amdgpu_gmc.c 22.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * Copyright 2018 Advanced Micro Devices, Inc.
 * All Rights Reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the
 * "Software"), to deal in the Software without restriction, including
 * without limitation the rights to use, copy, modify, merge, publish,
 * distribute, sub license, and/or sell copies of the Software, and to
 * permit persons to whom the Software is furnished to do so, subject to
 * the following conditions:
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
 * USE OR OTHER DEALINGS IN THE SOFTWARE.
 *
 * The above copyright notice and this permission notice (including the
 * next paragraph) shall be included in all copies or substantial portions
 * of the Software.
 *
 */

27 28
#include <linux/io-64-nonatomic-lo-hi.h>

29
#include "amdgpu.h"
30
#include "amdgpu_gmc.h"
31
#include "amdgpu_ras.h"
32
#include "amdgpu_xgmi.h"
33

34 35
#include <drm/drm_drv.h>

36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
/**
 * amdgpu_gmc_pdb0_alloc - allocate vram for pdb0
 *
 * @adev: amdgpu_device pointer
 *
 * Allocate video memory for pdb0 and map it for CPU access
 * Returns 0 for success, error for failure.
 */
int amdgpu_gmc_pdb0_alloc(struct amdgpu_device *adev)
{
	int r;
	struct amdgpu_bo_param bp;
	u64 vram_size = adev->gmc.xgmi.node_segment_size * adev->gmc.xgmi.num_physical_nodes;
	uint32_t pde0_page_shift = adev->gmc.vmid0_page_table_block_size + 21;
	uint32_t npdes = (vram_size + (1ULL << pde0_page_shift) -1) >> pde0_page_shift;

	memset(&bp, 0, sizeof(bp));
	bp.size = PAGE_ALIGN((npdes + 1) * 8);
	bp.byte_align = PAGE_SIZE;
	bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
	bp.flags = AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED |
		AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS;
	bp.type = ttm_bo_type_kernel;
	bp.resv = NULL;
60 61
	bp.bo_ptr_size = sizeof(struct amdgpu_bo);

62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
	r = amdgpu_bo_create(adev, &bp, &adev->gmc.pdb0_bo);
	if (r)
		return r;

	r = amdgpu_bo_reserve(adev->gmc.pdb0_bo, false);
	if (unlikely(r != 0))
		goto bo_reserve_failure;

	r = amdgpu_bo_pin(adev->gmc.pdb0_bo, AMDGPU_GEM_DOMAIN_VRAM);
	if (r)
		goto bo_pin_failure;
	r = amdgpu_bo_kmap(adev->gmc.pdb0_bo, &adev->gmc.ptr_pdb0);
	if (r)
		goto bo_kmap_failure;

	amdgpu_bo_unreserve(adev->gmc.pdb0_bo);
	return 0;

bo_kmap_failure:
	amdgpu_bo_unpin(adev->gmc.pdb0_bo);
bo_pin_failure:
	amdgpu_bo_unreserve(adev->gmc.pdb0_bo);
bo_reserve_failure:
	amdgpu_bo_unref(&adev->gmc.pdb0_bo);
	return r;
}

89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
/**
 * amdgpu_gmc_get_pde_for_bo - get the PDE for a BO
 *
 * @bo: the BO to get the PDE for
 * @level: the level in the PD hirarchy
 * @addr: resulting addr
 * @flags: resulting flags
 *
 * Get the address and flags to be used for a PDE (Page Directory Entry).
 */
void amdgpu_gmc_get_pde_for_bo(struct amdgpu_bo *bo, int level,
			       uint64_t *addr, uint64_t *flags)
{
	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);

	switch (bo->tbo.mem.mem_type) {
	case TTM_PL_TT:
106
		*addr = bo->tbo.ttm->dma_address[0];
107 108 109 110 111 112 113 114 115 116 117 118
		break;
	case TTM_PL_VRAM:
		*addr = amdgpu_bo_gpu_offset(bo);
		break;
	default:
		*addr = 0;
		break;
	}
	*flags = amdgpu_ttm_tt_pde_flags(bo->tbo.ttm, &bo->tbo.mem);
	amdgpu_gmc_get_vm_pde(adev, level, addr, flags);
}

