amdgpu_gmc.c 21.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * Copyright 2018 Advanced Micro Devices, Inc.
 * All Rights Reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the
 * "Software"), to deal in the Software without restriction, including
 * without limitation the rights to use, copy, modify, merge, publish,
 * distribute, sub license, and/or sell copies of the Software, and to
 * permit persons to whom the Software is furnished to do so, subject to
 * the following conditions:
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
 * USE OR OTHER DEALINGS IN THE SOFTWARE.
 *
 * The above copyright notice and this permission notice (including the
 * next paragraph) shall be included in all copies or substantial portions
 * of the Software.
 *
 */

27 28
#include <linux/io-64-nonatomic-lo-hi.h>

29
#include "amdgpu.h"
30
#include "amdgpu_gmc.h"
31
#include "amdgpu_ras.h"
32
#include "amdgpu_xgmi.h"
33

34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
/**
 * amdgpu_gmc_pdb0_alloc - allocate vram for pdb0
 *
 * @adev: amdgpu_device pointer
 *
 * Allocate video memory for pdb0 and map it for CPU access
 * Returns 0 for success, error for failure.
 */
int amdgpu_gmc_pdb0_alloc(struct amdgpu_device *adev)
{
	int r;
	struct amdgpu_bo_param bp;
	u64 vram_size = adev->gmc.xgmi.node_segment_size * adev->gmc.xgmi.num_physical_nodes;
	uint32_t pde0_page_shift = adev->gmc.vmid0_page_table_block_size + 21;
	uint32_t npdes = (vram_size + (1ULL << pde0_page_shift) -1) >> pde0_page_shift;

	memset(&bp, 0, sizeof(bp));
	bp.size = PAGE_ALIGN((npdes + 1) * 8);
	bp.byte_align = PAGE_SIZE;
	bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
	bp.flags = AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED |
		AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS;
	bp.type = ttm_bo_type_kernel;
	bp.resv = NULL;
58 59
	bp.bo_ptr_size = sizeof(struct amdgpu_bo);

60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
	r = amdgpu_bo_create(adev, &bp, &adev->gmc.pdb0_bo);
	if (r)
		return r;

	r = amdgpu_bo_reserve(adev->gmc.pdb0_bo, false);
	if (unlikely(r != 0))
		goto bo_reserve_failure;

	r = amdgpu_bo_pin(adev->gmc.pdb0_bo, AMDGPU_GEM_DOMAIN_VRAM);
	if (r)
		goto bo_pin_failure;
	r = amdgpu_bo_kmap(adev->gmc.pdb0_bo, &adev->gmc.ptr_pdb0);
	if (r)
		goto bo_kmap_failure;

	amdgpu_bo_unreserve(adev->gmc.pdb0_bo);
	return 0;

bo_kmap_failure:
	amdgpu_bo_unpin(adev->gmc.pdb0_bo);
bo_pin_failure:
	amdgpu_bo_unreserve(adev->gmc.pdb0_bo);
bo_reserve_failure:
	amdgpu_bo_unref(&adev->gmc.pdb0_bo);
	return r;
}

87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
/**
 * amdgpu_gmc_get_pde_for_bo - get the PDE for a BO
 *
 * @bo: the BO to get the PDE for
 * @level: the level in the PD hirarchy
 * @addr: resulting addr
 * @flags: resulting flags
 *
 * Get the address and flags to be used for a PDE (Page Directory Entry).
 */
void amdgpu_gmc_get_pde_for_bo(struct amdgpu_bo *bo, int level,
			       uint64_t *addr, uint64_t *flags)
{
	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);

	switch (bo->tbo.mem.mem_type) {
	case TTM_PL_TT:
104
		*addr = bo->tbo.ttm->dma_address[0];
105 106 107 108 109 110 111 112 113 114 115 116
		break;
	case TTM_PL_VRAM:
		*addr = amdgpu_bo_gpu_offset(bo);
		break;
	default:
		*addr = 0;
		break;
	}
	*flags = amdgpu_ttm_tt_pde_flags(bo->tbo.ttm, &bo->tbo.mem);
	amdgpu_gmc_get_vm_pde(adev, level, addr, flags);
}

