sys_regs.c 77.7 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6 7 8 9 10 11
/*
 * Copyright (C) 2012,2013 - ARM Ltd
 * Author: Marc Zyngier <marc.zyngier@arm.com>
 *
 * Derived from arch/arm/kvm/coproc.c:
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Authors: Rusty Russell <rusty@rustcorp.com.au>
 *          Christoffer Dall <c.dall@virtualopensystems.com>
 */

12
#include <linux/bsearch.h>
13
#include <linux/kvm_host.h>
14
#include <linux/mm.h>
15
#include <linux/printk.h>
16
#include <linux/uaccess.h>
17

18 19
#include <asm/cacheflush.h>
#include <asm/cputype.h>
20
#include <asm/debug-monitors.h>
21 22 23 24
#include <asm/esr.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_coproc.h>
#include <asm/kvm_emulate.h>
25
#include <asm/kvm_hyp.h>
26
#include <asm/kvm_mmu.h>
27
#include <asm/perf_event.h>
28
#include <asm/sysreg.h>
29

30 31 32 33
#include <trace/events/kvm.h>

#include "sys_regs.h"

34 35
#include "trace.h"

36
/*
F
Fuad Tabba 已提交
37
 * All of this file is extremely similar to the ARM coproc.c, but the
38 39 40
 * types are different. My gut feeling is that it should be pretty
 * easy to merge, but that would be an ABI breakage -- again. VFP
 * would also need to be abstracted.
41 42 43 44
 *
 * For AArch32, we only take care of what is being trapped. Anything
 * that has to do with init and userspace access has to go via the
 * 64bit interface.
45 46
 */

47
static bool read_from_write_only(struct kvm_vcpu *vcpu,
48 49
				 struct sys_reg_params *params,
				 const struct sys_reg_desc *r)
50 51 52 53 54 55 56
{
	WARN_ONCE(1, "Unexpected sys_reg read to write-only register\n");
	print_sys_reg_instr(params);
	kvm_inject_undefined(vcpu);
	return false;
}

57 58 59 60 61 62 63 64 65 66
static bool write_to_read_only(struct kvm_vcpu *vcpu,
			       struct sys_reg_params *params,
			       const struct sys_reg_desc *r)
{
	WARN_ONCE(1, "Unexpected sys_reg write to read-only register\n");
	print_sys_reg_instr(params);
	kvm_inject_undefined(vcpu);
	return false;
}

67
static bool __vcpu_read_sys_reg_from_cpu(int reg, u64 *val)
68 69 70 71
{
	/*
	 * System registers listed in the switch are not saved on every
	 * exit from the guest but are only saved on vcpu_put.
72 73 74 75 76
	 *
	 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
	 * should never be listed below, because the guest cannot modify its
	 * own MPIDR_EL1 and MPIDR_EL1 is accessed for VCPU A from VCPU B's
	 * thread when emulating cross-VCPU communication.
77 78
	 */
	switch (reg) {
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
	case CSSELR_EL1:	*val = read_sysreg_s(SYS_CSSELR_EL1);	break;
	case SCTLR_EL1:		*val = read_sysreg_s(SYS_SCTLR_EL12);	break;
	case CPACR_EL1:		*val = read_sysreg_s(SYS_CPACR_EL12);	break;
	case TTBR0_EL1:		*val = read_sysreg_s(SYS_TTBR0_EL12);	break;
	case TTBR1_EL1:		*val = read_sysreg_s(SYS_TTBR1_EL12);	break;
	case TCR_EL1:		*val = read_sysreg_s(SYS_TCR_EL12);	break;
	case ESR_EL1:		*val = read_sysreg_s(SYS_ESR_EL12);	break;
	case AFSR0_EL1:		*val = read_sysreg_s(SYS_AFSR0_EL12);	break;
	case AFSR1_EL1:		*val = read_sysreg_s(SYS_AFSR1_EL12);	break;
	case FAR_EL1:		*val = read_sysreg_s(SYS_FAR_EL12);	break;
	case MAIR_EL1:		*val = read_sysreg_s(SYS_MAIR_EL12);	break;
	case VBAR_EL1:		*val = read_sysreg_s(SYS_VBAR_EL12);	break;
	case CONTEXTIDR_EL1:	*val = read_sysreg_s(SYS_CONTEXTIDR_EL12);break;
	case TPIDR_EL0:		*val = read_sysreg_s(SYS_TPIDR_EL0);	break;
	case TPIDRRO_EL0:	*val = read_sysreg_s(SYS_TPIDRRO_EL0);	break;
	case TPIDR_EL1:		*val = read_sysreg_s(SYS_TPIDR_EL1);	break;
	case AMAIR_EL1:		*val = read_sysreg_s(SYS_AMAIR_EL12);	break;
	case CNTKCTL_EL1:	*val = read_sysreg_s(SYS_CNTKCTL_EL12);	break;
97
	case ELR_EL1:		*val = read_sysreg_s(SYS_ELR_EL12);	break;
98
	case PAR_EL1:		*val = read_sysreg_par();		break;
99 100 101 102
	case DACR32_EL2:	*val = read_sysreg_s(SYS_DACR32_EL2);	break;
	case IFSR32_EL2:	*val = read_sysreg_s(SYS_IFSR32_EL2);	break;
	case DBGVCR32_EL2:	*val = read_sysreg_s(SYS_DBGVCR32_EL2);	break;
	default:		return false;
103 104
	}

