amdgpu_gmc.c 23.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * Copyright 2018 Advanced Micro Devices, Inc.
 * All Rights Reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the
 * "Software"), to deal in the Software without restriction, including
 * without limitation the rights to use, copy, modify, merge, publish,
 * distribute, sub license, and/or sell copies of the Software, and to
 * permit persons to whom the Software is furnished to do so, subject to
 * the following conditions:
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
 * USE OR OTHER DEALINGS IN THE SOFTWARE.
 *
 * The above copyright notice and this permission notice (including the
 * next paragraph) shall be included in all copies or substantial portions
 * of the Software.
 *
 */

27 28
#include <linux/io-64-nonatomic-lo-hi.h>

29
#include "amdgpu.h"
30
#include "amdgpu_gmc.h"
31
#include "amdgpu_ras.h"
32
#include "amdgpu_xgmi.h"
33

34 35
#include <drm/drm_drv.h>

36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
/**
 * amdgpu_gmc_pdb0_alloc - allocate vram for pdb0
 *
 * @adev: amdgpu_device pointer
 *
 * Allocate video memory for pdb0 and map it for CPU access
 * Returns 0 for success, error for failure.
 */
int amdgpu_gmc_pdb0_alloc(struct amdgpu_device *adev)
{
	int r;
	struct amdgpu_bo_param bp;
	u64 vram_size = adev->gmc.xgmi.node_segment_size * adev->gmc.xgmi.num_physical_nodes;
	uint32_t pde0_page_shift = adev->gmc.vmid0_page_table_block_size + 21;
	uint32_t npdes = (vram_size + (1ULL << pde0_page_shift) -1) >> pde0_page_shift;

	memset(&bp, 0, sizeof(bp));
	bp.size = PAGE_ALIGN((npdes + 1) * 8);
	bp.byte_align = PAGE_SIZE;
	bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
	bp.flags = AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED |
		AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS;
	bp.type = ttm_bo_type_kernel;
	bp.resv = NULL;
60 61
	bp.bo_ptr_size = sizeof(struct amdgpu_bo);

62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
	r = amdgpu_bo_create(adev, &bp, &adev->gmc.pdb0_bo);
	if (r)
		return r;

	r = amdgpu_bo_reserve(adev->gmc.pdb0_bo, false);
	if (unlikely(r != 0))
		goto bo_reserve_failure;

	r = amdgpu_bo_pin(adev->gmc.pdb0_bo, AMDGPU_GEM_DOMAIN_VRAM);
	if (r)
		goto bo_pin_failure;
	r = amdgpu_bo_kmap(adev->gmc.pdb0_bo, &adev->gmc.ptr_pdb0);
	if (r)
		goto bo_kmap_failure;

	amdgpu_bo_unreserve(adev->gmc.pdb0_bo);
	return 0;

bo_kmap_failure:
	amdgpu_bo_unpin(adev->gmc.pdb0_bo);
bo_pin_failure:
	amdgpu_bo_unreserve(adev->gmc.pdb0_bo);
bo_reserve_failure:
	amdgpu_bo_unref(&adev->gmc.pdb0_bo);
	return r;
}

89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
/**
 * amdgpu_gmc_get_pde_for_bo - get the PDE for a BO
 *
 * @bo: the BO to get the PDE for
 * @level: the level in the PD hirarchy
 * @addr: resulting addr
 * @flags: resulting flags
 *
 * Get the address and flags to be used for a PDE (Page Directory Entry).
 */
void amdgpu_gmc_get_pde_for_bo(struct amdgpu_bo *bo, int level,
			       uint64_t *addr, uint64_t *flags)
{
	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);

104
	switch (bo->tbo.resource->mem_type) {
105
	case TTM_PL_TT:
106
		*addr = bo->tbo.ttm->dma_address[0];
107 108 109 110 111 112 113 114
		break;
	case TTM_PL_VRAM:
		*addr = amdgpu_bo_gpu_offset(bo);
		break;
	default:
		*addr = 0;
		break;
	}
115
	*flags = amdgpu_ttm_tt_pde_flags(bo->tbo.ttm, bo->tbo.resource);
116 117 118
	amdgpu_gmc_get_vm_pde(adev, level, addr, flags);
}

