cafe_nand.c 25.0 KB
Newer Older
D
David Woodhouse 已提交
1
/*
2
 * Driver for One Laptop Per Child ‘CAFÉ’ controller, aka Marvell 88ALP01
3
 *
4 5 6
 * The data sheet for this device can be found at:
 *    http://www.marvell.com/products/pcconn/88ALP01.jsp
 *
7 8 9 10
 * Copyright © 2006 Red Hat, Inc.
 * Copyright © 2006 David Woodhouse <dwmw2@infradead.org>
 */

11
#define DEBUG
12 13 14 15 16

#include <linux/device.h>
#undef DEBUG
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
17
#include <linux/mtd/partitions.h>
18
#include <linux/rslib.h>
19 20 21
#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
22
#include <linux/dma-mapping.h>
23
#include <linux/slab.h>
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
#include <asm/io.h>

#define CAFE_NAND_CTRL1		0x00
#define CAFE_NAND_CTRL2		0x04
#define CAFE_NAND_CTRL3		0x08
#define CAFE_NAND_STATUS	0x0c
#define CAFE_NAND_IRQ		0x10
#define CAFE_NAND_IRQ_MASK	0x14
#define CAFE_NAND_DATA_LEN	0x18
#define CAFE_NAND_ADDR1		0x1c
#define CAFE_NAND_ADDR2		0x20
#define CAFE_NAND_TIMING1	0x24
#define CAFE_NAND_TIMING2	0x28
#define CAFE_NAND_TIMING3	0x2c
#define CAFE_NAND_NONMEM	0x30
39
#define CAFE_NAND_ECC_RESULT	0x3C
40 41 42
#define CAFE_NAND_DMA_CTRL	0x40
#define CAFE_NAND_DMA_ADDR0	0x44
#define CAFE_NAND_DMA_ADDR1	0x48
43 44 45 46
#define CAFE_NAND_ECC_SYN01	0x50
#define CAFE_NAND_ECC_SYN23	0x54
#define CAFE_NAND_ECC_SYN45	0x58
#define CAFE_NAND_ECC_SYN67	0x5c
47 48 49
#define CAFE_NAND_READ_DATA	0x1000
#define CAFE_NAND_WRITE_DATA	0x2000

50 51 52 53 54
#define CAFE_GLOBAL_CTRL	0x3004
#define CAFE_GLOBAL_IRQ		0x3008
#define CAFE_GLOBAL_IRQ_MASK	0x300c
#define CAFE_NAND_RESET		0x3034

55 56 57
/* Missing from the datasheet: bit 19 of CTRL1 sets CE0 vs. CE1 */
#define CTRL1_CHIPSELECT	(1<<19)

58 59
struct cafe_priv {
	struct nand_chip nand;
60
	struct mtd_partition *parts;
61 62
	struct pci_dev *pdev;
	void __iomem *mmio;
63
	struct rs_control *rs;
64 65 66 67 68 69 70 71 72 73
	uint32_t ctl1;
	uint32_t ctl2;
	int datalen;
	int nr_data;
	int data_pos;
	int page_addr;
	dma_addr_t dmaaddr;
	unsigned char *dmabuf;
};

74
static int usedma = 1;
75 76
module_param(usedma, int, 0644);

77 78 79 80 81 82
static int skipbbt = 0;
module_param(skipbbt, int, 0644);

static int debug = 0;
module_param(debug, int, 0644);

83 84 85
static int regdebug = 0;
module_param(regdebug, int, 0644);

86
static int checkecc = 1;
87 88
module_param(checkecc, int, 0644);

89
static unsigned int numtimings;
90 91
static int timing[3];
module_param_array(timing, int, &numtimings, 0644);
92

93
#ifdef CONFIG_MTD_PARTITIONS
94
static const char *part_probes[] = { "cmdlinepart", "RedBoot", NULL };
95 96
#endif

97
/* Hrm. Why isn't this already conditional on something in the struct device? */
98 99
#define cafe_dev_dbg(dev, args...) do { if (debug) dev_dbg(dev, ##args); } while(0)

100 101 102
/* Make it easier to switch to PIO if we need to */
#define cafe_readl(cafe, addr)			readl((cafe)->mmio + CAFE_##addr)
#define cafe_writel(cafe, datum, addr)		writel(datum, (cafe)->mmio + CAFE_##addr)
103

104 105 106
static int cafe_device_ready(struct mtd_info *mtd)
{
	struct cafe_priv *cafe = mtd->priv;
107 108
	int result = !!(cafe_readl(cafe, NAND_STATUS) | 0x40000000);
	uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
109

