EPERM;
	}
	return 0;
}

static ssize_t device_requested_uA_show(struct device *dev,
			     struct device_attribute *attr, char *buf)
{
	struct regulator *regulator;

	regulator = get_device_regulator(dev);
	if (regulator == NULL)
		return 0;

	return sprintf(buf, "%d\n", regulator->uA_load);
}

static ssize_t regulator_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
225
	struct regulator_dev *rdev = dev_get_drvdata(dev);
226 227 228 229 230 231 232 233
	ssize_t ret;

	mutex_lock(&rdev->mutex);
	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
	mutex_unlock(&rdev->mutex);

	return ret;
}
234
static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
235 236 237 238

static ssize_t regulator_uA_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
239
	struct regulator_dev *rdev = dev_get_drvdata(dev);
240 241 242

	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
}
243
static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
244

245 246 247 248 249
static ssize_t regulator_name_show(struct device *dev,
			     struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);

250
	return sprintf(buf, "%s\n", rdev_get_name(rdev));
251 252
}

D
David Brownell 已提交
253
static ssize_t regulator_print_opmode(char *buf, int mode)
254 255 256 257 258 259 260 261 262 263 264 265 266 267
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return sprintf(buf, "fast\n");
	case REGULATOR_MODE_NORMAL:
		return sprintf(buf, "normal\n");
	case REGULATOR_MODE_IDLE:
		return sprintf(buf, "idle\n");
	case REGULATOR_MODE_STANDBY:
		return sprintf(buf, "standby\n");
	}
	return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
268 269
static ssize_t regulator_opmode_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
270
{
271
	struct regulator_dev *rdev = dev_get_drvdata(dev);
272

D
David Brownell 已提交
273 274
	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
}
275
static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
D
David Brownell 已提交
276 277 278

static ssize_t regulator_print_state(char *buf, int state)
{
279 280 281 282 283 284 285 286
	if (state > 0)
		return sprintf(buf, "enabled\n");
	else if (state == 0)
		return sprintf(buf, "disabled\n");
	else
		return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
287 288 289 290
static ssize_t regulator_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
291 292 293 294 295
	ssize_t ret;

	mutex_lock(&rdev->mutex);
	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
	mutex_unlock(&rdev->mutex);
D
David Brownell 已提交
296

297
	return ret;
D
David Brownell 已提交
298
}
299
static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
D
David Brownell 已提交
300

D
David Brownell 已提交
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
static ssize_t regulator_status_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	int status;
	char *label;

	status = rdev->desc->ops->get_status(rdev);
	if (status < 0)
		return status;

	switch (status) {
	case REGULATOR_STATUS_OFF:
		label = "off";
		break;
	case REGULATOR_STATUS_ON:
		label = "on";
		break;
	case REGULATOR_STATUS_ERROR:
		label = "error";
		break;
	case REGULATOR_STATUS_FAST:
		label = "fast";
		break;
	case REGULATOR_STATUS_NORMAL:
		label = "normal";
		break;
	case REGULATOR_STATUS_IDLE:
		label = "idle";
		break;
	case REGULATOR_STATUS_STANDBY:
		label = "standby";
		break;
	default:
		return -ERANGE;
	}

	return sprintf(buf, "%s\n", label);
}
static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);

342 343 344
static ssize_t regulator_min_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
345
	struct regulator_dev *rdev = dev_get_drvdata(dev);
346 347 348 349 350 351

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
}
352
static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
353 354 355 356

static ssize_t regulator_max_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
357
	struct regulator_dev *rdev = dev_get_drvdata(dev);
358 359 360 361 362 363

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
}
364
static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
365 366 367 368

static ssize_t regulator_min_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
369
	struct regulator_dev *rdev = dev_get_drvdata(dev);
370 371 372 373 374 375

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
}
376
static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
377 378 379 380

static ssize_t regulator_max_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
381
	struct regulator_dev *rdev = dev_get_drvdata(dev);
382 383 384 385 386 387

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
}
388
static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
389 390 391 392

static ssize_t regulator_total_uA_show(struct device *dev,
				      struct device_attribute *attr, char *buf)
{
393
	struct regulator_dev *rdev = dev_get_drvdata(dev);
394 395 396 397 398
	struct regulator *regulator;
	int uA = 0;

	mutex_lock(&rdev->mutex);
	list_for_each_entry(regulator, &rdev->consumer_list, list)
399
		uA += regulator->uA_load;
400 401 402
	mutex_unlock(&rdev->mutex);
	return sprintf(buf, "%d\n", uA);
}
403
static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
404 405 406 407

static ssize_t regulator_num_users_show(struct device *dev,
				      struct device_attribute *attr, char *buf)
{
408
	struct regulator_dev *rdev = dev_get_drvdata(dev);
409 410 411 412 413 414
	return sprintf(buf, "%d\n", rdev->use_count);
}

static ssize_t regulator_type_show(struct device *dev,
				  struct device_attribute *attr, char *buf)
{
415
	struct regulator_dev *rdev = dev_get_drvdata(dev);
416 417 418 419 420 421 422 423 424 425 426 427 428

	switch (rdev->desc->type) {
	case REGULATOR_VOLTAGE:
		return sprintf(buf, "voltage\n");
	case REGULATOR_CURRENT:
		return sprintf(buf, "current\n");
	}
	return sprintf(buf, "unknown\n");
}

static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
429
	struct regulator_dev *rdev = dev_get_drvdata(dev);
430 431 432

	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
}
433 434
static DEVICE_ATTR(suspend_mem_microvolts, 0444,
		regulator_suspend_mem_uV_show, NULL);
435 436 437 438

static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
439
	struct regulator_dev *rdev = dev_get_drvdata(dev);
440 441 442

	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
}
443 444
static DEVICE_ATTR(suspend_disk_microvolts, 0444,
		regulator_suspend_disk_uV_show, NULL);
445 446 447 448

static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
449
	struct regulator_dev *rdev = dev_get_drvdata(dev);
450 451 452

	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
}
453 454
static DEVICE_ATTR(suspend_standby_microvolts, 0444,
		regulator_suspend_standby_uV_show, NULL);
455 456 457 458

static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
459
	struct regulator_dev *rdev = dev_get_drvdata(dev);
460

D
David Brownell 已提交
461 462
	return regulator_print_opmode(buf,
		rdev->constraints->state_mem.mode);
463
}
464 465
static DEVICE_ATTR(suspend_mem_mode, 0444,
		regulator_suspend_mem_mode_show, NULL);
466 467 468 469

static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
470
	struct regulator_dev *rdev = dev_get_drvdata(dev);
471

D
David Brownell 已提交
472 473
	return regulator_print_opmode(buf,
		rdev->constraints->state_disk.mode);
474
}
475 476
static DEVICE_ATTR(suspend_disk_mode, 0444,
		regulator_suspend_disk_mode_show, NULL);
477 478 479 480

static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
481
	struct regulator_dev *rdev = dev_get_drvdata(dev);
482

D
David Brownell 已提交
483 484
	return regulator_print_opmode(buf,
		rdev->constraints->state_standby.mode);
485
}
486 487
static DEVICE_ATTR(suspend_standby_mode, 0444,
		regulator_suspend_standby_mode_show, NULL);
488 489 490 491

static ssize_t regulator_suspend_mem_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
492
	struct regulator_dev *rdev = dev_get_drvdata(dev);
493

D
David Brownell 已提交
494 495
	return regulator_print_state(buf,
			rdev->constraints->state_mem.enabled);
496
}
497 498
static DEVICE_ATTR(suspend_mem_state, 0444,
		regulator_suspend_mem_state_show, NULL);
499 500 501 502

static ssize_t regulator_suspend_disk_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
503
	struct regulator_dev *rdev = dev_get_drvdata(dev);
504

D
David Brownell 已提交
505 506
	return regulator_print_state(buf,
			rdev->constraints->state_disk.enabled);
507
}
508 509
static DEVICE_ATTR(suspend_disk_state, 0444,
		regulator_suspend_disk_state_show, NULL);
510 511 512 513

static ssize_t regulator_suspend_standby_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
514
	struct regulator_dev *rdev = dev_get_drvdata(dev);
515

D
David Brownell 已提交
516 517
	return regulator_print_state(buf,
			rdev->constraints->state_standby.enabled);
518
}
519 520 521
static DEVICE_ATTR(suspend_standby_state, 0444,
		regulator_suspend_standby_state_show, NULL);