119
/*
120 121 122 123 124 125 126 127 128 129 130
 * amdgpu_gmc_pd_addr - return the address of the root directory
 */
uint64_t amdgpu_gmc_pd_addr(struct amdgpu_bo *bo)
{
	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
	uint64_t pd_addr;

	/* TODO: move that into ASIC specific code */
	if (adev->asic_type >= CHIP_VEGA10) {
		uint64_t flags = AMDGPU_PTE_VALID;

131
		amdgpu_gmc_get_pde_for_bo(bo, -1, &pd_addr, &flags);
132
		pd_addr |= flags;
133 134
	} else {
		pd_addr = amdgpu_bo_gpu_offset(bo);
135 136 137
	}
	return pd_addr;
}
138

139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
/**
 * amdgpu_gmc_set_pte_pde - update the page tables using CPU
 *
 * @adev: amdgpu_device pointer
 * @cpu_pt_addr: cpu address of the page table
 * @gpu_page_idx: entry in the page table to update
 * @addr: dst addr to write into pte/pde
 * @flags: access flags
 *
 * Update the page tables using CPU.
 */
int amdgpu_gmc_set_pte_pde(struct amdgpu_device *adev, void *cpu_pt_addr,
				uint32_t gpu_page_idx, uint64_t addr,
				uint64_t flags)
{
	void __iomem *ptr = (void *)cpu_pt_addr;
	uint64_t value;

	/*
	 * The following is for PTE only. GART does not have PDEs.
	*/
	value = addr & 0x0000FFFFFFFFF000ULL;
	value |= flags;
	writeq(value, ptr + (gpu_page_idx * 8));
163

164 165 166
	return 0;
}

167 168 169
/**
 * amdgpu_gmc_agp_addr - return the address in the AGP address space
 *
170
 * @bo: TTM BO which needs the address, must be in GTT domain
171 172 173 174 175 176 177 178
 *
 * Tries to figure out how to access the BO through the AGP aperture. Returns
 * AMDGPU_BO_INVALID_OFFSET if that is not possible.
 */
uint64_t amdgpu_gmc_agp_addr(struct ttm_buffer_object *bo)
{
	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);

179
	if (bo->ttm->num_pages != 1 || bo->ttm->caching == ttm_cached)
180 181
		return AMDGPU_BO_INVALID_OFFSET;

182
	if (bo->ttm->dma_address[0] + PAGE_SIZE >= adev->gmc.agp_size)
183 184
		return AMDGPU_BO_INVALID_OFFSET;

185
	return adev->gmc.agp_start + bo->ttm->dma_address[0];
186 187
}

188 189 190
/**
 * amdgpu_gmc_vram_location - try to find VRAM location
 *
191 192
 * @adev: amdgpu device structure holding all necessary information
 * @mc: memory controller structure holding memory information
193 194 195 196 197 198 199 200 201 202 203 204 205 206
 * @base: base address at which to put VRAM
 *
 * Function will try to place VRAM at base address provided
 * as parameter.
 */
void amdgpu_gmc_vram_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc,
			      u64 base)
{
	uint64_t limit = (uint64_t)amdgpu_vram_limit << 20;

	mc->vram_start = base;
	mc->vram_end = mc->vram_start + mc->mc_vram_size - 1;
	if (limit && limit < mc->real_vram_size)
		mc->real_vram_size = limit;
207 208 209 210 211

	if (mc->xgmi.num_physical_nodes == 0) {
		mc->fb_start = mc->vram_start;
		mc->fb_end = mc->vram_end;
	}
212 213 214 215 216
	dev_info(adev->dev, "VRAM: %lluM 0x%016llX - 0x%016llX (%lluM used)\n",
			mc->mc_vram_size >> 20, mc->vram_start,
			mc->vram_end, mc->real_vram_size >> 20);
}