117
/*
118 119 120 121 122 123 124 125 126 127 128
 * amdgpu_gmc_pd_addr - return the address of the root directory
 */
uint64_t amdgpu_gmc_pd_addr(struct amdgpu_bo *bo)
{
	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
	uint64_t pd_addr;

	/* TODO: move that into ASIC specific code */
	if (adev->asic_type >= CHIP_VEGA10) {
		uint64_t flags = AMDGPU_PTE_VALID;

129
		amdgpu_gmc_get_pde_for_bo(bo, -1, &pd_addr, &flags);
130
		pd_addr |= flags;
131 132
	} else {
		pd_addr = amdgpu_bo_gpu_offset(bo);
133 134 135
	}
	return pd_addr;
}
136

137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
/**
 * amdgpu_gmc_set_pte_pde - update the page tables using CPU
 *
 * @adev: amdgpu_device pointer
 * @cpu_pt_addr: cpu address of the page table
 * @gpu_page_idx: entry in the page table to update
 * @addr: dst addr to write into pte/pde
 * @flags: access flags
 *
 * Update the page tables using CPU.
 */
int amdgpu_gmc_set_pte_pde(struct amdgpu_device *adev, void *cpu_pt_addr,
				uint32_t gpu_page_idx, uint64_t addr,
				uint64_t flags)
{
	void __iomem *ptr = (void *)cpu_pt_addr;
	uint64_t value;

	/*
	 * The following is for PTE only. GART does not have PDEs.
	*/
	value = addr & 0x0000FFFFFFFFF000ULL;
	value |= flags;
	writeq(value, ptr + (gpu_page_idx * 8));
	return 0;
}

164 165 166
/**
 * amdgpu_gmc_agp_addr - return the address in the AGP address space
 *
167
 * @bo: TTM BO which needs the address, must be in GTT domain
168 169 170 171 172 173 174 175
 *
 * Tries to figure out how to access the BO through the AGP aperture. Returns
 * AMDGPU_BO_INVALID_OFFSET if that is not possible.
 */
uint64_t amdgpu_gmc_agp_addr(struct ttm_buffer_object *bo)
{
	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);

176
	if (bo->ttm->num_pages != 1 || bo->ttm->caching == ttm_cached)
177 178
		return AMDGPU_BO_INVALID_OFFSET;

179
	if (bo->ttm->dma_address[0] + PAGE_SIZE >= adev->gmc.agp_size)
180 181
		return AMDGPU_BO_INVALID_OFFSET;

182
	return adev->gmc.agp_start + bo->ttm->dma_address[0];
183 184
}

185 186 187
/**
 * amdgpu_gmc_vram_location - try to find VRAM location
 *
188 189
 * @adev: amdgpu device structure holding all necessary information
 * @mc: memory controller structure holding memory information
190 191 192 193 194 195 196 197 198 199 200 201 202 203
 * @base: base address at which to put VRAM
 *
 * Function will try to place VRAM at base address provided
 * as parameter.
 */
void amdgpu_gmc_vram_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc,
			      u64 base)
{
	uint64_t limit = (uint64_t)amdgpu_vram_limit << 20;

	mc->vram_start = base;
	mc->vram_end = mc->vram_start + mc->mc_vram_size - 1;
	if (limit && limit < mc->real_vram_size)
		mc->real_vram_size = limit;
204 205 206 207 208

	if (mc->xgmi.num_physical_nodes == 0) {
		mc->fb_start = mc->vram_start;
		mc->fb_end = mc->vram_end;
	}
209 210 211 212 213
	dev_info(adev->dev, "VRAM: %lluM 0x%016llX - 0x%016llX (%lluM used)\n",
			mc->mc_vram_size >> 20, mc->vram_start,
			mc->vram_end, mc->real_vram_size >> 20);
}