105
	return true;
106 107
}

108
static bool __vcpu_write_sys_reg_to_cpu(u64 val, int reg)
109 110 111 112
{
	/*
	 * System registers listed in the switch are not restored on every
	 * entry to the guest but are only restored on vcpu_load.
113 114
	 *
	 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
F
Fuad Tabba 已提交
115 116
	 * should never be listed below, because the MPIDR should only be set
	 * once, before running the VCPU, and never changed later.
117 118
	 */
	switch (reg) {
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
	case CSSELR_EL1:	write_sysreg_s(val, SYS_CSSELR_EL1);	break;
	case SCTLR_EL1:		write_sysreg_s(val, SYS_SCTLR_EL12);	break;
	case CPACR_EL1:		write_sysreg_s(val, SYS_CPACR_EL12);	break;
	case TTBR0_EL1:		write_sysreg_s(val, SYS_TTBR0_EL12);	break;
	case TTBR1_EL1:		write_sysreg_s(val, SYS_TTBR1_EL12);	break;
	case TCR_EL1:		write_sysreg_s(val, SYS_TCR_EL12);	break;
	case ESR_EL1:		write_sysreg_s(val, SYS_ESR_EL12);	break;
	case AFSR0_EL1:		write_sysreg_s(val, SYS_AFSR0_EL12);	break;
	case AFSR1_EL1:		write_sysreg_s(val, SYS_AFSR1_EL12);	break;
	case FAR_EL1:		write_sysreg_s(val, SYS_FAR_EL12);	break;
	case MAIR_EL1:		write_sysreg_s(val, SYS_MAIR_EL12);	break;
	case VBAR_EL1:		write_sysreg_s(val, SYS_VBAR_EL12);	break;
	case CONTEXTIDR_EL1:	write_sysreg_s(val, SYS_CONTEXTIDR_EL12);break;
	case TPIDR_EL0:		write_sysreg_s(val, SYS_TPIDR_EL0);	break;
	case TPIDRRO_EL0:	write_sysreg_s(val, SYS_TPIDRRO_EL0);	break;
	case TPIDR_EL1:		write_sysreg_s(val, SYS_TPIDR_EL1);	break;
	case AMAIR_EL1:		write_sysreg_s(val, SYS_AMAIR_EL12);	break;
	case CNTKCTL_EL1:	write_sysreg_s(val, SYS_CNTKCTL_EL12);	break;
137
	case ELR_EL1:		write_sysreg_s(val, SYS_ELR_EL12);	break;
138 139 140 141 142
	case PAR_EL1:		write_sysreg_s(val, SYS_PAR_EL1);	break;
	case DACR32_EL2:	write_sysreg_s(val, SYS_DACR32_EL2);	break;
	case IFSR32_EL2:	write_sysreg_s(val, SYS_IFSR32_EL2);	break;
	case DBGVCR32_EL2:	write_sysreg_s(val, SYS_DBGVCR32_EL2);	break;
	default:		return false;
143 144
	}

145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
	return true;
}

u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg)
{
	u64 val = 0x8badf00d8badf00d;

	if (vcpu->arch.sysregs_loaded_on_cpu &&
	    __vcpu_read_sys_reg_from_cpu(reg, &val))
		return val;

	return __vcpu_sys_reg(vcpu, reg);
}

void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)
{
	if (vcpu->arch.sysregs_loaded_on_cpu &&
	    __vcpu_write_sys_reg_to_cpu(val, reg))
		return;

165 166 167
	 __vcpu_sys_reg(vcpu, reg) = val;
}

168 169 170 171 172 173 174 175 176 177 178 179 180
/* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
static u32 cache_levels;

/* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
#define CSSELR_MAX 12

/* Which cache CCSIDR represents depends on CSSELR value. */
static u32 get_ccsidr(u32 csselr)
{
	u32 ccsidr;

	/* Make sure noone else changes CSSELR during this! */
	local_irq_disable();
181
	write_sysreg(csselr, csselr_el1);
182
	isb();
183
	ccsidr = read_sysreg(ccsidr_el1);
184 185 186 187 188
	local_irq_enable();

	return ccsidr;
}

189 190 191
/*
 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
 */
192
static bool access_dcsw(struct kvm_vcpu *vcpu,
193
			struct sys_reg_params *p,
194 195 196
			const struct sys_reg_desc *r)
{
	if (!p->is_write)
197
		return read_from_write_only(vcpu, p, r);
198

199 200 201 202 203 204 205 206 207 208
	/*
	 * Only track S/W ops if we don't have FWB. It still indicates
	 * that the guest is a bit broken (S/W operations should only
	 * be done by firmware, knowing that there is only a single
	 * CPU left in the system, and certainly not from non-secure
	 * software).
	 */
	if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
		kvm_set_way_flush(vcpu);

209 210 211
	return true;
}

212 213
/*
 * Generic accessor for VM registers. Only called as long as HCR_TVM
214 215
 * is set. If the guest enables the MMU, we stop trapping the VM
 * sys_regs and leave it in complete control of the caches.
216 217
 */
static bool access_vm_reg(struct kvm_vcpu *vcpu,
218
			  struct sys_reg_params *p,
219 220
			  const struct sys_reg_desc *r)
{
221
	bool was_enabled = vcpu_has_cache_enabled(vcpu);
222 223
	u64 val;
	int reg = r->reg;
224 225 226

	BUG_ON(!p->is_write);

227 228 229 230 231 232
	/* See the 32bit mapping in kvm_host.h */
	if (p->is_aarch32)
		reg = r->reg / 2;

	if (!p->is_aarch32 || !p->is_32bit) {
		val = p->regval;
233
	} else {
234
		val = vcpu_read_sys_reg(vcpu, reg);
235 236 237 238 239
		if (r->reg % 2)
			val = (p->regval << 32) | (u64)lower_32_bits(val);
		else
			val = ((u64)upper_32_bits(val) << 32) |
				lower_32_bits(p->regval);
240
	}
241
	vcpu_write_sys_reg(vcpu, val, reg);
242