217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
/** amdgpu_gmc_sysvm_location - place vram and gart in sysvm aperture
 *
 * @adev: amdgpu device structure holding all necessary information
 * @mc: memory controller structure holding memory information
 *
 * This function is only used if use GART for FB translation. In such
 * case, we use sysvm aperture (vmid0 page tables) for both vram
 * and gart (aka system memory) access.
 *
 * GPUVM (and our organization of vmid0 page tables) require sysvm
 * aperture to be placed at a location aligned with 8 times of native
 * page size. For example, if vm_context0_cntl.page_table_block_size
 * is 12, then native page size is 8G (2M*2^12), sysvm should start
 * with a 64G aligned address. For simplicity, we just put sysvm at
 * address 0. So vram start at address 0 and gart is right after vram.
 */
void amdgpu_gmc_sysvm_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc)
{
	u64 hive_vram_start = 0;
	u64 hive_vram_end = mc->xgmi.node_segment_size * mc->xgmi.num_physical_nodes - 1;
	mc->vram_start = mc->xgmi.node_segment_size * mc->xgmi.physical_node_id;
	mc->vram_end = mc->vram_start + mc->xgmi.node_segment_size - 1;
	mc->gart_start = hive_vram_end + 1;
	mc->gart_end = mc->gart_start + mc->gart_size - 1;
	mc->fb_start = hive_vram_start;
	mc->fb_end = hive_vram_end;
	dev_info(adev->dev, "VRAM: %lluM 0x%016llX - 0x%016llX (%lluM used)\n",
			mc->mc_vram_size >> 20, mc->vram_start,
			mc->vram_end, mc->real_vram_size >> 20);
	dev_info(adev->dev, "GART: %lluM 0x%016llX - 0x%016llX\n",
			mc->gart_size >> 20, mc->gart_start, mc->gart_end);
}

250 251 252
/**
 * amdgpu_gmc_gart_location - try to find GART location
 *
253 254
 * @adev: amdgpu device structure holding all necessary information
 * @mc: memory controller structure holding memory information
255 256 257 258 259 260 261
 *
 * Function will place try to place GART before or after VRAM.
 * If GART size is bigger than space left then we ajust GART size.
 * Thus function will never fails.
 */
void amdgpu_gmc_gart_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc)
{
262
	const uint64_t four_gb = 0x100000000ULL;
263
	u64 size_af, size_bf;
264 265
	/*To avoid the hole, limit the max mc address to AMDGPU_GMC_HOLE_START*/
	u64 max_mc_address = min(adev->gmc.mc_mask, AMDGPU_GMC_HOLE_START - 1);
266

267 268 269
	/* VCE doesn't like it when BOs cross a 4GB segment, so align
	 * the GART base on a 4GB boundary as well.
	 */
270
	size_bf = mc->fb_start;
271
	size_af = max_mc_address + 1 - ALIGN(mc->fb_end + 1, four_gb);
272 273 274 275 276 277

	if (mc->gart_size > max(size_bf, size_af)) {
		dev_warn(adev->dev, "limiting GART\n");
		mc->gart_size = max(size_bf, size_af);
	}

278 279
	if ((size_bf >= mc->gart_size && size_bf < size_af) ||
	    (size_af < mc->gart_size))
280
		mc->gart_start = 0;
281
	else
282
		mc->gart_start = max_mc_address - mc->gart_size + 1;
283

284
	mc->gart_start &= ~(four_gb - 1);
285 286 287 288
	mc->gart_end = mc->gart_start + mc->gart_size - 1;
	dev_info(adev->dev, "GART: %lluM 0x%016llX - 0x%016llX\n",
			mc->gart_size >> 20, mc->gart_start, mc->gart_end);
}
289 290 291

/**
 * amdgpu_gmc_agp_location - try to find AGP location
292 293
 * @adev: amdgpu device structure holding all necessary information
 * @mc: memory controller structure holding memory information
294 295 296 297 298 299 300 301 302 303 304 305 306
 *
 * Function will place try to find a place for the AGP BAR in the MC address
 * space.
 *
 * AGP BAR will be assigned the largest available hole in the address space.
 * Should be called after VRAM and GART locations are setup.
 */
void amdgpu_gmc_agp_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc)
{
	const uint64_t sixteen_gb = 1ULL << 34;
	const uint64_t sixteen_gb_mask = ~(sixteen_gb - 1);
	u64 size_af, size_bf;