522

523 524 525 526
/*
 * These are the only attributes are present for all regulators.
 * Other attributes are a function of regulator functionality.
 */
527
static struct device_attribute regulator_dev_attrs[] = {
528
	__ATTR(name, 0444, regulator_name_show, NULL),
529 530 531 532 533 534 535
	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
	__ATTR(type, 0444, regulator_type_show, NULL),
	__ATTR_NULL,
};

static void regulator_dev_release(struct device *dev)
{
536
	struct regulator_dev *rdev = dev_get_drvdata(dev);
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
	kfree(rdev);
}

static struct class regulator_class = {
	.name = "regulator",
	.dev_release = regulator_dev_release,
	.dev_attrs = regulator_dev_attrs,
};

/* Calculate the new optimum regulator operating mode based on the new total
 * consumer load. All locks held by caller */
static void drms_uA_update(struct regulator_dev *rdev)
{
	struct regulator *sibling;
	int current_uA = 0, output_uV, input_uV, err;
	unsigned int mode;

	err = regulator_check_drms(rdev);
	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
556 557
	    !rdev->desc->ops->get_voltage || !rdev->desc->ops->set_mode)
		return;
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573

	/* get output voltage */
	output_uV = rdev->desc->ops->get_voltage(rdev);
	if (output_uV <= 0)
		return;

	/* get input voltage */
	if (rdev->supply && rdev->supply->desc->ops->get_voltage)
		input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
	else
		input_uV = rdev->constraints->input_uV;
	if (input_uV <= 0)
		return;

	/* calc total requested load */
	list_for_each_entry(sibling, &rdev->consumer_list, list)
574
		current_uA += sibling->uA_load;
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589

	/* now get the optimum mode for our new total regulator load */
	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
						  output_uV, current_uA);

	/* check the new mode is allowed */
	err = regulator_check_mode(rdev, mode);
	if (err == 0)
		rdev->desc->ops->set_mode(rdev, mode);
}

static int suspend_set_state(struct regulator_dev *rdev,
	struct regulator_state *rstate)
{
	int ret = 0;
590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
	bool can_set_state;

	can_set_state = rdev->desc->ops->set_suspend_enable &&
		rdev->desc->ops->set_suspend_disable;

	/* If we have no suspend mode configration don't set anything;
	 * only warn if the driver actually makes the suspend mode
	 * configurable.
	 */
	if (!rstate->enabled && !rstate->disabled) {
		if (can_set_state)
			printk(KERN_WARNING "%s: No configuration for %s\n",
			       __func__, rdev_get_name(rdev));
		return 0;
	}

	if (rstate->enabled && rstate->disabled) {
		printk(KERN_ERR "%s: invalid configuration for %s\n",
		       __func__, rdev_get_name(rdev));
		return -EINVAL;
	}
611

612
	if (!can_set_state) {
613 614
		printk(KERN_ERR "%s: no way to set suspend state\n",
			__func__);
615
		return -EINVAL;
616
	}
617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669

	if (rstate->enabled)
		ret = rdev->desc->ops->set_suspend_enable(rdev);
	else
		ret = rdev->desc->ops->set_suspend_disable(rdev);
	if (ret < 0) {
		printk(KERN_ERR "%s: failed to enabled/disable\n", __func__);
		return ret;
	}

	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
		if (ret < 0) {
			printk(KERN_ERR "%s: failed to set voltage\n",
				__func__);
			return ret;
		}
	}

	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
		if (ret < 0) {
			printk(KERN_ERR "%s: failed to set mode\n", __func__);
			return ret;
		}
	}
	return ret;
}

/* locks held by caller */
static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
{
	if (!rdev->constraints)
		return -EINVAL;

	switch (state) {
	case PM_SUSPEND_STANDBY:
		return suspend_set_state(rdev,
			&rdev->constraints->state_standby);
	case PM_SUSPEND_MEM:
		return suspend_set_state(rdev,
			&rdev->constraints->state_mem);
	case PM_SUSPEND_MAX:
		return suspend_set_state(rdev,
			&rdev->constraints->state_disk);
	default:
		return -EINVAL;
	}
}

static void print_constraints(struct regulator_dev *rdev)
{
	struct regulation_constraints *constraints = rdev->constraints;
670
	char buf[80] = "";
671 672
	int count = 0;
	int ret;
673

674
	if (constraints->min_uV && constraints->max_uV) {
675
		if (constraints->min_uV == constraints->max_uV)
676 677
			count += sprintf(buf + count, "%d mV ",
					 constraints->min_uV / 1000);
678
		else
679 680 681 682 683 684 685 686 687 688 689 690 691
			count += sprintf(buf + count, "%d <--> %d mV ",
					 constraints->min_uV / 1000,
					 constraints->max_uV / 1000);
	}

	if (!constraints->min_uV ||
	    constraints->min_uV != constraints->max_uV) {
		ret = _regulator_get_voltage(rdev);
		if (ret > 0)
			count += sprintf(buf + count, "at %d mV ", ret / 1000);
	}

	if (constraints->min_uA && constraints->max_uA) {
692
		if (constraints->min_uA == constraints->max_uA)
693 694
			count += sprintf(buf + count, "%d mA ",
					 constraints->min_uA / 1000);
695
		else
696 697 698 699 700 701 702 703 704
			count += sprintf(buf + count, "%d <--> %d mA ",
					 constraints->min_uA / 1000,
					 constraints->max_uA / 1000);
	}

	if (!constraints->min_uA ||
	    constraints->min_uA != constraints->max_uA) {
		ret = _regulator_get_current_limit(rdev);
		if (ret > 0)
705
			count += sprintf(buf + count, "at %d mA ", ret / 1000);
706
	}
707

708 709 710 711 712 713 714 715 716
	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
		count += sprintf(buf + count, "fast ");
	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
		count += sprintf(buf + count, "normal ");
	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
		count += sprintf(buf + count, "idle ");
	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
		count += sprintf(buf + count, "standby");

717
	printk(KERN_INFO "regulator: %s: %s\n", rdev_get_name(rdev), buf);
718 719
}

720
static int machine_constraints_voltage(struct regulator_dev *rdev,
721
	struct regulation_constraints *constraints)
722
{
723
	struct regulator_ops *ops = rdev->desc->ops;
724
	const char *name = rdev_get_name(rdev);
725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740
	int ret;

	/* do we need to apply the constraint voltage */
	if (rdev->constraints->apply_uV &&
		rdev->constraints->min_uV == rdev->constraints->max_uV &&
		ops->set_voltage) {
		ret = ops->set_voltage(rdev,
			rdev->constraints->min_uV, rdev->constraints->max_uV);
			if (ret < 0) {
				printk(KERN_ERR "%s: failed to apply %duV constraint to %s\n",
				       __func__,
				       rdev->constraints->min_uV, name);
				rdev->constraints = NULL;
				return ret;
			}
	}
741

742 743 744 745 746 747 748 749 750 751 752
	/* constrain machine-level voltage specs to fit
	 * the actual range supported by this regulator.
	 */
	if (ops->list_voltage && rdev->desc->n_voltages) {
		int	count = rdev->desc->n_voltages;
		int	i;
		int	min_uV = INT_MAX;
		int	max_uV = INT_MIN;
		int	cmin = constraints->min_uV;
		int	cmax = constraints->max_uV;

753 754
		/* it's safe to autoconfigure fixed-voltage supplies
		   and the constraints are used by list_voltage. */
755
		if (count == 1 && !cmin) {
756
			cmin = 1;
757
			cmax = INT_MAX;
758 759
			constraints->min_uV = cmin;
			constraints->max_uV = cmax;
760 761
		}

762 763
		/* voltage constraints are optional */
		if ((cmin == 0) && (cmax == 0))
764
			return 0;
765

766
		/* else require explicit machine-level constraints */
767
		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
768 769
			pr_err("%s: %s '%s' voltage constraints\n",
				       __func__, "invalid", name);
770
			return -EINVAL;
771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
		}

		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
		for (i = 0; i < count; i++) {
			int	value;

			value = ops->list_voltage(rdev, i);
			if (value <= 0)
				continue;

			/* maybe adjust [min_uV..max_uV] */
			if (value >= cmin && value < min_uV)
				min_uV = value;
			if (value <= cmax && value > max_uV)
				max_uV = value;
		}

		/* final: [min_uV..max_uV] valid iff constraints valid */
		if (max_uV < min_uV) {
			pr_err("%s: %s '%s' voltage constraints\n",
				       __func__, "unsupportable", name);
792
			return -EINVAL;
793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
		}