119
/*
120 121 122 123 124 125 126 127 128 129 130
 * amdgpu_gmc_pd_addr - return the address of the root directory
 */
uint64_t amdgpu_gmc_pd_addr(struct amdgpu_bo *bo)
{
	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
	uint64_t pd_addr;

	/* TODO: move that into ASIC specific code */
	if (adev->asic_type >= CHIP_VEGA10) {
		uint64_t flags = AMDGPU_PTE_VALID;

131
		amdgpu_gmc_get_pde_for_bo(bo, -1, &pd_addr, &flags);
132
		pd_addr |= flags;
133 134
	} else {
		pd_addr = amdgpu_bo_gpu_offset(bo);
135 136 137
	}
	return pd_addr;
}
138

139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
/**
 * amdgpu_gmc_set_pte_pde - update the page tables using CPU
 *
 * @adev: amdgpu_device pointer
 * @cpu_pt_addr: cpu address of the page table
 * @gpu_page_idx: entry in the page table to update
 * @addr: dst addr to write into pte/pde
 * @flags: access flags
 *
 * Update the page tables using CPU.
 */
int amdgpu_gmc_set_pte_pde(struct amdgpu_device *adev, void *cpu_pt_addr,
				uint32_t gpu_page_idx, uint64_t addr,
				uint64_t flags)
{
	void __iomem *ptr = (void *)cpu_pt_addr;
	uint64_t value;
156 157 158 159
	int idx;

	if (!drm_dev_enter(&adev->ddev, &idx))
		return 0;
160 161 162 163 164 165 166

	/*
	 * The following is for PTE only. GART does not have PDEs.
	*/
	value = addr & 0x0000FFFFFFFFF000ULL;
	value |= flags;
	writeq(value, ptr + (gpu_page_idx * 8));
167 168 169

	drm_dev_exit(idx);

170 171 172
	return 0;
}

173 174 175
/**
 * amdgpu_gmc_agp_addr - return the address in the AGP address space
 *
176
 * @bo: TTM BO which needs the address, must be in GTT domain
177 178 179 180 181 182 183 184
 *
 * Tries to figure out how to access the BO through the AGP aperture. Returns
 * AMDGPU_BO_INVALID_OFFSET if that is not possible.
 */
uint64_t amdgpu_gmc_agp_addr(struct ttm_buffer_object *bo)
{
	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);

185
	if (bo->ttm->num_pages != 1 || bo->ttm->caching == ttm_cached)
186 187
		return AMDGPU_BO_INVALID_OFFSET;

188
	if (bo->ttm->dma_address[0] + PAGE_SIZE >= adev->gmc.agp_size)
189 190
		return AMDGPU_BO_INVALID_OFFSET;

191
	return adev->gmc.agp_start + bo->ttm->dma_address[0];
192 193
}

194 195 196
/**
 * amdgpu_gmc_vram_location - try to find VRAM location
 *
197 198
 * @adev: amdgpu device structure holding all necessary information
 * @mc: memory controller structure holding memory information
199 200 201 202 203 204 205 206 207 208 209 210 211 212
 * @base: base address at which to put VRAM
 *
 * Function will try to place VRAM at base address provided
 * as parameter.
 */
void amdgpu_gmc_vram_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc,
			      u64 base)
{
	uint64_t limit = (uint64_t)amdgpu_vram_limit << 20;

	mc->vram_start = base;
	mc->vram_end = mc->vram_start + mc->mc_vram_size - 1;
	if (limit && limit < mc->real_vram_size)
		mc->real_vram_size = limit;
213 214 215 216 217

	if (mc->xgmi.num_physical_nodes == 0) {
		mc->fb_start = mc->vram_start;
		mc->fb_end = mc->vram_end;
	}
218 219 220 221 222
	dev_info(adev->dev, "VRAM: %lluM 0x%016llX - 0x%016llX (%lluM used)\n",
			mc->mc_vram_size >> 20, mc->vram_start,
			mc->vram_end, mc->real_vram_size >> 20);
}