F
Frank.Min 已提交
307
	if (amdgpu_sriov_vf(adev)) {
308
		mc->agp_start = 0xffffffffffff;
F
Frank.Min 已提交
309 310 311 312 313 314
		mc->agp_end = 0x0;
		mc->agp_size = 0;

		return;
	}

315 316
	if (mc->fb_start > mc->gart_start) {
		size_bf = (mc->fb_start & sixteen_gb_mask) -
317
			ALIGN(mc->gart_end + 1, sixteen_gb);
318
		size_af = mc->mc_mask + 1 - ALIGN(mc->fb_end + 1, sixteen_gb);
319
	} else {
320
		size_bf = mc->fb_start & sixteen_gb_mask;
321
		size_af = (mc->gart_start & sixteen_gb_mask) -
322
			ALIGN(mc->fb_end + 1, sixteen_gb);
323 324 325
	}

	if (size_bf > size_af) {
326
		mc->agp_start = (mc->fb_start - size_bf) & sixteen_gb_mask;
327 328
		mc->agp_size = size_bf;
	} else {
329
		mc->agp_start = ALIGN(mc->fb_end + 1, sixteen_gb);
330 331 332 333 334 335 336
		mc->agp_size = size_af;
	}

	mc->agp_end = mc->agp_start + mc->agp_size - 1;
	dev_info(adev->dev, "AGP: %lluM 0x%016llX - 0x%016llX\n",
			mc->agp_size >> 20, mc->agp_start, mc->agp_end);
}
337

338 339 340 341 342 343 344 345 346 347 348
/**
 * amdgpu_gmc_fault_key - get hask key from vm fault address and pasid
 *
 * @addr: 48 bit physical address, page aligned (36 significant bits)
 * @pasid: 16 bit process address space identifier
 */
static inline uint64_t amdgpu_gmc_fault_key(uint64_t addr, uint16_t pasid)
{
	return addr << 4 | pasid;
}

349 350 351 352
/**
 * amdgpu_gmc_filter_faults - filter VM faults
 *
 * @adev: amdgpu device structure
P
Philip Yang 已提交
353
 * @ih: interrupt ring that the fault received from
354 355 356 357 358 359 360 361
 * @addr: address of the VM fault
 * @pasid: PASID of the process causing the fault
 * @timestamp: timestamp of the fault
 *
 * Returns:
 * True if the fault was filtered and should not be processed further.
 * False if the fault is a new one and needs to be handled.
 */
P
Philip Yang 已提交
362 363
bool amdgpu_gmc_filter_faults(struct amdgpu_device *adev,
			      struct amdgpu_ih_ring *ih, uint64_t addr,
364 365 366
			      uint16_t pasid, uint64_t timestamp)
{
	struct amdgpu_gmc *gmc = &adev->gmc;
367
	uint64_t stamp, key = amdgpu_gmc_fault_key(addr, pasid);
368 369 370
	struct amdgpu_gmc_fault *fault;
	uint32_t hash;

P
Philip Yang 已提交
371 372 373 374
	/* Stale retry fault if timestamp goes backward */
	if (amdgpu_ih_ts_after(timestamp, ih->processed_timestamp))
		return true;

375 376 377 378 379 380 381 382 383 384 385 386
	/* If we don't have space left in the ring buffer return immediately */
	stamp = max(timestamp, AMDGPU_GMC_FAULT_TIMEOUT + 1) -
		AMDGPU_GMC_FAULT_TIMEOUT;
	if (gmc->fault_ring[gmc->last_fault].timestamp >= stamp)
		return true;

	/* Try to find the fault in the hash */
	hash = hash_64(key, AMDGPU_GMC_FAULT_HASH_ORDER);
	fault = &gmc->fault_ring[gmc->fault_hash[hash].idx];
	while (fault->timestamp >= stamp) {
		uint64_t tmp;

387
		if (atomic64_read(&fault->key) == key)
388 389 390 391 392 393 394 395 396 397 398 399
			return true;

		tmp = fault->timestamp;
		fault = &gmc->fault_ring[fault->next];

		/* Check if the entry was reused */
		if (fault->timestamp >= tmp)
			break;
	}

	/* Add the fault to the ring */
	fault = &gmc->fault_ring[gmc->last_fault];
400
	atomic64_set(&fault->key, key);
401 402 403 404 405 406 407
	fault->timestamp = timestamp;

	/* And update the hash */
	fault->next = gmc->fault_hash[hash].idx;
	gmc->fault_hash[hash].idx = gmc->last_fault++;
	return false;
}
408