243
	kvm_toggle_cache(vcpu, was_enabled);
244 245 246
	return true;
}

247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
static bool access_actlr(struct kvm_vcpu *vcpu,
			 struct sys_reg_params *p,
			 const struct sys_reg_desc *r)
{
	if (p->is_write)
		return ignore_write(vcpu, p);

	p->regval = vcpu_read_sys_reg(vcpu, ACTLR_EL1);

	if (p->is_aarch32) {
		if (r->Op2 & 2)
			p->regval = upper_32_bits(p->regval);
		else
			p->regval = lower_32_bits(p->regval);
	}

	return true;
}

266 267 268 269 270 271 272
/*
 * Trap handler for the GICv3 SGI generation system register.
 * Forward the request to the VGIC emulation.
 * The cp15_64 code makes sure this automatically works
 * for both AArch64 and AArch32 accesses.
 */
static bool access_gic_sgi(struct kvm_vcpu *vcpu,
273
			   struct sys_reg_params *p,
274 275
			   const struct sys_reg_desc *r)
{
276 277
	bool g1;

278
	if (!p->is_write)
279
		return read_from_write_only(vcpu, p, r);
280

281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
	/*
	 * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates
	 * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group,
	 * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively
	 * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure
	 * group.
	 */
	if (p->is_aarch32) {
		switch (p->Op1) {
		default:		/* Keep GCC quiet */
		case 0:			/* ICC_SGI1R */
			g1 = true;
			break;
		case 1:			/* ICC_ASGI1R */
		case 2:			/* ICC_SGI0R */
			g1 = false;
			break;
		}
	} else {
		switch (p->Op2) {
		default:		/* Keep GCC quiet */
		case 5:			/* ICC_SGI1R_EL1 */
			g1 = true;
			break;
		case 6:			/* ICC_ASGI1R_EL1 */
		case 7:			/* ICC_SGI0R_EL1 */
			g1 = false;
			break;
		}
	}

	vgic_v3_dispatch_sgi(vcpu, p->regval, g1);
313 314 315 316

	return true;
}

317 318 319 320 321 322 323 324 325 326 327
static bool access_gic_sre(struct kvm_vcpu *vcpu,
			   struct sys_reg_params *p,
			   const struct sys_reg_desc *r)
{
	if (p->is_write)
		return ignore_write(vcpu, p);

	p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
	return true;
}

328
static bool trap_raz_wi(struct kvm_vcpu *vcpu,
329
			struct sys_reg_params *p,
330
			const struct sys_reg_desc *r)
331 332 333 334 335 336 337
{
	if (p->is_write)
		return ignore_write(vcpu, p);
	else
		return read_zero(vcpu, p);
}

338 339 340 341 342 343 344 345 346
/*
 * ARMv8.1 mandates at least a trivial LORegion implementation, where all the
 * RW registers are RES0 (which we can implement as RAZ/WI). On an ARMv8.0
 * system, these registers should UNDEF. LORID_EL1 being a RO register, we
 * treat it separately.
 */
static bool trap_loregion(struct kvm_vcpu *vcpu,
			  struct sys_reg_params *p,
			  const struct sys_reg_desc *r)
347
{
348 349 350 351 352 353 354 355 356 357 358 359 360
	u64 val = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
	u32 sr = sys_reg((u32)r->Op0, (u32)r->Op1,
			 (u32)r->CRn, (u32)r->CRm, (u32)r->Op2);

	if (!(val & (0xfUL << ID_AA64MMFR1_LOR_SHIFT))) {
		kvm_inject_undefined(vcpu);
		return false;
	}

	if (p->is_write && sr == SYS_LORID_EL1)
		return write_to_read_only(vcpu, p, r);

	return trap_raz_wi(vcpu, p, r);
361 362
}

363
static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
364
			   struct sys_reg_params *p,
365 366 367 368 369
			   const struct sys_reg_desc *r)
{
	if (p->is_write) {
		return ignore_write(vcpu, p);
	} else {
370
		p->regval = (1 << 3);
371 372 373 374 375
		return true;
	}
}

static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
376
				   struct sys_reg_params *p,
377 378 379 380 381
				   const struct sys_reg_desc *r)
{
	if (p->is_write) {
		return ignore_write(vcpu, p);
	} else {
382
		p->regval = read_sysreg(dbgauthstatus_el1);
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
		return true;
	}
}

/*
 * We want to avoid world-switching all the DBG registers all the
 * time:
 * 
 * - If we've touched any debug register, it is likely that we're
 *   going to touch more of them. It then makes sense to disable the
 *   traps and start doing the save/restore dance
 * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
 *   then mandatory to save/restore the registers, as the guest
 *   depends on them.
 * 
 * For this, we use a DIRTY bit, indicating the guest has modified the
 * debug registers, used as follow:
 *
 * On guest entry:
 * - If the dirty bit is set (because we're coming back from trapping),
 *   disable the traps, save host registers, restore guest registers.
 * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
 *   set the dirty bit, disable the traps, save host registers,
 *   restore guest registers.
 * - Otherwise, enable the traps
 *
 * On guest exit:
 * - If the dirty bit is set, save guest registers, restore host
 *   registers and clear the dirty bit. This ensure that the host can
 *   now use the debug registers.
 */
static bool trap_debug_regs(struct kvm_vcpu *vcpu,
415
			    struct sys_reg_params *p,
416 417 418
			    const struct sys_reg_desc *r)
{
	if (p->is_write) {
419
		vcpu_write_sys_reg(vcpu, p->regval, r->reg);
420
		vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
421
	} else {
422
		p->regval = vcpu_read_sys_reg(vcpu, r->reg);
423 424
	}

425
	trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
426

427 428 429
	return true;
}

430 431 432 433 434 435 436 437 438
/*
 * reg_to_dbg/dbg_to_reg
 *
 * A 32 bit write to a debug register leave top bits alone
 * A 32 bit read from a debug register only returns the bottom bits
 *
 * All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the
 * hyp.S code switches between host and guest values in future.
 */
439 440 441
static void reg_to_dbg(struct kvm_vcpu *vcpu,
		       struct sys_reg_params *p,
		       u64 *dbg_reg)
442
{
443
	u64 val = p->regval;
444 445 446 447 448 449 450

	if (p->is_32bit) {
		val &= 0xffffffffUL;
		val |= ((*dbg_reg >> 32) << 32);
	}

	*dbg_reg = val;
451
	vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
452 453
}