223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
/** amdgpu_gmc_sysvm_location - place vram and gart in sysvm aperture
 *
 * @adev: amdgpu device structure holding all necessary information
 * @mc: memory controller structure holding memory information
 *
 * This function is only used if use GART for FB translation. In such
 * case, we use sysvm aperture (vmid0 page tables) for both vram
 * and gart (aka system memory) access.
 *
 * GPUVM (and our organization of vmid0 page tables) require sysvm
 * aperture to be placed at a location aligned with 8 times of native
 * page size. For example, if vm_context0_cntl.page_table_block_size
 * is 12, then native page size is 8G (2M*2^12), sysvm should start
 * with a 64G aligned address. For simplicity, we just put sysvm at
 * address 0. So vram start at address 0 and gart is right after vram.
 */
void amdgpu_gmc_sysvm_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc)
{
	u64 hive_vram_start = 0;
	u64 hive_vram_end = mc->xgmi.node_segment_size * mc->xgmi.num_physical_nodes - 1;
	mc->vram_start = mc->xgmi.node_segment_size * mc->xgmi.physical_node_id;
	mc->vram_end = mc->vram_start + mc->xgmi.node_segment_size - 1;
	mc->gart_start = hive_vram_end + 1;
	mc->gart_end = mc->gart_start + mc->gart_size - 1;
	mc->fb_start = hive_vram_start;
	mc->fb_end = hive_vram_end;
	dev_info(adev->dev, "VRAM: %lluM 0x%016llX - 0x%016llX (%lluM used)\n",
			mc->mc_vram_size >> 20, mc->vram_start,
			mc->vram_end, mc->real_vram_size >> 20);
	dev_info(adev->dev, "GART: %lluM 0x%016llX - 0x%016llX\n",
			mc->gart_size >> 20, mc->gart_start, mc->gart_end);
}

256 257 258
/**
 * amdgpu_gmc_gart_location - try to find GART location
 *
259 260
 * @adev: amdgpu device structure holding all necessary information
 * @mc: memory controller structure holding memory information
261 262 263 264 265 266 267
 *
 * Function will place try to place GART before or after VRAM.
 * If GART size is bigger than space left then we ajust GART size.
 * Thus function will never fails.
 */
void amdgpu_gmc_gart_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc)
{
268
	const uint64_t four_gb = 0x100000000ULL;
269
	u64 size_af, size_bf;
270 271
	/*To avoid the hole, limit the max mc address to AMDGPU_GMC_HOLE_START*/
	u64 max_mc_address = min(adev->gmc.mc_mask, AMDGPU_GMC_HOLE_START - 1);
272

273 274 275
	/* VCE doesn't like it when BOs cross a 4GB segment, so align
	 * the GART base on a 4GB boundary as well.
	 */
276
	size_bf = mc->fb_start;
277
	size_af = max_mc_address + 1 - ALIGN(mc->fb_end + 1, four_gb);
278 279 280 281 282 283

	if (mc->gart_size > max(size_bf, size_af)) {
		dev_warn(adev->dev, "limiting GART\n");
		mc->gart_size = max(size_bf, size_af);
	}

284 285
	if ((size_bf >= mc->gart_size && size_bf < size_af) ||
	    (size_af < mc->gart_size))
286
		mc->gart_start = 0;
287
	else
288
		mc->gart_start = max_mc_address - mc->gart_size + 1;
289

290
	mc->gart_start &= ~(four_gb - 1);
291 292 293 294
	mc->gart_end = mc->gart_start + mc->gart_size - 1;
	dev_info(adev->dev, "GART: %lluM 0x%016llX - 0x%016llX\n",
			mc->gart_size >> 20, mc->gart_start, mc->gart_end);
}
295 296 297

/**
 * amdgpu_gmc_agp_location - try to find AGP location
298 299
 * @adev: amdgpu device structure holding all necessary information
 * @mc: memory controller structure holding memory information
300 301 302 303 304 305 306 307 308 309 310 311 312
 *
 * Function will place try to find a place for the AGP BAR in the MC address
 * space.
 *
 * AGP BAR will be assigned the largest available hole in the address space.
 * Should be called after VRAM and GART locations are setup.
 */
void amdgpu_gmc_agp_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc)
{
	const uint64_t sixteen_gb = 1ULL << 34;
	const uint64_t sixteen_gb_mask = ~(sixteen_gb - 1);
	u64 size_af, size_bf;