409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
/**
 * amdgpu_gmc_filter_faults_remove - remove address from VM faults filter
 *
 * @adev: amdgpu device structure
 * @addr: address of the VM fault
 * @pasid: PASID of the process causing the fault
 *
 * Remove the address from fault filter, then future vm fault on this address
 * will pass to retry fault handler to recover.
 */
void amdgpu_gmc_filter_faults_remove(struct amdgpu_device *adev, uint64_t addr,
				     uint16_t pasid)
{
	struct amdgpu_gmc *gmc = &adev->gmc;
	uint64_t key = amdgpu_gmc_fault_key(addr, pasid);
	struct amdgpu_gmc_fault *fault;
	uint32_t hash;
	uint64_t tmp;

	hash = hash_64(key, AMDGPU_GMC_FAULT_HASH_ORDER);
	fault = &gmc->fault_ring[gmc->fault_hash[hash].idx];
	do {
		if (atomic64_cmpxchg(&fault->key, key, 0) == key)
			break;

		tmp = fault->timestamp;
		fault = &gmc->fault_ring[fault->next];
	} while (fault->timestamp < tmp);
}

439 440 441 442 443
int amdgpu_gmc_ras_early_init(struct amdgpu_device *adev)
{
	if (!adev->gmc.xgmi.connected_to_cpu) {
		adev->gmc.xgmi.ras = &xgmi_ras;
		amdgpu_ras_register_ras_block(adev, &adev->gmc.xgmi.ras->ras_block);
444
		adev->gmc.xgmi.ras_if = &adev->gmc.xgmi.ras->ras_block.ras_comm;
445 446 447 448 449
	}

	return 0;
}

450 451
int amdgpu_gmc_ras_late_init(struct amdgpu_device *adev)
{
452
	return 0;
453 454
}

455 456
void amdgpu_gmc_ras_fini(struct amdgpu_device *adev)
{
457 458
	if (adev->umc.ras && adev->umc.ras->ras_block.ras_fini)
		adev->umc.ras->ras_block.ras_fini(adev);
459

460 461
	if (adev->mmhub.ras && adev->mmhub.ras->ras_block.ras_fini)
		adev->mmhub.ras->ras_block.ras_fini(adev);
462

463 464
	if (adev->gmc.xgmi.ras && adev->gmc.xgmi.ras->ras_block.ras_fini)
		adev->gmc.xgmi.ras->ras_block.ras_fini(adev);
465

466 467
	if (adev->hdp.ras && adev->hdp.ras->ras_block.ras_fini)
		adev->hdp.ras->ras_block.ras_fini(adev);
468
}
469 470

	/*
471
	 * The latest engine allocation on gfx9/10 is:
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
	 * Engine 2, 3: firmware
	 * Engine 0, 1, 4~16: amdgpu ring,
	 *                    subject to change when ring number changes
	 * Engine 17: Gart flushes
	 */
#define GFXHUB_FREE_VM_INV_ENGS_BITMAP		0x1FFF3
#define MMHUB_FREE_VM_INV_ENGS_BITMAP		0x1FFF3

int amdgpu_gmc_allocate_vm_inv_eng(struct amdgpu_device *adev)
{
	struct amdgpu_ring *ring;
	unsigned vm_inv_engs[AMDGPU_MAX_VMHUBS] =
		{GFXHUB_FREE_VM_INV_ENGS_BITMAP, MMHUB_FREE_VM_INV_ENGS_BITMAP,
		GFXHUB_FREE_VM_INV_ENGS_BITMAP};
	unsigned i;
	unsigned vmhub, inv_eng;

	for (i = 0; i < adev->num_rings; ++i) {
		ring = adev->rings[i];
		vmhub = ring->funcs->vmhub;

493 494 495
		if (ring == &adev->mes.ring)
			continue;