110
	cafe_writel(cafe, irqs, NAND_IRQ);
111

112
	cafe_dev_dbg(&cafe->pdev->dev, "NAND device is%s ready, IRQ %x (%x) (%x,%x)\n",
113 114
		result?"":" not", irqs, cafe_readl(cafe, NAND_IRQ),
		cafe_readl(cafe, GLOBAL_IRQ), cafe_readl(cafe, GLOBAL_IRQ_MASK));
115

116 117 118 119 120 121 122 123 124 125 126 127
	return result;
}


static void cafe_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
{
	struct cafe_priv *cafe = mtd->priv;

	if (usedma)
		memcpy(cafe->dmabuf + cafe->datalen, buf, len);
	else
		memcpy_toio(cafe->mmio + CAFE_NAND_WRITE_DATA + cafe->datalen, buf, len);
128

129 130
	cafe->datalen += len;

131
	cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes to write buffer. datalen 0x%x\n",
132 133 134 135 136 137 138 139 140 141 142 143
		len, cafe->datalen);
}

static void cafe_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
{
	struct cafe_priv *cafe = mtd->priv;

	if (usedma)
		memcpy(buf, cafe->dmabuf + cafe->datalen, len);
	else
		memcpy_fromio(buf, cafe->mmio + CAFE_NAND_READ_DATA + cafe->datalen, len);

144
	cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes from position 0x%x in read buffer.\n",
145 146 147 148 149 150 151 152 153 154
		  len, cafe->datalen);
	cafe->datalen += len;
}

static uint8_t cafe_read_byte(struct mtd_info *mtd)
{
	struct cafe_priv *cafe = mtd->priv;
	uint8_t d;

	cafe_read_buf(mtd, &d, 1);
155
	cafe_dev_dbg(&cafe->pdev->dev, "Read %02x\n", d);
156 157 158 159 160 161 162 163 164 165 166 167

	return d;
}

static void cafe_nand_cmdfunc(struct mtd_info *mtd, unsigned command,
			      int column, int page_addr)
{
	struct cafe_priv *cafe = mtd->priv;
	int adrbytes = 0;
	uint32_t ctl1;
	uint32_t doneint = 0x80000000;

168
	cafe_dev_dbg(&cafe->pdev->dev, "cmdfunc %02x, 0x%x, 0x%x\n",
169 170 171 172
		command, column, page_addr);

	if (command == NAND_CMD_ERASE2 || command == NAND_CMD_PAGEPROG) {
		/* Second half of a command we already calculated */
173
		cafe_writel(cafe, cafe->ctl2 | 0x100 | command, NAND_CTRL2);
174
		ctl1 = cafe->ctl1;
175
		cafe->ctl2 &= ~(1<<30);
176
		cafe_dev_dbg(&cafe->pdev->dev, "Continue command, ctl1 %08x, #data %d\n",
177 178 179 180
			  cafe->ctl1, cafe->nr_data);
		goto do_command;
	}
	/* Reset ECC engine */
181
	cafe_writel(cafe, 0, NAND_CTRL2);
182 183 184 185 186 187 188 189 190 191 192 193

	/* Emulate NAND_CMD_READOOB on large-page chips */
	if (mtd->writesize > 512 &&
	    command == NAND_CMD_READOOB) {
		column += mtd->writesize;
		command = NAND_CMD_READ0;
	}

	/* FIXME: Do we need to send read command before sending data
	   for small-page chips, to position the buffer correctly? */

	if (column != -1) {
194
		cafe_writel(cafe, column, NAND_ADDR1);
195 196 197 198
		adrbytes = 2;
		if (page_addr != -1)
			goto write_adr2;
	} else if (page_addr != -1) {
199
		cafe_writel(cafe, page_addr & 0xffff, NAND_ADDR1);
200 201
		page_addr >>= 16;
	write_adr2:
202
		cafe_writel(cafe, page_addr, NAND_ADDR2);
203 204 205 206 207 208 209
		adrbytes += 2;
		if (mtd->size > mtd->writesize << 16)
			adrbytes++;
	}

	cafe->data_pos = cafe->datalen = 0;

210 211
	/* Set command valid bit, mask in the chip select bit  */
	ctl1 = 0x80000000 | command | (cafe->ctl1 & CTRL1_CHIPSELECT);
212 213 214 215 216

	/* Set RD or WR bits as appropriate */
	if (command == NAND_CMD_READID || command == NAND_CMD_STATUS) {
		ctl1 |= (1<<26); /* rd */
		/* Always 5 bytes, for now */
217
		cafe->datalen = 4;
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
		/* And one address cycle -- even for STATUS, since the controller doesn't work without */
		adrbytes = 1;
	} else if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 ||
		   command == NAND_CMD_READOOB || command == NAND_CMD_RNDOUT) {
		ctl1 |= 1<<26; /* rd */
		/* For now, assume just read to end of page */
		cafe->datalen = mtd->writesize + mtd->oobsize - column;
	} else if (command == NAND_CMD_SEQIN)
		ctl1 |= 1<<25; /* wr */