F
Frank.Min 已提交
313
	if (amdgpu_sriov_vf(adev)) {
314
		mc->agp_start = 0xffffffffffff;
F
Frank.Min 已提交
315 316 317 318 319 320
		mc->agp_end = 0x0;
		mc->agp_size = 0;

		return;
	}

321 322
	if (mc->fb_start > mc->gart_start) {
		size_bf = (mc->fb_start & sixteen_gb_mask) -
323
			ALIGN(mc->gart_end + 1, sixteen_gb);
324
		size_af = mc->mc_mask + 1 - ALIGN(mc->fb_end + 1, sixteen_gb);
325
	} else {
326
		size_bf = mc->fb_start & sixteen_gb_mask;
327
		size_af = (mc->gart_start & sixteen_gb_mask) -
328
			ALIGN(mc->fb_end + 1, sixteen_gb);
329 330 331
	}

	if (size_bf > size_af) {
332
		mc->agp_start = (mc->fb_start - size_bf) & sixteen_gb_mask;
333 334
		mc->agp_size = size_bf;
	} else {
335
		mc->agp_start = ALIGN(mc->fb_end + 1, sixteen_gb);
336 337 338 339 340 341 342
		mc->agp_size = size_af;
	}

	mc->agp_end = mc->agp_start + mc->agp_size - 1;
	dev_info(adev->dev, "AGP: %lluM 0x%016llX - 0x%016llX\n",
			mc->agp_size >> 20, mc->agp_start, mc->agp_end);
}
343

344 345 346 347 348 349 350 351 352 353 354
/**
 * amdgpu_gmc_fault_key - get hask key from vm fault address and pasid
 *
 * @addr: 48 bit physical address, page aligned (36 significant bits)
 * @pasid: 16 bit process address space identifier
 */
static inline uint64_t amdgpu_gmc_fault_key(uint64_t addr, uint16_t pasid)
{
	return addr << 4 | pasid;
}

355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
/**
 * amdgpu_gmc_filter_faults - filter VM faults
 *
 * @adev: amdgpu device structure
 * @addr: address of the VM fault
 * @pasid: PASID of the process causing the fault
 * @timestamp: timestamp of the fault
 *
 * Returns:
 * True if the fault was filtered and should not be processed further.
 * False if the fault is a new one and needs to be handled.
 */
bool amdgpu_gmc_filter_faults(struct amdgpu_device *adev, uint64_t addr,
			      uint16_t pasid, uint64_t timestamp)
{
	struct amdgpu_gmc *gmc = &adev->gmc;
371
	uint64_t stamp, key = amdgpu_gmc_fault_key(addr, pasid);
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
	struct amdgpu_gmc_fault *fault;
	uint32_t hash;

	/* If we don't have space left in the ring buffer return immediately */
	stamp = max(timestamp, AMDGPU_GMC_FAULT_TIMEOUT + 1) -
		AMDGPU_GMC_FAULT_TIMEOUT;
	if (gmc->fault_ring[gmc->last_fault].timestamp >= stamp)
		return true;

	/* Try to find the fault in the hash */
	hash = hash_64(key, AMDGPU_GMC_FAULT_HASH_ORDER);
	fault = &gmc->fault_ring[gmc->fault_hash[hash].idx];
	while (fault->timestamp >= stamp) {
		uint64_t tmp;

387
		if (atomic64_read(&fault->key) == key)
388 389 390 391 392 393 394 395 396 397 398 399
			return true;

		tmp = fault->timestamp;
		fault = &gmc->fault_ring[fault->next];

		/* Check if the entry was reused */
		if (fault->timestamp >= tmp)
			break;
	}

	/* Add the fault to the ring */
	fault = &gmc->fault_ring[gmc->last_fault];
400
	atomic64_set(&fault->key, key);
401 402 403 404 405 406 407
	fault->timestamp = timestamp;