		/* use regulator's subset of machine constraints */
		if (constraints->min_uV < min_uV) {
			pr_debug("%s: override '%s' %s, %d -> %d\n",
				       __func__, name, "min_uV",
					constraints->min_uV, min_uV);
			constraints->min_uV = min_uV;
		}
		if (constraints->max_uV > max_uV) {
			pr_debug("%s: override '%s' %s, %d -> %d\n",
				       __func__, name, "max_uV",
					constraints->max_uV, max_uV);
			constraints->max_uV = max_uV;
		}
	}

810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
	return 0;
}

/**
 * set_machine_constraints - sets regulator constraints
 * @rdev: regulator source
 * @constraints: constraints to apply
 *
 * Allows platform initialisation code to define and constrain
 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
 * Constraints *must* be set by platform code in order for some
 * regulator operations to proceed i.e. set_voltage, set_current_limit,
 * set_mode.
 */
static int set_machine_constraints(struct regulator_dev *rdev,
	struct regulation_constraints *constraints)
{
	int ret = 0;
	const char *name;
	struct regulator_ops *ops = rdev->desc->ops;

831 832
	rdev->constraints = constraints;

833 834 835
	name = rdev_get_name(rdev);

	ret = machine_constraints_voltage(rdev, constraints);
836 837 838
	if (ret != 0)
		goto out;

839
	/* do we need to setup our suspend state */
840
	if (constraints->initial_state) {
841
		ret = suspend_prepare(rdev, constraints->initial_state);
842 843 844 845 846 847 848
		if (ret < 0) {
			printk(KERN_ERR "%s: failed to set suspend state for %s\n",
			       __func__, name);
			rdev->constraints = NULL;
			goto out;
		}
	}
849

850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
	if (constraints->initial_mode) {
		if (!ops->set_mode) {
			printk(KERN_ERR "%s: no set_mode operation for %s\n",
			       __func__, name);
			ret = -EINVAL;
			goto out;
		}

		ret = ops->set_mode(rdev, constraints->initial_mode);
		if (ret < 0) {
			printk(KERN_ERR
			       "%s: failed to set initial mode for %s: %d\n",
			       __func__, name, ret);
			goto out;
		}
	}

867 868 869 870
	/* If the constraints say the regulator should be on at this point
	 * and we have control then make sure it is enabled.
	 */
	if ((constraints->always_on || constraints->boot_on) && ops->enable) {
871 872 873 874 875 876 877 878 879
		ret = ops->enable(rdev);
		if (ret < 0) {
			printk(KERN_ERR "%s: failed to enable %s\n",
			       __func__, name);
			rdev->constraints = NULL;
			goto out;
		}
	}

880 881 882 883 884 885 886
	print_constraints(rdev);
out:
	return ret;
}

/**
 * set_supply - set regulator supply regulator
887 888
 * @rdev: regulator name
 * @supply_rdev: supply regulator name
889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
 *
 * Called by platform initialisation code to set the supply regulator for this
 * regulator. This ensures that a regulators supply will also be enabled by the
 * core if it's child is enabled.
 */
static int set_supply(struct regulator_dev *rdev,
	struct regulator_dev *supply_rdev)
{
	int err;

	err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
				"supply");
	if (err) {
		printk(KERN_ERR
		       "%s: could not add device link %s err %d\n",
		       __func__, supply_rdev->dev.kobj.name, err);
		       goto out;
	}
	rdev->supply = supply_rdev;
	list_add(&rdev->slist, &supply_rdev->supply_list);
out:
	return err;
}

/**
 * set_consumer_device_supply: Bind a regulator to a symbolic supply
915 916
 * @rdev:         regulator source
 * @consumer_dev: device the supply applies to
917
 * @consumer_dev_name: dev_name() string for device supply applies to
918
 * @supply:       symbolic name for supply
919 920 921 922 923
 *
 * Allows platform initialisation code to map physical regulator
 * sources to symbolic names for supplies for use by devices.  Devices
 * should use these symbolic names to request regulators, avoiding the
 * need to provide board-specific regulator names as platform data.
924 925
 *
 * Only one of consumer_dev and consumer_dev_name may be specified.
926 927
 */
static int set_consumer_device_supply(struct regulator_dev *rdev,
928 929
	struct device *consumer_dev, const char *consumer_dev_name,
	const char *supply)
930 931
{
	struct regulator_map *node;
932
	int has_dev;
933

934 935 936 937 938 939
	if (consumer_dev && consumer_dev_name)
		return -EINVAL;

	if (!consumer_dev_name && consumer_dev)
		consumer_dev_name = dev_name(consumer_dev);

940 941 942
	if (supply == NULL)
		return -EINVAL;

943 944 945 946 947
	if (consumer_dev_name != NULL)
		has_dev = 1;
	else
		has_dev = 0;

948
	list_for_each_entry(node, &regulator_map_list, list) {
949 950 951 952
		if (node->dev_name && consumer_dev_name) {
			if (strcmp(node->dev_name, consumer_dev_name) != 0)
				continue;
		} else if (node->dev_name || consumer_dev_name) {
953
			continue;
954 955
		}

956 957 958 959 960 961 962
		if (strcmp(node->supply, supply) != 0)
			continue;

		dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
				dev_name(&node->regulator->dev),
				node->regulator->desc->name,
				supply,
963
				dev_name(&rdev->dev), rdev_get_name(rdev));
964 965 966
		return -EBUSY;
	}

967
	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
968 969 970 971 972 973
	if (node == NULL)
		return -ENOMEM;

	node->regulator = rdev;
	node->supply = supply;

974 975 976 977 978 979
	if (has_dev) {
		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
		if (node->dev_name == NULL) {
			kfree(node);
			return -ENOMEM;
		}
980 981
	}

982 983 984 985
	list_add(&node->list, &regulator_map_list);
	return 0;
}

986 987 988 989 990 991 992
static void unset_regulator_supplies(struct regulator_dev *rdev)
{
	struct regulator_map *node, *n;

	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
		if (rdev == node->regulator) {
			list_del(&node->list);
993
			kfree(node->dev_name);
994 995 996 997 998
			kfree(node);
		}
	}
}

999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
#define REG_STR_SIZE	32

static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name)
{
	struct regulator *regulator;
	char buf[REG_STR_SIZE];
	int err, size;

	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
	if (regulator == NULL)
		return NULL;

	mutex_lock(&rdev->mutex);
	regulator->rdev = rdev;
	list_add(&regulator->list, &rdev->consumer_list);

	if (dev) {
		/* create a 'requested_microamps_name' sysfs entry */
		size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
			supply_name);
		if (size >= REG_STR_SIZE)
			goto overflow_err;

		regulator->dev = dev;
1025
		sysfs_attr_init(&regulator->dev_attr.attr);
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
		regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
		if (regulator->dev_attr.attr.name == NULL)
			goto attr_name_err;

		regulator->dev_attr.attr.mode = 0444;
		regulator->dev_attr.show = device_requested_uA_show;
		err = device_create_file(dev, &regulator->dev_attr);
		if (err < 0) {
			printk(KERN_WARNING "%s: could not add regulator_dev"
				" load sysfs\n", __func__);
			goto attr_name_err;
		}

		/* also add a link to the device sysfs entry */
		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
				 dev->kobj.name, supply_name);
		if (size >= REG_STR_SIZE)
			goto attr_err;

		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
		if (regulator->supply_name == NULL)
			goto attr_err;

		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
					buf);
		if (err) {
			printk(KERN_WARNING
			       "%s: could not add device link %s err %d\n",
			       __func__, dev->kobj.name, err);
			goto link_name_err;
		}
	}
	mutex_unlock(&rdev->mutex);
	return regulator;
link_name_err:
	kfree(regulator->supply_name);
attr_err:
	device_remove_file(regulator->dev, &regulator->dev_attr);
attr_name_err:
	kfree(regulator->dev_attr.attr.name);
overflow_err:
	list_del(&regulator->list);
	kfree(regulator);
	mutex_unlock(&rdev->mutex);
	return NULL;
}

1073 1074 1075 1076 1077 1078 1079
static int _regulator_get_enable_time(struct regulator_dev *rdev)
{
	if (!rdev->desc->ops->enable_time)
		return 0;
	return rdev->desc->ops->enable_time(rdev);
}

