regmap.c 63.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
/*
 * Register map access API
 *
 * Copyright 2011 Wolfson Microelectronics plc
 *
 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

13
#include <linux/device.h>
14
#include <linux/slab.h>
15
#include <linux/export.h>
16 17
#include <linux/mutex.h>
#include <linux/err.h>
18
#include <linux/of.h>
19
#include <linux/rbtree.h>
20
#include <linux/sched.h>
21

M
Mark Brown 已提交
22 23 24
#define CREATE_TRACE_POINTS
#include <trace/events/regmap.h>

25
#include "internal.h"
26

27 28 29 30 31 32 33 34 35 36 37 38
/*
 * Sometimes for failures during very early init the trace
 * infrastructure isn't available early enough to be used.  For this
 * sort of problem defining LOG_DEVICE will add printks for basic
 * register I/O on a specific device.
 */
#undef LOG_DEVICE

static int _regmap_update_bits(struct regmap *map, unsigned int reg,
			       unsigned int mask, unsigned int val,
			       bool *change);

39 40
static int _regmap_bus_reg_read(void *context, unsigned int reg,
				unsigned int *val);
41 42
static int _regmap_bus_read(void *context, unsigned int reg,
			    unsigned int *val);
43 44
static int _regmap_bus_formatted_write(void *context, unsigned int reg,
				       unsigned int val);
45 46
static int _regmap_bus_reg_write(void *context, unsigned int reg,
				 unsigned int val);
47 48
static int _regmap_bus_raw_write(void *context, unsigned int reg,
				 unsigned int val);
49

50 51 52 53 54 55 56 57 58 59 60 61 62 63
bool regmap_reg_in_ranges(unsigned int reg,
			  const struct regmap_range *ranges,
			  unsigned int nranges)
{
	const struct regmap_range *r;
	int i;

	for (i = 0, r = ranges; i < nranges; i++, r++)
		if (regmap_reg_in_range(reg, r))
			return true;
	return false;
}
EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);

64 65
bool regmap_check_range_table(struct regmap *map, unsigned int reg,
			      const struct regmap_access_table *table)
66 67 68 69 70 71 72 73 74 75 76 77
{
	/* Check "no ranges" first */
	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
		return false;

	/* In case zero "yes ranges" are supplied, any reg is OK */
	if (!table->n_yes_ranges)
		return true;

	return regmap_reg_in_ranges(reg, table->yes_ranges,
				    table->n_yes_ranges);
}
78
EXPORT_SYMBOL_GPL(regmap_check_range_table);
79

80 81 82 83 84 85 86 87
bool regmap_writeable(struct regmap *map, unsigned int reg)
{
	if (map->max_register && reg > map->max_register)
		return false;

	if (map->writeable_reg)
		return map->writeable_reg(map->dev, reg);

88
	if (map->wr_table)
89
		return regmap_check_range_table(map, reg, map->wr_table);
90

91 92 93 94 95 96 97 98
	return true;
}

bool regmap_readable(struct regmap *map, unsigned int reg)
{
	if (map->max_register && reg > map->max_register)
		return false;

99 100 101
	if (map->format.format_write)
		return false;

102 103 104
	if (map->readable_reg)
		return map->readable_reg(map->dev, reg);

105
	if (map->rd_table)
106
		return regmap_check_range_table(map, reg, map->rd_table);
107

108 109 110 111 112
	return true;
}

bool regmap_volatile(struct regmap *map, unsigned int reg)
{
113
	if (!regmap_readable(map, reg))
114 115 116 117 118
		return false;

	if (map->volatile_reg)
		return map->volatile_reg(map->dev, reg);

119
	if (map->volatile_table)
120
		return regmap_check_range_table(map, reg, map->volatile_table);
121

122 123 124 125
	if (map->cache_ops)
		return false;
	else
		return true;
126 127 128 129
}

bool regmap_precious(struct regmap *map, unsigned int reg)
{
130
	if (!regmap_readable(map, reg))
131 132 133 134 135
		return false;

	if (map->precious_reg)
		return map->precious_reg(map->dev, reg);

136
	if (map->precious_table)
137
		return regmap_check_range_table(map, reg, map->precious_table);
138

139 140 141
	return false;
}

142
static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
P
Paul Bolle 已提交
143
	size_t num)
144 145 146 147 148 149 150 151 152 153
{
	unsigned int i;

	for (i = 0; i < num; i++)
		if (!regmap_volatile(map, reg + i))
			return false;

	return true;
}

154 155 156 157 158 159 160 161
static void regmap_format_2_6_write(struct regmap *map,
				     unsigned int reg, unsigned int val)
{
	u8 *out = map->work_buf;

	*out = (reg << 6) | val;
}

162 163 164 165 166 167 168 169 170 171 172 173 174 175
static void regmap_format_4_12_write(struct regmap *map,
				     unsigned int reg, unsigned int val)
{
	__be16 *out = map->work_buf;
	*out = cpu_to_be16((reg << 12) | val);
}

static void regmap_format_7_9_write(struct regmap *map,
				    unsigned int reg, unsigned int val)
{
	__be16 *out = map->work_buf;
	*out = cpu_to_be16((reg << 9) | val);
}

176 177 178 179 180 181 182 183 184 185
static void regmap_format_10_14_write(struct regmap *map,
				    unsigned int reg, unsigned int val)
{
	u8 *out = map->work_buf;

	out[2] = val;
	out[1] = (val >> 8) | (reg << 6);
	out[0] = reg >> 2;
}

186
static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
187 188 189
{
	u8 *b = buf;

190
	b[0] = val << shift;
191 192
}

193
static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
194 195 196
{
	__be16 *b = buf;

197
	b[0] = cpu_to_be16(val << shift);
198 199
}

200 201 202 203 204 205 206
static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
{
	__le16 *b = buf;

	b[0] = cpu_to_le16(val << shift);
}

207 208 209 210 211 212
static void regmap_format_16_native(void *buf, unsigned int val,
				    unsigned int shift)
{
	*(u16 *)buf = val << shift;
}

213
static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
214 215 216
{
	u8 *b = buf;

217 218
	val <<= shift;

219 220 221 222 223
	b[0] = val >> 16;
	b[1] = val >> 8;
	b[2] = val;
}

224
static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
225 226 227
{
	__be32 *b = buf;

228
	b[0] = cpu_to_be32(val << shift);
229 230
}

231 232 233 234 235 236 237
static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
{
	__le32 *b = buf;

	b[0] = cpu_to_le32(val << shift);
}

238 239 240 241 242 243
static void regmap_format_32_native(void *buf, unsigned int val,
				    unsigned int shift)
{
	*(u32 *)buf = val << shift;
}

244
static void regmap_parse_inplace_noop(void *buf)
245
{
246 247 248 249 250
}

static unsigned int regmap_parse_8(const void *buf)
{
	const u8 *b = buf;
251 252 253 254

	return b[0];
}

255 256 257 258 259 260 261
static unsigned int regmap_parse_16_be(const void *buf)
{
	const __be16 *b = buf;

	return be16_to_cpu(b[0]);
}

262 263 264 265 266 267 268
static unsigned int regmap_parse_16_le(const void *buf)
{
	const __le16 *b = buf;

	return le16_to_cpu(b[0]);
}

269
static void regmap_parse_16_be_inplace(void *buf)
270 271 272 273 274 275
{
	__be16 *b = buf;

	b[0] = be16_to_cpu(b[0]);
}

276 277 278 279 280 281 282
static void regmap_parse_16_le_inplace(void *buf)
{
	__le16 *b = buf;

	b[0] = le16_to_cpu(b[0]);
}

283
static unsigned int regmap_parse_16_native(const void *buf)
284 285 286 287
{
	return *(u16 *)buf;
}

288
static unsigned int regmap_parse_24(const void *buf)
289
{
290
	const u8 *b = buf;
291 292 293 294 295 296 297
	unsigned int ret = b[2];
	ret |= ((unsigned int)b[1]) << 8;
	ret |= ((unsigned int)b[0]) << 16;

	return ret;
}

298 299 300 301 302 303 304
static unsigned int regmap_parse_32_be(const void *buf)
{
	const __be32 *b = buf;

	return be32_to_cpu(b[0]);
}

305 306 307 308 309 310 311
static unsigned int regmap_parse_32_le(const void *buf)
{
	const __le32 *b = buf;

	return le32_to_cpu(b[0]);
}

312
static void regmap_parse_32_be_inplace(void *buf)
313 314 315 316 317 318
{
	__be32 *b = buf;

	b[0] = be32_to_cpu(b[0]);
}

319 320 321 322 323 324 325
static void regmap_parse_32_le_inplace(void *buf)
{
	__le32 *b = buf;

	b[0] = le32_to_cpu(b[0]);
}

326
static unsigned int regmap_parse_32_native(const void *buf)
327 328 329 330
{
	return *(u32 *)buf;
}

331
static void regmap_lock_mutex(void *__map)
332
{
333
	struct regmap *map = __map;
334 335 336
	mutex_lock(&map->mutex);
}

337
static void regmap_unlock_mutex(void *__map)
338
{
339
	struct regmap *map = __map;
340 341 342
	mutex_unlock(&map->mutex);
}

343
static void regmap_lock_spinlock(void *__map)
344
__acquires(&map->spinlock)
345
{
346
	struct regmap *map = __map;
347 348 349 350
	unsigned long flags;

	spin_lock_irqsave(&map->spinlock, flags);
	map->spinlock_flags = flags;
351 352
}

353
static void regmap_unlock_spinlock(void *__map)
354
__releases(&map->spinlock)
355
{
356
	struct regmap *map = __map;
357
	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
358 359
}