	/* And update the hash */
	fault->next = gmc->fault_hash[hash].idx;
	gmc->fault_hash[hash].idx = gmc->last_fault++;
	return false;
}
408

409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
/**
 * amdgpu_gmc_filter_faults_remove - remove address from VM faults filter
 *
 * @adev: amdgpu device structure
 * @addr: address of the VM fault
 * @pasid: PASID of the process causing the fault
 *
 * Remove the address from fault filter, then future vm fault on this address
 * will pass to retry fault handler to recover.
 */
void amdgpu_gmc_filter_faults_remove(struct amdgpu_device *adev, uint64_t addr,
				     uint16_t pasid)
{
	struct amdgpu_gmc *gmc = &adev->gmc;
	uint64_t key = amdgpu_gmc_fault_key(addr, pasid);
	struct amdgpu_gmc_fault *fault;
	uint32_t hash;
	uint64_t tmp;

	hash = hash_64(key, AMDGPU_GMC_FAULT_HASH_ORDER);
	fault = &gmc->fault_ring[gmc->fault_hash[hash].idx];
	do {
		if (atomic64_cmpxchg(&fault->key, key, 0) == key)
			break;

		tmp = fault->timestamp;
		fault = &gmc->fault_ring[fault->next];
	} while (fault->timestamp < tmp);
}

439 440 441 442
int amdgpu_gmc_ras_late_init(struct amdgpu_device *adev)
{
	int r;

443 444 445
	if (adev->umc.ras_funcs &&
	    adev->umc.ras_funcs->ras_late_init) {
		r = adev->umc.ras_funcs->ras_late_init(adev);
446 447 448 449
		if (r)
			return r;
	}

450 451 452
	if (adev->mmhub.ras_funcs &&
	    adev->mmhub.ras_funcs->ras_late_init) {
		r = adev->mmhub.ras_funcs->ras_late_init(adev);
453 454 455 456
		if (r)
			return r;
	}

457 458 459 460 461 462 463 464 465 466
	if (!adev->gmc.xgmi.connected_to_cpu)
		adev->gmc.xgmi.ras_funcs = &xgmi_ras_funcs;

	if (adev->gmc.xgmi.ras_funcs &&
	    adev->gmc.xgmi.ras_funcs->ras_late_init) {
		r = adev->gmc.xgmi.ras_funcs->ras_late_init(adev);
		if (r)
			return r;
	}

467 468 469 470 471 472 473
	if (adev->hdp.ras_funcs &&
	    adev->hdp.ras_funcs->ras_late_init) {
		r = adev->hdp.ras_funcs->ras_late_init(adev);
		if (r)
			return r;
	}

474
	return 0;
475 476
}

477 478
void amdgpu_gmc_ras_fini(struct amdgpu_device *adev)
{
479 480 481 482
	if (adev->umc.ras_funcs &&
	    adev->umc.ras_funcs->ras_fini)
		adev->umc.ras_funcs->ras_fini(adev);

483 484
	if (adev->mmhub.ras_funcs &&
	    adev->mmhub.ras_funcs->ras_fini)
485
		adev->mmhub.ras_funcs->ras_fini(adev);
486

487 488 489
	if (adev->gmc.xgmi.ras_funcs &&
	    adev->gmc.xgmi.ras_funcs->ras_fini)
		adev->gmc.xgmi.ras_funcs->ras_fini(adev);
490 491 492 493

	if (adev->hdp.ras_funcs &&
	    adev->hdp.ras_funcs->ras_fini)
		adev->hdp.ras_funcs->ras_fini(adev);
494
}
495 496

