cafe_nand.c 24.9 KB
Newer Older
D
David Woodhouse 已提交
1
/*
2
 * Driver for One Laptop Per Child ‘CAFÉ’ controller, aka Marvell 88ALP01
3
 *
4 5 6
 * The data sheet for this device can be found at:
 *    http://www.marvell.com/products/pcconn/88ALP01.jsp
 *
7 8 9 10
 * Copyright © 2006 Red Hat, Inc.
 * Copyright © 2006 David Woodhouse <dwmw2@infradead.org>
 */

11
#define DEBUG
12 13 14 15 16

#include <linux/device.h>
#undef DEBUG
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
17
#include <linux/mtd/partitions.h>
18
#include <linux/rslib.h>
19 20 21
#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
22
#include <linux/dma-mapping.h>
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
#include <asm/io.h>

#define CAFE_NAND_CTRL1		0x00
#define CAFE_NAND_CTRL2		0x04
#define CAFE_NAND_CTRL3		0x08
#define CAFE_NAND_STATUS	0x0c
#define CAFE_NAND_IRQ		0x10
#define CAFE_NAND_IRQ_MASK	0x14
#define CAFE_NAND_DATA_LEN	0x18
#define CAFE_NAND_ADDR1		0x1c
#define CAFE_NAND_ADDR2		0x20
#define CAFE_NAND_TIMING1	0x24
#define CAFE_NAND_TIMING2	0x28
#define CAFE_NAND_TIMING3	0x2c
#define CAFE_NAND_NONMEM	0x30
38
#define CAFE_NAND_ECC_RESULT	0x3C
39 40 41
#define CAFE_NAND_DMA_CTRL	0x40
#define CAFE_NAND_DMA_ADDR0	0x44
#define CAFE_NAND_DMA_ADDR1	0x48
42 43 44 45
#define CAFE_NAND_ECC_SYN01	0x50
#define CAFE_NAND_ECC_SYN23	0x54
#define CAFE_NAND_ECC_SYN45	0x58
#define CAFE_NAND_ECC_SYN67	0x5c
46 47 48
#define CAFE_NAND_READ_DATA	0x1000
#define CAFE_NAND_WRITE_DATA	0x2000

49 50 51 52 53
#define CAFE_GLOBAL_CTRL	0x3004
#define CAFE_GLOBAL_IRQ		0x3008
#define CAFE_GLOBAL_IRQ_MASK	0x300c
#define CAFE_NAND_RESET		0x3034

54 55 56
/* Missing from the datasheet: bit 19 of CTRL1 sets CE0 vs. CE1 */
#define CTRL1_CHIPSELECT	(1<<19)

57 58
struct cafe_priv {
	struct nand_chip nand;
59
	struct mtd_partition *parts;
60 61
	struct pci_dev *pdev;
	void __iomem *mmio;
62
	struct rs_control *rs;
63 64 65 66 67 68 69 70 71 72
	uint32_t ctl1;
	uint32_t ctl2;
	int datalen;
	int nr_data;
	int data_pos;
	int page_addr;
	dma_addr_t dmaaddr;
	unsigned char *dmabuf;
};

73
static int usedma = 1;
74 75
module_param(usedma, int, 0644);

76 77 78 79 80 81
static int skipbbt = 0;
module_param(skipbbt, int, 0644);

static int debug = 0;
module_param(debug, int, 0644);

82 83 84
static int regdebug = 0;
module_param(regdebug, int, 0644);

85
static int checkecc = 1;
86 87
module_param(checkecc, int, 0644);

88
static unsigned int numtimings;
89 90
static int timing[3];
module_param_array(timing, int, &numtimings, 0644);
91

92
#ifdef CONFIG_MTD_PARTITIONS
93
static const char *part_probes[] = { "cmdlinepart", "RedBoot", NULL };
94 95
#endif

96
/* Hrm. Why isn't this already conditional on something in the struct device? */
97 98
#define cafe_dev_dbg(dev, args...) do { if (debug) dev_dbg(dev, ##args); } while(0)

99 100 101
/* Make it easier to switch to PIO if we need to */
#define cafe_readl(cafe, addr)			readl((cafe)->mmio + CAFE_##addr)
#define cafe_writel(cafe, datum, addr)		writel(datum, (cafe)->mmio + CAFE_##addr)
102

103 104 105
static int cafe_device_ready(struct mtd_info *mtd)
{
	struct cafe_priv *cafe = mtd->priv;
106 107
	int result = !!(cafe_readl(cafe, NAND_STATUS) | 0x40000000);
	uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
108