M
Mark Brown 已提交
360 361 362 363 364 365 366 367 368
static void dev_get_regmap_release(struct device *dev, void *res)
{
	/*
	 * We don't actually have anything to do here; the goal here
	 * is not to manage the regmap but to provide a simple way to
	 * get the regmap back given a struct device.
	 */
}

369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
static bool _regmap_range_add(struct regmap *map,
			      struct regmap_range_node *data)
{
	struct rb_root *root = &map->range_tree;
	struct rb_node **new = &(root->rb_node), *parent = NULL;

	while (*new) {
		struct regmap_range_node *this =
			container_of(*new, struct regmap_range_node, node);

		parent = *new;
		if (data->range_max < this->range_min)
			new = &((*new)->rb_left);
		else if (data->range_min > this->range_max)
			new = &((*new)->rb_right);
		else
			return false;
	}

	rb_link_node(&data->node, parent, new);
	rb_insert_color(&data->node, root);

	return true;
}

static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
						      unsigned int reg)
{
	struct rb_node *node = map->range_tree.rb_node;

	while (node) {
		struct regmap_range_node *this =
			container_of(node, struct regmap_range_node, node);

		if (reg < this->range_min)
			node = node->rb_left;
		else if (reg > this->range_max)
			node = node->rb_right;
		else
			return this;
	}

	return NULL;
}

static void regmap_range_exit(struct regmap *map)
{
	struct rb_node *next;
	struct regmap_range_node *range_node;

	next = rb_first(&map->range_tree);
	while (next) {
		range_node = rb_entry(next, struct regmap_range_node, node);
		next = rb_next(&range_node->node);
		rb_erase(&range_node->node, &map->range_tree);
		kfree(range_node);
	}

	kfree(map->selector_work_buf);
}

430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
int regmap_attach_dev(struct device *dev, struct regmap *map,
		      const struct regmap_config *config)
{
	struct regmap **m;

	map->dev = dev;

	regmap_debugfs_init(map, config->name);

	/* Add a devres resource for dev_get_regmap() */
	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
	if (!m) {
		regmap_debugfs_exit(map);
		return -ENOMEM;
	}
	*m = map;
	devres_add(dev, m);

	return 0;
}
EXPORT_SYMBOL_GPL(regmap_attach_dev);

452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
enum regmap_endian_type {
	REGMAP_ENDIAN_REG,
	REGMAP_ENDIAN_VAL,
};

static int of_regmap_get_endian(struct device *dev,
				const struct regmap_bus *bus,
				const struct regmap_config *config,
				enum regmap_endian_type type,
				enum regmap_endian *endian)
{
	struct device_node *np = dev->of_node;

	if (!endian || !config)
		return -EINVAL;

	/*
	 * Firstly, try to parse the endianness from driver's config,
	 * this is to be compatible with the none DT or the old drivers.
	 * From the driver's config the endianness value maybe:
	 *   REGMAP_ENDIAN_BIG,
	 *   REGMAP_ENDIAN_LITTLE,
	 *   REGMAP_ENDIAN_NATIVE,
	 *   REGMAP_ENDIAN_DEFAULT.
	 */
	switch (type) {
	case REGMAP_ENDIAN_REG:
		*endian = config->reg_format_endian;
		break;
	case REGMAP_ENDIAN_VAL:
		*endian = config->val_format_endian;
		break;
	default:
		return -EINVAL;
	}

	/*
	 * If the endianness parsed from driver config is
	 * REGMAP_ENDIAN_DEFAULT, that means maybe we are using the DT
	 * node to specify the endianness information.
	 */
	if (*endian != REGMAP_ENDIAN_DEFAULT)
		return 0;

	/*
	 * Secondly, try to parse the endianness from DT node if the
	 * driver config does not specify it.
	 * From the DT node the endianness value maybe:
	 *   REGMAP_ENDIAN_BIG,
	 *   REGMAP_ENDIAN_LITTLE,
	 *   REGMAP_ENDIAN_NATIVE,
	 */
	switch (type) {
	case REGMAP_ENDIAN_VAL:
		if (of_property_read_bool(np, "big-endian"))
			*endian = REGMAP_ENDIAN_BIG;
		else if (of_property_read_bool(np, "little-endian"))
			*endian = REGMAP_ENDIAN_LITTLE;
		else
			*endian = REGMAP_ENDIAN_NATIVE;
		break;
	case REGMAP_ENDIAN_REG:
		break;
	default:
		return -EINVAL;
	}

	/*
	 * If the endianness parsed from DT node is REGMAP_ENDIAN_NATIVE, that
	 * maybe means the DT does not care the endianness or it should use
	 * the regmap bus's default endianness, then we should try to check
	 * whether the regmap bus has specified the default endianness.
	 */
	if (*endian != REGMAP_ENDIAN_NATIVE)
		return 0;

	/*
	 * Finally, try to parse the endianness from regmap bus config
	 * if in device's DT node the endianness property is absent.
	 */
	switch (type) {
	case REGMAP_ENDIAN_REG:
		if (bus && bus->reg_format_endian_default)
			*endian = bus->reg_format_endian_default;
		break;
	case REGMAP_ENDIAN_VAL:
		if (bus && bus->val_format_endian_default)
			*endian = bus->val_format_endian_default;
		break;
	default:
		return -EINVAL;
	}

	return 0;
}

548 549 550 551 552
/**
 * regmap_init(): Initialise register map
 *
 * @dev: Device that will be interacted with
 * @bus: Bus-specific callbacks to use with device
553
 * @bus_context: Data passed to bus-specific callbacks
554 555 556 557 558 559 560 561
 * @config: Configuration for register map
 *
 * The return value will be an ERR_PTR() on error or a valid pointer to
 * a struct regmap.  This function should generally not be called
 * directly, it should be called by bus-specific init functions.
 */
struct regmap *regmap_init(struct device *dev,
			   const struct regmap_bus *bus,
562
			   void *bus_context,
563 564
			   const struct regmap_config *config)
{
565
	struct regmap *map;
566
	int ret = -EINVAL;
567
	enum regmap_endian reg_endian, val_endian;
568
	int i, j;
569

570
	if (!config)
571
		goto err;
572 573 574 575 576 577 578

	map = kzalloc(sizeof(*map), GFP_KERNEL);
	if (map == NULL) {
		ret = -ENOMEM;
		goto err;
	}

579 580 581 582
	if (config->lock && config->unlock) {
		map->lock = config->lock;
		map->unlock = config->unlock;
		map->lock_arg = config->lock_arg;
583
	} else {
584 585
		if ((bus && bus->fast_io) ||
		    config->fast_io) {
586 587 588 589 590 591 592 593 594
			spin_lock_init(&map->spinlock);
			map->lock = regmap_lock_spinlock;
			map->unlock = regmap_unlock_spinlock;
		} else {
			mutex_init(&map->mutex);
			map->lock = regmap_lock_mutex;
			map->unlock = regmap_unlock_mutex;
		}
		map->lock_arg = map;
595
	}
596
	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
597
	map->format.pad_bytes = config->pad_bits / 8;
598
	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
599 600
	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
			config->val_bits + config->pad_bits, 8);
601
	map->reg_shift = config->pad_bits % 8;
602 603 604 605
	if (config->reg_stride)
		map->reg_stride = config->reg_stride;
	else
		map->reg_stride = 1;
606
	map->use_single_rw = config->use_single_rw;
607
	map->can_multi_write = config->can_multi_write;
608 609
	map->dev = dev;
	map->bus = bus;
610
	map->bus_context = bus_context;
611
	map->max_register = config->max_register;
612 613 614 615
	map->wr_table = config->wr_table;
	map->rd_table = config->rd_table;
	map->volatile_table = config->volatile_table;
	map->precious_table = config->precious_table;
616 617 618
	map->writeable_reg = config->writeable_reg;
	map->readable_reg = config->readable_reg;
	map->volatile_reg = config->volatile_reg;
619
	map->precious_reg = config->precious_reg;
620
	map->cache_type = config->cache_type;
M
Mark Brown 已提交
621
	map->name = config->name;
622

623 624
	spin_lock_init(&map->async_lock);
	INIT_LIST_HEAD(&map->async_list);
M
Mark Brown 已提交
625
	INIT_LIST_HEAD(&map->async_free);
626 627
	init_waitqueue_head(&map->async_waitq);

628 629 630
	if (config->read_flag_mask || config->write_flag_mask) {
		map->read_flag_mask = config->read_flag_mask;
		map->write_flag_mask = config->write_flag_mask;
631
	} else if (bus) {
632 633 634
		map->read_flag_mask = bus->read_flag_mask;
	}

635 636 637 638
	if (!bus) {
		map->reg_read  = config->reg_read;
		map->reg_write = config->reg_write;

639 640 641 642 643 644
		map->defer_caching = false;
		goto skip_format_initialization;
	} else if (!bus->read || !bus->write) {
		map->reg_read = _regmap_bus_reg_read;
		map->reg_write = _regmap_bus_reg_write;

645 646 647 648 649
		map->defer_caching = false;
		goto skip_format_initialization;
	} else {
		map->reg_read  = _regmap_bus_read;
	}
650

651 652 653 654 655 656 657 658 659
	ret = of_regmap_get_endian(dev, bus, config, REGMAP_ENDIAN_REG,
				   &reg_endian);
	if (ret)
		return ERR_PTR(ret);

	ret = of_regmap_get_endian(dev, bus, config, REGMAP_ENDIAN_VAL,
				   &val_endian);
	if (ret)
		return ERR_PTR(ret);
660

661
	switch (config->reg_bits + map->reg_shift) {
662 663 664 665 666 667 668 669 670 671
	case 2:
		switch (config->val_bits) {
		case 6:
			map->format.format_write = regmap_format_2_6_write;
			break;
		default:
			goto err_map;
		}
		break;