496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
		inv_eng = ffs(vm_inv_engs[vmhub]);
		if (!inv_eng) {
			dev_err(adev->dev, "no VM inv eng for ring %s\n",
				ring->name);
			return -EINVAL;
		}

		ring->vm_inv_eng = inv_eng - 1;
		vm_inv_engs[vmhub] &= ~(1 << ring->vm_inv_eng);

		dev_info(adev->dev, "ring %s uses VM inv eng %u on hub %u\n",
			 ring->name, ring->vm_inv_eng, ring->funcs->vmhub);
	}

	return 0;
}
512 513

/**
514
 * amdgpu_gmc_tmz_set -- check and set if a device supports TMZ
515 516 517 518 519 520 521
 * @adev: amdgpu_device pointer
 *
 * Check and set if an the device @adev supports Trusted Memory
 * Zones (TMZ).
 */
void amdgpu_gmc_tmz_set(struct amdgpu_device *adev)
{
522 523
	switch (adev->asic_type) {
	case CHIP_RAVEN:
524
	case CHIP_RENOIR:
525 526 527 528 529 530 531 532 533 534
		if (amdgpu_tmz == 0) {
			adev->gmc.tmz_enabled = false;
			dev_info(adev->dev,
				 "Trusted Memory Zone (TMZ) feature disabled (cmd line)\n");
		} else {
			adev->gmc.tmz_enabled = true;
			dev_info(adev->dev,
				 "Trusted Memory Zone (TMZ) feature enabled\n");
		}
		break;
535 536 537
	case CHIP_NAVI10:
	case CHIP_NAVI14:
	case CHIP_NAVI12:
A
Alex Deucher 已提交
538
	case CHIP_VANGOGH:
539
	case CHIP_YELLOW_CARP:
540 541 542 543 544 545 546 547 548 549 550 551 552
		/* Don't enable it by default yet.
		 */
		if (amdgpu_tmz < 1) {
			adev->gmc.tmz_enabled = false;
			dev_info(adev->dev,
				 "Trusted Memory Zone (TMZ) feature disabled as experimental (default)\n");
		} else {
			adev->gmc.tmz_enabled = true;
			dev_info(adev->dev,
				 "Trusted Memory Zone (TMZ) feature enabled as experimental (cmd line)\n");
		}
		break;
	default:
553
		adev->gmc.tmz_enabled = false;
554
		dev_info(adev->dev,
555
			 "Trusted Memory Zone (TMZ) feature not supported\n");
556
		break;
557 558
	}
}
559

560
/**
561
 * amdgpu_gmc_noretry_set -- set per asic noretry defaults
562 563 564 565 566 567 568 569 570
 * @adev: amdgpu_device pointer
 *
 * Set a per asic default for the no-retry parameter.
 *
 */
void amdgpu_gmc_noretry_set(struct amdgpu_device *adev)
{
	struct amdgpu_gmc *gmc = &adev->gmc;

571
	switch (adev->asic_type) {
572
	case CHIP_VEGA10:
573
	case CHIP_VEGA20:
574
	case CHIP_ARCTURUS:
575
	case CHIP_ALDEBARAN:
576 577 578
		/*
		 * noretry = 0 will cause kfd page fault tests fail
		 * for some ASICs, so set default to 1 for these ASICs.
579 580
		 */
		if (amdgpu_noretry == -1)
581
			gmc->noretry = 1;
582 583 584
		else
			gmc->noretry = amdgpu_noretry;
		break;
585
	case CHIP_RAVEN:
586
	default:
587 588 589 590 591 592 593
		/* Raven currently has issues with noretry
		 * regardless of what we decide for other
		 * asics, we should leave raven with
		 * noretry = 0 until we root cause the
		 * issues.
		 *
		 * default this to 0 for now, but we may want
594 595 596 597 598 599 600 601 602 603
		 * to change this in the future for certain
		 * GPUs as it can increase performance in
		 * certain cases.
		 */
		if (amdgpu_noretry == -1)
			gmc->noretry = 0;
		else
			gmc->noretry = amdgpu_noretry;
		break;
	}
604 605
}

606 607 608 609 610 611 612 613 614 615
void amdgpu_gmc_set_vm_fault_masks(struct amdgpu_device *adev, int hub_type,
				   bool enable)
{
	struct amdgpu_vmhub *hub;
	u32 tmp, reg, i;

	hub = &adev->vmhub[hub_type];
	for (i = 0; i < 16; i++) {
		reg = hub->vm_context0_cntl + hub->ctx_distance * i;

616 617 618 619
		tmp = (hub_type == AMDGPU_GFXHUB_0) ?
			RREG32_SOC15_IP(GC, reg) :
			RREG32_SOC15_IP(MMHUB, reg);

620 621 622 623 624
		if (enable)
			tmp |= hub->vm_cntx_cntl_vm_fault;
		else
			tmp &= ~hub->vm_cntx_cntl_vm_fault;