	/* Set number of address bytes */
	if (adrbytes)
		ctl1 |= ((adrbytes-1)|8) << 27;

	if (command == NAND_CMD_SEQIN || command == NAND_CMD_ERASE1) {
D
David Woodhouse 已提交
233
		/* Ignore the first command of a pair; the hardware
234 235
		   deals with them both at once, later */
		cafe->ctl1 = ctl1;
236
		cafe_dev_dbg(&cafe->pdev->dev, "Setup for delayed command, ctl1 %08x, dlen %x\n",
237 238 239 240 241
			  cafe->ctl1, cafe->datalen);
		return;
	}
	/* RNDOUT and READ0 commands need a following byte */
	if (command == NAND_CMD_RNDOUT)
242
		cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_RNDOUTSTART, NAND_CTRL2);
243
	else if (command == NAND_CMD_READ0 && mtd->writesize > 512)
244
		cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_READSTART, NAND_CTRL2);
245 246

 do_command:
D
David Woodhouse 已提交
247
	cafe_dev_dbg(&cafe->pdev->dev, "dlen %x, ctl1 %x, ctl2 %x\n",
248
		cafe->datalen, ctl1, cafe_readl(cafe, NAND_CTRL2));
249

250
	/* NB: The datasheet lies -- we really should be subtracting 1 here */
251 252
	cafe_writel(cafe, cafe->datalen, NAND_DATA_LEN);
	cafe_writel(cafe, 0x90000000, NAND_IRQ);
253 254 255 256 257 258 259 260 261 262
	if (usedma && (ctl1 & (3<<25))) {
		uint32_t dmactl = 0xc0000000 + cafe->datalen;
		/* If WR or RD bits set, set up DMA */
		if (ctl1 & (1<<26)) {
			/* It's a read */
			dmactl |= (1<<29);
			/* ... so it's done when the DMA is done, not just
			   the command. */
			doneint = 0x10000000;
		}
263
		cafe_writel(cafe, dmactl, NAND_DMA_CTRL);
264 265 266
	}
	cafe->datalen = 0;

267 268 269 270 271
	if (unlikely(regdebug)) {
		int i;
		printk("About to write command %08x to register 0\n", ctl1);
		for (i=4; i< 0x5c; i+=4)
			printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
272
	}
273

274
	cafe_writel(cafe, ctl1, NAND_CTRL1);
275 276 277 278 279
	/* Apply this short delay always to ensure that we do wait tWB in
	 * any case on any machine. */
	ndelay(100);

	if (1) {
280
		int c;
281 282
		uint32_t irqs;

283
		for (c = 500000; c != 0; c--) {
284
			irqs = cafe_readl(cafe, NAND_IRQ);
285 286 287
			if (irqs & doneint)
				break;
			udelay(1);
288 289
			if (!(c % 100000))
				cafe_dev_dbg(&cafe->pdev->dev, "Wait for ready, IRQ %x\n", irqs);
290 291
			cpu_relax();
		}
292
		cafe_writel(cafe, doneint, NAND_IRQ);
293
		cafe_dev_dbg(&cafe->pdev->dev, "Command %x completed after %d usec, irqs %x (%x)\n",
294
			     command, 500000-c, irqs, cafe_readl(cafe, NAND_IRQ));
295 296
	}

297
	WARN_ON(cafe->ctl2 & (1<<30));
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314

	switch (command) {

	case NAND_CMD_CACHEDPROG:
	case NAND_CMD_PAGEPROG:
	case NAND_CMD_ERASE1:
	case NAND_CMD_ERASE2:
	case NAND_CMD_SEQIN:
	case NAND_CMD_RNDIN:
	case NAND_CMD_STATUS:
	case NAND_CMD_DEPLETE1:
	case NAND_CMD_RNDOUT:
	case NAND_CMD_STATUS_ERROR:
	case NAND_CMD_STATUS_ERROR0:
	case NAND_CMD_STATUS_ERROR1:
	case NAND_CMD_STATUS_ERROR2:
	case NAND_CMD_STATUS_ERROR3:
315
		cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
316 317 318
		return;
	}
	nand_wait_ready(mtd);
319
	cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
320 321 322 323
}

static void cafe_select_chip(struct mtd_info *mtd, int chipnr)
{
324 325 326 327 328 329 330 331 332 333
	struct cafe_priv *cafe = mtd->priv;

	cafe_dev_dbg(&cafe->pdev->dev, "select_chip %d\n", chipnr);