109
	cafe_writel(cafe, irqs, NAND_IRQ);
110

111
	cafe_dev_dbg(&cafe->pdev->dev, "NAND device is%s ready, IRQ %x (%x) (%x,%x)\n",
112 113
		result?"":" not", irqs, cafe_readl(cafe, NAND_IRQ),
		cafe_readl(cafe, GLOBAL_IRQ), cafe_readl(cafe, GLOBAL_IRQ_MASK));
114

115 116 117 118 119 120 121 122 123 124 125 126
	return result;
}


static void cafe_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
{
	struct cafe_priv *cafe = mtd->priv;

	if (usedma)
		memcpy(cafe->dmabuf + cafe->datalen, buf, len);
	else
		memcpy_toio(cafe->mmio + CAFE_NAND_WRITE_DATA + cafe->datalen, buf, len);
127

128 129
	cafe->datalen += len;

130
	cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes to write buffer. datalen 0x%x\n",
131 132 133 134 135 136 137 138 139 140 141 142
		len, cafe->datalen);
}

static void cafe_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
{
	struct cafe_priv *cafe = mtd->priv;

	if (usedma)
		memcpy(buf, cafe->dmabuf + cafe->datalen, len);
	else
		memcpy_fromio(buf, cafe->mmio + CAFE_NAND_READ_DATA + cafe->datalen, len);

143
	cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes from position 0x%x in read buffer.\n",
144 145 146 147 148 149 150 151 152 153
		  len, cafe->datalen);
	cafe->datalen += len;
}

static uint8_t cafe_read_byte(struct mtd_info *mtd)
{
	struct cafe_priv *cafe = mtd->priv;
	uint8_t d;

	cafe_read_buf(mtd, &d, 1);
154
	cafe_dev_dbg(&cafe->pdev->dev, "Read %02x\n", d);
155 156 157 158 159 160 161 162 163 164 165 166

	return d;
}

static void cafe_nand_cmdfunc(struct mtd_info *mtd, unsigned command,
			      int column, int page_addr)
{
	struct cafe_priv *cafe = mtd->priv;
	int adrbytes = 0;
	uint32_t ctl1;
	uint32_t doneint = 0x80000000;

167
	cafe_dev_dbg(&cafe->pdev->dev, "cmdfunc %02x, 0x%x, 0x%x\n",
168 169 170 171
		command, column, page_addr);

	if (command == NAND_CMD_ERASE2 || command == NAND_CMD_PAGEPROG) {
		/* Second half of a command we already calculated */
172
		cafe_writel(cafe, cafe->ctl2 | 0x100 | command, NAND_CTRL2);
173
		ctl1 = cafe->ctl1;
174
		cafe->ctl2 &= ~(1<<30);
175
		cafe_dev_dbg(&cafe->pdev->dev, "Continue command, ctl1 %08x, #data %d\n",
176 177 178 179
			  cafe->ctl1, cafe->nr_data);
		goto do_command;
	}
	/* Reset ECC engine */
180
	cafe_writel(cafe, 0, NAND_CTRL2);
181 182 183 184 185 186 187 188 189 190 191 192

	/* Emulate NAND_CMD_READOOB on large-page chips */
	if (mtd->writesize > 512 &&
	    command == NAND_CMD_READOOB) {
		column += mtd->writesize;
		command = NAND_CMD_READ0;
	}

	/* FIXME: Do we need to send read command before sending data
	   for small-page chips, to position the buffer correctly? */

	if (column != -1) {
193
		cafe_writel(cafe, column, NAND_ADDR1);
194 195 196 197
		adrbytes = 2;
		if (page_addr != -1)
			goto write_adr2;
	} else if (page_addr != -1) {
198
		cafe_writel(cafe, page_addr & 0xffff, NAND_ADDR1);
199 200
		page_addr >>= 16;
	write_adr2:
201
		cafe_writel(cafe, page_addr, NAND_ADDR2);
202 203 204 205 206 207 208
		adrbytes += 2;
		if (mtd->size > mtd->writesize << 16)
			adrbytes++;
	}

	cafe->data_pos = cafe->datalen = 0;

209 210
	/* Set command valid bit, mask in the chip select bit  */
	ctl1 = 0x80000000 | command | (cafe->ctl1 & CTRL1_CHIPSELECT);
211 212 213 214 215

	/* Set RD or WR bits as appropriate */
	if (command == NAND_CMD_READID || command == NAND_CMD_STATUS) {
		ctl1 |= (1<<26); /* rd */
		/* Always 5 bytes, for now */
216
		cafe->datalen = 4;
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
		/* And one address cycle -- even for STATUS, since the controller doesn't work without */
		adrbytes = 1;
	} else if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 ||
		   command == NAND_CMD_READOOB || command == NAND_CMD_RNDOUT) {
		ctl1 |= 1<<26; /* rd */
		/* For now, assume just read to end of page */
		cafe->datalen = mtd->writesize + mtd->oobsize - column;
	} else if (command == NAND_CMD_SEQIN)
		ctl1 |= 1<<25; /* wr */