672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
	case 4:
		switch (config->val_bits) {
		case 12:
			map->format.format_write = regmap_format_4_12_write;
			break;
		default:
			goto err_map;
		}
		break;

	case 7:
		switch (config->val_bits) {
		case 9:
			map->format.format_write = regmap_format_7_9_write;
			break;
		default:
			goto err_map;
		}
		break;

692 693 694 695 696 697 698 699 700 701
	case 10:
		switch (config->val_bits) {
		case 14:
			map->format.format_write = regmap_format_10_14_write;
			break;
		default:
			goto err_map;
		}
		break;

702 703 704 705 706
	case 8:
		map->format.format_reg = regmap_format_8;
		break;

	case 16:
707 708 709 710 711 712 713 714 715 716
		switch (reg_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_reg = regmap_format_16_be;
			break;
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_reg = regmap_format_16_native;
			break;
		default:
			goto err_map;
		}
717 718
		break;

719 720 721 722 723 724
	case 24:
		if (reg_endian != REGMAP_ENDIAN_BIG)
			goto err_map;
		map->format.format_reg = regmap_format_24;
		break;

725
	case 32:
726 727 728 729 730 731 732 733 734 735
		switch (reg_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_reg = regmap_format_32_be;
			break;
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_reg = regmap_format_32_native;
			break;
		default:
			goto err_map;
		}
736 737
		break;

738 739 740 741
	default:
		goto err_map;
	}

742 743 744
	if (val_endian == REGMAP_ENDIAN_NATIVE)
		map->format.parse_inplace = regmap_parse_inplace_noop;

745 746 747 748
	switch (config->val_bits) {
	case 8:
		map->format.format_val = regmap_format_8;
		map->format.parse_val = regmap_parse_8;
749
		map->format.parse_inplace = regmap_parse_inplace_noop;
750 751
		break;
	case 16:
752 753 754 755
		switch (val_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_val = regmap_format_16_be;
			map->format.parse_val = regmap_parse_16_be;
756
			map->format.parse_inplace = regmap_parse_16_be_inplace;
757
			break;
758 759 760 761 762
		case REGMAP_ENDIAN_LITTLE:
			map->format.format_val = regmap_format_16_le;
			map->format.parse_val = regmap_parse_16_le;
			map->format.parse_inplace = regmap_parse_16_le_inplace;
			break;
763 764 765 766 767 768 769
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_val = regmap_format_16_native;
			map->format.parse_val = regmap_parse_16_native;
			break;
		default:
			goto err_map;
		}
770
		break;
771
	case 24:
772 773
		if (val_endian != REGMAP_ENDIAN_BIG)
			goto err_map;
774 775 776
		map->format.format_val = regmap_format_24;
		map->format.parse_val = regmap_parse_24;
		break;
777
	case 32:
778 779 780 781
		switch (val_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_val = regmap_format_32_be;
			map->format.parse_val = regmap_parse_32_be;
782
			map->format.parse_inplace = regmap_parse_32_be_inplace;
783
			break;
784 785 786 787 788
		case REGMAP_ENDIAN_LITTLE:
			map->format.format_val = regmap_format_32_le;
			map->format.parse_val = regmap_parse_32_le;
			map->format.parse_inplace = regmap_parse_32_le_inplace;
			break;
789 790 791 792 793 794 795
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_val = regmap_format_32_native;
			map->format.parse_val = regmap_parse_32_native;
			break;
		default:
			goto err_map;
		}
796
		break;
797 798
	}

799 800 801 802
	if (map->format.format_write) {
		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
		    (val_endian != REGMAP_ENDIAN_BIG))
			goto err_map;
803
		map->use_single_rw = true;
804
	}
805

806 807 808 809
	if (!map->format.format_write &&
	    !(map->format.format_reg && map->format.format_val))
		goto err_map;

810
	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
811 812
	if (map->work_buf == NULL) {
		ret = -ENOMEM;
813
		goto err_map;
814 815
	}

816 817
	if (map->format.format_write) {
		map->defer_caching = false;
818
		map->reg_write = _regmap_bus_formatted_write;
819 820
	} else if (map->format.format_val) {
		map->defer_caching = true;
821
		map->reg_write = _regmap_bus_raw_write;
822 823 824
	}

skip_format_initialization:
825

826
	map->range_tree = RB_ROOT;
M
Mark Brown 已提交
827
	for (i = 0; i < config->num_ranges; i++) {
828 829 830 831
		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
		struct regmap_range_node *new;

		/* Sanity check */
832 833 834
		if (range_cfg->range_max < range_cfg->range_min) {
			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
				range_cfg->range_max, range_cfg->range_min);
835
			goto err_range;
836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
		}

		if (range_cfg->range_max > map->max_register) {
			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
				range_cfg->range_max, map->max_register);
			goto err_range;
		}

		if (range_cfg->selector_reg > map->max_register) {
			dev_err(map->dev,
				"Invalid range %d: selector out of map\n", i);
			goto err_range;
		}

		if (range_cfg->window_len == 0) {
			dev_err(map->dev, "Invalid range %d: window_len 0\n",
				i);
			goto err_range;
		}
855 856 857

		/* Make sure, that this register range has no selector
		   or data window within its boundary */
M
Mark Brown 已提交
858
		for (j = 0; j < config->num_ranges; j++) {
859 860 861 862 863
			unsigned sel_reg = config->ranges[j].selector_reg;
			unsigned win_min = config->ranges[j].window_start;
			unsigned win_max = win_min +
					   config->ranges[j].window_len - 1;

864 865 866 867
			/* Allow data window inside its own virtual range */
			if (j == i)
				continue;

868 869
			if (range_cfg->range_min <= sel_reg &&
			    sel_reg <= range_cfg->range_max) {
870 871 872
				dev_err(map->dev,
					"Range %d: selector for %d in window\n",
					i, j);
873 874 875 876 877
				goto err_range;
			}

			if (!(win_max < range_cfg->range_min ||
			      win_min > range_cfg->range_max)) {
878 879 880
				dev_err(map->dev,
					"Range %d: window for %d in window\n",
					i, j);
881 882 883 884 885 886 887 888 889 890
				goto err_range;
			}
		}

		new = kzalloc(sizeof(*new), GFP_KERNEL);
		if (new == NULL) {
			ret = -ENOMEM;
			goto err_range;
		}

891
		new->map = map;
M
Mark Brown 已提交
892
		new->name = range_cfg->name;
893 894 895 896 897 898 899 900
		new->range_min = range_cfg->range_min;
		new->range_max = range_cfg->range_max;
		new->selector_reg = range_cfg->selector_reg;
		new->selector_mask = range_cfg->selector_mask;
		new->selector_shift = range_cfg->selector_shift;
		new->window_start = range_cfg->window_start;
		new->window_len = range_cfg->window_len;

N
Nenghua Cao 已提交
901
		if (!_regmap_range_add(map, new)) {
902
			dev_err(map->dev, "Failed to add range %d\n", i);
903 904 905 906 907 908 909 910 911 912 913 914 915
			kfree(new);
			goto err_range;
		}

		if (map->selector_work_buf == NULL) {
			map->selector_work_buf =
				kzalloc(map->format.buf_size, GFP_KERNEL);
			if (map->selector_work_buf == NULL) {
				ret = -ENOMEM;
				goto err_range;
			}
		}
	}
916

917
	ret = regcache_init(map, config);
918
	if (ret != 0)
919 920
		goto err_range;

921
	if (dev) {
922 923 924
		ret = regmap_attach_dev(dev, map, config);
		if (ret != 0)
			goto err_regcache;
925
	}
M
Mark Brown 已提交
926

927 928
	return map;

929
err_regcache:
M
Mark Brown 已提交
930
	regcache_exit(map);
931 932
err_range:
	regmap_range_exit(map);
933
	kfree(map->work_buf);
934 935 936 937 938 939 940
err_map:
	kfree(map);
err:
	return ERR_PTR(ret);
}
EXPORT_SYMBOL_GPL(regmap_init);

941 942 943 944 945 946 947 948 949 950
static void devm_regmap_release(struct device *dev, void *res)
{
	regmap_exit(*(struct regmap **)res);
}

/**
 * devm_regmap_init(): Initialise managed register map
 *
 * @dev: Device that will be interacted with
 * @bus: Bus-specific callbacks to use with device
951
 * @bus_context: Data passed to bus-specific callbacks
952 953 954 955 956 957 958 959 960
 * @config: Configuration for register map
 *
 * The return value will be an ERR_PTR() on error or a valid pointer
 * to a struct regmap.  This function should generally not be called
 * directly, it should be called by bus-specific init functions.  The
 * map will be automatically freed by the device management code.
 */
struct regmap *devm_regmap_init(struct device *dev,
				const struct regmap_bus *bus,
961
				void *bus_context,
962 963 964 965 966 967 968 969
				const struct regmap_config *config)
{
	struct regmap **ptr, *regmap;

	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
	if (!ptr)
		return ERR_PTR(-ENOMEM);

970
	regmap = regmap_init(dev, bus, bus_context, config);
971 972 973 974 975 976 977 978 979 980 981
	if (!IS_ERR(regmap)) {
		*ptr = regmap;
		devres_add(dev, ptr);
	} else {
		devres_free(ptr);
	}

	return regmap;
}
EXPORT_SYMBOL_GPL(devm_regmap_init);

982 983 984 985 986 987 988 989
static void regmap_field_init(struct regmap_field *rm_field,
	struct regmap *regmap, struct reg_field reg_field)
{
	int field_bits = reg_field.msb - reg_field.lsb + 1;
	rm_field->regmap = regmap;
	rm_field->reg = reg_field.reg;
	rm_field->shift = reg_field.lsb;
	rm_field->mask = ((BIT(field_bits) - 1) << reg_field.lsb);
990 991
	rm_field->id_size = reg_field.id_size;
	rm_field->id_offset = reg_field.id_offset;
992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
}