1080 1081 1082
/* Internal regulator request function */
static struct regulator *_regulator_get(struct device *dev, const char *id,
					int exclusive)
1083 1084 1085 1086
{
	struct regulator_dev *rdev;
	struct regulator_map *map;
	struct regulator *regulator = ERR_PTR(-ENODEV);
1087
	const char *devname = NULL;
1088
	int ret;
1089 1090 1091 1092 1093 1094

	if (id == NULL) {
		printk(KERN_ERR "regulator: get() with no identifier\n");
		return regulator;
	}

1095 1096 1097
	if (dev)
		devname = dev_name(dev);

1098 1099 1100
	mutex_lock(&regulator_list_mutex);

	list_for_each_entry(map, &regulator_map_list, list) {
1101 1102 1103 1104 1105 1106
		/* If the mapping has a device set up it must match */
		if (map->dev_name &&
		    (!devname || strcmp(map->dev_name, devname)))
			continue;

		if (strcmp(map->supply, id) == 0) {
1107
			rdev = map->regulator;
1108
			goto found;
1109
		}
1110
	}
1111

1112 1113 1114 1115 1116
	if (board_wants_dummy_regulator) {
		rdev = dummy_regulator_rdev;
		goto found;
	}

1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
#ifdef CONFIG_REGULATOR_DUMMY
	if (!devname)
		devname = "deviceless";

	/* If the board didn't flag that it was fully constrained then
	 * substitute in a dummy regulator so consumers can continue.
	 */
	if (!has_full_constraints) {
		pr_warning("%s supply %s not found, using dummy regulator\n",
			   devname, id);
		rdev = dummy_regulator_rdev;
		goto found;
	}
#endif

1132 1133 1134 1135
	mutex_unlock(&regulator_list_mutex);
	return regulator;

found:
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
	if (rdev->exclusive) {
		regulator = ERR_PTR(-EPERM);
		goto out;
	}

	if (exclusive && rdev->open_count) {
		regulator = ERR_PTR(-EBUSY);
		goto out;
	}

1146 1147 1148
	if (!try_module_get(rdev->owner))
		goto out;

1149 1150 1151 1152 1153 1154
	regulator = create_regulator(rdev, dev, id);
	if (regulator == NULL) {
		regulator = ERR_PTR(-ENOMEM);
		module_put(rdev->owner);
	}

1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
	rdev->open_count++;
	if (exclusive) {
		rdev->exclusive = 1;

		ret = _regulator_is_enabled(rdev);
		if (ret > 0)
			rdev->use_count = 1;
		else
			rdev->use_count = 0;
	}

1166
out:
1167
	mutex_unlock(&regulator_list_mutex);
1168

1169 1170
	return regulator;
}
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188

/**
 * regulator_get - lookup and obtain a reference to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get(struct device *dev, const char *id)
{
	return _regulator_get(dev, id, 0);
}
1189 1190
EXPORT_SYMBOL_GPL(regulator_get);

1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
/**
 * regulator_get_exclusive - obtain exclusive access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.  Other consumers will be
 * unable to obtain this reference is held and the use count for the
 * regulator will be initialised to reflect the current state of the
 * regulator.
 *
 * This is intended for use by consumers which cannot tolerate shared
 * use of the regulator such as those which need to force the
 * regulator off for correct operation of the hardware they are
 * controlling.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
{
	return _regulator_get(dev, id, 1);
}
EXPORT_SYMBOL_GPL(regulator_get_exclusive);

1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
/**
 * regulator_put - "free" the regulator source
 * @regulator: regulator source
 *
 * Note: drivers must ensure that all regulator_enable calls made on this
 * regulator source are balanced by regulator_disable calls prior to calling
 * this function.
 */
void regulator_put(struct regulator *regulator)
{
	struct regulator_dev *rdev;

	if (regulator == NULL || IS_ERR(regulator))
		return;

	mutex_lock(&regulator_list_mutex);
	rdev = regulator->rdev;

	/* remove any sysfs entries */
	if (regulator->dev) {
		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
		kfree(regulator->supply_name);
		device_remove_file(regulator->dev, &regulator->dev_attr);
		kfree(regulator->dev_attr.attr.name);
	}
	list_del(&regulator->list);
	kfree(regulator);

1246 1247 1248
	rdev->open_count--;
	rdev->exclusive = 0;

1249 1250 1251 1252 1253
	module_put(rdev->owner);
	mutex_unlock(&regulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_put);

1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
static int _regulator_can_change_status(struct regulator_dev *rdev)
{
	if (!rdev->constraints)
		return 0;

	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
		return 1;
	else
		return 0;
}

1265 1266 1267
/* locks held by regulator_enable() */
static int _regulator_enable(struct regulator_dev *rdev)
{
1268
	int ret, delay;
1269 1270 1271 1272 1273 1274

	/* do we need to enable the supply regulator first */
	if (rdev->supply) {
		ret = _regulator_enable(rdev->supply);
		if (ret < 0) {
			printk(KERN_ERR "%s: failed to enable %s: %d\n",
1275
			       __func__, rdev_get_name(rdev), ret);
1276 1277 1278 1279 1280
			return ret;
		}
	}

	/* check voltage and requested load before enabling */
1281 1282 1283
	if (rdev->constraints &&
	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
		drms_uA_update(rdev);
1284

1285 1286 1287 1288 1289 1290 1291
	if (rdev->use_count == 0) {
		/* The regulator may on if it's not switchable or left on */
		ret = _regulator_is_enabled(rdev);
		if (ret == -EINVAL || ret == 0) {
			if (!_regulator_can_change_status(rdev))
				return -EPERM;

1292
			if (!rdev->desc->ops->enable)
1293
				return -EINVAL;
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305

			/* Query before enabling in case configuration
			 * dependant.  */
			ret = _regulator_get_enable_time(rdev);
			if (ret >= 0) {
				delay = ret;
			} else {
				printk(KERN_WARNING
					"%s: enable_time() failed for %s: %d\n",
					__func__, rdev_get_name(rdev),
					ret);
				delay = 0;
1306
			}
1307 1308 1309 1310 1311 1312 1313 1314

			/* Allow the regulator to ramp; it would be useful
			 * to extend this for bulk operations so that the
			 * regulators can ramp together.  */
			ret = rdev->desc->ops->enable(rdev);
			if (ret < 0)
				return ret;

1315
			if (delay >= 1000) {
1316
				mdelay(delay / 1000);
1317 1318
				udelay(delay % 1000);
			} else if (delay) {
1319
				udelay(delay);
1320
			}
1321

1322
		} else if (ret < 0) {
1323
			printk(KERN_ERR "%s: is_enabled() failed for %s: %d\n",
1324
			       __func__, rdev_get_name(rdev), ret);
1325 1326
			return ret;
		}
1327
		/* Fallthrough on positive return values - already enabled */
1328 1329
	}

1330 1331 1332
	rdev->use_count++;

	return 0;
1333 1334 1335 1336 1337 1338
}

/**
 * regulator_enable - enable regulator output
 * @regulator: regulator source
 *
1339 1340 1341 1342
 * Request that the regulator be enabled with the regulator output at
 * the predefined voltage or current value.  Calls to regulator_enable()
 * must be balanced with calls to regulator_disable().
 *
1343
 * NOTE: the output value can be set by other drivers, boot loader or may be
1344
 * hardwired in the regulator.
1345 1346 1347
 */
int regulator_enable(struct regulator *regulator)
{
1348 1349
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;
1350

1351
	mutex_lock(&rdev->mutex);
D
David Brownell 已提交
1352
	ret = _regulator_enable(rdev);
1353
	mutex_unlock(&rdev->mutex);
1354 1355 1356 1357 1358
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_enable);

/* locks held by regulator_disable() */
1359 1360
static int _regulator_disable(struct regulator_dev *rdev,
		struct regulator_dev **supply_rdev_ptr)
1361 1362
{
	int ret = 0;
1363
	*supply_rdev_ptr = NULL;
1364

D
David Brownell 已提交
1365 1366
	if (WARN(rdev->use_count <= 0,
			"unbalanced disables for %s\n",
1367
			rdev_get_name(rdev)))
D
David Brownell 已提交
1368 1369
		return -EIO;

1370
	/* are we the last user and permitted to disable ? */
1371 1372
	if (rdev->use_count == 1 &&
	    (rdev->constraints && !rdev->constraints->always_on)) {
1373 1374

		/* we are last user */
1375 1376
		if (_regulator_can_change_status(rdev) &&
		    rdev->desc->ops->disable) {
1377 1378 1379
			ret = rdev->desc->ops->disable(rdev);
			if (ret < 0) {
				printk(KERN_ERR "%s: failed to disable %s\n",
1380
				       __func__, rdev_get_name(rdev));
1381 1382
				return ret;
			}
1383 1384 1385