	/* Set number of address bytes */
	if (adrbytes)
		ctl1 |= ((adrbytes-1)|8) << 27;

	if (command == NAND_CMD_SEQIN || command == NAND_CMD_ERASE1) {
D
David Woodhouse 已提交
232
		/* Ignore the first command of a pair; the hardware
233 234
		   deals with them both at once, later */
		cafe->ctl1 = ctl1;
235
		cafe_dev_dbg(&cafe->pdev->dev, "Setup for delayed command, ctl1 %08x, dlen %x\n",
236 237 238 239 240
			  cafe->ctl1, cafe->datalen);
		return;
	}
	/* RNDOUT and READ0 commands need a following byte */
	if (command == NAND_CMD_RNDOUT)
241
		cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_RNDOUTSTART, NAND_CTRL2);
242
	else if (command == NAND_CMD_READ0 && mtd->writesize > 512)
243
		cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_READSTART, NAND_CTRL2);
244 245

 do_command:
D
David Woodhouse 已提交
246
	cafe_dev_dbg(&cafe->pdev->dev, "dlen %x, ctl1 %x, ctl2 %x\n",
247
		cafe->datalen, ctl1, cafe_readl(cafe, NAND_CTRL2));
248

249
	/* NB: The datasheet lies -- we really should be subtracting 1 here */
250 251
	cafe_writel(cafe, cafe->datalen, NAND_DATA_LEN);
	cafe_writel(cafe, 0x90000000, NAND_IRQ);
252 253 254 255 256 257 258 259 260 261
	if (usedma && (ctl1 & (3<<25))) {
		uint32_t dmactl = 0xc0000000 + cafe->datalen;
		/* If WR or RD bits set, set up DMA */
		if (ctl1 & (1<<26)) {
			/* It's a read */
			dmactl |= (1<<29);
			/* ... so it's done when the DMA is done, not just
			   the command. */
			doneint = 0x10000000;
		}
262
		cafe_writel(cafe, dmactl, NAND_DMA_CTRL);
263 264 265
	}
	cafe->datalen = 0;

266 267 268 269 270
	if (unlikely(regdebug)) {
		int i;
		printk("About to write command %08x to register 0\n", ctl1);
		for (i=4; i< 0x5c; i+=4)
			printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
271
	}
272

273
	cafe_writel(cafe, ctl1, NAND_CTRL1);
274 275 276 277 278
	/* Apply this short delay always to ensure that we do wait tWB in
	 * any case on any machine. */
	ndelay(100);

	if (1) {
279
		int c;
280 281
		uint32_t irqs;

282
		for (c = 500000; c != 0; c--) {
283
			irqs = cafe_readl(cafe, NAND_IRQ);
284 285 286
			if (irqs & doneint)
				break;
			udelay(1);
287 288
			if (!(c % 100000))
				cafe_dev_dbg(&cafe->pdev->dev, "Wait for ready, IRQ %x\n", irqs);
289 290
			cpu_relax();
		}
291
		cafe_writel(cafe, doneint, NAND_IRQ);
292
		cafe_dev_dbg(&cafe->pdev->dev, "Command %x completed after %d usec, irqs %x (%x)\n",
293
			     command, 500000-c, irqs, cafe_readl(cafe, NAND_IRQ));
294 295
	}

296
	WARN_ON(cafe->ctl2 & (1<<30));
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313

	switch (command) {

	case NAND_CMD_CACHEDPROG:
	case NAND_CMD_PAGEPROG:
	case NAND_CMD_ERASE1:
	case NAND_CMD_ERASE2:
	case NAND_CMD_SEQIN:
	case NAND_CMD_RNDIN:
	case NAND_CMD_STATUS:
	case NAND_CMD_DEPLETE1:
	case NAND_CMD_RNDOUT:
	case NAND_CMD_STATUS_ERROR:
	case NAND_CMD_STATUS_ERROR0:
	case NAND_CMD_STATUS_ERROR1:
	case NAND_CMD_STATUS_ERROR2:
	case NAND_CMD_STATUS_ERROR3:
314
		cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
315 316 317
		return;
	}
	nand_wait_ready(mtd);
318
	cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
319 320 321 322
}

static void cafe_select_chip(struct mtd_info *mtd, int chipnr)
{
323 324 325 326 327 328 329 330 331 332
	struct cafe_priv *cafe = mtd->priv;

	cafe_dev_dbg(&cafe->pdev->dev, "select_chip %d\n", chipnr);