/**
 * devm_regmap_field_alloc(): Allocate and initialise a register field
 * in a register map.
 *
 * @dev: Device that will be interacted with
 * @regmap: regmap bank in which this register field is located.
 * @reg_field: Register field with in the bank.
 *
 * The return value will be an ERR_PTR() on error or a valid pointer
 * to a struct regmap_field. The regmap_field will be automatically freed
 * by the device management code.
 */
struct regmap_field *devm_regmap_field_alloc(struct device *dev,
		struct regmap *regmap, struct reg_field reg_field)
{
	struct regmap_field *rm_field = devm_kzalloc(dev,
					sizeof(*rm_field), GFP_KERNEL);
	if (!rm_field)
		return ERR_PTR(-ENOMEM);

	regmap_field_init(rm_field, regmap, reg_field);

	return rm_field;

}
EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);

/**
 * devm_regmap_field_free(): Free register field allocated using
 * devm_regmap_field_alloc. Usally drivers need not call this function,
 * as the memory allocated via devm will be freed as per device-driver
 * life-cyle.
 *
 * @dev: Device that will be interacted with
 * @field: regmap field which should be freed.
 */
void devm_regmap_field_free(struct device *dev,
	struct regmap_field *field)
{
	devm_kfree(dev, field);
}
EXPORT_SYMBOL_GPL(devm_regmap_field_free);

/**
 * regmap_field_alloc(): Allocate and initialise a register field
 * in a register map.
 *
 * @regmap: regmap bank in which this register field is located.
 * @reg_field: Register field with in the bank.
 *
 * The return value will be an ERR_PTR() on error or a valid pointer
 * to a struct regmap_field. The regmap_field should be freed by the
 * user once its finished working with it using regmap_field_free().
 */
struct regmap_field *regmap_field_alloc(struct regmap *regmap,
		struct reg_field reg_field)
{
	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);

	if (!rm_field)
		return ERR_PTR(-ENOMEM);

	regmap_field_init(rm_field, regmap, reg_field);

	return rm_field;
}
EXPORT_SYMBOL_GPL(regmap_field_alloc);

/**
 * regmap_field_free(): Free register field allocated using regmap_field_alloc
 *
 * @field: regmap field which should be freed.
 */
void regmap_field_free(struct regmap_field *field)
{
	kfree(field);
}
EXPORT_SYMBOL_GPL(regmap_field_free);

1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
/**
 * regmap_reinit_cache(): Reinitialise the current register cache
 *
 * @map: Register map to operate on.
 * @config: New configuration.  Only the cache data will be used.
 *
 * Discard any existing register cache for the map and initialize a
 * new cache.  This can be used to restore the cache to defaults or to
 * update the cache configuration to reflect runtime discovery of the
 * hardware.
1083 1084 1085
 *
 * No explicit locking is done here, the user needs to ensure that
 * this function will not race with other calls to regmap.
1086 1087 1088 1089
 */
int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
{
	regcache_exit(map);
1090
	regmap_debugfs_exit(map);
1091 1092 1093 1094 1095 1096 1097 1098

	map->max_register = config->max_register;
	map->writeable_reg = config->writeable_reg;
	map->readable_reg = config->readable_reg;
	map->volatile_reg = config->volatile_reg;
	map->precious_reg = config->precious_reg;
	map->cache_type = config->cache_type;

1099
	regmap_debugfs_init(map, config->name);
1100

1101 1102 1103
	map->cache_bypass = false;
	map->cache_only = false;

1104
	return regcache_init(map, config);
1105
}
1106
EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1107

1108 1109 1110 1111 1112
/**
 * regmap_exit(): Free a previously allocated register map
 */
void regmap_exit(struct regmap *map)
{
M
Mark Brown 已提交
1113 1114
	struct regmap_async *async;

1115
	regcache_exit(map);
1116
	regmap_debugfs_exit(map);
1117
	regmap_range_exit(map);
1118
	if (map->bus && map->bus->free_context)
1119
		map->bus->free_context(map->bus_context);
1120
	kfree(map->work_buf);
M
Mark Brown 已提交
1121 1122 1123 1124 1125 1126 1127 1128
	while (!list_empty(&map->async_free)) {
		async = list_first_entry_or_null(&map->async_free,
						 struct regmap_async,
						 list);
		list_del(&async->list);
		kfree(async->work_buf);
		kfree(async);
	}
1129 1130 1131 1132
	kfree(map);
}
EXPORT_SYMBOL_GPL(regmap_exit);

M
Mark Brown 已提交
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
static int dev_get_regmap_match(struct device *dev, void *res, void *data)
{
	struct regmap **r = res;
	if (!r || !*r) {
		WARN_ON(!r || !*r);
		return 0;
	}

	/* If the user didn't specify a name match any */
	if (data)
		return (*r)->name == data;
	else
		return 1;
}

/**
 * dev_get_regmap(): Obtain the regmap (if any) for a device
 *
 * @dev: Device to retrieve the map for
 * @name: Optional name for the register map, usually NULL.
 *
 * Returns the regmap for the device if one is present, or NULL.  If
 * name is specified then it must match the name specified when
 * registering the device, if it is NULL then the first regmap found
 * will be used.  Devices with multiple register maps are very rare,
 * generic code should normally not need to specify a name.
 */
struct regmap *dev_get_regmap(struct device *dev, const char *name)
{
	struct regmap **r = devres_find(dev, dev_get_regmap_release,
					dev_get_regmap_match, (void *)name);

	if (!r)
		return NULL;
	return *r;
}
EXPORT_SYMBOL_GPL(dev_get_regmap);

T
Tuomas Tynkkynen 已提交
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
/**
 * regmap_get_device(): Obtain the device from a regmap
 *
 * @map: Register map to operate on.
 *
 * Returns the underlying device that the regmap has been created for.
 */
struct device *regmap_get_device(struct regmap *map)
{
	return map->dev;
}
1182
EXPORT_SYMBOL_GPL(regmap_get_device);
T
Tuomas Tynkkynen 已提交
1183

1184
static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1185
			       struct regmap_range_node *range,
1186 1187 1188 1189 1190 1191 1192 1193
			       unsigned int val_num)
{
	void *orig_work_buf;
	unsigned int win_offset;
	unsigned int win_page;
	bool page_chg;
	int ret;

1194 1195
	win_offset = (*reg - range->range_min) % range->window_len;
	win_page = (*reg - range->range_min) / range->window_len;
1196

1197 1198 1199 1200
	if (val_num > 1) {
		/* Bulk write shouldn't cross range boundary */
		if (*reg + val_num - 1 > range->range_max)
			return -EINVAL;
1201

1202 1203 1204 1205
		/* ... or single page boundary */
		if (val_num > range->window_len - win_offset)
			return -EINVAL;
	}
1206

1207 1208 1209 1210 1211 1212 1213 1214
	/* It is possible to have selector register inside data window.
	   In that case, selector register is located on every page and
	   it needs no page switching, when accessed alone. */
	if (val_num > 1 ||
	    range->window_start + win_offset != range->selector_reg) {
		/* Use separate work_buf during page switching */
		orig_work_buf = map->work_buf;
		map->work_buf = map->selector_work_buf;
1215

1216 1217 1218 1219
		ret = _regmap_update_bits(map, range->selector_reg,
					  range->selector_mask,
					  win_page << range->selector_shift,
					  &page_chg);
1220

1221
		map->work_buf = orig_work_buf;
1222

1223
		if (ret != 0)
1224
			return ret;
1225 1226
	}

1227 1228
	*reg = range->window_start + win_offset;

1229 1230 1231
	return 0;
}

1232
int _regmap_raw_write(struct regmap *map, unsigned int reg,
1233
		      const void *val, size_t val_len)
1234
{
1235
	struct regmap_range_node *range;
1236
	unsigned long flags;
1237
	u8 *u8 = map->work_buf;
1238 1239
	void *work_val = map->work_buf + map->format.reg_bytes +
		map->format.pad_bytes;
1240 1241 1242
	void *buf;
	int ret = -ENOTSUPP;
	size_t len;
1243 1244
	int i;

1245
	WARN_ON(!map->bus);
1246

1247 1248 1249
	/* Check for unwritable registers before we start */
	if (map->writeable_reg)
		for (i = 0; i < val_len / map->format.val_bytes; i++)
1250 1251
			if (!map->writeable_reg(map->dev,
						reg + (i * map->reg_stride)))
1252
				return -EINVAL;
1253

1254 1255 1256 1257
	if (!map->cache_bypass && map->format.parse_val) {
		unsigned int ival;
		int val_bytes = map->format.val_bytes;
		for (i = 0; i < val_len / val_bytes; i++) {
1258
			ival = map->format.parse_val(val + (i * val_bytes));
1259 1260
			ret = regcache_write(map, reg + (i * map->reg_stride),
					     ival);
1261 1262
			if (ret) {
				dev_err(map->dev,
1263
					"Error in caching of register: %x ret: %d\n",
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
					reg + i, ret);
				return ret;
			}
		}
		if (map->cache_only) {
			map->cache_dirty = true;
			return 0;
		}
	}

1274 1275
	range = _regmap_range_lookup(map, reg);
	if (range) {
1276 1277 1278 1279 1280 1281
		int val_num = val_len / map->format.val_bytes;
		int win_offset = (reg - range->range_min) % range->window_len;
		int win_residue = range->window_len - win_offset;