454 455 456
static void dbg_to_reg(struct kvm_vcpu *vcpu,
		       struct sys_reg_params *p,
		       u64 *dbg_reg)
457
{
458
	p->regval = *dbg_reg;
459
	if (p->is_32bit)
460
		p->regval &= 0xffffffffUL;
461 462
}

463 464 465
static bool trap_bvr(struct kvm_vcpu *vcpu,
		     struct sys_reg_params *p,
		     const struct sys_reg_desc *rd)
466 467 468 469 470 471 472 473
{
	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];

	if (p->is_write)
		reg_to_dbg(vcpu, p, dbg_reg);
	else
		dbg_to_reg(vcpu, p, dbg_reg);

474 475
	trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);

476 477 478 479 480 481 482 483
	return true;
}

static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
		const struct kvm_one_reg *reg, void __user *uaddr)
{
	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];

484
	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
485 486 487 488 489 490 491 492 493 494 495 496 497 498
		return -EFAULT;
	return 0;
}

static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
	const struct kvm_one_reg *reg, void __user *uaddr)
{
	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];

	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
		return -EFAULT;
	return 0;
}

499 500
static void reset_bvr(struct kvm_vcpu *vcpu,
		      const struct sys_reg_desc *rd)
501 502 503 504
{
	vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg] = rd->val;
}

505 506 507
static bool trap_bcr(struct kvm_vcpu *vcpu,
		     struct sys_reg_params *p,
		     const struct sys_reg_desc *rd)
508 509 510 511 512 513 514 515
{
	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];

	if (p->is_write)
		reg_to_dbg(vcpu, p, dbg_reg);
	else
		dbg_to_reg(vcpu, p, dbg_reg);

516 517
	trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);

518 519 520 521 522 523 524 525
	return true;
}

static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
		const struct kvm_one_reg *reg, void __user *uaddr)
{
	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];

526
	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
		return -EFAULT;

	return 0;
}

static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
	const struct kvm_one_reg *reg, void __user *uaddr)
{
	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];

	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
		return -EFAULT;
	return 0;
}

542 543
static void reset_bcr(struct kvm_vcpu *vcpu,
		      const struct sys_reg_desc *rd)
544 545 546 547
{
	vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg] = rd->val;
}

548 549 550
static bool trap_wvr(struct kvm_vcpu *vcpu,
		     struct sys_reg_params *p,
		     const struct sys_reg_desc *rd)
551 552 553 554 555 556 557 558
{
	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];

	if (p->is_write)
		reg_to_dbg(vcpu, p, dbg_reg);
	else
		dbg_to_reg(vcpu, p, dbg_reg);

559 560 561
	trace_trap_reg(__func__, rd->reg, p->is_write,
		vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg]);

562 563 564 565 566 567 568 569
	return true;
}

static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
		const struct kvm_one_reg *reg, void __user *uaddr)
{
	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];

570
	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
571 572 573 574 575 576 577 578 579 580 581 582 583 584
		return -EFAULT;
	return 0;
}

static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
	const struct kvm_one_reg *reg, void __user *uaddr)
{
	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];

	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
		return -EFAULT;
	return 0;
}

585 586
static void reset_wvr(struct kvm_vcpu *vcpu,
		      const struct sys_reg_desc *rd)
587 588 589 590
{
	vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg] = rd->val;
}

591 592 593
static bool trap_wcr(struct kvm_vcpu *vcpu,
		     struct sys_reg_params *p,
		     const struct sys_reg_desc *rd)
594 595 596 597 598 599 600 601
{
	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];

	if (p->is_write)
		reg_to_dbg(vcpu, p, dbg_reg);
	else
		dbg_to_reg(vcpu, p, dbg_reg);

602 603
	trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);

604 605 606 607 608 609 610 611
	return true;
}

static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
		const struct kvm_one_reg *reg, void __user *uaddr)
{
	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];

612
	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
613 614 615 616 617 618 619 620 621 622 623 624 625 626
		return -EFAULT;
	return 0;
}

static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
	const struct kvm_one_reg *reg, void __user *uaddr)
{
	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];

	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
		return -EFAULT;
	return 0;
}

627 628
static void reset_wcr(struct kvm_vcpu *vcpu,
		      const struct sys_reg_desc *rd)
629 630 631 632
{
	vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg] = rd->val;
}

633 634
static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
{
635 636
	u64 amair = read_sysreg(amair_el1);
	vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1);
637 638
}

639 640 641 642 643 644
static void reset_actlr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
{
	u64 actlr = read_sysreg(actlr_el1);
	vcpu_write_sys_reg(vcpu, actlr, ACTLR_EL1);
}

645 646
static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
{
647 648
	u64 mpidr;

649
	/*
650 651 652 653 654
	 * Map the vcpu_id into the first three affinity level fields of
	 * the MPIDR. We limit the number of VCPUs in level 0 due to a
	 * limitation to 16 CPUs in that level in the ICC_SGIxR registers
	 * of the GICv3 to be able to address each CPU directly when
	 * sending IPIs.
655
	 */
656 657 658
	mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
	mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
	mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
659
	vcpu_write_sys_reg(vcpu, (1ULL << 31) | mpidr, MPIDR_EL1);
660 661
}

662 663 664 665
static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
{
	u64 pmcr, val;

666 667 668
	pmcr = read_sysreg(pmcr_el0);
	/*
	 * Writable bits of PMCR_EL0 (ARMV8_PMU_PMCR_MASK) are reset to UNKNOWN
669 670 671 672
	 * except PMCR.E resetting to zero.
	 */
	val = ((pmcr & ~ARMV8_PMU_PMCR_MASK)
	       | (ARMV8_PMU_PMCR_MASK & 0xdecafbad)) & (~ARMV8_PMU_PMCR_E);
673 674
	if (!system_supports_32bit_el0())
		val |= ARMV8_PMU_PMCR_LC;
675
	__vcpu_sys_reg(vcpu, r->reg) = val;
676 677
}