			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
					     NULL);
1386 1387 1388
		}

		/* decrease our supplies ref count and disable if required */
1389
		*supply_rdev_ptr = rdev->supply;
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407

		rdev->use_count = 0;
	} else if (rdev->use_count > 1) {

		if (rdev->constraints &&
			(rdev->constraints->valid_ops_mask &
			REGULATOR_CHANGE_DRMS))
			drms_uA_update(rdev);

		rdev->use_count--;
	}
	return ret;
}

/**
 * regulator_disable - disable regulator output
 * @regulator: regulator source
 *
1408 1409 1410
 * Disable the regulator output voltage or current.  Calls to
 * regulator_enable() must be balanced with calls to
 * regulator_disable().
1411
 *
1412
 * NOTE: this will only disable the regulator output if no other consumer
1413 1414
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
1415 1416 1417
 */
int regulator_disable(struct regulator *regulator)
{
1418
	struct regulator_dev *rdev = regulator->rdev;
1419
	struct regulator_dev *supply_rdev = NULL;
1420
	int ret = 0;
1421

1422
	mutex_lock(&rdev->mutex);
1423
	ret = _regulator_disable(rdev, &supply_rdev);
1424
	mutex_unlock(&rdev->mutex);
1425 1426 1427 1428 1429 1430 1431 1432 1433 1434

	/* decrease our supplies ref count and disable if required */
	while (supply_rdev != NULL) {
		rdev = supply_rdev;

		mutex_lock(&rdev->mutex);
		_regulator_disable(rdev, &supply_rdev);
		mutex_unlock(&rdev->mutex);
	}

1435 1436 1437 1438 1439
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_disable);

/* locks held by regulator_force_disable() */
1440 1441
static int _regulator_force_disable(struct regulator_dev *rdev,
		struct regulator_dev **supply_rdev_ptr)
1442 1443 1444 1445 1446 1447 1448 1449 1450
{
	int ret = 0;

	/* force disable */
	if (rdev->desc->ops->disable) {
		/* ah well, who wants to live forever... */
		ret = rdev->desc->ops->disable(rdev);
		if (ret < 0) {
			printk(KERN_ERR "%s: failed to force disable %s\n",
1451
			       __func__, rdev_get_name(rdev));
1452 1453 1454
			return ret;
		}
		/* notify other consumers that power has been forced off */
1455 1456
		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_DISABLE, NULL);
1457 1458 1459
	}

	/* decrease our supplies ref count and disable if required */
1460
	*supply_rdev_ptr = rdev->supply;
1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476

	rdev->use_count = 0;
	return ret;
}

/**
 * regulator_force_disable - force disable regulator output
 * @regulator: regulator source
 *
 * Forcibly disable the regulator output voltage or current.
 * NOTE: this *will* disable the regulator output even if other consumer
 * devices have it enabled. This should be used for situations when device
 * damage will likely occur if the regulator is not disabled (e.g. over temp).
 */
int regulator_force_disable(struct regulator *regulator)
{
1477
	struct regulator_dev *supply_rdev = NULL;
1478 1479 1480 1481
	int ret;

	mutex_lock(&regulator->rdev->mutex);
	regulator->uA_load = 0;
1482
	ret = _regulator_force_disable(regulator->rdev, &supply_rdev);
1483
	mutex_unlock(&regulator->rdev->mutex);
1484 1485 1486 1487

	if (supply_rdev)
		regulator_disable(get_device_regulator(rdev_get_dev(supply_rdev)));

1488 1489 1490 1491 1492 1493
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_force_disable);

static int _regulator_is_enabled(struct regulator_dev *rdev)
{
1494
	/* If we don't know then assume that the regulator is always on */
1495
	if (!rdev->desc->ops->is_enabled)
1496
		return 1;
1497

1498
	return rdev->desc->ops->is_enabled(rdev);
1499 1500 1501 1502 1503 1504
}

/**
 * regulator_is_enabled - is the regulator output enabled
 * @regulator: regulator source
 *
1505 1506 1507 1508 1509 1510 1511
 * Returns positive if the regulator driver backing the source/client
 * has requested that the device be enabled, zero if it hasn't, else a
 * negative errno code.
 *
 * Note that the device backing this regulator handle can have multiple
 * users, so it might be enabled even if regulator_enable() was never
 * called for this particular source.
1512 1513 1514
 */
int regulator_is_enabled(struct regulator *regulator)
{
1515 1516 1517 1518 1519 1520 1521
	int ret;

	mutex_lock(&regulator->rdev->mutex);
	ret = _regulator_is_enabled(regulator->rdev);
	mutex_unlock(&regulator->rdev->mutex);

	return ret;
1522 1523 1524
}
EXPORT_SYMBOL_GPL(regulator_is_enabled);

1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
/**
 * regulator_count_voltages - count regulator_list_voltage() selectors
 * @regulator: regulator source
 *
 * Returns number of selectors, or negative errno.  Selectors are
 * numbered starting at zero, and typically correspond to bitfields
 * in hardware registers.
 */
int regulator_count_voltages(struct regulator *regulator)
{
	struct regulator_dev	*rdev = regulator->rdev;

	return rdev->desc->n_voltages ? : -EINVAL;
}
EXPORT_SYMBOL_GPL(regulator_count_voltages);

/**
 * regulator_list_voltage - enumerate supported voltages
 * @regulator: regulator source
 * @selector: identify voltage to list
 * Context: can sleep
 *
 * Returns a voltage that can be passed to @regulator_set_voltage(),
T
Thomas Weber 已提交
1548
 * zero if this selector code can't be used on this system, or a
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
 * negative errno.
 */
int regulator_list_voltage(struct regulator *regulator, unsigned selector)
{
	struct regulator_dev	*rdev = regulator->rdev;
	struct regulator_ops	*ops = rdev->desc->ops;
	int			ret;

	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
		return -EINVAL;

	mutex_lock(&rdev->mutex);
	ret = ops->list_voltage(rdev, selector);
	mutex_unlock(&rdev->mutex);

	if (ret > 0) {
		if (ret < rdev->constraints->min_uV)
			ret = 0;
		else if (ret > rdev->constraints->max_uV)
			ret = 0;
	}

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_list_voltage);

1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
/**
 * regulator_is_supported_voltage - check if a voltage range can be supported
 *
 * @regulator: Regulator to check.
 * @min_uV: Minimum required voltage in uV.
 * @max_uV: Maximum required voltage in uV.
 *
 * Returns a boolean or a negative error code.
 */
int regulator_is_supported_voltage(struct regulator *regulator,
				   int min_uV, int max_uV)
{
	int i, voltages, ret;

	ret = regulator_count_voltages(regulator);
	if (ret < 0)
		return ret;
	voltages = ret;

	for (i = 0; i < voltages; i++) {
		ret = regulator_list_voltage(regulator, i);

		if (ret >= min_uV && ret <= max_uV)
			return 1;
	}

	return 0;
}

1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
/**
 * regulator_set_voltage - set regulator output voltage
 * @regulator: regulator source
 * @min_uV: Minimum required voltage in uV
 * @max_uV: Maximum acceptable voltage in uV
 *
 * Sets a voltage regulator to the desired output voltage. This can be set
 * during any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the voltage will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new voltage when enabled.
 *
 * NOTE: If the regulator is shared between several devices then the lowest
 * request voltage that meets the system constraints will be used.
1619
 * Regulator system constraints must be set for this regulator before
1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
 * calling this function otherwise this call will fail.
 */
int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->set_voltage) {
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;
	regulator->min_uV = min_uV;
	regulator->max_uV = max_uV;
	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV);

out:
1644
	_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, NULL);
1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_voltage);

static int _regulator_get_voltage(struct regulator_dev *rdev)
{
	/* sanity check */
	if (rdev->desc->ops->get_voltage)
		return rdev->desc->ops->get_voltage(rdev);
	else
		return -EINVAL;
}

/**
 * regulator_get_voltage - get regulator output voltage
 * @regulator: regulator source
 *
 * This returns the current regulator voltage in uV.
 *
 * NOTE: If the regulator is disabled it will return the voltage value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_voltage(struct regulator *regulator)
{
	int ret;

	mutex_lock(&regulator->rdev->mutex);

	ret = _regulator_get_voltage(regulator->rdev);

	mutex_unlock(&regulator->rdev->mutex);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_get_voltage);