	/*
497
	 * The latest engine allocation on gfx9/10 is:
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
	 * Engine 2, 3: firmware
	 * Engine 0, 1, 4~16: amdgpu ring,
	 *                    subject to change when ring number changes
	 * Engine 17: Gart flushes
	 */
#define GFXHUB_FREE_VM_INV_ENGS_BITMAP		0x1FFF3
#define MMHUB_FREE_VM_INV_ENGS_BITMAP		0x1FFF3

int amdgpu_gmc_allocate_vm_inv_eng(struct amdgpu_device *adev)
{
	struct amdgpu_ring *ring;
	unsigned vm_inv_engs[AMDGPU_MAX_VMHUBS] =
		{GFXHUB_FREE_VM_INV_ENGS_BITMAP, MMHUB_FREE_VM_INV_ENGS_BITMAP,
		GFXHUB_FREE_VM_INV_ENGS_BITMAP};
	unsigned i;
	unsigned vmhub, inv_eng;

	for (i = 0; i < adev->num_rings; ++i) {
		ring = adev->rings[i];
		vmhub = ring->funcs->vmhub;

519 520 521
		if (ring == &adev->mes.ring)
			continue;

522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
		inv_eng = ffs(vm_inv_engs[vmhub]);
		if (!inv_eng) {
			dev_err(adev->dev, "no VM inv eng for ring %s\n",
				ring->name);
			return -EINVAL;
		}

		ring->vm_inv_eng = inv_eng - 1;
		vm_inv_engs[vmhub] &= ~(1 << ring->vm_inv_eng);

		dev_info(adev->dev, "ring %s uses VM inv eng %u on hub %u\n",
			 ring->name, ring->vm_inv_eng, ring->funcs->vmhub);
	}

	return 0;
}
538 539

/**
540
 * amdgpu_gmc_tmz_set -- check and set if a device supports TMZ
541 542 543 544 545 546 547
 * @adev: amdgpu_device pointer
 *
 * Check and set if an the device @adev supports Trusted Memory
 * Zones (TMZ).
 */
void amdgpu_gmc_tmz_set(struct amdgpu_device *adev)
{
548 549
	switch (adev->asic_type) {
	case CHIP_RAVEN:
550
	case CHIP_RENOIR:
551 552 553 554 555 556 557 558 559 560
		if (amdgpu_tmz == 0) {
			adev->gmc.tmz_enabled = false;
			dev_info(adev->dev,
				 "Trusted Memory Zone (TMZ) feature disabled (cmd line)\n");
		} else {
			adev->gmc.tmz_enabled = true;
			dev_info(adev->dev,
				 "Trusted Memory Zone (TMZ) feature enabled\n");
		}
		break;
561 562 563
	case CHIP_NAVI10:
	case CHIP_NAVI14:
	case CHIP_NAVI12:
A
Alex Deucher 已提交
564
	case CHIP_VANGOGH:
565 566 567 568 569 570 571 572 573 574 575 576 577
		/* Don't enable it by default yet.
		 */
		if (amdgpu_tmz < 1) {
			adev->gmc.tmz_enabled = false;
			dev_info(adev->dev,
				 "Trusted Memory Zone (TMZ) feature disabled as experimental (default)\n");
		} else {
			adev->gmc.tmz_enabled = true;
			dev_info(adev->dev,
				 "Trusted Memory Zone (TMZ) feature enabled as experimental (cmd line)\n");
		}
		break;
	default:
578 579 580
		adev->gmc.tmz_enabled = false;
		dev_warn(adev->dev,
			 "Trusted Memory Zone (TMZ) feature not supported\n");
581
		break;
582 583
	}
}
584

585
/**
586
 * amdgpu_gmc_noretry_set -- set per asic noretry defaults
587 588 589 590 591 592 593 594 595
 * @adev: amdgpu_device pointer
 *
 * Set a per asic default for the no-retry parameter.
 *
 */
void amdgpu_gmc_noretry_set(struct amdgpu_device *adev)
{
	struct amdgpu_gmc *gmc = &adev->gmc;