	/* Mask the appropriate bit into the stored value of ctl1
	   which will be used by cafe_nand_cmdfunc() */
	if (chipnr)
		cafe->ctl1 |= CTRL1_CHIPSELECT;
	else
		cafe->ctl1 &= ~CTRL1_CHIPSELECT;
334
}
335

A
Alan Cox 已提交
336
static irqreturn_t cafe_nand_interrupt(int irq, void *id)
337 338 339
{
	struct mtd_info *mtd = id;
	struct cafe_priv *cafe = mtd->priv;
340 341
	uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
	cafe_writel(cafe, irqs & ~0x90000000, NAND_IRQ);
342 343 344
	if (!irqs)
		return IRQ_NONE;

345
	cafe_dev_dbg(&cafe->pdev->dev, "irq, bits %x (%x)\n", irqs, cafe_readl(cafe, NAND_IRQ));
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
	return IRQ_HANDLED;
}

static void cafe_nand_bug(struct mtd_info *mtd)
{
	BUG();
}

static int cafe_nand_write_oob(struct mtd_info *mtd,
			       struct nand_chip *chip, int page)
{
	int status = 0;

	chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
	chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
	status = chip->waitfunc(mtd, chip);

	return status & NAND_STATUS_FAIL ? -EIO : 0;
}

/* Don't use -- use nand_read_oob_std for now */
static int cafe_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
			      int page, int sndcmd)
{
	chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
	return 1;
}
/**
 * cafe_nand_read_page_syndrome - {REPLACABLE] hardware ecc syndrom based page read
 * @mtd:	mtd info structure
 * @chip:	nand chip info structure
 * @buf:	buffer to store read data
 *
 * The hw generator calculates the error syndrome automatically. Therefor
 * we need a special oob layout and handling.
 */
static int cafe_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
385
			       uint8_t *buf, int page)
386 387 388
{
	struct cafe_priv *cafe = mtd->priv;

389
	cafe_dev_dbg(&cafe->pdev->dev, "ECC result %08x SYN1,2 %08x\n",
390 391
		     cafe_readl(cafe, NAND_ECC_RESULT),
		     cafe_readl(cafe, NAND_ECC_SYN01));
392 393 394 395

	chip->read_buf(mtd, buf, mtd->writesize);
	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);

396
	if (checkecc && cafe_readl(cafe, NAND_ECC_RESULT) & (1<<18)) {
397 398 399 400
		unsigned short syn[8], pat[4];
		int pos[4];
		u8 *oob = chip->oob_poi;
		int i, n;
401 402

		for (i=0; i<8; i+=2) {
403
			uint32_t tmp = cafe_readl(cafe, NAND_ECC_SYN01 + (i*2));
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
			syn[i] = cafe->rs->index_of[tmp & 0xfff];
			syn[i+1] = cafe->rs->index_of[(tmp >> 16) & 0xfff];
		}

		n = decode_rs16(cafe->rs, NULL, NULL, 1367, syn, 0, pos, 0,
		                pat);

		for (i = 0; i < n; i++) {
			int p = pos[i];

			/* The 12-bit symbols are mapped to bytes here */

			if (p > 1374) {
				/* out of range */
				n = -1374;
			} else if (p == 0) {
				/* high four bits do not correspond to data */
				if (pat[i] > 0xff)
					n = -2048;
				else
					buf[0] ^= pat[i];
			} else if (p == 1365) {
				buf[2047] ^= pat[i] >> 4;
				oob[0] ^= pat[i] << 4;
			} else if (p > 1365) {
				if ((p & 1) == 1) {
					oob[3*p/2 - 2048] ^= pat[i] >> 4;
					oob[3*p/2 - 2047] ^= pat[i] << 4;
				} else {
					oob[3*p/2 - 2049] ^= pat[i] >> 8;
					oob[3*p/2 - 2048] ^= pat[i];
				}
			} else if ((p & 1) == 1) {
				buf[3*p/2] ^= pat[i] >> 4;
				buf[3*p/2 + 1] ^= pat[i] << 4;
			} else {
				buf[3*p/2 - 1] ^= pat[i] >> 8;
				buf[3*p/2] ^= pat[i];
			}
D
David Woodhouse 已提交
443
		}
444

445
		if (n < 0) {
446 447
			dev_dbg(&cafe->pdev->dev, "Failed to correct ECC at %08x\n",
				cafe_readl(cafe, NAND_ADDR2) * 2048);
448
			for (i = 0; i < 0x5c; i += 4)
449
				printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
450 451
			mtd->ecc_stats.failed++;
		} else {
452 453
			dev_dbg(&cafe->pdev->dev, "Corrected %d symbol errors\n", n);
			mtd->ecc_stats.corrected += n;
454 455 456
		}
	}