		/* If the write goes beyond the end of the window split it */
		while (val_num > win_residue) {
1282
			dev_dbg(map->dev, "Writing window %d/%zu\n",
1283 1284
				win_residue, val_len / map->format.val_bytes);
			ret = _regmap_raw_write(map, reg, val, win_residue *
1285
						map->format.val_bytes);
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
			if (ret != 0)
				return ret;

			reg += win_residue;
			val_num -= win_residue;
			val += win_residue * map->format.val_bytes;
			val_len -= win_residue * map->format.val_bytes;

			win_offset = (reg - range->range_min) %
				range->window_len;
			win_residue = range->window_len - win_offset;
		}

		ret = _regmap_select_page(map, &reg, range, val_num);
1300
		if (ret != 0)
1301 1302
			return ret;
	}
1303

1304
	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1305

1306 1307
	u8[0] |= map->write_flag_mask;

1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
	/*
	 * Essentially all I/O mechanisms will be faster with a single
	 * buffer to write.  Since register syncs often generate raw
	 * writes of single registers optimise that case.
	 */
	if (val != work_val && val_len == map->format.val_bytes) {
		memcpy(work_val, val, map->format.val_bytes);
		val = work_val;
	}

1318
	if (map->async && map->bus->async_write) {
M
Mark Brown 已提交
1319
		struct regmap_async *async;
1320

1321 1322
		trace_regmap_async_write_start(map->dev, reg, val_len);

M
Mark Brown 已提交
1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
		spin_lock_irqsave(&map->async_lock, flags);
		async = list_first_entry_or_null(&map->async_free,
						 struct regmap_async,
						 list);
		if (async)
			list_del(&async->list);
		spin_unlock_irqrestore(&map->async_lock, flags);

		if (!async) {
			async = map->bus->async_alloc();
			if (!async)
				return -ENOMEM;

			async->work_buf = kzalloc(map->format.buf_size,
						  GFP_KERNEL | GFP_DMA);
			if (!async->work_buf) {
				kfree(async);
				return -ENOMEM;
			}
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
		}

		async->map = map;

		/* If the caller supplied the value we can use it safely. */
		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
		       map->format.reg_bytes + map->format.val_bytes);

		spin_lock_irqsave(&map->async_lock, flags);
		list_add_tail(&async->list, &map->async_list);
		spin_unlock_irqrestore(&map->async_lock, flags);

1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
		if (val != work_val)
			ret = map->bus->async_write(map->bus_context,
						    async->work_buf,
						    map->format.reg_bytes +
						    map->format.pad_bytes,
						    val, val_len, async);
		else
			ret = map->bus->async_write(map->bus_context,
						    async->work_buf,
						    map->format.reg_bytes +
						    map->format.pad_bytes +
						    val_len, NULL, 0, async);
1366 1367 1368 1369 1370 1371

		if (ret != 0) {
			dev_err(map->dev, "Failed to schedule write: %d\n",
				ret);

			spin_lock_irqsave(&map->async_lock, flags);
M
Mark Brown 已提交
1372
			list_move(&async->list, &map->async_free);
1373 1374
			spin_unlock_irqrestore(&map->async_lock, flags);
		}
M
Mark Brown 已提交
1375 1376

		return ret;
1377 1378
	}

M
Mark Brown 已提交
1379 1380 1381
	trace_regmap_hw_write_start(map->dev, reg,
				    val_len / map->format.val_bytes);

1382 1383 1384 1385
	/* If we're doing a single register write we can probably just
	 * send the work_buf directly, otherwise try to do a gather
	 * write.
	 */
1386
	if (val == work_val)
1387
		ret = map->bus->write(map->bus_context, map->work_buf,
1388 1389 1390
				      map->format.reg_bytes +
				      map->format.pad_bytes +
				      val_len);
1391
	else if (map->bus->gather_write)
1392
		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1393 1394
					     map->format.reg_bytes +
					     map->format.pad_bytes,
1395 1396
					     val, val_len);

1397
	/* If that didn't work fall back on linearising by hand. */
1398
	if (ret == -ENOTSUPP) {
1399 1400
		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
		buf = kzalloc(len, GFP_KERNEL);
1401 1402 1403 1404
		if (!buf)
			return -ENOMEM;

		memcpy(buf, map->work_buf, map->format.reg_bytes);
1405 1406
		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
		       val, val_len);
1407
		ret = map->bus->write(map->bus_context, buf, len);
1408 1409 1410 1411

		kfree(buf);
	}

M
Mark Brown 已提交
1412 1413 1414
	trace_regmap_hw_write_done(map->dev, reg,
				   val_len / map->format.val_bytes);

1415 1416 1417
	return ret;
}

1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
/**
 * regmap_can_raw_write - Test if regmap_raw_write() is supported
 *
 * @map: Map to check.
 */
bool regmap_can_raw_write(struct regmap *map)
{
	return map->bus && map->format.format_val && map->format.format_reg;
}
EXPORT_SYMBOL_GPL(regmap_can_raw_write);

1429 1430 1431 1432 1433 1434 1435
static int _regmap_bus_formatted_write(void *context, unsigned int reg,
				       unsigned int val)
{
	int ret;
	struct regmap_range_node *range;
	struct regmap *map = context;

1436
	WARN_ON(!map->bus || !map->format.format_write);
1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456

	range = _regmap_range_lookup(map, reg);
	if (range) {
		ret = _regmap_select_page(map, &reg, range, 1);
		if (ret != 0)
			return ret;
	}

	map->format.format_write(map, reg, val);

	trace_regmap_hw_write_start(map->dev, reg, 1);

	ret = map->bus->write(map->bus_context, map->work_buf,
			      map->format.buf_size);

	trace_regmap_hw_write_done(map->dev, reg, 1);

	return ret;
}

1457 1458 1459 1460 1461 1462 1463 1464
static int _regmap_bus_reg_write(void *context, unsigned int reg,
				 unsigned int val)
{
	struct regmap *map = context;

	return map->bus->reg_write(map->bus_context, reg, val);
}

1465 1466 1467 1468 1469
static int _regmap_bus_raw_write(void *context, unsigned int reg,
				 unsigned int val)
{
	struct regmap *map = context;

1470
	WARN_ON(!map->bus || !map->format.format_val);
1471 1472 1473 1474 1475 1476 1477

	map->format.format_val(map->work_buf + map->format.reg_bytes
			       + map->format.pad_bytes, val, 0);
	return _regmap_raw_write(map, reg,
				 map->work_buf +
				 map->format.reg_bytes +
				 map->format.pad_bytes,
1478
				 map->format.val_bytes);
1479 1480
}

1481 1482 1483 1484 1485
static inline void *_regmap_map_get_context(struct regmap *map)
{
	return (map->bus) ? map : map->bus_context;
}

1486 1487
int _regmap_write(struct regmap *map, unsigned int reg,
		  unsigned int val)
1488
{
M
Mark Brown 已提交
1489
	int ret;
1490
	void *context = _regmap_map_get_context(map);
1491

1492 1493 1494
	if (!regmap_writeable(map, reg))
		return -EIO;

1495
	if (!map->cache_bypass && !map->defer_caching) {
1496 1497 1498
		ret = regcache_write(map, reg, val);
		if (ret != 0)
			return ret;
1499 1500
		if (map->cache_only) {
			map->cache_dirty = true;
1501
			return 0;
1502
		}
1503 1504
	}

1505 1506 1507 1508 1509
#ifdef LOG_DEVICE
	if (strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
		dev_info(map->dev, "%x <= %x\n", reg, val);
#endif

M
Mark Brown 已提交
1510 1511
	trace_regmap_reg_write(map->dev, reg, val);

1512
	return map->reg_write(context, reg, val);
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
}

/**
 * regmap_write(): Write a value to a single register
 *
 * @map: Register map to write to
 * @reg: Register to write to
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
{
	int ret;

1529 1530 1531
	if (reg % map->reg_stride)
		return -EINVAL;

1532
	map->lock(map->lock_arg);
1533 1534 1535

	ret = _regmap_write(map, reg, val);

1536
	map->unlock(map->lock_arg);
1537 1538 1539 1540 1541

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_write);

1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
/**
 * regmap_write_async(): Write a value to a single register asynchronously
 *
 * @map: Register map to write to
 * @reg: Register to write to
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
{
	int ret;

	if (reg % map->reg_stride)
		return -EINVAL;

	map->lock(map->lock_arg);

	map->async = true;

	ret = _regmap_write(map, reg, val);

	map->async = false;

	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_write_async);

1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
/**
 * regmap_raw_write(): Write raw values to one or more registers
 *
 * @map: Register map to write to
 * @reg: Initial register to write to
 * @val: Block of data to be written, laid out for direct transmission to the
 *       device
 * @val_len: Length of data pointed to by val.
 *
 * This function is intended to be used for things like firmware
 * download where a large block of data needs to be transferred to the
 * device.  No formatting will be done on the data provided.
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_raw_write(struct regmap *map, unsigned int reg,
		     const void *val, size_t val_len)
{
	int ret;

1594
	if (!regmap_can_raw_write(map))
1595
		return -EINVAL;
1596 1597 1598
	if (val_len % map->format.val_bytes)
		return -EINVAL;

1599
	map->lock(map->lock_arg);
1600

1601
	ret = _regmap_raw_write(map, reg, val, val_len);
1602

1603
	map->unlock(map->lock_arg);
1604 1605 1606 1607 1608

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_raw_write);

1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
/**
 * regmap_field_write(): Write a value to a single register field
 *
 * @field: Register field to write to
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_field_write(struct regmap_field *field, unsigned int val)
{
	return regmap_update_bits(field->regmap, field->reg,
				field->mask, val << field->shift);
}
EXPORT_SYMBOL_GPL(regmap_field_write);