214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
/** amdgpu_gmc_sysvm_location - place vram and gart in sysvm aperture
 *
 * @adev: amdgpu device structure holding all necessary information
 * @mc: memory controller structure holding memory information
 *
 * This function is only used if use GART for FB translation. In such
 * case, we use sysvm aperture (vmid0 page tables) for both vram
 * and gart (aka system memory) access.
 *
 * GPUVM (and our organization of vmid0 page tables) require sysvm
 * aperture to be placed at a location aligned with 8 times of native
 * page size. For example, if vm_context0_cntl.page_table_block_size
 * is 12, then native page size is 8G (2M*2^12), sysvm should start
 * with a 64G aligned address. For simplicity, we just put sysvm at
 * address 0. So vram start at address 0 and gart is right after vram.
 */
void amdgpu_gmc_sysvm_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc)
{
	u64 hive_vram_start = 0;
	u64 hive_vram_end = mc->xgmi.node_segment_size * mc->xgmi.num_physical_nodes - 1;
	mc->vram_start = mc->xgmi.node_segment_size * mc->xgmi.physical_node_id;
	mc->vram_end = mc->vram_start + mc->xgmi.node_segment_size - 1;
	mc->gart_start = hive_vram_end + 1;
	mc->gart_end = mc->gart_start + mc->gart_size - 1;
	mc->fb_start = hive_vram_start;
	mc->fb_end = hive_vram_end;
	dev_info(adev->dev, "VRAM: %lluM 0x%016llX - 0x%016llX (%lluM used)\n",
			mc->mc_vram_size >> 20, mc->vram_start,
			mc->vram_end, mc->real_vram_size >> 20);
	dev_info(adev->dev, "GART: %lluM 0x%016llX - 0x%016llX\n",
			mc->gart_size >> 20, mc->gart_start, mc->gart_end);
}

247 248 249
/**
 * amdgpu_gmc_gart_location - try to find GART location
 *
250 251
 * @adev: amdgpu device structure holding all necessary information
 * @mc: memory controller structure holding memory information
252 253 254 255 256 257 258
 *
 * Function will place try to place GART before or after VRAM.
 * If GART size is bigger than space left then we ajust GART size.
 * Thus function will never fails.
 */
void amdgpu_gmc_gart_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc)
{
259
	const uint64_t four_gb = 0x100000000ULL;
260
	u64 size_af, size_bf;
261 262
	/*To avoid the hole, limit the max mc address to AMDGPU_GMC_HOLE_START*/
	u64 max_mc_address = min(adev->gmc.mc_mask, AMDGPU_GMC_HOLE_START - 1);
263

264 265 266
	/* VCE doesn't like it when BOs cross a 4GB segment, so align
	 * the GART base on a 4GB boundary as well.
	 */
267
	size_bf = mc->fb_start;
268
	size_af = max_mc_address + 1 - ALIGN(mc->fb_end + 1, four_gb);
269 270 271 272 273 274

	if (mc->gart_size > max(size_bf, size_af)) {
		dev_warn(adev->dev, "limiting GART\n");
		mc->gart_size = max(size_bf, size_af);
	}

275 276
	if ((size_bf >= mc->gart_size && size_bf < size_af) ||
	    (size_af < mc->gart_size))
277
		mc->gart_start = 0;
278
	else
279
		mc->gart_start = max_mc_address - mc->gart_size + 1;
280

281
	mc->gart_start &= ~(four_gb - 1);
282 283 284 285
	mc->gart_end = mc->gart_start + mc->gart_size - 1;
	dev_info(adev->dev, "GART: %lluM 0x%016llX - 0x%016llX\n",
			mc->gart_size >> 20, mc->gart_start, mc->gart_end);
}
286 287 288