	/* Mask the appropriate bit into the stored value of ctl1
	   which will be used by cafe_nand_cmdfunc() */
	if (chipnr)
		cafe->ctl1 |= CTRL1_CHIPSELECT;
	else
		cafe->ctl1 &= ~CTRL1_CHIPSELECT;
333
}
334

A
Alan Cox 已提交
335
static irqreturn_t cafe_nand_interrupt(int irq, void *id)
336 337 338
{
	struct mtd_info *mtd = id;
	struct cafe_priv *cafe = mtd->priv;
339 340
	uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
	cafe_writel(cafe, irqs & ~0x90000000, NAND_IRQ);
341 342 343
	if (!irqs)
		return IRQ_NONE;

344
	cafe_dev_dbg(&cafe->pdev->dev, "irq, bits %x (%x)\n", irqs, cafe_readl(cafe, NAND_IRQ));
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
	return IRQ_HANDLED;
}

static void cafe_nand_bug(struct mtd_info *mtd)
{
	BUG();
}

static int cafe_nand_write_oob(struct mtd_info *mtd,
			       struct nand_chip *chip, int page)
{
	int status = 0;

	chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
	chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
	status = chip->waitfunc(mtd, chip);

	return status & NAND_STATUS_FAIL ? -EIO : 0;
}

/* Don't use -- use nand_read_oob_std for now */
static int cafe_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
			      int page, int sndcmd)
{
	chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
	return 1;
}
/**
 * cafe_nand_read_page_syndrome - {REPLACABLE] hardware ecc syndrom based page read
 * @mtd:	mtd info structure
 * @chip:	nand chip info structure
 * @buf:	buffer to store read data
 *
 * The hw generator calculates the error syndrome automatically. Therefor
 * we need a special oob layout and handling.
 */
static int cafe_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
384
			       uint8_t *buf, int page)
385 386 387
{
	struct cafe_priv *cafe = mtd->priv;

388
	cafe_dev_dbg(&cafe->pdev->dev, "ECC result %08x SYN1,2 %08x\n",
389 390
		     cafe_readl(cafe, NAND_ECC_RESULT),
		     cafe_readl(cafe, NAND_ECC_SYN01));
391 392 393 394

	chip->read_buf(mtd, buf, mtd->writesize);
	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);

395
	if (checkecc && cafe_readl(cafe, NAND_ECC_RESULT) & (1<<18)) {
396 397 398 399
		unsigned short syn[8], pat[4];
		int pos[4];
		u8 *oob = chip->oob_poi;
		int i, n;
400 401

		for (i=0; i<8; i+=2) {
402
			uint32_t tmp = cafe_readl(cafe, NAND_ECC_SYN01 + (i*2));
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
			syn[i] = cafe->rs->index_of[tmp & 0xfff];
			syn[i+1] = cafe->rs->index_of[(tmp >> 16) & 0xfff];
		}

		n = decode_rs16(cafe->rs, NULL, NULL, 1367, syn, 0, pos, 0,
		                pat);

		for (i = 0; i < n; i++) {
			int p = pos[i];

			/* The 12-bit symbols are mapped to bytes here */

			if (p > 1374) {
				/* out of range */
				n = -1374;
			} else if (p == 0) {
				/* high four bits do not correspond to data */
				if (pat[i] > 0xff)
					n = -2048;
				else
					buf[0] ^= pat[i];
			} else if (p == 1365) {
				buf[2047] ^= pat[i] >> 4;
				oob[0] ^= pat[i] << 4;
			} else if (p > 1365) {
				if ((p & 1) == 1) {
					oob[3*p/2 - 2048] ^= pat[i] >> 4;
					oob[3*p/2 - 2047] ^= pat[i] << 4;
				} else {
					oob[3*p/2 - 2049] ^= pat[i] >> 8;
					oob[3*p/2 - 2048] ^= pat[i];
				}
			} else if ((p & 1) == 1) {
				buf[3*p/2] ^= pat[i] >> 4;
				buf[3*p/2 + 1] ^= pat[i] << 4;
			} else {
				buf[3*p/2 - 1] ^= pat[i] >> 8;
				buf[3*p/2] ^= pat[i];
			}
D
David Woodhouse 已提交
442
		}
443

444
		if (n < 0) {
445 446
			dev_dbg(&cafe->pdev->dev, "Failed to correct ECC at %08x\n",
				cafe_readl(cafe, NAND_ADDR2) * 2048);
447
			for (i = 0; i < 0x5c; i += 4)
448
				printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
449 450
			mtd->ecc_stats.failed++;
		} else {
451 452
			dev_dbg(&cafe->pdev->dev, "Corrected %d symbol errors\n", n);
			mtd->ecc_stats.corrected += n;
453 454 455
		}
	}