/**
 * regulator_set_current_limit - set regulator output current limit
 * @regulator: regulator source
 * @min_uA: Minimuum supported current in uA
 * @max_uA: Maximum supported current in uA
 *
 * Sets current sink to the desired output current. This can be set during
 * any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the current will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new current when enabled.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_current_limit(struct regulator *regulator,
			       int min_uA, int max_uA)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->set_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_current_limit);

static int _regulator_get_current_limit(struct regulator_dev *rdev)
{
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->get_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_current_limit(rdev);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}

/**
 * regulator_get_current_limit - get regulator output current
 * @regulator: regulator source
 *
 * This returns the current supplied by the specified current sink in uA.
 *
 * NOTE: If the regulator is disabled it will return the current value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_current_limit(struct regulator *regulator)
{
	return _regulator_get_current_limit(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_current_limit);

/**
 * regulator_set_mode - set regulator operating mode
 * @regulator: regulator source
 * @mode: operating mode - one of the REGULATOR_MODE constants
 *
 * Set regulator operating mode to increase regulator efficiency or improve
 * regulation performance.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_mode(struct regulator *regulator, unsigned int mode)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;
1772
	int regulator_curr_mode;
1773 1774 1775 1776 1777 1778 1779 1780 1781

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->set_mode) {
		ret = -EINVAL;
		goto out;
	}

1782 1783 1784 1785 1786 1787 1788 1789 1790
	/* return if the same mode is requested */
	if (rdev->desc->ops->get_mode) {
		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
		if (regulator_curr_mode == mode) {
			ret = 0;
			goto out;
		}
	}

1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881
	/* constraints check */
	ret = regulator_check_mode(rdev, mode);
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_mode(rdev, mode);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_mode);

static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
{
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->get_mode) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_mode(rdev);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}

/**
 * regulator_get_mode - get regulator operating mode
 * @regulator: regulator source
 *
 * Get the current regulator operating mode.
 */
unsigned int regulator_get_mode(struct regulator *regulator)
{
	return _regulator_get_mode(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_mode);

/**
 * regulator_set_optimum_mode - set regulator optimum operating mode
 * @regulator: regulator source
 * @uA_load: load current
 *
 * Notifies the regulator core of a new device load. This is then used by
 * DRMS (if enabled by constraints) to set the most efficient regulator
 * operating mode for the new regulator loading.
 *
 * Consumer devices notify their supply regulator of the maximum power
 * they will require (can be taken from device datasheet in the power
 * consumption tables) when they change operational status and hence power
 * state. Examples of operational state changes that can affect power
 * consumption are :-
 *
 *    o Device is opened / closed.
 *    o Device I/O is about to begin or has just finished.
 *    o Device is idling in between work.
 *
 * This information is also exported via sysfs to userspace.
 *
 * DRMS will sum the total requested load on the regulator and change
 * to the most efficient operating mode if platform constraints allow.
 *
 * Returns the new regulator mode or error.
 */
int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
{
	struct regulator_dev *rdev = regulator->rdev;
	struct regulator *consumer;
	int ret, output_uV, input_uV, total_uA_load = 0;
	unsigned int mode;

	mutex_lock(&rdev->mutex);

	regulator->uA_load = uA_load;
	ret = regulator_check_drms(rdev);
	if (ret < 0)
		goto out;
	ret = -EINVAL;

	/* sanity check */
	if (!rdev->desc->ops->get_optimum_mode)
		goto out;

	/* get output voltage */
	output_uV = rdev->desc->ops->get_voltage(rdev);
	if (output_uV <= 0) {
		printk(KERN_ERR "%s: invalid output voltage found for %s\n",
1882
			__func__, rdev_get_name(rdev));
1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
		goto out;
	}

	/* get input voltage */
	if (rdev->supply && rdev->supply->desc->ops->get_voltage)
		input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
	else
		input_uV = rdev->constraints->input_uV;
	if (input_uV <= 0) {
		printk(KERN_ERR "%s: invalid input voltage found for %s\n",
1893
			__func__, rdev_get_name(rdev));
1894 1895 1896 1897 1898
		goto out;
	}

	/* calc total requested load for this regulator */
	list_for_each_entry(consumer, &rdev->consumer_list, list)
1899
		total_uA_load += consumer->uA_load;
1900 1901 1902 1903

	mode = rdev->desc->ops->get_optimum_mode(rdev,
						 input_uV, output_uV,
						 total_uA_load);
1904 1905
	ret = regulator_check_mode(rdev, mode);
	if (ret < 0) {
1906
		printk(KERN_ERR "%s: failed to get optimum mode for %s @"
1907
			" %d uA %d -> %d uV\n", __func__, rdev_get_name(rdev),
1908 1909 1910 1911 1912
			total_uA_load, input_uV, output_uV);
		goto out;
	}

	ret = rdev->desc->ops->set_mode(rdev, mode);
1913
	if (ret < 0) {
1914
		printk(KERN_ERR "%s: failed to set optimum mode %x for %s\n",
1915
			__func__, mode, rdev_get_name(rdev));
1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927
		goto out;
	}
	ret = mode;
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);

/**
 * regulator_register_notifier - register regulator event notifier
 * @regulator: regulator source
1928
 * @nb: notifier block
1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942
 *
 * Register notifier block to receive regulator events.
 */
int regulator_register_notifier(struct regulator *regulator,
			      struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&regulator->rdev->notifier,
						nb);
}
EXPORT_SYMBOL_GPL(regulator_register_notifier);

/**
 * regulator_unregister_notifier - unregister regulator event notifier
 * @regulator: regulator source
1943
 * @nb: notifier block
1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954
 *
 * Unregister regulator event notifier block.
 */
int regulator_unregister_notifier(struct regulator *regulator,
				struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
						  nb);
}
EXPORT_SYMBOL_GPL(regulator_unregister_notifier);

1955 1956 1957
/* notify regulator consumers and downstream regulator consumers.
 * Note mutex must be held by caller.
 */
1958 1959 1960 1961 1962 1963 1964 1965 1966
static void _notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data)
{
	struct regulator_dev *_rdev;

	/* call rdev chain first */
	blocking_notifier_call_chain(&rdev->notifier, event, NULL);

	/* now notify regulator we supply */
1967
	list_for_each_entry(_rdev, &rdev->supply_list, slist) {
1968 1969 1970
		mutex_lock(&_rdev->mutex);
		_notifier_call_chain(_rdev, event, data);
		mutex_unlock(&_rdev->mutex);
1971
	}
1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
}

/**
 * regulator_bulk_get - get multiple regulator consumers
 *
 * @dev:           Device to supply
 * @num_consumers: Number of consumers to register
 * @consumers:     Configuration of consumers; clients are stored here.
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to get several regulator
 * consumers in one operation.  If any of the regulators cannot be
 * acquired then any regulators that were allocated will be freed
 * before returning to the caller.
 */
int regulator_bulk_get(struct device *dev, int num_consumers,
		       struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].consumer = NULL;

	for (i = 0; i < num_consumers; i++) {
		consumers[i].consumer = regulator_get(dev,
						      consumers[i].supply);
		if (IS_ERR(consumers[i].consumer)) {
			ret = PTR_ERR(consumers[i].consumer);
2002 2003
			dev_err(dev, "Failed to get supply '%s': %d\n",
				consumers[i].supply, ret);
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045
			consumers[i].consumer = NULL;
			goto err;
		}
	}

	return 0;

err:
	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
		regulator_put(consumers[i].consumer);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_get);

/**
 * regulator_bulk_enable - enable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to enable multiple regulator
 * clients in a single API call.  If any consumers cannot be enabled
 * then any others that were enabled will be disabled again prior to
 * return.
 */
int regulator_bulk_enable(int num_consumers,
			  struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++) {
		ret = regulator_enable(consumers[i].consumer);
		if (ret != 0)
			goto err;
	}

	return 0;

err:
2046
	printk(KERN_ERR "Failed to enable %s: %d\n", consumers[i].supply, ret);
2047
	for (--i; i >= 0; --i)
2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080
		regulator_disable(consumers[i].consumer);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_enable);

/**
 * regulator_bulk_disable - disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to disable multiple regulator
 * clients in a single API call.  If any consumers cannot be enabled
 * then any others that were disabled will be disabled again prior to
 * return.
 */
int regulator_bulk_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++) {
		ret = regulator_disable(consumers[i].consumer);
		if (ret != 0)
			goto err;
	}

	return 0;

err:
2081 2082
	printk(KERN_ERR "Failed to disable %s: %d\n", consumers[i].supply,
	       ret);
2083
	for (--i; i >= 0; --i)
2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112
		regulator_enable(consumers[i].consumer);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_disable);