596
	switch (adev->asic_type) {
597
	case CHIP_VEGA10:
598
	case CHIP_VEGA20:
599
	case CHIP_ARCTURUS:
600
	case CHIP_ALDEBARAN:
601 602 603
		/*
		 * noretry = 0 will cause kfd page fault tests fail
		 * for some ASICs, so set default to 1 for these ASICs.
604 605
		 */
		if (amdgpu_noretry == -1)
606
			gmc->noretry = 1;
607 608 609
		else
			gmc->noretry = amdgpu_noretry;
		break;
610
	case CHIP_RAVEN:
611
	default:
612 613 614 615 616 617 618
		/* Raven currently has issues with noretry
		 * regardless of what we decide for other
		 * asics, we should leave raven with
		 * noretry = 0 until we root cause the
		 * issues.
		 *
		 * default this to 0 for now, but we may want
619 620 621 622 623 624 625 626 627 628
		 * to change this in the future for certain
		 * GPUs as it can increase performance in
		 * certain cases.
		 */
		if (amdgpu_noretry == -1)
			gmc->noretry = 0;
		else
			gmc->noretry = amdgpu_noretry;
		break;
	}
629 630
}

631 632 633 634 635 636 637 638 639 640
void amdgpu_gmc_set_vm_fault_masks(struct amdgpu_device *adev, int hub_type,
				   bool enable)
{
	struct amdgpu_vmhub *hub;
	u32 tmp, reg, i;

	hub = &adev->vmhub[hub_type];
	for (i = 0; i < 16; i++) {
		reg = hub->vm_context0_cntl + hub->ctx_distance * i;

641 642 643 644
		tmp = (hub_type == AMDGPU_GFXHUB_0) ?
			RREG32_SOC15_IP(GC, reg) :
			RREG32_SOC15_IP(MMHUB, reg);

645 646 647 648 649
		if (enable)
			tmp |= hub->vm_cntx_cntl_vm_fault;
		else
			tmp &= ~hub->vm_cntx_cntl_vm_fault;

650 651 652
		(hub_type == AMDGPU_GFXHUB_0) ?
			WREG32_SOC15_IP(GC, reg, tmp) :
			WREG32_SOC15_IP(MMHUB, reg, tmp);
653 654
	}
}
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671

void amdgpu_gmc_get_vbios_allocations(struct amdgpu_device *adev)
{
	unsigned size;

	/*
	 * TODO:
	 * Currently there is a bug where some memory client outside
	 * of the driver writes to first 8M of VRAM on S3 resume,
	 * this overrides GART which by default gets placed in first 8M and
	 * causes VM_FAULTS once GTT is accessed.
	 * Keep the stolen memory reservation until the while this is not solved.
	 */
	switch (adev->asic_type) {
	case CHIP_VEGA10:
	case CHIP_RAVEN:
	case CHIP_RENOIR:
672
		adev->mman.keep_stolen_vga_memory = true;
673 674
		break;
	default:
675
		adev->mman.keep_stolen_vga_memory = false;
676 677 678
		break;
	}

679 680
	if (amdgpu_sriov_vf(adev) ||
	    !amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_DCE)) {
681
		size = 0;
682
	} else {
683 684
		size = amdgpu_gmc_get_vbios_fb_size(adev);

685 686 687
		if (adev->mman.keep_stolen_vga_memory)
			size = max(size, (unsigned)AMDGPU_VBIOS_VGA_ALLOCATION);
	}
688

689 690 691 692 693
	/* set to 0 if the pre-OS buffer uses up most of vram */
	if ((adev->gmc.real_vram_size - size) < (8 * 1024 * 1024))
		size = 0;

	if (size > AMDGPU_VBIOS_VGA_ALLOCATION) {
694 695
		adev->mman.stolen_vga_size = AMDGPU_VBIOS_VGA_ALLOCATION;
		adev->mman.stolen_extended_size = size - adev->mman.stolen_vga_size;
696
	} else {
697 698
		adev->mman.stolen_vga_size = size;
		adev->mman.stolen_extended_size = 0;
699 700
	}
}
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728