456 457 458
	return 0;
}

459 460 461 462 463 464
static struct nand_ecclayout cafe_oobinfo_2048 = {
	.eccbytes = 14,
	.eccpos = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13},
	.oobfree = {{14, 50}}
};

D
David Woodhouse 已提交
465
/* Ick. The BBT code really ought to be able to work this bit out
466 467 468 469 470 471 472
   for itself from the above, at least for the 2KiB case */
static uint8_t cafe_bbt_pattern_2048[] = { 'B', 'b', 't', '0' };
static uint8_t cafe_mirror_pattern_2048[] = { '1', 't', 'b', 'B' };

static uint8_t cafe_bbt_pattern_512[] = { 0xBB };
static uint8_t cafe_mirror_pattern_512[] = { 0xBC };

473 474 475

static struct nand_bbt_descr cafe_bbt_main_descr_2048 = {
	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
476
		| NAND_BBT_2BIT | NAND_BBT_VERSION,
477 478 479 480
	.offs =	14,
	.len = 4,
	.veroffs = 18,
	.maxblocks = 4,
481
	.pattern = cafe_bbt_pattern_2048
482 483 484 485
};

static struct nand_bbt_descr cafe_bbt_mirror_descr_2048 = {
	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
486
		| NAND_BBT_2BIT | NAND_BBT_VERSION,
487 488 489 490
	.offs =	14,
	.len = 4,
	.veroffs = 18,
	.maxblocks = 4,
491
	.pattern = cafe_mirror_pattern_2048
492 493 494 495 496 497 498 499
};

static struct nand_ecclayout cafe_oobinfo_512 = {
	.eccbytes = 14,
	.eccpos = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13},
	.oobfree = {{14, 2}}
};

500 501
static struct nand_bbt_descr cafe_bbt_main_descr_512 = {
	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
502
		| NAND_BBT_2BIT | NAND_BBT_VERSION,
503 504 505 506 507 508 509 510 511
	.offs =	14,
	.len = 1,
	.veroffs = 15,
	.maxblocks = 4,
	.pattern = cafe_bbt_pattern_512
};

static struct nand_bbt_descr cafe_bbt_mirror_descr_512 = {
	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
512
		| NAND_BBT_2BIT | NAND_BBT_VERSION,
513 514 515 516 517 518 519 520
	.offs =	14,
	.len = 1,
	.veroffs = 15,
	.maxblocks = 4,
	.pattern = cafe_mirror_pattern_512
};


521 522 523 524 525 526
static void cafe_nand_write_page_lowlevel(struct mtd_info *mtd,
					  struct nand_chip *chip, const uint8_t *buf)
{
	struct cafe_priv *cafe = mtd->priv;

	chip->write_buf(mtd, buf, mtd->writesize);
527
	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
528 529

	/* Set up ECC autogeneration */
530
	cafe->ctl2 |= (1<<30);
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
}

static int cafe_nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
				const uint8_t *buf, int page, int cached, int raw)
{
	int status;

	chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);

	if (unlikely(raw))
		chip->ecc.write_page_raw(mtd, chip, buf);
	else
		chip->ecc.write_page(mtd, chip, buf);

	/*
	 * Cached progamming disabled for now, Not sure if its worth the
	 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s)
	 */
	cached = 0;

	if (!cached || !(chip->options & NAND_CACHEPRG)) {

		chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
		status = chip->waitfunc(mtd, chip);
		/*
		 * See if operation failed and additional status checks are
		 * available
		 */
		if ((status & NAND_STATUS_FAIL) && (chip->errstat))
			status = chip->errstat(mtd, chip, FL_WRITING, status,
					       page);

		if (status & NAND_STATUS_FAIL)
			return -EIO;
	} else {
		chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
		status = chip->waitfunc(mtd, chip);
	}

#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
	/* Send command to read back the data */
	chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);

	if (chip->verify_buf(mtd, buf, mtd->writesize))
		return -EIO;
#endif
	return 0;
}

580 581 582 583
static int cafe_nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
{
	return 0;
}
584