457 458 459
	return 0;
}

460 461 462 463 464 465
static struct nand_ecclayout cafe_oobinfo_2048 = {
	.eccbytes = 14,
	.eccpos = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13},
	.oobfree = {{14, 50}}
};

D
David Woodhouse 已提交
466
/* Ick. The BBT code really ought to be able to work this bit out
467 468 469 470 471 472 473
   for itself from the above, at least for the 2KiB case */
static uint8_t cafe_bbt_pattern_2048[] = { 'B', 'b', 't', '0' };
static uint8_t cafe_mirror_pattern_2048[] = { '1', 't', 'b', 'B' };

static uint8_t cafe_bbt_pattern_512[] = { 0xBB };
static uint8_t cafe_mirror_pattern_512[] = { 0xBC };

474 475 476

static struct nand_bbt_descr cafe_bbt_main_descr_2048 = {
	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
477
		| NAND_BBT_2BIT | NAND_BBT_VERSION,
478 479 480 481
	.offs =	14,
	.len = 4,
	.veroffs = 18,
	.maxblocks = 4,
482
	.pattern = cafe_bbt_pattern_2048
483 484 485 486
};

static struct nand_bbt_descr cafe_bbt_mirror_descr_2048 = {
	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
487
		| NAND_BBT_2BIT | NAND_BBT_VERSION,
488 489 490 491
	.offs =	14,
	.len = 4,
	.veroffs = 18,
	.maxblocks = 4,
492
	.pattern = cafe_mirror_pattern_2048
493 494 495 496 497 498 499 500
};

static struct nand_ecclayout cafe_oobinfo_512 = {
	.eccbytes = 14,
	.eccpos = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13},
	.oobfree = {{14, 2}}
};

501 502
static struct nand_bbt_descr cafe_bbt_main_descr_512 = {
	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
503
		| NAND_BBT_2BIT | NAND_BBT_VERSION,
504 505 506 507 508 509 510 511 512
	.offs =	14,
	.len = 1,
	.veroffs = 15,
	.maxblocks = 4,
	.pattern = cafe_bbt_pattern_512
};

static struct nand_bbt_descr cafe_bbt_mirror_descr_512 = {
	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
513
		| NAND_BBT_2BIT | NAND_BBT_VERSION,
514 515 516 517 518 519 520 521
	.offs =	14,
	.len = 1,
	.veroffs = 15,
	.maxblocks = 4,
	.pattern = cafe_mirror_pattern_512
};


522 523 524 525 526 527
static void cafe_nand_write_page_lowlevel(struct mtd_info *mtd,
					  struct nand_chip *chip, const uint8_t *buf)
{
	struct cafe_priv *cafe = mtd->priv;

	chip->write_buf(mtd, buf, mtd->writesize);
528
	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
529 530

	/* Set up ECC autogeneration */
531
	cafe->ctl2 |= (1<<30);
532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
}

static int cafe_nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
				const uint8_t *buf, int page, int cached, int raw)
{
	int status;

	chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);

	if (unlikely(raw))
		chip->ecc.write_page_raw(mtd, chip, buf);
	else
		chip->ecc.write_page(mtd, chip, buf);

	/*
	 * Cached progamming disabled for now, Not sure if its worth the
	 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s)
	 */
	cached = 0;

	if (!cached || !(chip->options & NAND_CACHEPRG)) {

		chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
		status = chip->waitfunc(mtd, chip);
		/*
		 * See if operation failed and additional status checks are
		 * available
		 */
		if ((status & NAND_STATUS_FAIL) && (chip->errstat))
			status = chip->errstat(mtd, chip, FL_WRITING, status,
					       page);

		if (status & NAND_STATUS_FAIL)
			return -EIO;
	} else {
		chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
		status = chip->waitfunc(mtd, chip);
	}

#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
	/* Send command to read back the data */
	chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);

	if (chip->verify_buf(mtd, buf, mtd->writesize))
		return -EIO;
#endif
	return 0;
}

581 582 583 584
static int cafe_nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
{
	return 0;
}
585