/**
 * regulator_bulk_free - free multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 *
 * This convenience API allows consumers to free multiple regulator
 * clients in a single API call.
 */
void regulator_bulk_free(int num_consumers,
			 struct regulator_bulk_data *consumers)
{
	int i;

	for (i = 0; i < num_consumers; i++) {
		regulator_put(consumers[i].consumer);
		consumers[i].consumer = NULL;
	}
}
EXPORT_SYMBOL_GPL(regulator_bulk_free);

/**
 * regulator_notifier_call_chain - call regulator event notifier
2113
 * @rdev: regulator source
2114
 * @event: notifier block
2115
 * @data: callback-specific data.
2116 2117 2118
 *
 * Called by regulator drivers to notify clients a regulator event has
 * occurred. We also notify regulator clients downstream.
2119
 * Note lock must be held by caller.
2120 2121 2122 2123 2124 2125 2126 2127 2128 2129
 */
int regulator_notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data)
{
	_notifier_call_chain(rdev, event, data);
	return NOTIFY_DONE;

}
EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);

2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153
/**
 * regulator_mode_to_status - convert a regulator mode into a status
 *
 * @mode: Mode to convert
 *
 * Convert a regulator mode into a status.
 */
int regulator_mode_to_status(unsigned int mode)
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return REGULATOR_STATUS_FAST;
	case REGULATOR_MODE_NORMAL:
		return REGULATOR_STATUS_NORMAL;
	case REGULATOR_MODE_IDLE:
		return REGULATOR_STATUS_IDLE;
	case REGULATOR_STATUS_STANDBY:
		return REGULATOR_STATUS_STANDBY;
	default:
		return 0;
	}
}
EXPORT_SYMBOL_GPL(regulator_mode_to_status);

2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184
/*
 * To avoid cluttering sysfs (and memory) with useless state, only
 * create attributes that can be meaningfully displayed.
 */
static int add_regulator_attributes(struct regulator_dev *rdev)
{
	struct device		*dev = &rdev->dev;
	struct regulator_ops	*ops = rdev->desc->ops;
	int			status = 0;

	/* some attributes need specific methods to be displayed */
	if (ops->get_voltage) {
		status = device_create_file(dev, &dev_attr_microvolts);
		if (status < 0)
			return status;
	}
	if (ops->get_current_limit) {
		status = device_create_file(dev, &dev_attr_microamps);
		if (status < 0)
			return status;
	}
	if (ops->get_mode) {
		status = device_create_file(dev, &dev_attr_opmode);
		if (status < 0)
			return status;
	}
	if (ops->is_enabled) {
		status = device_create_file(dev, &dev_attr_state);
		if (status < 0)
			return status;
	}
D
David Brownell 已提交
2185 2186 2187 2188 2189
	if (ops->get_status) {
		status = device_create_file(dev, &dev_attr_status);
		if (status < 0)
			return status;
	}
2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269

	/* some attributes are type-specific */
	if (rdev->desc->type == REGULATOR_CURRENT) {
		status = device_create_file(dev, &dev_attr_requested_microamps);
		if (status < 0)
			return status;
	}

	/* all the other attributes exist to support constraints;
	 * don't show them if there are no constraints, or if the
	 * relevant supporting methods are missing.
	 */
	if (!rdev->constraints)
		return status;

	/* constraints need specific supporting methods */
	if (ops->set_voltage) {
		status = device_create_file(dev, &dev_attr_min_microvolts);
		if (status < 0)
			return status;
		status = device_create_file(dev, &dev_attr_max_microvolts);
		if (status < 0)
			return status;
	}
	if (ops->set_current_limit) {
		status = device_create_file(dev, &dev_attr_min_microamps);
		if (status < 0)
			return status;
		status = device_create_file(dev, &dev_attr_max_microamps);
		if (status < 0)
			return status;
	}

	/* suspend mode constraints need multiple supporting methods */
	if (!(ops->set_suspend_enable && ops->set_suspend_disable))
		return status;

	status = device_create_file(dev, &dev_attr_suspend_standby_state);
	if (status < 0)
		return status;
	status = device_create_file(dev, &dev_attr_suspend_mem_state);
	if (status < 0)
		return status;
	status = device_create_file(dev, &dev_attr_suspend_disk_state);
	if (status < 0)
		return status;

	if (ops->set_suspend_voltage) {
		status = device_create_file(dev,
				&dev_attr_suspend_standby_microvolts);
		if (status < 0)
			return status;
		status = device_create_file(dev,
				&dev_attr_suspend_mem_microvolts);
		if (status < 0)
			return status;
		status = device_create_file(dev,
				&dev_attr_suspend_disk_microvolts);
		if (status < 0)
			return status;
	}

	if (ops->set_suspend_mode) {
		status = device_create_file(dev,
				&dev_attr_suspend_standby_mode);
		if (status < 0)
			return status;
		status = device_create_file(dev,
				&dev_attr_suspend_mem_mode);
		if (status < 0)
			return status;
		status = device_create_file(dev,
				&dev_attr_suspend_disk_mode);
		if (status < 0)
			return status;
	}

	return status;
}

2270 2271
/**
 * regulator_register - register regulator
2272 2273
 * @regulator_desc: regulator to register
 * @dev: struct device for the regulator
2274
 * @init_data: platform provided init data, passed through by driver
2275
 * @driver_data: private regulator data
2276 2277 2278 2279 2280
 *
 * Called by regulator drivers to register a regulator.
 * Returns 0 on success.
 */
struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2281 2282
	struct device *dev, struct regulator_init_data *init_data,
	void *driver_data)
2283 2284 2285
{
	static atomic_t regulator_no = ATOMIC_INIT(0);
	struct regulator_dev *rdev;
2286
	int ret, i;
2287 2288 2289 2290 2291 2292 2293

	if (regulator_desc == NULL)
		return ERR_PTR(-EINVAL);

	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
		return ERR_PTR(-EINVAL);

2294 2295
	if (regulator_desc->type != REGULATOR_VOLTAGE &&
	    regulator_desc->type != REGULATOR_CURRENT)
2296 2297
		return ERR_PTR(-EINVAL);

2298 2299 2300
	if (!init_data)
		return ERR_PTR(-EINVAL);

2301 2302 2303 2304 2305 2306 2307
	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
	if (rdev == NULL)
		return ERR_PTR(-ENOMEM);

	mutex_lock(&regulator_list_mutex);

	mutex_init(&rdev->mutex);
2308
	rdev->reg_data = driver_data;
2309 2310 2311 2312 2313 2314 2315 2316
	rdev->owner = regulator_desc->owner;
	rdev->desc = regulator_desc;
	INIT_LIST_HEAD(&rdev->consumer_list);
	INIT_LIST_HEAD(&rdev->supply_list);
	INIT_LIST_HEAD(&rdev->list);
	INIT_LIST_HEAD(&rdev->slist);
	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);

2317 2318 2319
	/* preform any regulator specific init */
	if (init_data->regulator_init) {
		ret = init_data->regulator_init(rdev->reg_data);
D
David Brownell 已提交
2320 2321
		if (ret < 0)
			goto clean;
2322 2323 2324
	}

	/* register with sysfs */
2325
	rdev->dev.class = &regulator_class;
2326
	rdev->dev.parent = dev;
2327 2328
	dev_set_name(&rdev->dev, "regulator.%d",
		     atomic_inc_return(&regulator_no) - 1);
2329
	ret = device_register(&rdev->dev);
2330 2331
	if (ret != 0) {
		put_device(&rdev->dev);
D
David Brownell 已提交
2332
		goto clean;
2333
	}
2334 2335 2336

	dev_set_drvdata(&rdev->dev, rdev);

2337 2338 2339 2340 2341
	/* set regulator constraints */
	ret = set_machine_constraints(rdev, &init_data->constraints);
	if (ret < 0)
		goto scrub;

2342 2343 2344 2345 2346
	/* add attributes supported by this regulator */
	ret = add_regulator_attributes(rdev);
	if (ret < 0)
		goto scrub;