1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
/**
 * regmap_field_update_bits():	Perform a read/modify/write cycle
 *                              on the register field
 *
 * @field: Register field to write to
 * @mask: Bitmask to change
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_field_update_bits(struct regmap_field *field, unsigned int mask, unsigned int val)
{
	mask = (mask << field->shift) & field->mask;

	return regmap_update_bits(field->regmap, field->reg,
				  mask, val << field->shift);
}
EXPORT_SYMBOL_GPL(regmap_field_update_bits);

1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
/**
 * regmap_fields_write(): Write a value to a single register field with port ID
 *
 * @field: Register field to write to
 * @id: port ID
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_fields_write(struct regmap_field *field, unsigned int id,
			unsigned int val)
{
	if (id >= field->id_size)
		return -EINVAL;

	return regmap_update_bits(field->regmap,
				  field->reg + (field->id_offset * id),
				  field->mask, val << field->shift);
}
EXPORT_SYMBOL_GPL(regmap_fields_write);

/**
 * regmap_fields_update_bits():	Perform a read/modify/write cycle
 *                              on the register field
 *
 * @field: Register field to write to
 * @id: port ID
 * @mask: Bitmask to change
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_fields_update_bits(struct regmap_field *field,  unsigned int id,
			      unsigned int mask, unsigned int val)
{
	if (id >= field->id_size)
		return -EINVAL;

	mask = (mask << field->shift) & field->mask;

	return regmap_update_bits(field->regmap,
				  field->reg + (field->id_offset * id),
				  mask, val << field->shift);
}
EXPORT_SYMBOL_GPL(regmap_fields_update_bits);

1693 1694 1695 1696 1697 1698 1699 1700 1701
/*
 * regmap_bulk_write(): Write multiple registers to the device
 *
 * @map: Register map to write to
 * @reg: First register to be write from
 * @val: Block of data to be written, in native register size for device
 * @val_count: Number of registers to write
 *
 * This function is intended to be used for writing a large block of
1702
 * data to the device either in single transfer or multiple transfer.
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
		     size_t val_count)
{
	int ret = 0, i;
	size_t val_bytes = map->format.val_bytes;

1713
	if (map->bus && !map->format.parse_inplace)
1714
		return -EINVAL;
1715 1716
	if (reg % map->reg_stride)
		return -EINVAL;
1717

1718 1719 1720 1721 1722
	/*
	 * Some devices don't support bulk write, for
	 * them we have a series of single write operations.
	 */
	if (!map->bus || map->use_single_rw) {
1723
		map->lock(map->lock_arg);
1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
		for (i = 0; i < val_count; i++) {
			unsigned int ival;

			switch (val_bytes) {
			case 1:
				ival = *(u8 *)(val + (i * val_bytes));
				break;
			case 2:
				ival = *(u16 *)(val + (i * val_bytes));
				break;
			case 4:
				ival = *(u32 *)(val + (i * val_bytes));
				break;
#ifdef CONFIG_64BIT
			case 8:
				ival = *(u64 *)(val + (i * val_bytes));
				break;
#endif
			default:
				ret = -EINVAL;
				goto out;
			}
1746

1747 1748 1749 1750 1751
			ret = _regmap_write(map, reg + (i * map->reg_stride),
					ival);
			if (ret != 0)
				goto out;
		}
1752 1753
out:
		map->unlock(map->lock_arg);
1754
	} else {
1755 1756
		void *wval;

1757 1758 1759
		wval = kmemdup(val, val_count * val_bytes, GFP_KERNEL);
		if (!wval) {
			dev_err(map->dev, "Error in memory allocation\n");
1760
			return -ENOMEM;
1761 1762
		}
		for (i = 0; i < val_count * val_bytes; i += val_bytes)
1763
			map->format.parse_inplace(wval + i);
1764

1765
		map->lock(map->lock_arg);
1766
		ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count);
1767
		map->unlock(map->lock_arg);
1768 1769

		kfree(wval);
1770
	}
1771 1772 1773 1774
	return ret;
}
EXPORT_SYMBOL_GPL(regmap_bulk_write);

1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795
/*
 * _regmap_raw_multi_reg_write()
 *
 * the (register,newvalue) pairs in regs have not been formatted, but
 * they are all in the same page and have been changed to being page
 * relative. The page register has been written if that was neccessary.
 */
static int _regmap_raw_multi_reg_write(struct regmap *map,
				       const struct reg_default *regs,
				       size_t num_regs)
{
	int ret;
	void *buf;
	int i;
	u8 *u8;
	size_t val_bytes = map->format.val_bytes;
	size_t reg_bytes = map->format.reg_bytes;
	size_t pad_bytes = map->format.pad_bytes;
	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
	size_t len = pair_size * num_regs;

1796 1797 1798
	if (!len)
		return -EINVAL;

1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845
	buf = kzalloc(len, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	/* We have to linearise by hand. */

	u8 = buf;

	for (i = 0; i < num_regs; i++) {
		int reg = regs[i].reg;
		int val = regs[i].def;
		trace_regmap_hw_write_start(map->dev, reg, 1);
		map->format.format_reg(u8, reg, map->reg_shift);
		u8 += reg_bytes + pad_bytes;
		map->format.format_val(u8, val, 0);
		u8 += val_bytes;
	}
	u8 = buf;
	*u8 |= map->write_flag_mask;

	ret = map->bus->write(map->bus_context, buf, len);

	kfree(buf);

	for (i = 0; i < num_regs; i++) {
		int reg = regs[i].reg;
		trace_regmap_hw_write_done(map->dev, reg, 1);
	}
	return ret;
}

static unsigned int _regmap_register_page(struct regmap *map,
					  unsigned int reg,
					  struct regmap_range_node *range)
{
	unsigned int win_page = (reg - range->range_min) / range->window_len;

	return win_page;
}

static int _regmap_range_multi_paged_reg_write(struct regmap *map,
					       struct reg_default *regs,
					       size_t num_regs)
{
	int ret;
	int i, n;
	struct reg_default *base;
1846
	unsigned int this_page = 0;
1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881
	/*
	 * the set of registers are not neccessarily in order, but
	 * since the order of write must be preserved this algorithm
	 * chops the set each time the page changes
	 */
	base = regs;
	for (i = 0, n = 0; i < num_regs; i++, n++) {
		unsigned int reg = regs[i].reg;
		struct regmap_range_node *range;

		range = _regmap_range_lookup(map, reg);
		if (range) {
			unsigned int win_page = _regmap_register_page(map, reg,
								      range);

			if (i == 0)
				this_page = win_page;
			if (win_page != this_page) {
				this_page = win_page;
				ret = _regmap_raw_multi_reg_write(map, base, n);
				if (ret != 0)
					return ret;
				base += n;
				n = 0;
			}
			ret = _regmap_select_page(map, &base[n].reg, range, 1);
			if (ret != 0)
				return ret;
		}
	}
	if (n > 0)
		return _regmap_raw_multi_reg_write(map, base, n);
	return 0;
}

1882 1883
static int _regmap_multi_reg_write(struct regmap *map,
				   const struct reg_default *regs,
1884
				   size_t num_regs)
1885
{
1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928
	int i;
	int ret;

	if (!map->can_multi_write) {
		for (i = 0; i < num_regs; i++) {
			ret = _regmap_write(map, regs[i].reg, regs[i].def);
			if (ret != 0)
				return ret;
		}
		return 0;
	}

	if (!map->format.parse_inplace)
		return -EINVAL;

	if (map->writeable_reg)
		for (i = 0; i < num_regs; i++) {
			int reg = regs[i].reg;
			if (!map->writeable_reg(map->dev, reg))
				return -EINVAL;
			if (reg % map->reg_stride)
				return -EINVAL;
		}

	if (!map->cache_bypass) {
		for (i = 0; i < num_regs; i++) {
			unsigned int val = regs[i].def;
			unsigned int reg = regs[i].reg;
			ret = regcache_write(map, reg, val);
			if (ret) {
				dev_err(map->dev,
				"Error in caching of register: %x ret: %d\n",
								reg, ret);
				return ret;
			}
		}
		if (map->cache_only) {
			map->cache_dirty = true;
			return 0;
		}
	}

	WARN_ON(!map->bus);
1929 1930

	for (i = 0; i < num_regs; i++) {
1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943
		unsigned int reg = regs[i].reg;
		struct regmap_range_node *range;
		range = _regmap_range_lookup(map, reg);
		if (range) {
			size_t len = sizeof(struct reg_default)*num_regs;
			struct reg_default *base = kmemdup(regs, len,
							   GFP_KERNEL);
			if (!base)
				return -ENOMEM;
			ret = _regmap_range_multi_paged_reg_write(map, base,
								  num_regs);
			kfree(base);

1944 1945 1946
			return ret;
		}
	}
1947
	return _regmap_raw_multi_reg_write(map, regs, num_regs);
1948 1949
}

1950 1951 1952
/*
 * regmap_multi_reg_write(): Write multiple registers to the device
 *
1953 1954
 * where the set of register,value pairs are supplied in any order,
 * possibly not all in a single range.
1955 1956 1957 1958 1959
 *
 * @map: Register map to write to
 * @regs: Array of structures containing register,value to be written
 * @num_regs: Number of registers to write
 *
1960 1961 1962 1963 1964
 * The 'normal' block write mode will send ultimately send data on the
 * target bus as R,V1,V2,V3,..,Vn where successively higer registers are
 * addressed. However, this alternative block multi write mode will send
 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
 * must of course support the mode.
1965
 *
1966 1967
 * A value of zero will be returned on success, a negative errno will be
 * returned in error cases.
1968
 */
1969 1970
int regmap_multi_reg_write(struct regmap *map, const struct reg_default *regs,
			   int num_regs)
1971
{
1972
	int ret;
1973 1974 1975

	map->lock(map->lock_arg);

1976 1977
	ret = _regmap_multi_reg_write(map, regs, num_regs);