586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
/* F_2[X]/(X**6+X+1)  */
static unsigned short __devinit gf64_mul(u8 a, u8 b)
{
	u8 c;
	unsigned int i;

	c = 0;
	for (i = 0; i < 6; i++) {
		if (a & 1)
			c ^= b;
		a >>= 1;
		b <<= 1;
		if ((b & 0x40) != 0)
			b ^= 0x43;
	}

	return c;
}

/* F_64[X]/(X**2+X+A**-1) with A the generator of F_64[X]  */
static u16 __devinit gf4096_mul(u16 a, u16 b)
{
	u8 ah, al, bh, bl, ch, cl;

	ah = a >> 6;
	al = a & 0x3f;
	bh = b >> 6;
	bl = b & 0x3f;

	ch = gf64_mul(ah ^ al, bh ^ bl) ^ gf64_mul(al, bl);
	cl = gf64_mul(gf64_mul(ah, bh), 0x21) ^ gf64_mul(al, bl);

	return (ch << 6) ^ cl;
}

static int __devinit cafe_mul(int x)
{
	if (x == 0)
		return 1;
	return gf4096_mul(x, 0xe01);
}

628 629 630 631 632 633 634
static int __devinit cafe_nand_probe(struct pci_dev *pdev,
				     const struct pci_device_id *ent)
{
	struct mtd_info *mtd;
	struct cafe_priv *cafe;
	uint32_t ctrl;
	int err = 0;
635 636 637 638
#ifdef CONFIG_MTD_PARTITIONS
	struct mtd_partition *parts;
	int nr_parts;
#endif
639

640 641 642 643 644
	/* Very old versions shared the same PCI ident for all three
	   functions on the chip. Verify the class too... */
	if ((pdev->class >> 8) != PCI_CLASS_MEMORY_FLASH)
		return -ENODEV;

645 646 647 648 649 650 651 652 653 654 655 656 657
	err = pci_enable_device(pdev);
	if (err)
		return err;

	pci_set_master(pdev);

	mtd = kzalloc(sizeof(*mtd) + sizeof(struct cafe_priv), GFP_KERNEL);
	if (!mtd) {
		dev_warn(&pdev->dev, "failed to alloc mtd_info\n");
		return  -ENOMEM;
	}
	cafe = (void *)(&mtd[1]);

658
	mtd->dev.parent = &pdev->dev;
659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
	mtd->priv = cafe;
	mtd->owner = THIS_MODULE;

	cafe->pdev = pdev;
	cafe->mmio = pci_iomap(pdev, 0, 0);
	if (!cafe->mmio) {
		dev_warn(&pdev->dev, "failed to iomap\n");
		err = -ENOMEM;
		goto out_free_mtd;
	}
	cafe->dmabuf = dma_alloc_coherent(&cafe->pdev->dev, 2112 + sizeof(struct nand_buffers),
					  &cafe->dmaaddr, GFP_KERNEL);
	if (!cafe->dmabuf) {
		err = -ENOMEM;
		goto out_ior;
	}
	cafe->nand.buffers = (void *)cafe->dmabuf + 2112;

677 678 679 680 681 682
	cafe->rs = init_rs_non_canonical(12, &cafe_mul, 0, 1, 8);
	if (!cafe->rs) {
		err = -ENOMEM;
		goto out_ior;
	}

683 684 685 686 687 688 689 690 691 692 693
	cafe->nand.cmdfunc = cafe_nand_cmdfunc;
	cafe->nand.dev_ready = cafe_device_ready;
	cafe->nand.read_byte = cafe_read_byte;
	cafe->nand.read_buf = cafe_read_buf;
	cafe->nand.write_buf = cafe_write_buf;
	cafe->nand.select_chip = cafe_select_chip;

	cafe->nand.chip_delay = 0;

	/* Enable the following for a flash based bad block table */
	cafe->nand.options = NAND_USE_FLASH_BBT | NAND_NO_AUTOINCR | NAND_OWN_BUFFERS;
694 695 696 697 698

	if (skipbbt) {
		cafe->nand.options |= NAND_SKIP_BBTSCAN;
		cafe->nand.block_bad = cafe_nand_block_bad;
	}
D
David Woodhouse 已提交
699

700 701 702 703 704 705
	if (numtimings && numtimings != 3) {
		dev_warn(&cafe->pdev->dev, "%d timing register values ignored; precisely three are required\n", numtimings);
	}

	if (numtimings == 3) {
		cafe_dev_dbg(&cafe->pdev->dev, "Using provided timings (%08x %08x %08x)\n",
706
			     timing[0], timing[1], timing[2]);
707
	} else {
708 709 710
		timing[0] = cafe_readl(cafe, NAND_TIMING1);
		timing[1] = cafe_readl(cafe, NAND_TIMING2);
		timing[2] = cafe_readl(cafe, NAND_TIMING3);
711