585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
/* F_2[X]/(X**6+X+1)  */
static unsigned short __devinit gf64_mul(u8 a, u8 b)
{
	u8 c;
	unsigned int i;

	c = 0;
	for (i = 0; i < 6; i++) {
		if (a & 1)
			c ^= b;
		a >>= 1;
		b <<= 1;
		if ((b & 0x40) != 0)
			b ^= 0x43;
	}

	return c;
}

/* F_64[X]/(X**2+X+A**-1) with A the generator of F_64[X]  */
static u16 __devinit gf4096_mul(u16 a, u16 b)
{
	u8 ah, al, bh, bl, ch, cl;

	ah = a >> 6;
	al = a & 0x3f;
	bh = b >> 6;
	bl = b & 0x3f;

	ch = gf64_mul(ah ^ al, bh ^ bl) ^ gf64_mul(al, bl);
	cl = gf64_mul(gf64_mul(ah, bh), 0x21) ^ gf64_mul(al, bl);

	return (ch << 6) ^ cl;
}

static int __devinit cafe_mul(int x)
{
	if (x == 0)
		return 1;
	return gf4096_mul(x, 0xe01);
}

627 628 629 630 631 632 633
static int __devinit cafe_nand_probe(struct pci_dev *pdev,
				     const struct pci_device_id *ent)
{
	struct mtd_info *mtd;
	struct cafe_priv *cafe;
	uint32_t ctrl;
	int err = 0;
634 635 636 637
#ifdef CONFIG_MTD_PARTITIONS
	struct mtd_partition *parts;
	int nr_parts;
#endif
638

639 640 641 642 643
	/* Very old versions shared the same PCI ident for all three
	   functions on the chip. Verify the class too... */
	if ((pdev->class >> 8) != PCI_CLASS_MEMORY_FLASH)
		return -ENODEV;

644 645 646 647 648 649 650 651 652 653 654 655 656
	err = pci_enable_device(pdev);
	if (err)
		return err;

	pci_set_master(pdev);

	mtd = kzalloc(sizeof(*mtd) + sizeof(struct cafe_priv), GFP_KERNEL);
	if (!mtd) {
		dev_warn(&pdev->dev, "failed to alloc mtd_info\n");
		return  -ENOMEM;
	}
	cafe = (void *)(&mtd[1]);

657
	mtd->dev.parent = &pdev->dev;
658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
	mtd->priv = cafe;
	mtd->owner = THIS_MODULE;

	cafe->pdev = pdev;
	cafe->mmio = pci_iomap(pdev, 0, 0);
	if (!cafe->mmio) {
		dev_warn(&pdev->dev, "failed to iomap\n");
		err = -ENOMEM;
		goto out_free_mtd;
	}
	cafe->dmabuf = dma_alloc_coherent(&cafe->pdev->dev, 2112 + sizeof(struct nand_buffers),
					  &cafe->dmaaddr, GFP_KERNEL);
	if (!cafe->dmabuf) {
		err = -ENOMEM;
		goto out_ior;
	}
	cafe->nand.buffers = (void *)cafe->dmabuf + 2112;

676 677 678 679 680 681
	cafe->rs = init_rs_non_canonical(12, &cafe_mul, 0, 1, 8);
	if (!cafe->rs) {
		err = -ENOMEM;
		goto out_ior;
	}

682 683 684 685 686 687 688 689 690 691 692
	cafe->nand.cmdfunc = cafe_nand_cmdfunc;
	cafe->nand.dev_ready = cafe_device_ready;
	cafe->nand.read_byte = cafe_read_byte;
	cafe->nand.read_buf = cafe_read_buf;
	cafe->nand.write_buf = cafe_write_buf;
	cafe->nand.select_chip = cafe_select_chip;

	cafe->nand.chip_delay = 0;

	/* Enable the following for a flash based bad block table */
	cafe->nand.options = NAND_USE_FLASH_BBT | NAND_NO_AUTOINCR | NAND_OWN_BUFFERS;
693 694 695 696 697

	if (skipbbt) {
		cafe->nand.options |= NAND_SKIP_BBTSCAN;
		cafe->nand.block_bad = cafe_nand_block_bad;
	}
D
David Woodhouse 已提交
698

699 700 701 702 703 704
	if (numtimings && numtimings != 3) {
		dev_warn(&cafe->pdev->dev, "%d timing register values ignored; precisely three are required\n", numtimings);
	}

	if (numtimings == 3) {
		cafe_dev_dbg(&cafe->pdev->dev, "Using provided timings (%08x %08x %08x)\n",
705
			     timing[0], timing[1], timing[2]);
706
	} else {
707 708 709
		timing[0] = cafe_readl(cafe, NAND_TIMING1);
		timing[1] = cafe_readl(cafe, NAND_TIMING2);
		timing[2] = cafe_readl(cafe, NAND_TIMING3);
710