1978 1979 1980 1981 1982 1983
	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_multi_reg_write);

1984 1985 1986 1987
/*
 * regmap_multi_reg_write_bypassed(): Write multiple registers to the
 *                                    device but not the cache
 *
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
 * where the set of register are supplied in any order
 *
 * @map: Register map to write to
 * @regs: Array of structures containing register,value to be written
 * @num_regs: Number of registers to write
 *
 * This function is intended to be used for writing a large block of data
 * atomically to the device in single transfer for those I2C client devices
 * that implement this alternative block write mode.
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
2001 2002 2003
int regmap_multi_reg_write_bypassed(struct regmap *map,
				    const struct reg_default *regs,
				    int num_regs)
2004
{
2005 2006
	int ret;
	bool bypass;
2007 2008 2009

	map->lock(map->lock_arg);

2010 2011 2012 2013 2014 2015 2016
	bypass = map->cache_bypass;
	map->cache_bypass = true;

	ret = _regmap_multi_reg_write(map, regs, num_regs);

	map->cache_bypass = bypass;

2017 2018 2019 2020
	map->unlock(map->lock_arg);

	return ret;
}
2021
EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2022

2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056
/**
 * regmap_raw_write_async(): Write raw values to one or more registers
 *                           asynchronously
 *
 * @map: Register map to write to
 * @reg: Initial register to write to
 * @val: Block of data to be written, laid out for direct transmission to the
 *       device.  Must be valid until regmap_async_complete() is called.
 * @val_len: Length of data pointed to by val.
 *
 * This function is intended to be used for things like firmware
 * download where a large block of data needs to be transferred to the
 * device.  No formatting will be done on the data provided.
 *
 * If supported by the underlying bus the write will be scheduled
 * asynchronously, helping maximise I/O speed on higher speed buses
 * like SPI.  regmap_async_complete() can be called to ensure that all
 * asynchrnous writes have been completed.
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_raw_write_async(struct regmap *map, unsigned int reg,
			   const void *val, size_t val_len)
{
	int ret;

	if (val_len % map->format.val_bytes)
		return -EINVAL;
	if (reg % map->reg_stride)
		return -EINVAL;

	map->lock(map->lock_arg);

2057 2058 2059 2060 2061
	map->async = true;

	ret = _regmap_raw_write(map, reg, val, val_len);

	map->async = false;
2062 2063 2064 2065 2066 2067 2068

	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_raw_write_async);

2069 2070 2071
static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
			    unsigned int val_len)
{
2072
	struct regmap_range_node *range;
2073 2074 2075
	u8 *u8 = map->work_buf;
	int ret;

2076
	WARN_ON(!map->bus);
2077

2078 2079 2080 2081
	range = _regmap_range_lookup(map, reg);
	if (range) {
		ret = _regmap_select_page(map, &reg, range,
					  val_len / map->format.val_bytes);
2082
		if (ret != 0)
2083 2084
			return ret;
	}
2085

2086
	map->format.format_reg(map->work_buf, reg, map->reg_shift);
2087 2088

	/*
2089
	 * Some buses or devices flag reads by setting the high bits in the
2090 2091 2092 2093
	 * register addresss; since it's always the high bits for all
	 * current formats we can do this here rather than in
	 * formatting.  This may break if we get interesting formats.
	 */
2094
	u8[0] |= map->read_flag_mask;
2095

M
Mark Brown 已提交
2096 2097 2098
	trace_regmap_hw_read_start(map->dev, reg,
				   val_len / map->format.val_bytes);

2099
	ret = map->bus->read(map->bus_context, map->work_buf,
2100
			     map->format.reg_bytes + map->format.pad_bytes,
M
Mark Brown 已提交
2101
			     val, val_len);
2102

M
Mark Brown 已提交
2103 2104 2105 2106
	trace_regmap_hw_read_done(map->dev, reg,
				  val_len / map->format.val_bytes);

	return ret;
2107 2108
}

2109 2110 2111 2112 2113 2114 2115 2116
static int _regmap_bus_reg_read(void *context, unsigned int reg,
				unsigned int *val)
{
	struct regmap *map = context;

	return map->bus->reg_read(map->bus_context, reg, val);
}

2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132
static int _regmap_bus_read(void *context, unsigned int reg,
			    unsigned int *val)
{
	int ret;
	struct regmap *map = context;

	if (!map->format.parse_val)
		return -EINVAL;

	ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
	if (ret == 0)
		*val = map->format.parse_val(map->work_buf);

	return ret;
}

2133 2134 2135 2136
static int _regmap_read(struct regmap *map, unsigned int reg,
			unsigned int *val)
{
	int ret;
2137 2138
	void *context = _regmap_map_get_context(map);

2139
	WARN_ON(!map->reg_read);
2140

2141 2142 2143 2144 2145 2146 2147 2148 2149
	if (!map->cache_bypass) {
		ret = regcache_read(map, reg, val);
		if (ret == 0)
			return 0;
	}

	if (map->cache_only)
		return -EBUSY;

2150 2151 2152
	if (!regmap_readable(map, reg))
		return -EIO;

2153
	ret = map->reg_read(context, reg, val);
M
Mark Brown 已提交
2154
	if (ret == 0) {
2155 2156 2157 2158 2159
#ifdef LOG_DEVICE
		if (strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
			dev_info(map->dev, "%x => %x\n", reg, *val);
#endif

M
Mark Brown 已提交
2160
		trace_regmap_reg_read(map->dev, reg, *val);
2161

2162 2163 2164
		if (!map->cache_bypass)
			regcache_write(map, reg, *val);
	}
2165

2166 2167 2168 2169 2170 2171
	return ret;
}

/**
 * regmap_read(): Read a value from a single register
 *
2172
 * @map: Register map to read from
2173 2174 2175 2176 2177 2178 2179 2180 2181 2182
 * @reg: Register to be read from
 * @val: Pointer to store read value
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
{
	int ret;

2183 2184 2185
	if (reg % map->reg_stride)
		return -EINVAL;

2186
	map->lock(map->lock_arg);
2187 2188 2189

	ret = _regmap_read(map, reg, val);

2190
	map->unlock(map->lock_arg);
2191 2192 2193 2194 2195 2196 2197 2198

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_read);

/**
 * regmap_raw_read(): Read raw data from the device
 *
2199
 * @map: Register map to read from
2200 2201 2202 2203 2204 2205 2206 2207 2208 2209
 * @reg: First register to be read from
 * @val: Pointer to store read value
 * @val_len: Size of data to read
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
		    size_t val_len)
{
2210 2211 2212 2213
	size_t val_bytes = map->format.val_bytes;
	size_t val_count = val_len / val_bytes;
	unsigned int v;
	int ret, i;
2214

2215 2216
	if (!map->bus)
		return -EINVAL;
2217 2218
	if (val_len % map->format.val_bytes)
		return -EINVAL;
2219 2220
	if (reg % map->reg_stride)
		return -EINVAL;
2221

2222
	map->lock(map->lock_arg);
2223

2224 2225 2226 2227 2228 2229 2230 2231 2232 2233
	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
	    map->cache_type == REGCACHE_NONE) {
		/* Physical block read if there's no cache involved */
		ret = _regmap_raw_read(map, reg, val, val_len);

	} else {
		/* Otherwise go word by word for the cache; should be low
		 * cost as we expect to hit the cache.
		 */
		for (i = 0; i < val_count; i++) {
2234 2235
			ret = _regmap_read(map, reg + (i * map->reg_stride),
					   &v);
2236 2237 2238
			if (ret != 0)
				goto out;

2239
			map->format.format_val(val + (i * val_bytes), v, 0);
2240 2241
		}
	}
2242

2243
 out:
2244
	map->unlock(map->lock_arg);
2245 2246 2247 2248 2249

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_raw_read);

2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274
/**
 * regmap_field_read(): Read a value to a single register field
 *
 * @field: Register field to read from
 * @val: Pointer to store read value
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_field_read(struct regmap_field *field, unsigned int *val)
{
	int ret;
	unsigned int reg_val;
	ret = regmap_read(field->regmap, field->reg, &reg_val);
	if (ret != 0)
		return ret;

	reg_val &= field->mask;
	reg_val >>= field->shift;
	*val = reg_val;

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_field_read);

2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307
/**
 * regmap_fields_read(): Read a value to a single register field with port ID
 *
 * @field: Register field to read from
 * @id: port ID
 * @val: Pointer to store read value
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_fields_read(struct regmap_field *field, unsigned int id,
		       unsigned int *val)
{
	int ret;
	unsigned int reg_val;

	if (id >= field->id_size)
		return -EINVAL;

	ret = regmap_read(field->regmap,
			  field->reg + (field->id_offset * id),
			  &reg_val);
	if (ret != 0)
		return ret;

	reg_val &= field->mask;
	reg_val >>= field->shift;
	*val = reg_val;

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_fields_read);

2308 2309 2310
/**
 * regmap_bulk_read(): Read multiple registers from the device
 *
2311
 * @map: Register map to read from
2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323
 * @reg: First register to be read from
 * @val: Pointer to store read value, in native register size for device
 * @val_count: Number of registers to read
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
		     size_t val_count)
{
	int ret, i;
	size_t val_bytes = map->format.val_bytes;
2324
	bool vol = regmap_volatile_range(map, reg, val_count);
2325

2326 2327
	if (reg % map->reg_stride)
		return -EINVAL;
2328

2329
	if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348
		/*
		 * Some devices does not support bulk read, for
		 * them we have a series of single read operations.
		 */
		if (map->use_single_rw) {
			for (i = 0; i < val_count; i++) {
				ret = regmap_raw_read(map,
						reg + (i * map->reg_stride),
						val + (i * val_bytes),
						val_bytes);
				if (ret != 0)
					return ret;
			}
		} else {
			ret = regmap_raw_read(map, reg, val,
					      val_bytes * val_count);
			if (ret != 0)
				return ret;
		}
2349 2350