678
static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
679
{
680
	u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0);
681
	bool enabled = (reg & flags) || vcpu_mode_priv(vcpu);
682

683 684
	if (!enabled)
		kvm_inject_undefined(vcpu);
685

686
	return !enabled;
687 688
}

689
static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
690
{
691 692
	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
}
693

694 695 696
static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
{
	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
697 698 699 700
}

static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
{
701
	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
702 703 704 705
}

static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
{
706
	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
707 708
}

709 710 711 712 713 714 715 716
static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
			const struct sys_reg_desc *r)
{
	u64 val;

	if (!kvm_arm_pmu_v3_ready(vcpu))
		return trap_raz_wi(vcpu, p, r);

717 718 719
	if (pmu_access_el0_disabled(vcpu))
		return false;

720 721
	if (p->is_write) {
		/* Only update writeable bits of PMCR */
722
		val = __vcpu_sys_reg(vcpu, PMCR_EL0);
723 724
		val &= ~ARMV8_PMU_PMCR_MASK;
		val |= p->regval & ARMV8_PMU_PMCR_MASK;
725 726
		if (!system_supports_32bit_el0())
			val |= ARMV8_PMU_PMCR_LC;
727
		__vcpu_sys_reg(vcpu, PMCR_EL0) = val;
728
		kvm_pmu_handle_pmcr(vcpu, val);
729
		kvm_vcpu_pmu_restore_guest(vcpu);
730 731
	} else {
		/* PMCR.P & PMCR.C are RAZ */
732
		val = __vcpu_sys_reg(vcpu, PMCR_EL0)
733 734 735 736 737 738 739
		      & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
		p->regval = val;
	}

	return true;
}

740 741 742 743 744 745
static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
			  const struct sys_reg_desc *r)
{
	if (!kvm_arm_pmu_v3_ready(vcpu))
		return trap_raz_wi(vcpu, p, r);

746 747 748
	if (pmu_access_event_counter_el0_disabled(vcpu))
		return false;

749
	if (p->is_write)
750
		__vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
751 752
	else
		/* return PMSELR.SEL field */
753
		p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0)
754 755 756 757 758
			    & ARMV8_PMU_COUNTER_MASK;

	return true;
}

759 760 761 762 763 764 765 766 767 768
static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
			  const struct sys_reg_desc *r)
{
	u64 pmceid;

	if (!kvm_arm_pmu_v3_ready(vcpu))
		return trap_raz_wi(vcpu, p, r);

	BUG_ON(p->is_write);

769 770 771
	if (pmu_access_el0_disabled(vcpu))
		return false;

772
	pmceid = kvm_pmu_get_pmceid(vcpu, (p->Op2 & 1));
773 774 775 776 777 778

	p->regval = pmceid;

	return true;
}

779 780 781 782
static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
{
	u64 pmcr, val;

783
	pmcr = __vcpu_sys_reg(vcpu, PMCR_EL0);
784
	val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
785 786
	if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
		kvm_inject_undefined(vcpu);
787
		return false;
788
	}
789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804

	return true;
}

static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
			      struct sys_reg_params *p,
			      const struct sys_reg_desc *r)
{
	u64 idx;

	if (!kvm_arm_pmu_v3_ready(vcpu))
		return trap_raz_wi(vcpu, p, r);

	if (r->CRn == 9 && r->CRm == 13) {
		if (r->Op2 == 2) {
			/* PMXEVCNTR_EL0 */
805 806 807
			if (pmu_access_event_counter_el0_disabled(vcpu))
				return false;

808
			idx = __vcpu_sys_reg(vcpu, PMSELR_EL0)
809 810 811
			      & ARMV8_PMU_COUNTER_MASK;
		} else if (r->Op2 == 0) {
			/* PMCCNTR_EL0 */
812 813 814
			if (pmu_access_cycle_counter_el0_disabled(vcpu))
				return false;

815 816
			idx = ARMV8_PMU_CYCLE_IDX;
		} else {
817
			return false;
818
		}
819 820 821 822 823 824
	} else if (r->CRn == 0 && r->CRm == 9) {
		/* PMCCNTR */
		if (pmu_access_event_counter_el0_disabled(vcpu))
			return false;

		idx = ARMV8_PMU_CYCLE_IDX;
825 826
	} else if (r->CRn == 14 && (r->CRm & 12) == 8) {
		/* PMEVCNTRn_EL0 */
827 828 829
		if (pmu_access_event_counter_el0_disabled(vcpu))
			return false;

830 831
		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
	} else {
832
		return false;
833 834 835 836 837
	}

	if (!pmu_counter_idx_valid(vcpu, idx))
		return false;

838 839 840 841
	if (p->is_write) {
		if (pmu_access_el0_disabled(vcpu))
			return false;

842
		kvm_pmu_set_counter_value(vcpu, idx, p->regval);
843
	} else {
844
		p->regval = kvm_pmu_get_counter_value(vcpu, idx);
845
	}
846 847 848 849

	return true;
}

850 851 852 853 854 855 856 857
static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
			       const struct sys_reg_desc *r)
{
	u64 idx, reg;

	if (!kvm_arm_pmu_v3_ready(vcpu))
		return trap_raz_wi(vcpu, p, r);

858 859 860
	if (pmu_access_el0_disabled(vcpu))
		return false;

861 862
	if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
		/* PMXEVTYPER_EL0 */
863
		idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880
		reg = PMEVTYPER0_EL0 + idx;
	} else if (r->CRn == 14 && (r->CRm & 12) == 12) {
		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
		if (idx == ARMV8_PMU_CYCLE_IDX)
			reg = PMCCFILTR_EL0;
		else
			/* PMEVTYPERn_EL0 */
			reg = PMEVTYPER0_EL0 + idx;
	} else {
		BUG();
	}

	if (!pmu_counter_idx_valid(vcpu, idx))
		return false;

	if (p->is_write) {
		kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
881
		__vcpu_sys_reg(vcpu, reg) = p->regval & ARMV8_PMU_EVTYPE_MASK;
882
		kvm_vcpu_pmu_restore_guest(vcpu);
883
	} else {
884
		p->regval = __vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK;
885 886 887 888 889
	}

	return true;
}

890 891 892 893 894 895 896 897
static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
			   const struct sys_reg_desc *r)
{
	u64 val, mask;

	if (!kvm_arm_pmu_v3_ready(vcpu))
		return trap_raz_wi(vcpu, p, r);