/**
 * amdgpu_gmc_agp_location - try to find AGP location
289 290
 * @adev: amdgpu device structure holding all necessary information
 * @mc: memory controller structure holding memory information
291 292 293 294 295 296 297 298 299 300 301 302 303
 *
 * Function will place try to find a place for the AGP BAR in the MC address
 * space.
 *
 * AGP BAR will be assigned the largest available hole in the address space.
 * Should be called after VRAM and GART locations are setup.
 */
void amdgpu_gmc_agp_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc)
{
	const uint64_t sixteen_gb = 1ULL << 34;
	const uint64_t sixteen_gb_mask = ~(sixteen_gb - 1);
	u64 size_af, size_bf;

F
Frank.Min 已提交
304
	if (amdgpu_sriov_vf(adev)) {
305
		mc->agp_start = 0xffffffffffff;
F
Frank.Min 已提交
306 307 308 309 310 311
		mc->agp_end = 0x0;
		mc->agp_size = 0;

		return;
	}

312 313
	if (mc->fb_start > mc->gart_start) {
		size_bf = (mc->fb_start & sixteen_gb_mask) -
314
			ALIGN(mc->gart_end + 1, sixteen_gb);
315
		size_af = mc->mc_mask + 1 - ALIGN(mc->fb_end + 1, sixteen_gb);
316
	} else {
317
		size_bf = mc->fb_start & sixteen_gb_mask;
318
		size_af = (mc->gart_start & sixteen_gb_mask) -
319
			ALIGN(mc->fb_end + 1, sixteen_gb);
320 321 322
	}

	if (size_bf > size_af) {
323
		mc->agp_start = (mc->fb_start - size_bf) & sixteen_gb_mask;
324 325
		mc->agp_size = size_bf;
	} else {
326
		mc->agp_start = ALIGN(mc->fb_end + 1, sixteen_gb);
327 328 329 330 331 332 333
		mc->agp_size = size_af;
	}

	mc->agp_end = mc->agp_start + mc->agp_size - 1;
	dev_info(adev->dev, "AGP: %lluM 0x%016llX - 0x%016llX\n",
			mc->agp_size >> 20, mc->agp_start, mc->agp_end);
}
334

335 336 337 338 339 340 341 342 343 344 345
/**
 * amdgpu_gmc_fault_key - get hask key from vm fault address and pasid
 *
 * @addr: 48 bit physical address, page aligned (36 significant bits)
 * @pasid: 16 bit process address space identifier
 */
static inline uint64_t amdgpu_gmc_fault_key(uint64_t addr, uint16_t pasid)
{
	return addr << 4 | pasid;
}

346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
/**
 * amdgpu_gmc_filter_faults - filter VM faults
 *
 * @adev: amdgpu device structure
 * @addr: address of the VM fault
 * @pasid: PASID of the process causing the fault
 * @timestamp: timestamp of the fault
 *
 * Returns:
 * True if the fault was filtered and should not be processed further.
 * False if the fault is a new one and needs to be handled.
 */
bool amdgpu_gmc_filter_faults(struct amdgpu_device *adev, uint64_t addr,
			      uint16_t pasid, uint64_t timestamp)
{
	struct amdgpu_gmc *gmc = &adev->gmc;
362
	uint64_t stamp, key = amdgpu_gmc_fault_key(addr, pasid);
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
	struct amdgpu_gmc_fault *fault;
	uint32_t hash;

	/* If we don't have space left in the ring buffer return immediately */
	stamp = max(timestamp, AMDGPU_GMC_FAULT_TIMEOUT + 1) -
		AMDGPU_GMC_FAULT_TIMEOUT;
	if (gmc->fault_ring[gmc->last_fault].timestamp >= stamp)
		return true;

	/* Try to find the fault in the hash */
	hash = hash_64(key, AMDGPU_GMC_FAULT_HASH_ORDER);
	fault = &gmc->fault_ring[gmc->fault_hash[hash].idx];
	while (fault->timestamp >= stamp) {
		uint64_t tmp;