		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2351
			map->format.parse_inplace(val + i);
2352 2353
	} else {
		for (i = 0; i < val_count; i++) {
2354
			unsigned int ival;
2355
			ret = regmap_read(map, reg + (i * map->reg_stride),
2356
					  &ival);
2357 2358
			if (ret != 0)
				return ret;
2359
			memcpy(val + (i * val_bytes), &ival, val_bytes);
2360 2361
		}
	}
2362 2363 2364 2365 2366

	return 0;
}
EXPORT_SYMBOL_GPL(regmap_bulk_read);

2367 2368 2369
static int _regmap_update_bits(struct regmap *map, unsigned int reg,
			       unsigned int mask, unsigned int val,
			       bool *change)
2370 2371
{
	int ret;
2372
	unsigned int tmp, orig;
2373

2374
	ret = _regmap_read(map, reg, &orig);
2375
	if (ret != 0)
2376
		return ret;
2377

2378
	tmp = orig & ~mask;
2379 2380
	tmp |= val & mask;

2381
	if (tmp != orig) {
2382
		ret = _regmap_write(map, reg, tmp);
2383 2384
		if (change)
			*change = true;
2385
	} else {
2386 2387
		if (change)
			*change = false;
2388
	}
2389 2390 2391

	return ret;
}
2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405

/**
 * regmap_update_bits: Perform a read/modify/write cycle on the register map
 *
 * @map: Register map to update
 * @reg: Register to update
 * @mask: Bitmask to change
 * @val: New value for bitmask
 *
 * Returns zero for success, a negative number on error.
 */
int regmap_update_bits(struct regmap *map, unsigned int reg,
		       unsigned int mask, unsigned int val)
{
2406 2407
	int ret;

2408
	map->lock(map->lock_arg);
2409
	ret = _regmap_update_bits(map, reg, mask, val, NULL);
2410
	map->unlock(map->lock_arg);
2411 2412

	return ret;
2413
}
2414
EXPORT_SYMBOL_GPL(regmap_update_bits);
2415

2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439
/**
 * regmap_update_bits_async: Perform a read/modify/write cycle on the register
 *                           map asynchronously
 *
 * @map: Register map to update
 * @reg: Register to update
 * @mask: Bitmask to change
 * @val: New value for bitmask
 *
 * With most buses the read must be done synchronously so this is most
 * useful for devices with a cache which do not need to interact with
 * the hardware to determine the current register value.
 *
 * Returns zero for success, a negative number on error.
 */
int regmap_update_bits_async(struct regmap *map, unsigned int reg,
			     unsigned int mask, unsigned int val)
{
	int ret;

	map->lock(map->lock_arg);

	map->async = true;

2440
	ret = _regmap_update_bits(map, reg, mask, val, NULL);
2441 2442 2443 2444 2445 2446 2447 2448 2449

	map->async = false;

	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_update_bits_async);

2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465
/**
 * regmap_update_bits_check: Perform a read/modify/write cycle on the
 *                           register map and report if updated
 *
 * @map: Register map to update
 * @reg: Register to update
 * @mask: Bitmask to change
 * @val: New value for bitmask
 * @change: Boolean indicating if a write was done
 *
 * Returns zero for success, a negative number on error.
 */
int regmap_update_bits_check(struct regmap *map, unsigned int reg,
			     unsigned int mask, unsigned int val,
			     bool *change)
{
2466 2467
	int ret;

2468
	map->lock(map->lock_arg);
2469
	ret = _regmap_update_bits(map, reg, mask, val, change);
2470
	map->unlock(map->lock_arg);
2471
	return ret;
2472 2473 2474
}
EXPORT_SYMBOL_GPL(regmap_update_bits_check);

2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
/**
 * regmap_update_bits_check_async: Perform a read/modify/write cycle on the
 *                                 register map asynchronously and report if
 *                                 updated
 *
 * @map: Register map to update
 * @reg: Register to update
 * @mask: Bitmask to change
 * @val: New value for bitmask
 * @change: Boolean indicating if a write was done
 *
 * With most buses the read must be done synchronously so this is most
 * useful for devices with a cache which do not need to interact with
 * the hardware to determine the current register value.
 *
 * Returns zero for success, a negative number on error.
 */
int regmap_update_bits_check_async(struct regmap *map, unsigned int reg,
				   unsigned int mask, unsigned int val,
				   bool *change)
{
	int ret;

	map->lock(map->lock_arg);

	map->async = true;

	ret = _regmap_update_bits(map, reg, mask, val, change);

	map->async = false;

	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_update_bits_check_async);

2512 2513 2514 2515 2516
void regmap_async_complete_cb(struct regmap_async *async, int ret)
{
	struct regmap *map = async->map;
	bool wake;

2517 2518
	trace_regmap_async_io_complete(map->dev);

2519
	spin_lock(&map->async_lock);
M
Mark Brown 已提交
2520
	list_move(&async->list, &map->async_free);
2521 2522 2523 2524 2525 2526 2527 2528 2529 2530
	wake = list_empty(&map->async_list);

	if (ret != 0)
		map->async_ret = ret;

	spin_unlock(&map->async_lock);

	if (wake)
		wake_up(&map->async_waitq);
}
2531
EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558

static int regmap_async_is_done(struct regmap *map)
{
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&map->async_lock, flags);
	ret = list_empty(&map->async_list);
	spin_unlock_irqrestore(&map->async_lock, flags);

	return ret;
}

/**
 * regmap_async_complete: Ensure all asynchronous I/O has completed.
 *
 * @map: Map to operate on.
 *
 * Blocks until any pending asynchronous I/O has completed.  Returns
 * an error code for any failed I/O operations.
 */
int regmap_async_complete(struct regmap *map)
{
	unsigned long flags;
	int ret;

	/* Nothing to do with no async support */
2559
	if (!map->bus || !map->bus->async_write)
2560 2561
		return 0;

2562 2563
	trace_regmap_async_complete_start(map->dev);

2564 2565 2566 2567 2568 2569 2570
	wait_event(map->async_waitq, regmap_async_is_done(map));

	spin_lock_irqsave(&map->async_lock, flags);
	ret = map->async_ret;
	map->async_ret = 0;
	spin_unlock_irqrestore(&map->async_lock, flags);

2571 2572
	trace_regmap_async_complete_done(map->dev);

2573 2574
	return ret;
}
2575
EXPORT_SYMBOL_GPL(regmap_async_complete);
2576

M
Mark Brown 已提交
2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589
/**
 * regmap_register_patch: Register and apply register updates to be applied
 *                        on device initialistion
 *
 * @map: Register map to apply updates to.
 * @regs: Values to update.
 * @num_regs: Number of entries in regs.
 *
 * Register a set of register updates to be applied to the device
 * whenever the device registers are synchronised with the cache and
 * apply them immediately.  Typically this is used to apply
 * corrections to be applied to the device defaults on startup, such
 * as the updates some vendors provide to undocumented registers.
2590 2591 2592
 *
 * The caller must ensure that this function cannot be called
 * concurrently with either itself or regcache_sync().
M
Mark Brown 已提交
2593 2594 2595 2596
 */
int regmap_register_patch(struct regmap *map, const struct reg_default *regs,
			  int num_regs)
{
2597
	struct reg_default *p;
2598
	int ret;
M
Mark Brown 已提交
2599 2600
	bool bypass;

2601 2602 2603 2604
	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
	    num_regs))
		return 0;

2605 2606 2607 2608 2609 2610 2611
	p = krealloc(map->patch,
		     sizeof(struct reg_default) * (map->patch_regs + num_regs),
		     GFP_KERNEL);
	if (p) {
		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
		map->patch = p;
		map->patch_regs += num_regs;
M
Mark Brown 已提交
2612
	} else {
2613
		return -ENOMEM;
M
Mark Brown 已提交
2614 2615
	}

2616
	map->lock(map->lock_arg);
M
Mark Brown 已提交
2617 2618 2619 2620

	bypass = map->cache_bypass;

	map->cache_bypass = true;
2621
	map->async = true;
M
Mark Brown 已提交
2622

2623 2624 2625
	ret = _regmap_multi_reg_write(map, regs, num_regs);
	if (ret != 0)
		goto out;
M
Mark Brown 已提交
2626 2627

out:
2628
	map->async = false;
M
Mark Brown 已提交
2629 2630
	map->cache_bypass = bypass;

2631
	map->unlock(map->lock_arg);
M
Mark Brown 已提交
2632

2633 2634
	regmap_async_complete(map);

M
Mark Brown 已提交
2635 2636 2637 2638
	return ret;
}
EXPORT_SYMBOL_GPL(regmap_register_patch);

2639
/*
2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653
 * regmap_get_val_bytes(): Report the size of a register value
 *
 * Report the size of a register value, mainly intended to for use by
 * generic infrastructure built on top of regmap.
 */
int regmap_get_val_bytes(struct regmap *map)
{
	if (map->format.format_write)
		return -EINVAL;

	return map->format.val_bytes;
}
EXPORT_SYMBOL_GPL(regmap_get_val_bytes);

N
Nenghua Cao 已提交
2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665
int regmap_parse_val(struct regmap *map, const void *buf,
			unsigned int *val)
{
	if (!map->format.parse_val)
		return -EINVAL;

	*val = map->format.parse_val(buf);

	return 0;
}
EXPORT_SYMBOL_GPL(regmap_parse_val);

2666 2667 2668 2669 2670 2671 2672
static int __init regmap_initcall(void)
{
	regmap_debugfs_initcall();

	return 0;
}
postcore_initcall(regmap_initcall);