625 626 627
		(hub_type == AMDGPU_GFXHUB_0) ?
			WREG32_SOC15_IP(GC, reg, tmp) :
			WREG32_SOC15_IP(MMHUB, reg, tmp);
628 629
	}
}
630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646

void amdgpu_gmc_get_vbios_allocations(struct amdgpu_device *adev)
{
	unsigned size;

	/*
	 * TODO:
	 * Currently there is a bug where some memory client outside
	 * of the driver writes to first 8M of VRAM on S3 resume,
	 * this overrides GART which by default gets placed in first 8M and
	 * causes VM_FAULTS once GTT is accessed.
	 * Keep the stolen memory reservation until the while this is not solved.
	 */
	switch (adev->asic_type) {
	case CHIP_VEGA10:
	case CHIP_RAVEN:
	case CHIP_RENOIR:
647
		adev->mman.keep_stolen_vga_memory = true;
648 649
		break;
	default:
650
		adev->mman.keep_stolen_vga_memory = false;
651 652 653
		break;
	}

654 655
	if (amdgpu_sriov_vf(adev) ||
	    !amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_DCE)) {
656
		size = 0;
657
	} else {
658 659
		size = amdgpu_gmc_get_vbios_fb_size(adev);

660 661 662
		if (adev->mman.keep_stolen_vga_memory)
			size = max(size, (unsigned)AMDGPU_VBIOS_VGA_ALLOCATION);
	}
663

664 665 666 667 668
	/* set to 0 if the pre-OS buffer uses up most of vram */
	if ((adev->gmc.real_vram_size - size) < (8 * 1024 * 1024))
		size = 0;

	if (size > AMDGPU_VBIOS_VGA_ALLOCATION) {
669 670
		adev->mman.stolen_vga_size = AMDGPU_VBIOS_VGA_ALLOCATION;
		adev->mman.stolen_extended_size = size - adev->mman.stolen_vga_size;
671
	} else {
672 673
		adev->mman.stolen_vga_size = size;
		adev->mman.stolen_extended_size = 0;
674 675
	}
}
676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703

/**
 * amdgpu_gmc_init_pdb0 - initialize PDB0
 *
 * @adev: amdgpu_device pointer
 *
 * This function is only used when GART page table is used
 * for FB address translatioin. In such a case, we construct
 * a 2-level system VM page table: PDB0->PTB, to cover both
 * VRAM of the hive and system memory.
 *
 * PDB0 is static, initialized once on driver initialization.
 * The first n entries of PDB0 are used as PTE by setting
 * P bit to 1, pointing to VRAM. The n+1'th entry points
 * to a big PTB covering system memory.
 *
 */
void amdgpu_gmc_init_pdb0(struct amdgpu_device *adev)
{
	int i;
	uint64_t flags = adev->gart.gart_pte_flags; //TODO it is UC. explore NC/RW?
	/* Each PDE0 (used as PTE) covers (2^vmid0_page_table_block_size)*2M
	 */
	u64 vram_size = adev->gmc.xgmi.node_segment_size * adev->gmc.xgmi.num_physical_nodes;
	u64 pde0_page_size = (1ULL<<adev->gmc.vmid0_page_table_block_size)<<21;
	u64 vram_addr = adev->vm_manager.vram_base_offset -
		adev->gmc.xgmi.physical_node_id * adev->gmc.xgmi.node_segment_size;
	u64 vram_end = vram_addr + vram_size;
704
	u64 gart_ptb_gpu_pa = amdgpu_gmc_vram_pa(adev, adev->gart.bo);
705 706
	int idx;

707
	if (!drm_dev_enter(adev_to_drm(adev), &idx))
708
		return;
709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725

	flags |= AMDGPU_PTE_VALID | AMDGPU_PTE_READABLE;
	flags |= AMDGPU_PTE_WRITEABLE;
	flags |= AMDGPU_PTE_SNOOPED;
	flags |= AMDGPU_PTE_FRAG((adev->gmc.vmid0_page_table_block_size + 9*1));
	flags |= AMDGPU_PDE_PTE;

	/* The first n PDE0 entries are used as PTE,
	 * pointing to vram
	 */
	for (i = 0; vram_addr < vram_end; i++, vram_addr += pde0_page_size)
		amdgpu_gmc_set_pte_pde(adev, adev->gmc.ptr_pdb0, i, vram_addr, flags);