378
		if (atomic64_read(&fault->key) == key)
379 380 381 382 383 384 385 386 387 388 389 390
			return true;

		tmp = fault->timestamp;
		fault = &gmc->fault_ring[fault->next];

		/* Check if the entry was reused */
		if (fault->timestamp >= tmp)
			break;
	}

	/* Add the fault to the ring */
	fault = &gmc->fault_ring[gmc->last_fault];
391
	atomic64_set(&fault->key, key);
392 393 394 395 396 397 398
	fault->timestamp = timestamp;

	/* And update the hash */
	fault->next = gmc->fault_hash[hash].idx;
	gmc->fault_hash[hash].idx = gmc->last_fault++;
	return false;
}
399

400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
/**
 * amdgpu_gmc_filter_faults_remove - remove address from VM faults filter
 *
 * @adev: amdgpu device structure
 * @addr: address of the VM fault
 * @pasid: PASID of the process causing the fault
 *
 * Remove the address from fault filter, then future vm fault on this address
 * will pass to retry fault handler to recover.
 */
void amdgpu_gmc_filter_faults_remove(struct amdgpu_device *adev, uint64_t addr,
				     uint16_t pasid)
{
	struct amdgpu_gmc *gmc = &adev->gmc;
	uint64_t key = amdgpu_gmc_fault_key(addr, pasid);
	struct amdgpu_gmc_fault *fault;
	uint32_t hash;
	uint64_t tmp;

	hash = hash_64(key, AMDGPU_GMC_FAULT_HASH_ORDER);
	fault = &gmc->fault_ring[gmc->fault_hash[hash].idx];
	do {
		if (atomic64_cmpxchg(&fault->key, key, 0) == key)
			break;

		tmp = fault->timestamp;
		fault = &gmc->fault_ring[fault->next];
	} while (fault->timestamp < tmp);
}

430 431 432 433
int amdgpu_gmc_ras_late_init(struct amdgpu_device *adev)
{
	int r;

434 435 436
	if (adev->umc.ras_funcs &&
	    adev->umc.ras_funcs->ras_late_init) {
		r = adev->umc.ras_funcs->ras_late_init(adev);
437 438 439 440
		if (r)
			return r;
	}

441 442 443
	if (adev->mmhub.ras_funcs &&
	    adev->mmhub.ras_funcs->ras_late_init) {
		r = adev->mmhub.ras_funcs->ras_late_init(adev);
444 445 446 447
		if (r)
			return r;
	}

448 449 450 451 452 453 454 455 456 457 458
	if (!adev->gmc.xgmi.connected_to_cpu)
		adev->gmc.xgmi.ras_funcs = &xgmi_ras_funcs;

	if (adev->gmc.xgmi.ras_funcs &&
	    adev->gmc.xgmi.ras_funcs->ras_late_init) {
		r = adev->gmc.xgmi.ras_funcs->ras_late_init(adev);
		if (r)
			return r;
	}

	return 0;
459 460
}

461 462
void amdgpu_gmc_ras_fini(struct amdgpu_device *adev)
{
463 464 465 466
	if (adev->umc.ras_funcs &&
	    adev->umc.ras_funcs->ras_fini)
		adev->umc.ras_funcs->ras_fini(adev);

467 468 469
	if (adev->mmhub.ras_funcs &&
	    adev->mmhub.ras_funcs->ras_fini)
		amdgpu_mmhub_ras_fini(adev);
470

471 472 473
	if (adev->gmc.xgmi.ras_funcs &&
	    adev->gmc.xgmi.ras_funcs->ras_fini)
		adev->gmc.xgmi.ras_funcs->ras_fini(adev);
474
}
475 476