711 712 713
		if (timing[0] | timing[1] | timing[2]) {
			cafe_dev_dbg(&cafe->pdev->dev, "Timing registers already set (%08x %08x %08x)\n",
				     timing[0], timing[1], timing[2]);
714 715
		} else {
			dev_warn(&cafe->pdev->dev, "Timing registers unset; using most conservative defaults\n");
716
			timing[0] = timing[1] = timing[2] = 0xffffffff;
717 718 719
		}
	}

720
	/* Start off by resetting the NAND controller completely */
721 722
	cafe_writel(cafe, 1, NAND_RESET);
	cafe_writel(cafe, 0, NAND_RESET);
723

724 725 726
	cafe_writel(cafe, timing[0], NAND_TIMING1);
	cafe_writel(cafe, timing[1], NAND_TIMING2);
	cafe_writel(cafe, timing[2], NAND_TIMING3);
727

728
	cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK);
729 730
	err = request_irq(pdev->irq, &cafe_nand_interrupt, IRQF_SHARED,
			  "CAFE NAND", mtd);
731 732 733 734
	if (err) {
		dev_warn(&pdev->dev, "Could not register IRQ %d\n", pdev->irq);
		goto out_free_dma;
	}
735

736
	/* Disable master reset, enable NAND clock */
737
	ctrl = cafe_readl(cafe, GLOBAL_CTRL);
738 739
	ctrl &= 0xffffeff0;
	ctrl |= 0x00007000;
740 741 742
	cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL);
	cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL);
	cafe_writel(cafe, 0, NAND_DMA_CTRL);
743

744 745
	cafe_writel(cafe, 0x7006, GLOBAL_CTRL);
	cafe_writel(cafe, 0x700a, GLOBAL_CTRL);
746 747

	/* Set up DMA address */
748
	cafe_writel(cafe, cafe->dmaaddr & 0xffffffff, NAND_DMA_ADDR0);
749
	if (sizeof(cafe->dmaaddr) > 4)
750
		/* Shift in two parts to shut the compiler up */
751
		cafe_writel(cafe, (cafe->dmaaddr >> 16) >> 16, NAND_DMA_ADDR1);
752
	else
753
		cafe_writel(cafe, 0, NAND_DMA_ADDR1);
754

755
	cafe_dev_dbg(&cafe->pdev->dev, "Set DMA address to %x (virt %p)\n",
756
		cafe_readl(cafe, NAND_DMA_ADDR0), cafe->dmabuf);
757 758

	/* Enable NAND IRQ in global IRQ mask register */
759
	cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK);
760
	cafe_dev_dbg(&cafe->pdev->dev, "Control %x, IRQ mask %x\n",
761
		cafe_readl(cafe, GLOBAL_CTRL), cafe_readl(cafe, GLOBAL_IRQ_MASK));
762 763

	/* Scan to find existence of the device */
764
	if (nand_scan_ident(mtd, 2)) {
765 766 767 768 769 770 771 772 773
		err = -ENXIO;
		goto out_irq;
	}

	cafe->ctl2 = 1<<27; /* Reed-Solomon ECC */
	if (mtd->writesize == 2048)
		cafe->ctl2 |= 1<<29; /* 2KiB page size */

	/* Set up ECC according to the type of chip we found */
774
	if (mtd->writesize == 2048) {
775 776 777
		cafe->nand.ecc.layout = &cafe_oobinfo_2048;
		cafe->nand.bbt_td = &cafe_bbt_main_descr_2048;
		cafe->nand.bbt_md = &cafe_bbt_mirror_descr_2048;
778 779 780 781
	} else if (mtd->writesize == 512) {
		cafe->nand.ecc.layout = &cafe_oobinfo_512;
		cafe->nand.bbt_td = &cafe_bbt_main_descr_512;
		cafe->nand.bbt_md = &cafe_bbt_mirror_descr_512;
782
	} else {
783
		printk(KERN_WARNING "Unexpected NAND flash writesize %d. Aborting\n",
784
		       mtd->writesize);
785
		goto out_irq;
786
	}
787 788 789 790 791 792 793 794 795 796 797
	cafe->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
	cafe->nand.ecc.size = mtd->writesize;
	cafe->nand.ecc.bytes = 14;
	cafe->nand.ecc.hwctl  = (void *)cafe_nand_bug;
	cafe->nand.ecc.calculate = (void *)cafe_nand_bug;
	cafe->nand.ecc.correct  = (void *)cafe_nand_bug;
	cafe->nand.write_page = cafe_nand_write_page;
	cafe->nand.ecc.write_page = cafe_nand_write_page_lowlevel;
	cafe->nand.ecc.write_oob = cafe_nand_write_oob;
	cafe->nand.ecc.read_page = cafe_nand_read_page;
	cafe->nand.ecc.read_oob = cafe_nand_read_oob;
798 799 800 801 802 803

	err = nand_scan_tail(mtd);
	if (err)
		goto out_irq;

	pci_set_drvdata(pdev, mtd);
804 805

	/* We register the whole device first, separate from the partitions */
806
	add_mtd_device(mtd);
807 808