	/* The n+1'th PDE0 entry points to a huge
	 * PTB who has more than 512 entries each
	 * pointing to a 4K system page
	 */
O
Oak Zeng 已提交
726
	flags = AMDGPU_PTE_VALID;
727 728 729
	flags |= AMDGPU_PDE_BFS(0) | AMDGPU_PTE_SNOOPED;
	/* Requires gart_ptb_gpu_pa to be 4K aligned */
	amdgpu_gmc_set_pte_pde(adev, adev->gmc.ptr_pdb0, i, gart_ptb_gpu_pa, flags);
730
	drm_dev_exit(idx);
731
}
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767

/**
 * amdgpu_gmc_vram_mc2pa - calculate vram buffer's physical address from MC
 * address
 *
 * @adev: amdgpu_device pointer
 * @mc_addr: MC address of buffer
 */
uint64_t amdgpu_gmc_vram_mc2pa(struct amdgpu_device *adev, uint64_t mc_addr)
{
	return mc_addr - adev->gmc.vram_start + adev->vm_manager.vram_base_offset;
}

/**
 * amdgpu_gmc_vram_pa - calculate vram buffer object's physical address from
 * GPU's view
 *
 * @adev: amdgpu_device pointer
 * @bo: amdgpu buffer object
 */
uint64_t amdgpu_gmc_vram_pa(struct amdgpu_device *adev, struct amdgpu_bo *bo)
{
	return amdgpu_gmc_vram_mc2pa(adev, amdgpu_bo_gpu_offset(bo));
}

/**
 * amdgpu_gmc_vram_cpu_pa - calculate vram buffer object's physical address
 * from CPU's view
 *
 * @adev: amdgpu_device pointer
 * @bo: amdgpu buffer object
 */
uint64_t amdgpu_gmc_vram_cpu_pa(struct amdgpu_device *adev, struct amdgpu_bo *bo)
{
	return amdgpu_bo_gpu_offset(bo) - adev->gmc.vram_start + adev->gmc.aper_base;
}
768 769 770 771 772

void amdgpu_gmc_get_reserved_allocation(struct amdgpu_device *adev)
{
	/* Some ASICs need to reserve a region of video memory to avoid access
	 * from driver */
773 774 775
	adev->mman.stolen_reserved_offset = 0;
	adev->mman.stolen_reserved_size = 0;

776 777
	switch (adev->asic_type) {
	case CHIP_YELLOW_CARP:
778 779 780 781
		if (amdgpu_discovery == 0) {
			adev->mman.stolen_reserved_offset = 0x1ffb0000;
			adev->mman.stolen_reserved_size = 64 * PAGE_SIZE;
		}
782 783 784 785 786
		break;
	default:
		break;
	}
}
787 788 789

int amdgpu_gmc_vram_checking(struct amdgpu_device *adev)
{
790 791 792
	struct amdgpu_bo *vram_bo = NULL;
	uint64_t vram_gpu = 0;
	void *vram_ptr = NULL;
793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832

	int ret, size = 0x100000;
	uint8_t cptr[10];

	ret = amdgpu_bo_create_kernel(adev, size, PAGE_SIZE,
				AMDGPU_GEM_DOMAIN_VRAM,
				&vram_bo,
				&vram_gpu,
				&vram_ptr);
	if (ret)
		return ret;

	memset(vram_ptr, 0x86, size);
	memset(cptr, 0x86, 10);

	/**
	 * Check the start, the mid, and the end of the memory if the content of
	 * each byte is the pattern "0x86". If yes, we suppose the vram bo is
	 * workable.
	 *
	 * Note: If check the each byte of whole 1M bo, it will cost too many
	 * seconds, so here, we just pick up three parts for emulation.
	 */
	ret = memcmp(vram_ptr, cptr, 10);
	if (ret)
		return ret;

	ret = memcmp(vram_ptr + (size / 2), cptr, 10);
	if (ret)
		return ret;

	ret = memcmp(vram_ptr + size - 10, cptr, 10);
	if (ret)
		return ret;

	amdgpu_bo_free_kernel(&vram_bo, &vram_gpu,
			&vram_ptr);

	return 0;
}