	/*
477
	 * The latest engine allocation on gfx9/10 is:
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
	 * Engine 2, 3: firmware
	 * Engine 0, 1, 4~16: amdgpu ring,
	 *                    subject to change when ring number changes
	 * Engine 17: Gart flushes
	 */
#define GFXHUB_FREE_VM_INV_ENGS_BITMAP		0x1FFF3
#define MMHUB_FREE_VM_INV_ENGS_BITMAP		0x1FFF3

int amdgpu_gmc_allocate_vm_inv_eng(struct amdgpu_device *adev)
{
	struct amdgpu_ring *ring;
	unsigned vm_inv_engs[AMDGPU_MAX_VMHUBS] =
		{GFXHUB_FREE_VM_INV_ENGS_BITMAP, MMHUB_FREE_VM_INV_ENGS_BITMAP,
		GFXHUB_FREE_VM_INV_ENGS_BITMAP};
	unsigned i;
	unsigned vmhub, inv_eng;

	for (i = 0; i < adev->num_rings; ++i) {
		ring = adev->rings[i];
		vmhub = ring->funcs->vmhub;

499 500 501
		if (ring == &adev->mes.ring)
			continue;

502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
		inv_eng = ffs(vm_inv_engs[vmhub]);
		if (!inv_eng) {
			dev_err(adev->dev, "no VM inv eng for ring %s\n",
				ring->name);
			return -EINVAL;
		}

		ring->vm_inv_eng = inv_eng - 1;
		vm_inv_engs[vmhub] &= ~(1 << ring->vm_inv_eng);

		dev_info(adev->dev, "ring %s uses VM inv eng %u on hub %u\n",
			 ring->name, ring->vm_inv_eng, ring->funcs->vmhub);
	}

	return 0;
}
518 519 520 521 522 523 524 525 526 527

/**
 * amdgpu_tmz_set -- check and set if a device supports TMZ
 * @adev: amdgpu_device pointer
 *
 * Check and set if an the device @adev supports Trusted Memory
 * Zones (TMZ).
 */
void amdgpu_gmc_tmz_set(struct amdgpu_device *adev)
{
528 529
	switch (adev->asic_type) {
	case CHIP_RAVEN:
530
	case CHIP_RENOIR:
531 532 533 534 535 536 537 538 539 540
		if (amdgpu_tmz == 0) {
			adev->gmc.tmz_enabled = false;
			dev_info(adev->dev,
				 "Trusted Memory Zone (TMZ) feature disabled (cmd line)\n");
		} else {
			adev->gmc.tmz_enabled = true;
			dev_info(adev->dev,
				 "Trusted Memory Zone (TMZ) feature enabled\n");
		}
		break;
541 542 543
	case CHIP_NAVI10:
	case CHIP_NAVI14:
	case CHIP_NAVI12:
A
Alex Deucher 已提交
544
	case CHIP_VANGOGH:
545 546 547 548 549 550 551 552 553 554 555 556 557
		/* Don't enable it by default yet.
		 */
		if (amdgpu_tmz < 1) {
			adev->gmc.tmz_enabled = false;
			dev_info(adev->dev,
				 "Trusted Memory Zone (TMZ) feature disabled as experimental (default)\n");
		} else {
			adev->gmc.tmz_enabled = true;
			dev_info(adev->dev,
				 "Trusted Memory Zone (TMZ) feature enabled as experimental (cmd line)\n");
		}
		break;
	default:
558 559 560
		adev->gmc.tmz_enabled = false;
		dev_warn(adev->dev,
			 "Trusted Memory Zone (TMZ) feature not supported\n");
561
		break;
562 563
	}
}
564

565 566 567 568 569 570 571 572 573 574 575
/**
 * amdgpu_noretry_set -- set per asic noretry defaults
 * @adev: amdgpu_device pointer
 *
 * Set a per asic default for the no-retry parameter.
 *
 */
void amdgpu_gmc_noretry_set(struct amdgpu_device *adev)
{
	struct amdgpu_gmc *gmc = &adev->gmc;