#ifdef CONFIG_MTD_PARTITIONS
809 810 811
#ifdef CONFIG_MTD_CMDLINE_PARTS
	mtd->name = "cafe_nand";
#endif
812 813 814
	nr_parts = parse_mtd_partitions(mtd, part_probes, &parts, 0);
	if (nr_parts > 0) {
		cafe->parts = parts;
815
		dev_info(&cafe->pdev->dev, "%d partitions found\n", nr_parts);
816 817 818
		add_mtd_partitions(mtd, parts, nr_parts);
	}
#endif
819 820 821 822
	goto out;

 out_irq:
	/* Disable NAND IRQ in global IRQ mask register */
823
	cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
	free_irq(pdev->irq, mtd);
 out_free_dma:
	dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
 out_ior:
	pci_iounmap(pdev, cafe->mmio);
 out_free_mtd:
	kfree(mtd);
 out:
	return err;
}

static void __devexit cafe_nand_remove(struct pci_dev *pdev)
{
	struct mtd_info *mtd = pci_get_drvdata(pdev);
	struct cafe_priv *cafe = mtd->priv;

	del_mtd_device(mtd);
	/* Disable NAND IRQ in global IRQ mask register */
842
	cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
843 844
	free_irq(pdev->irq, mtd);
	nand_release(mtd);
845
	free_rs(cafe->rs);
846 847 848 849 850 851
	pci_iounmap(pdev, cafe->mmio);
	dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
	kfree(mtd);
}

static struct pci_device_id cafe_nand_tbl[] = {
852 853
	{ PCI_VENDOR_ID_MARVELL, PCI_DEVICE_ID_MARVELL_88ALP01_NAND,
	  PCI_ANY_ID, PCI_ANY_ID },
854
	{ }
855 856 857 858
};

MODULE_DEVICE_TABLE(pci, cafe_nand_tbl);

859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897
static int cafe_nand_resume(struct pci_dev *pdev)
{
	uint32_t ctrl;
	struct mtd_info *mtd = pci_get_drvdata(pdev);
	struct cafe_priv *cafe = mtd->priv;

       /* Start off by resetting the NAND controller completely */
	cafe_writel(cafe, 1, NAND_RESET);
	cafe_writel(cafe, 0, NAND_RESET);
	cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK);

	/* Restore timing configuration */
	cafe_writel(cafe, timing[0], NAND_TIMING1);
	cafe_writel(cafe, timing[1], NAND_TIMING2);
	cafe_writel(cafe, timing[2], NAND_TIMING3);

        /* Disable master reset, enable NAND clock */
	ctrl = cafe_readl(cafe, GLOBAL_CTRL);
	ctrl &= 0xffffeff0;
	ctrl |= 0x00007000;
	cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL);
	cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL);
	cafe_writel(cafe, 0, NAND_DMA_CTRL);
	cafe_writel(cafe, 0x7006, GLOBAL_CTRL);
	cafe_writel(cafe, 0x700a, GLOBAL_CTRL);

	/* Set up DMA address */
	cafe_writel(cafe, cafe->dmaaddr & 0xffffffff, NAND_DMA_ADDR0);
	if (sizeof(cafe->dmaaddr) > 4)
	/* Shift in two parts to shut the compiler up */
		cafe_writel(cafe, (cafe->dmaaddr >> 16) >> 16, NAND_DMA_ADDR1);
	else
		cafe_writel(cafe, 0, NAND_DMA_ADDR1);

	/* Enable NAND IRQ in global IRQ mask register */
	cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK);
	return 0;
}

898 899 900 901 902 903 904 905
static struct pci_driver cafe_nand_pci_driver = {
	.name = "CAFÉ NAND",
	.id_table = cafe_nand_tbl,
	.probe = cafe_nand_probe,
	.remove = __devexit_p(cafe_nand_remove),
	.resume = cafe_nand_resume,
};

906
static int __init cafe_nand_init(void)
907 908 909 910
{
	return pci_register_driver(&cafe_nand_pci_driver);
}

911
static void __exit cafe_nand_exit(void)
912 913 914 915 916 917 918 919
{
	pci_unregister_driver(&cafe_nand_pci_driver);
}
module_init(cafe_nand_init);
module_exit(cafe_nand_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
920
MODULE_DESCRIPTION("NAND flash driver for OLPC CAFÉ chip");