898 899 900
	if (pmu_access_el0_disabled(vcpu))
		return false;

901 902 903 904 905
	mask = kvm_pmu_valid_counter_mask(vcpu);
	if (p->is_write) {
		val = p->regval & mask;
		if (r->Op2 & 0x1) {
			/* accessing PMCNTENSET_EL0 */
906
			__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
907
			kvm_pmu_enable_counter_mask(vcpu, val);
908
			kvm_vcpu_pmu_restore_guest(vcpu);
909 910
		} else {
			/* accessing PMCNTENCLR_EL0 */
911
			__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
912
			kvm_pmu_disable_counter_mask(vcpu, val);
913 914
		}
	} else {
915
		p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & mask;
916 917 918 919 920
	}

	return true;
}

921 922 923 924 925 926 927 928
static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
			   const struct sys_reg_desc *r)
{
	u64 mask = kvm_pmu_valid_counter_mask(vcpu);

	if (!kvm_arm_pmu_v3_ready(vcpu))
		return trap_raz_wi(vcpu, p, r);

929 930
	if (!vcpu_mode_priv(vcpu)) {
		kvm_inject_undefined(vcpu);
931
		return false;
932
	}
933

934 935 936 937 938
	if (p->is_write) {
		u64 val = p->regval & mask;

		if (r->Op2 & 0x1)
			/* accessing PMINTENSET_EL1 */
939
			__vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
940 941
		else
			/* accessing PMINTENCLR_EL1 */
942
			__vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
943
	} else {
944
		p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1) & mask;
945 946 947 948 949
	}

	return true;
}

950 951 952 953 954 955 956 957
static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
			 const struct sys_reg_desc *r)
{
	u64 mask = kvm_pmu_valid_counter_mask(vcpu);

	if (!kvm_arm_pmu_v3_ready(vcpu))
		return trap_raz_wi(vcpu, p, r);

958 959 960
	if (pmu_access_el0_disabled(vcpu))
		return false;

961 962 963
	if (p->is_write) {
		if (r->CRm & 0x2)
			/* accessing PMOVSSET_EL0 */
964
			__vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask);
965 966
		else
			/* accessing PMOVSCLR_EL0 */
967
			__vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
968
	} else {
969
		p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0) & mask;
970 971 972 973 974
	}

	return true;
}

975 976 977 978 979 980 981 982
static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
			   const struct sys_reg_desc *r)
{
	u64 mask;

	if (!kvm_arm_pmu_v3_ready(vcpu))
		return trap_raz_wi(vcpu, p, r);

983
	if (!p->is_write)
984
		return read_from_write_only(vcpu, p, r);
985

986 987 988
	if (pmu_write_swinc_el0_disabled(vcpu))
		return false;

989 990 991
	mask = kvm_pmu_valid_counter_mask(vcpu);
	kvm_pmu_software_increment(vcpu, p->regval & mask);
	return true;
992 993
}

994 995 996 997 998 999 1000
static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
			     const struct sys_reg_desc *r)
{
	if (!kvm_arm_pmu_v3_ready(vcpu))
		return trap_raz_wi(vcpu, p, r);

	if (p->is_write) {
1001 1002
		if (!vcpu_mode_priv(vcpu)) {
			kvm_inject_undefined(vcpu);
1003
			return false;
1004
		}
1005

1006 1007
		__vcpu_sys_reg(vcpu, PMUSERENR_EL0) =
			       p->regval & ARMV8_PMU_USERENR_MASK;
1008
	} else {
1009
		p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0)
1010 1011 1012 1013 1014 1015
			    & ARMV8_PMU_USERENR_MASK;
	}

	return true;
}

1016 1017 1018 1019
#define reg_to_encoding(x)						\
	sys_reg((u32)(x)->Op0, (u32)(x)->Op1,				\
		(u32)(x)->CRn, (u32)(x)->CRm, (u32)(x)->Op2);

1020 1021
/* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
#define DBG_BCR_BVR_WCR_WVR_EL1(n)					\
1022
	{ SYS_DESC(SYS_DBGBVRn_EL1(n)),					\
1023
	  trap_bvr, reset_bvr, 0, 0, get_bvr, set_bvr },		\
1024
	{ SYS_DESC(SYS_DBGBCRn_EL1(n)),					\
1025
	  trap_bcr, reset_bcr, 0, 0, get_bcr, set_bcr },		\
1026
	{ SYS_DESC(SYS_DBGWVRn_EL1(n)),					\
1027
	  trap_wvr, reset_wvr, 0, 0,  get_wvr, set_wvr },		\
1028
	{ SYS_DESC(SYS_DBGWCRn_EL1(n)),					\
1029
	  trap_wcr, reset_wcr, 0, 0,  get_wcr, set_wcr }
1030

1031 1032
/* Macro to expand the PMEVCNTRn_EL0 register */
#define PMU_PMEVCNTR_EL0(n)						\
1033
	{ SYS_DESC(SYS_PMEVCNTRn_EL0(n)),					\
1034 1035
	  access_pmu_evcntr, reset_unknown, (PMEVCNTR0_EL0 + n), }

1036 1037
/* Macro to expand the PMEVTYPERn_EL0 register */
#define PMU_PMEVTYPER_EL0(n)						\
1038
	{ SYS_DESC(SYS_PMEVTYPERn_EL0(n)),					\
1039 1040
	  access_pmu_evtyper, reset_unknown, (PMEVTYPER0_EL0 + n), }