/**
 * amdgpu_gmc_init_pdb0 - initialize PDB0
 *
 * @adev: amdgpu_device pointer
 *
 * This function is only used when GART page table is used
 * for FB address translatioin. In such a case, we construct
 * a 2-level system VM page table: PDB0->PTB, to cover both
 * VRAM of the hive and system memory.
 *
 * PDB0 is static, initialized once on driver initialization.
 * The first n entries of PDB0 are used as PTE by setting
 * P bit to 1, pointing to VRAM. The n+1'th entry points
 * to a big PTB covering system memory.
 *
 */
void amdgpu_gmc_init_pdb0(struct amdgpu_device *adev)
{
	int i;
	uint64_t flags = adev->gart.gart_pte_flags; //TODO it is UC. explore NC/RW?
	/* Each PDE0 (used as PTE) covers (2^vmid0_page_table_block_size)*2M
	 */
	u64 vram_size = adev->gmc.xgmi.node_segment_size * adev->gmc.xgmi.num_physical_nodes;
	u64 pde0_page_size = (1ULL<<adev->gmc.vmid0_page_table_block_size)<<21;
	u64 vram_addr = adev->vm_manager.vram_base_offset -
		adev->gmc.xgmi.physical_node_id * adev->gmc.xgmi.node_segment_size;
	u64 vram_end = vram_addr + vram_size;
729
	u64 gart_ptb_gpu_pa = amdgpu_gmc_vram_pa(adev, adev->gart.bo);
730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746

	flags |= AMDGPU_PTE_VALID | AMDGPU_PTE_READABLE;
	flags |= AMDGPU_PTE_WRITEABLE;
	flags |= AMDGPU_PTE_SNOOPED;
	flags |= AMDGPU_PTE_FRAG((adev->gmc.vmid0_page_table_block_size + 9*1));
	flags |= AMDGPU_PDE_PTE;

	/* The first n PDE0 entries are used as PTE,
	 * pointing to vram
	 */
	for (i = 0; vram_addr < vram_end; i++, vram_addr += pde0_page_size)
		amdgpu_gmc_set_pte_pde(adev, adev->gmc.ptr_pdb0, i, vram_addr, flags);

	/* The n+1'th PDE0 entry points to a huge
	 * PTB who has more than 512 entries each
	 * pointing to a 4K system page
	 */
O
Oak Zeng 已提交
747
	flags = AMDGPU_PTE_VALID;
748 749 750 751
	flags |= AMDGPU_PDE_BFS(0) | AMDGPU_PTE_SNOOPED;
	/* Requires gart_ptb_gpu_pa to be 4K aligned */
	amdgpu_gmc_set_pte_pde(adev, adev->gmc.ptr_pdb0, i, gart_ptb_gpu_pa, flags);
}
752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787

/**
 * amdgpu_gmc_vram_mc2pa - calculate vram buffer's physical address from MC
 * address
 *
 * @adev: amdgpu_device pointer
 * @mc_addr: MC address of buffer
 */
uint64_t amdgpu_gmc_vram_mc2pa(struct amdgpu_device *adev, uint64_t mc_addr)
{
	return mc_addr - adev->gmc.vram_start + adev->vm_manager.vram_base_offset;
}

/**
 * amdgpu_gmc_vram_pa - calculate vram buffer object's physical address from
 * GPU's view
 *
 * @adev: amdgpu_device pointer
 * @bo: amdgpu buffer object
 */
uint64_t amdgpu_gmc_vram_pa(struct amdgpu_device *adev, struct amdgpu_bo *bo)
{
	return amdgpu_gmc_vram_mc2pa(adev, amdgpu_bo_gpu_offset(bo));
}

/**
 * amdgpu_gmc_vram_cpu_pa - calculate vram buffer object's physical address
 * from CPU's view
 *
 * @adev: amdgpu_device pointer
 * @bo: amdgpu buffer object
 */
uint64_t amdgpu_gmc_vram_cpu_pa(struct amdgpu_device *adev, struct amdgpu_bo *bo)
{
	return amdgpu_bo_gpu_offset(bo) - adev->gmc.vram_start + adev->gmc.aper_base;
}
788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803

void amdgpu_gmc_get_reserved_allocation(struct amdgpu_device *adev)
{
	/* Some ASICs need to reserve a region of video memory to avoid access
	 * from driver */
	switch (adev->asic_type) {
	case CHIP_YELLOW_CARP:
		adev->mman.stolen_reserved_offset = 0x1ffb0000;
		adev->mman.stolen_reserved_size = 64 * PAGE_SIZE;
		break;
	default:
		adev->mman.stolen_reserved_offset = 0;
		adev->mman.stolen_reserved_size = 0;
		break;
	}
}