2347
	/* set supply regulator if it exists */
2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376
	if (init_data->supply_regulator && init_data->supply_regulator_dev) {
		dev_err(dev,
			"Supply regulator specified by both name and dev\n");
		goto scrub;
	}

	if (init_data->supply_regulator) {
		struct regulator_dev *r;
		int found = 0;

		list_for_each_entry(r, &regulator_list, list) {
			if (strcmp(rdev_get_name(r),
				   init_data->supply_regulator) == 0) {
				found = 1;
				break;
			}
		}

		if (!found) {
			dev_err(dev, "Failed to find supply %s\n",
				init_data->supply_regulator);
			goto scrub;
		}

		ret = set_supply(rdev, r);
		if (ret < 0)
			goto scrub;
	}

2377
	if (init_data->supply_regulator_dev) {
2378
		dev_warn(dev, "Uses supply_regulator_dev instead of regulator_supply\n");
2379 2380
		ret = set_supply(rdev,
			dev_get_drvdata(init_data->supply_regulator_dev));
D
David Brownell 已提交
2381 2382
		if (ret < 0)
			goto scrub;
2383 2384 2385 2386 2387 2388
	}

	/* add consumers devices */
	for (i = 0; i < init_data->num_consumer_supplies; i++) {
		ret = set_consumer_device_supply(rdev,
			init_data->consumer_supplies[i].dev,
2389
			init_data->consumer_supplies[i].dev_name,
2390
			init_data->consumer_supplies[i].supply);
2391 2392
		if (ret < 0)
			goto unset_supplies;
2393
	}
2394 2395 2396

	list_add(&rdev->list, &regulator_list);
out:
2397 2398
	mutex_unlock(&regulator_list_mutex);
	return rdev;
D
David Brownell 已提交
2399

2400 2401 2402
unset_supplies:
	unset_regulator_supplies(rdev);

D
David Brownell 已提交
2403 2404
scrub:
	device_unregister(&rdev->dev);
2405 2406 2407 2408
	/* device core frees rdev */
	rdev = ERR_PTR(ret);
	goto out;

D
David Brownell 已提交
2409 2410 2411 2412
clean:
	kfree(rdev);
	rdev = ERR_PTR(ret);
	goto out;
2413 2414 2415 2416 2417
}
EXPORT_SYMBOL_GPL(regulator_register);

/**
 * regulator_unregister - unregister regulator
2418
 * @rdev: regulator to unregister
2419 2420 2421 2422 2423 2424 2425 2426 2427
 *
 * Called by regulator drivers to unregister a regulator.
 */
void regulator_unregister(struct regulator_dev *rdev)
{
	if (rdev == NULL)
		return;

	mutex_lock(&regulator_list_mutex);
2428
	WARN_ON(rdev->open_count);
2429
	unset_regulator_supplies(rdev);
2430 2431 2432 2433 2434 2435 2436 2437 2438
	list_del(&rdev->list);
	if (rdev->supply)
		sysfs_remove_link(&rdev->dev.kobj, "supply");
	device_unregister(&rdev->dev);
	mutex_unlock(&regulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_unregister);

/**
2439
 * regulator_suspend_prepare - prepare regulators for system wide suspend
2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462
 * @state: system suspend state
 *
 * Configure each regulator with it's suspend operating parameters for state.
 * This will usually be called by machine suspend code prior to supending.
 */
int regulator_suspend_prepare(suspend_state_t state)
{
	struct regulator_dev *rdev;
	int ret = 0;

	/* ON is handled by regulator active state */
	if (state == PM_SUSPEND_ON)
		return -EINVAL;

	mutex_lock(&regulator_list_mutex);
	list_for_each_entry(rdev, &regulator_list, list) {

		mutex_lock(&rdev->mutex);
		ret = suspend_prepare(rdev, state);
		mutex_unlock(&rdev->mutex);

		if (ret < 0) {
			printk(KERN_ERR "%s: failed to prepare %s\n",
2463
				__func__, rdev_get_name(rdev));
2464 2465 2466 2467 2468 2469 2470 2471 2472
			goto out;
		}
	}
out:
	mutex_unlock(&regulator_list_mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_suspend_prepare);

2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489
/**
 * regulator_has_full_constraints - the system has fully specified constraints
 *
 * Calling this function will cause the regulator API to disable all
 * regulators which have a zero use count and don't have an always_on
 * constraint in a late_initcall.
 *
 * The intention is that this will become the default behaviour in a
 * future kernel release so users are encouraged to use this facility
 * now.
 */
void regulator_has_full_constraints(void)
{
	has_full_constraints = 1;
}
EXPORT_SYMBOL_GPL(regulator_has_full_constraints);

2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505
/**
 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
 *
 * Calling this function will cause the regulator API to provide a
 * dummy regulator to consumers if no physical regulator is found,
 * allowing most consumers to proceed as though a regulator were
 * configured.  This allows systems such as those with software
 * controllable regulators for the CPU core only to be brought up more
 * readily.
 */
void regulator_use_dummy_regulator(void)
{
	board_wants_dummy_regulator = true;
}
EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);

2506 2507
/**
 * rdev_get_drvdata - get rdev regulator driver data
2508
 * @rdev: regulator
2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544
 *
 * Get rdev regulator driver private data. This call can be used in the
 * regulator driver context.
 */
void *rdev_get_drvdata(struct regulator_dev *rdev)
{
	return rdev->reg_data;
}
EXPORT_SYMBOL_GPL(rdev_get_drvdata);

/**
 * regulator_get_drvdata - get regulator driver data
 * @regulator: regulator
 *
 * Get regulator driver private data. This call can be used in the consumer
 * driver context when non API regulator specific functions need to be called.
 */
void *regulator_get_drvdata(struct regulator *regulator)
{
	return regulator->rdev->reg_data;
}
EXPORT_SYMBOL_GPL(regulator_get_drvdata);

/**
 * regulator_set_drvdata - set regulator driver data
 * @regulator: regulator
 * @data: data
 */
void regulator_set_drvdata(struct regulator *regulator, void *data)
{
	regulator->rdev->reg_data = data;
}
EXPORT_SYMBOL_GPL(regulator_set_drvdata);

/**
 * regulator_get_id - get regulator ID
2545
 * @rdev: regulator
2546 2547 2548 2549 2550 2551 2552
 */
int rdev_get_id(struct regulator_dev *rdev)
{
	return rdev->desc->id;
}
EXPORT_SYMBOL_GPL(rdev_get_id);

2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564
struct device *rdev_get_dev(struct regulator_dev *rdev)
{
	return &rdev->dev;
}
EXPORT_SYMBOL_GPL(rdev_get_dev);

void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
{
	return reg_init_data->driver_data;
}
EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);

2565 2566
static int __init regulator_init(void)
{
2567 2568
	int ret;

2569
	printk(KERN_INFO "regulator: core version %s\n", REGULATOR_VERSION);
2570 2571 2572 2573 2574 2575

	ret = class_register(&regulator_class);

	regulator_dummy_init();

	return ret;
2576 2577 2578 2579
}

/* init early to allow our consumers to complete system booting */
core_initcall(regulator_init);
2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598

static int __init regulator_init_complete(void)
{
	struct regulator_dev *rdev;
	struct regulator_ops *ops;
	struct regulation_constraints *c;
	int enabled, ret;
	const char *name;

	mutex_lock(&regulator_list_mutex);

	/* If we have a full configuration then disable any regulators
	 * which are not in use or always_on.  This will become the
	 * default behaviour in the future.
	 */
	list_for_each_entry(rdev, &regulator_list, list) {
		ops = rdev->desc->ops;
		c = rdev->constraints;

2599
		name = rdev_get_name(rdev);
2600

2601
		if (!ops->disable || (c && c->always_on))
2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648
			continue;

		mutex_lock(&rdev->mutex);

		if (rdev->use_count)
			goto unlock;

		/* If we can't read the status assume it's on. */
		if (ops->is_enabled)
			enabled = ops->is_enabled(rdev);
		else
			enabled = 1;

		if (!enabled)
			goto unlock;

		if (has_full_constraints) {
			/* We log since this may kill the system if it
			 * goes wrong. */
			printk(KERN_INFO "%s: disabling %s\n",
			       __func__, name);
			ret = ops->disable(rdev);
			if (ret != 0) {
				printk(KERN_ERR
				       "%s: couldn't disable %s: %d\n",
				       __func__, name, ret);
			}
		} else {
			/* The intention is that in future we will
			 * assume that full constraints are provided
			 * so warn even if we aren't going to do
			 * anything here.
			 */
			printk(KERN_WARNING
			       "%s: incomplete constraints, leaving %s on\n",
			       __func__, name);
		}

unlock:
		mutex_unlock(&rdev->mutex);
	}

	mutex_unlock(&regulator_list_mutex);

	return 0;
}
late_initcall(regulator_init_complete);