712 713 714
		if (timing[0] | timing[1] | timing[2]) {
			cafe_dev_dbg(&cafe->pdev->dev, "Timing registers already set (%08x %08x %08x)\n",
				     timing[0], timing[1], timing[2]);
715 716
		} else {
			dev_warn(&cafe->pdev->dev, "Timing registers unset; using most conservative defaults\n");
717
			timing[0] = timing[1] = timing[2] = 0xffffffff;
718 719 720
		}
	}

721
	/* Start off by resetting the NAND controller completely */
722 723
	cafe_writel(cafe, 1, NAND_RESET);
	cafe_writel(cafe, 0, NAND_RESET);
724

725 726 727
	cafe_writel(cafe, timing[0], NAND_TIMING1);
	cafe_writel(cafe, timing[1], NAND_TIMING2);
	cafe_writel(cafe, timing[2], NAND_TIMING3);
728

729
	cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK);
730 731
	err = request_irq(pdev->irq, &cafe_nand_interrupt, IRQF_SHARED,
			  "CAFE NAND", mtd);
732 733 734 735
	if (err) {
		dev_warn(&pdev->dev, "Could not register IRQ %d\n", pdev->irq);
		goto out_free_dma;
	}
736

737
	/* Disable master reset, enable NAND clock */
738
	ctrl = cafe_readl(cafe, GLOBAL_CTRL);
739 740
	ctrl &= 0xffffeff0;
	ctrl |= 0x00007000;
741 742 743
	cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL);
	cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL);
	cafe_writel(cafe, 0, NAND_DMA_CTRL);
744

745 746
	cafe_writel(cafe, 0x7006, GLOBAL_CTRL);
	cafe_writel(cafe, 0x700a, GLOBAL_CTRL);
747 748

	/* Set up DMA address */
749
	cafe_writel(cafe, cafe->dmaaddr & 0xffffffff, NAND_DMA_ADDR0);
750
	if (sizeof(cafe->dmaaddr) > 4)
751
		/* Shift in two parts to shut the compiler up */
752
		cafe_writel(cafe, (cafe->dmaaddr >> 16) >> 16, NAND_DMA_ADDR1);
753
	else
754
		cafe_writel(cafe, 0, NAND_DMA_ADDR1);
755

756
	cafe_dev_dbg(&cafe->pdev->dev, "Set DMA address to %x (virt %p)\n",
757
		cafe_readl(cafe, NAND_DMA_ADDR0), cafe->dmabuf);
758 759

	/* Enable NAND IRQ in global IRQ mask register */
760
	cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK);
761
	cafe_dev_dbg(&cafe->pdev->dev, "Control %x, IRQ mask %x\n",
762
		cafe_readl(cafe, GLOBAL_CTRL), cafe_readl(cafe, GLOBAL_IRQ_MASK));
763 764

	/* Scan to find existence of the device */
765
	if (nand_scan_ident(mtd, 2, NULL)) {
766 767 768 769 770 771 772 773 774
		err = -ENXIO;
		goto out_irq;
	}

	cafe->ctl2 = 1<<27; /* Reed-Solomon ECC */
	if (mtd->writesize == 2048)
		cafe->ctl2 |= 1<<29; /* 2KiB page size */

	/* Set up ECC according to the type of chip we found */
775
	if (mtd->writesize == 2048) {
776 777 778
		cafe->nand.ecc.layout = &cafe_oobinfo_2048;
		cafe->nand.bbt_td = &cafe_bbt_main_descr_2048;
		cafe->nand.bbt_md = &cafe_bbt_mirror_descr_2048;
779 780 781 782
	} else if (mtd->writesize == 512) {
		cafe->nand.ecc.layout = &cafe_oobinfo_512;
		cafe->nand.bbt_td = &cafe_bbt_main_descr_512;
		cafe->nand.bbt_md = &cafe_bbt_mirror_descr_512;
783
	} else {
784
		printk(KERN_WARNING "Unexpected NAND flash writesize %d. Aborting\n",
785
		       mtd->writesize);
786
		goto out_irq;
787
	}
788 789 790 791 792 793 794 795 796 797 798
	cafe->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
	cafe->nand.ecc.size = mtd->writesize;
	cafe->nand.ecc.bytes = 14;
	cafe->nand.ecc.hwctl  = (void *)cafe_nand_bug;
	cafe->nand.ecc.calculate = (void *)cafe_nand_bug;
	cafe->nand.ecc.correct  = (void *)cafe_nand_bug;
	cafe->nand.write_page = cafe_nand_write_page;
	cafe->nand.ecc.write_page = cafe_nand_write_page_lowlevel;
	cafe->nand.ecc.write_oob = cafe_nand_write_oob;
	cafe->nand.ecc.read_page = cafe_nand_read_page;
	cafe->nand.ecc.read_oob = cafe_nand_read_oob;
799 800 801 802 803 804

	err = nand_scan_tail(mtd);
	if (err)
		goto out_irq;

	pci_set_drvdata(pdev, mtd);
805 806

	/* We register the whole device first, separate from the partitions */
807
	add_mtd_device(mtd);
808 809