1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
static bool access_amu(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
			     const struct sys_reg_desc *r)
{
	kvm_inject_undefined(vcpu);

	return false;
}

/* Macro to expand the AMU counter and type registers*/
#define AMU_AMEVCNTR0_EL0(n) { SYS_DESC(SYS_AMEVCNTR0_EL0(n)), access_amu }
V
Vladimir Murzin 已提交
1051
#define AMU_AMEVTYPER0_EL0(n) { SYS_DESC(SYS_AMEVTYPER0_EL0(n)), access_amu }
1052
#define AMU_AMEVCNTR1_EL0(n) { SYS_DESC(SYS_AMEVCNTR1_EL0(n)), access_amu }
V
Vladimir Murzin 已提交
1053
#define AMU_AMEVTYPER1_EL0(n) { SYS_DESC(SYS_AMEVTYPER1_EL0(n)), access_amu }
1054

1055 1056 1057 1058 1059
static bool trap_ptrauth(struct kvm_vcpu *vcpu,
			 struct sys_reg_params *p,
			 const struct sys_reg_desc *rd)
{
	/*
1060 1061 1062
	 * If we land here, that is because we didn't fixup the access on exit
	 * by allowing the PtrAuth sysregs. The only way this happens is when
	 * the guest does not have PtrAuth support enabled.
1063
	 */
1064 1065
	kvm_inject_undefined(vcpu);

1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
	return false;
}

static unsigned int ptrauth_visibility(const struct kvm_vcpu *vcpu,
			const struct sys_reg_desc *rd)
{
	return vcpu_has_ptrauth(vcpu) ? 0 : REG_HIDDEN_USER | REG_HIDDEN_GUEST;
}

#define __PTRAUTH_KEY(k)						\
	{ SYS_DESC(SYS_## k), trap_ptrauth, reset_unknown, k,		\
	.visibility = ptrauth_visibility}

#define PTRAUTH_KEY(k)							\
	__PTRAUTH_KEY(k ## KEYLO_EL1),					\
	__PTRAUTH_KEY(k ## KEYHI_EL1)

1083 1084 1085
static bool access_arch_timer(struct kvm_vcpu *vcpu,
			      struct sys_reg_params *p,
			      const struct sys_reg_desc *r)
1086
{
1087 1088 1089
	enum kvm_arch_timers tmr;
	enum kvm_arch_timer_regs treg;
	u64 reg = reg_to_encoding(r);
1090

1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
	switch (reg) {
	case SYS_CNTP_TVAL_EL0:
	case SYS_AARCH32_CNTP_TVAL:
		tmr = TIMER_PTIMER;
		treg = TIMER_REG_TVAL;
		break;
	case SYS_CNTP_CTL_EL0:
	case SYS_AARCH32_CNTP_CTL:
		tmr = TIMER_PTIMER;
		treg = TIMER_REG_CTL;
		break;
	case SYS_CNTP_CVAL_EL0:
	case SYS_AARCH32_CNTP_CVAL:
		tmr = TIMER_PTIMER;
		treg = TIMER_REG_CVAL;
		break;
	default:
		BUG();
1109
	}
1110 1111

	if (p->is_write)
1112
		kvm_arm_timer_write_sysreg(vcpu, tmr, treg, p->regval);
1113
	else
1114
		p->regval = kvm_arm_timer_read_sysreg(vcpu, tmr, treg);
1115

1116 1117 1118
	return true;
}

1119
/* Read a sanitised cpufeature ID register by sys_reg_desc */
1120 1121
static u64 read_id_reg(const struct kvm_vcpu *vcpu,
		struct sys_reg_desc const *r, bool raz)
1122 1123 1124
{
	u32 id = sys_reg((u32)r->Op0, (u32)r->Op1,
			 (u32)r->CRn, (u32)r->CRm, (u32)r->Op2);
1125
	u64 val = raz ? 0 : read_sanitised_ftr_reg(id);
1126

1127 1128 1129 1130
	if (id == SYS_ID_AA64PFR0_EL1) {
		if (!vcpu_has_sve(vcpu))
			val &= ~(0xfUL << ID_AA64PFR0_SVE_SHIFT);
		val &= ~(0xfUL << ID_AA64PFR0_AMU_SHIFT);
1131 1132 1133
		if (!(val & (0xfUL << ID_AA64PFR0_CSV2_SHIFT)) &&
		    arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED)
			val |= (1UL << ID_AA64PFR0_CSV2_SHIFT);
1134 1135
	} else if (id == SYS_ID_AA64PFR1_EL1) {
		val &= ~(0xfUL << ID_AA64PFR1_MTE_SHIFT);
1136
	} else if (id == SYS_ID_AA64ISAR1_EL1 && !vcpu_has_ptrauth(vcpu)) {
1137 1138 1139 1140
		val &= ~((0xfUL << ID_AA64ISAR1_APA_SHIFT) |
			 (0xfUL << ID_AA64ISAR1_API_SHIFT) |
			 (0xfUL << ID_AA64ISAR1_GPA_SHIFT) |
			 (0xfUL << ID_AA64ISAR1_GPI_SHIFT));
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
	} else if (id == SYS_ID_AA64DFR0_EL1) {
		/* Limit guests to PMUv3 for ARMv8.1 */
		val = cpuid_feature_cap_perfmon_field(val,
						ID_AA64DFR0_PMUVER_SHIFT,
						ID_AA64DFR0_PMUVER_8_1);
	} else if (id == SYS_ID_DFR0_EL1) {
		/* Limit guests to PMUv3 for ARMv8.1 */
		val = cpuid_feature_cap_perfmon_field(val,
						ID_DFR0_PERFMON_SHIFT,
						ID_DFR0_PERFMON_8_1);
1151 1152 1153
	}

	return val;
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
}

/* cpufeature ID register access trap handlers */

static bool __access_id_reg(struct kvm_vcpu *vcpu,
			    struct sys_reg_params *p,
			    const struct sys_reg_desc *r,
			    bool raz)
{
	if (p->is_write)
		return write_to_read_only(vcpu, p, r);