576
	switch (adev->asic_type) {
577
	case CHIP_VEGA10:
578
	case CHIP_VEGA20:
579
	case CHIP_ARCTURUS:
580
	case CHIP_ALDEBARAN:
581 582 583
		/*
		 * noretry = 0 will cause kfd page fault tests fail
		 * for some ASICs, so set default to 1 for these ASICs.
584 585
		 */
		if (amdgpu_noretry == -1)
586
			gmc->noretry = 1;
587 588 589
		else
			gmc->noretry = amdgpu_noretry;
		break;
590
	case CHIP_RAVEN:
591
	default:
592 593 594 595 596 597 598
		/* Raven currently has issues with noretry
		 * regardless of what we decide for other
		 * asics, we should leave raven with
		 * noretry = 0 until we root cause the
		 * issues.
		 *
		 * default this to 0 for now, but we may want
599 600 601 602 603 604 605 606 607 608
		 * to change this in the future for certain
		 * GPUs as it can increase performance in
		 * certain cases.
		 */
		if (amdgpu_noretry == -1)
			gmc->noretry = 0;
		else
			gmc->noretry = amdgpu_noretry;
		break;
	}
609 610
}

611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
void amdgpu_gmc_set_vm_fault_masks(struct amdgpu_device *adev, int hub_type,
				   bool enable)
{
	struct amdgpu_vmhub *hub;
	u32 tmp, reg, i;

	hub = &adev->vmhub[hub_type];
	for (i = 0; i < 16; i++) {
		reg = hub->vm_context0_cntl + hub->ctx_distance * i;

		tmp = RREG32(reg);
		if (enable)
			tmp |= hub->vm_cntx_cntl_vm_fault;
		else
			tmp &= ~hub->vm_cntx_cntl_vm_fault;

		WREG32(reg, tmp);
	}
}
630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646

void amdgpu_gmc_get_vbios_allocations(struct amdgpu_device *adev)
{
	unsigned size;

	/*
	 * TODO:
	 * Currently there is a bug where some memory client outside
	 * of the driver writes to first 8M of VRAM on S3 resume,
	 * this overrides GART which by default gets placed in first 8M and
	 * causes VM_FAULTS once GTT is accessed.
	 * Keep the stolen memory reservation until the while this is not solved.
	 */
	switch (adev->asic_type) {
	case CHIP_VEGA10:
	case CHIP_RAVEN:
	case CHIP_RENOIR:
647
		adev->mman.keep_stolen_vga_memory = true;
648 649
		break;
	default:
650
		adev->mman.keep_stolen_vga_memory = false;
651 652 653
		break;
	}

654 655
	if (amdgpu_sriov_vf(adev) ||
	    !amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_DCE)) {
656
		size = 0;
657
	} else {
658 659
		size = amdgpu_gmc_get_vbios_fb_size(adev);

660 661 662
		if (adev->mman.keep_stolen_vga_memory)
			size = max(size, (unsigned)AMDGPU_VBIOS_VGA_ALLOCATION);
	}
663

664 665 666 667 668
	/* set to 0 if the pre-OS buffer uses up most of vram */
	if ((adev->gmc.real_vram_size - size) < (8 * 1024 * 1024))
		size = 0;

	if (size > AMDGPU_VBIOS_VGA_ALLOCATION) {
669 670
		adev->mman.stolen_vga_size = AMDGPU_VBIOS_VGA_ALLOCATION;
		adev->mman.stolen_extended_size = size - adev->mman.stolen_vga_size;
671
	} else {
672 673
		adev->mman.stolen_vga_size = size;
		adev->mman.stolen_extended_size = 0;
674 675
	}
}
676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703