#ifdef CONFIG_MTD_PARTITIONS
810 811 812
#ifdef CONFIG_MTD_CMDLINE_PARTS
	mtd->name = "cafe_nand";
#endif
813 814 815
	nr_parts = parse_mtd_partitions(mtd, part_probes, &parts, 0);
	if (nr_parts > 0) {
		cafe->parts = parts;
816
		dev_info(&cafe->pdev->dev, "%d partitions found\n", nr_parts);
817 818 819
		add_mtd_partitions(mtd, parts, nr_parts);
	}
#endif
820 821 822 823
	goto out;

 out_irq:
	/* Disable NAND IRQ in global IRQ mask register */
824
	cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
	free_irq(pdev->irq, mtd);
 out_free_dma:
	dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
 out_ior:
	pci_iounmap(pdev, cafe->mmio);
 out_free_mtd:
	kfree(mtd);
 out:
	return err;
}

static void __devexit cafe_nand_remove(struct pci_dev *pdev)
{
	struct mtd_info *mtd = pci_get_drvdata(pdev);
	struct cafe_priv *cafe = mtd->priv;

	del_mtd_device(mtd);
	/* Disable NAND IRQ in global IRQ mask register */
843
	cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
844 845
	free_irq(pdev->irq, mtd);
	nand_release(mtd);
846
	free_rs(cafe->rs);
847 848 849 850 851
	pci_iounmap(pdev, cafe->mmio);
	dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
	kfree(mtd);
}

852
static const struct pci_device_id cafe_nand_tbl[] = {
853 854
	{ PCI_VENDOR_ID_MARVELL, PCI_DEVICE_ID_MARVELL_88ALP01_NAND,
	  PCI_ANY_ID, PCI_ANY_ID },
855
	{ }
856 857 858 859
};

MODULE_DEVICE_TABLE(pci, cafe_nand_tbl);

860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898
static int cafe_nand_resume(struct pci_dev *pdev)
{
	uint32_t ctrl;
	struct mtd_info *mtd = pci_get_drvdata(pdev);
	struct cafe_priv *cafe = mtd->priv;

       /* Start off by resetting the NAND controller completely */
	cafe_writel(cafe, 1, NAND_RESET);
	cafe_writel(cafe, 0, NAND_RESET);
	cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK);

	/* Restore timing configuration */
	cafe_writel(cafe, timing[0], NAND_TIMING1);
	cafe_writel(cafe, timing[1], NAND_TIMING2);
	cafe_writel(cafe, timing[2], NAND_TIMING3);

        /* Disable master reset, enable NAND clock */
	ctrl = cafe_readl(cafe, GLOBAL_CTRL);
	ctrl &= 0xffffeff0;
	ctrl |= 0x00007000;
	cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL);
	cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL);
	cafe_writel(cafe, 0, NAND_DMA_CTRL);
	cafe_writel(cafe, 0x7006, GLOBAL_CTRL);
	cafe_writel(cafe, 0x700a, GLOBAL_CTRL);

	/* Set up DMA address */
	cafe_writel(cafe, cafe->dmaaddr & 0xffffffff, NAND_DMA_ADDR0);
	if (sizeof(cafe->dmaaddr) > 4)
	/* Shift in two parts to shut the compiler up */
		cafe_writel(cafe, (cafe->dmaaddr >> 16) >> 16, NAND_DMA_ADDR1);
	else
		cafe_writel(cafe, 0, NAND_DMA_ADDR1);

	/* Enable NAND IRQ in global IRQ mask register */
	cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK);
	return 0;
}

899 900 901 902 903 904 905 906
static struct pci_driver cafe_nand_pci_driver = {
	.name = "CAFÉ NAND",
	.id_table = cafe_nand_tbl,
	.probe = cafe_nand_probe,
	.remove = __devexit_p(cafe_nand_remove),
	.resume = cafe_nand_resume,
};

907
static int __init cafe_nand_init(void)
908 909 910 911
{
	return pci_register_driver(&cafe_nand_pci_driver);
}

912
static void __exit cafe_nand_exit(void)
913 914 915 916 917 918 919 920
{
	pci_unregister_driver(&cafe_nand_pci_driver);
}
module_init(cafe_nand_init);
module_exit(cafe_nand_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
921
MODULE_DESCRIPTION("NAND flash driver for OLPC CAFÉ chip");