/**
 * amdgpu_gmc_init_pdb0 - initialize PDB0
 *
 * @adev: amdgpu_device pointer
 *
 * This function is only used when GART page table is used
 * for FB address translatioin. In such a case, we construct
 * a 2-level system VM page table: PDB0->PTB, to cover both
 * VRAM of the hive and system memory.
 *
 * PDB0 is static, initialized once on driver initialization.
 * The first n entries of PDB0 are used as PTE by setting
 * P bit to 1, pointing to VRAM. The n+1'th entry points
 * to a big PTB covering system memory.
 *
 */
void amdgpu_gmc_init_pdb0(struct amdgpu_device *adev)
{
	int i;
	uint64_t flags = adev->gart.gart_pte_flags; //TODO it is UC. explore NC/RW?
	/* Each PDE0 (used as PTE) covers (2^vmid0_page_table_block_size)*2M
	 */
	u64 vram_size = adev->gmc.xgmi.node_segment_size * adev->gmc.xgmi.num_physical_nodes;
	u64 pde0_page_size = (1ULL<<adev->gmc.vmid0_page_table_block_size)<<21;
	u64 vram_addr = adev->vm_manager.vram_base_offset -
		adev->gmc.xgmi.physical_node_id * adev->gmc.xgmi.node_segment_size;
	u64 vram_end = vram_addr + vram_size;
704
	u64 gart_ptb_gpu_pa = amdgpu_gmc_vram_pa(adev, adev->gart.bo);
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721

	flags |= AMDGPU_PTE_VALID | AMDGPU_PTE_READABLE;
	flags |= AMDGPU_PTE_WRITEABLE;
	flags |= AMDGPU_PTE_SNOOPED;
	flags |= AMDGPU_PTE_FRAG((adev->gmc.vmid0_page_table_block_size + 9*1));
	flags |= AMDGPU_PDE_PTE;

	/* The first n PDE0 entries are used as PTE,
	 * pointing to vram
	 */
	for (i = 0; vram_addr < vram_end; i++, vram_addr += pde0_page_size)
		amdgpu_gmc_set_pte_pde(adev, adev->gmc.ptr_pdb0, i, vram_addr, flags);

	/* The n+1'th PDE0 entry points to a huge
	 * PTB who has more than 512 entries each
	 * pointing to a 4K system page
	 */
O
Oak Zeng 已提交
722
	flags = AMDGPU_PTE_VALID;
723 724 725 726
	flags |= AMDGPU_PDE_BFS(0) | AMDGPU_PTE_SNOOPED;
	/* Requires gart_ptb_gpu_pa to be 4K aligned */
	amdgpu_gmc_set_pte_pde(adev, adev->gmc.ptr_pdb0, i, gart_ptb_gpu_pa, flags);
}
727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762

/**
 * amdgpu_gmc_vram_mc2pa - calculate vram buffer's physical address from MC
 * address
 *
 * @adev: amdgpu_device pointer
 * @mc_addr: MC address of buffer
 */
uint64_t amdgpu_gmc_vram_mc2pa(struct amdgpu_device *adev, uint64_t mc_addr)
{
	return mc_addr - adev->gmc.vram_start + adev->vm_manager.vram_base_offset;
}

/**
 * amdgpu_gmc_vram_pa - calculate vram buffer object's physical address from
 * GPU's view
 *
 * @adev: amdgpu_device pointer
 * @bo: amdgpu buffer object
 */
uint64_t amdgpu_gmc_vram_pa(struct amdgpu_device *adev, struct amdgpu_bo *bo)
{
	return amdgpu_gmc_vram_mc2pa(adev, amdgpu_bo_gpu_offset(bo));
}

/**
 * amdgpu_gmc_vram_cpu_pa - calculate vram buffer object's physical address
 * from CPU's view
 *
 * @adev: amdgpu_device pointer
 * @bo: amdgpu buffer object
 */
uint64_t amdgpu_gmc_vram_cpu_pa(struct amdgpu_device *adev, struct amdgpu_bo *bo)
{
	return amdgpu_bo_gpu_offset(bo) - adev->gmc.vram_start + adev->gmc.aper_base;
}