1166
	p->regval = read_id_reg(vcpu, r, raz);
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
	return true;
}

static bool access_id_reg(struct kvm_vcpu *vcpu,
			  struct sys_reg_params *p,
			  const struct sys_reg_desc *r)
{
	return __access_id_reg(vcpu, p, r, false);
}

static bool access_raz_id_reg(struct kvm_vcpu *vcpu,
			      struct sys_reg_params *p,
			      const struct sys_reg_desc *r)
{
	return __access_id_reg(vcpu, p, r, true);
}

static int reg_from_user(u64 *val, const void __user *uaddr, u64 id);
static int reg_to_user(void __user *uaddr, const u64 *val, u64 id);
static u64 sys_reg_to_index(const struct sys_reg_desc *reg);

1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
/* Visibility overrides for SVE-specific control registers */
static unsigned int sve_visibility(const struct kvm_vcpu *vcpu,
				   const struct sys_reg_desc *rd)
{
	if (vcpu_has_sve(vcpu))
		return 0;

	return REG_HIDDEN_USER | REG_HIDDEN_GUEST;
}

/* Visibility overrides for SVE-specific ID registers */
static unsigned int sve_id_visibility(const struct kvm_vcpu *vcpu,
				      const struct sys_reg_desc *rd)
{
	if (vcpu_has_sve(vcpu))
		return 0;

	return REG_HIDDEN_USER;
}

/* Generate the emulated ID_AA64ZFR0_EL1 value exposed to the guest */
static u64 guest_id_aa64zfr0_el1(const struct kvm_vcpu *vcpu)
{
	if (!vcpu_has_sve(vcpu))
		return 0;

	return read_sanitised_ftr_reg(SYS_ID_AA64ZFR0_EL1);
}

static bool access_id_aa64zfr0_el1(struct kvm_vcpu *vcpu,
				   struct sys_reg_params *p,
				   const struct sys_reg_desc *rd)
{
	if (p->is_write)
		return write_to_read_only(vcpu, p, rd);

	p->regval = guest_id_aa64zfr0_el1(vcpu);
	return true;
}

static int get_id_aa64zfr0_el1(struct kvm_vcpu *vcpu,
		const struct sys_reg_desc *rd,
		const struct kvm_one_reg *reg, void __user *uaddr)
{
	u64 val;

1234
	if (WARN_ON(!vcpu_has_sve(vcpu)))
1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
		return -ENOENT;

	val = guest_id_aa64zfr0_el1(vcpu);
	return reg_to_user(uaddr, &val, reg->id);
}

static int set_id_aa64zfr0_el1(struct kvm_vcpu *vcpu,
		const struct sys_reg_desc *rd,
		const struct kvm_one_reg *reg, void __user *uaddr)
{
	const u64 id = sys_reg_to_index(rd);
	int err;
	u64 val;

1249
	if (WARN_ON(!vcpu_has_sve(vcpu)))
1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
		return -ENOENT;

	err = reg_from_user(&val, uaddr, id);
	if (err)
		return err;

	/* This is what we mean by invariant: you can't change it. */
	if (val != guest_id_aa64zfr0_el1(vcpu))
		return -EINVAL;

	return 0;
}

1263 1264 1265 1266 1267 1268 1269
/*
 * cpufeature ID register user accessors
 *
 * For now, these registers are immutable for userspace, so no values
 * are stored, and for set_id_reg() we don't allow the effective value
 * to be changed.
 */
1270 1271
static int __get_id_reg(const struct kvm_vcpu *vcpu,
			const struct sys_reg_desc *rd, void __user *uaddr,
1272 1273 1274
			bool raz)
{
	const u64 id = sys_reg_to_index(rd);
1275
	const u64 val = read_id_reg(vcpu, rd, raz);
1276 1277 1278 1279

	return reg_to_user(uaddr, &val, id);
}

1280 1281
static int __set_id_reg(const struct kvm_vcpu *vcpu,
			const struct sys_reg_desc *rd, void __user *uaddr,
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
			bool raz)
{
	const u64 id = sys_reg_to_index(rd);
	int err;
	u64 val;

	err = reg_from_user(&val, uaddr, id);
	if (err)
		return err;

	/* This is what we mean by invariant: you can't change it. */
1293
	if (val != read_id_reg(vcpu, rd, raz))
1294 1295 1296 1297 1298 1299 1300 1301
		return -EINVAL;

	return 0;
}

static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
		      const struct kvm_one_reg *reg, void __user *uaddr)
{
1302
	return __get_id_reg(vcpu, rd, uaddr, false);
1303 1304 1305 1306 1307
}

static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
		      const struct kvm_one_reg *reg, void __user *uaddr)
{
1308
	return __set_id_reg(vcpu, rd, uaddr, false);
1309 1310 1311 1312 1313
}

static int get_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
			  const struct kvm_one_reg *reg, void __user *uaddr)
{
1314
	return __get_id_reg(vcpu, rd, uaddr, true);
1315 1316 1317 1318 1319
}

static int set_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
			  const struct kvm_one_reg *reg, void __user *uaddr)
{
1320
	return __set_id_reg(vcpu, rd, uaddr, true);
1321 1322
}

1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
static bool access_ctr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
		       const struct sys_reg_desc *r)
{
	if (p->is_write)
		return write_to_read_only(vcpu, p, r);

	p->regval = read_sanitised_ftr_reg(SYS_CTR_EL0);
	return true;
}

static bool access_clidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
			 const struct sys_reg_desc *r)
{
	if (p->is_write)
		return write_to_read_only(vcpu, p, r);

	p->regval = read_sysreg(clidr_el1);
	return true;
}

static bool access_csselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
			  const struct sys_reg_desc *r)
{
1346 1347 1348 1349 1350 1351
	int reg = r->reg;

	/* See the 32bit mapping in kvm_host.h */
	if (p->is_aarch32)
		reg = r->reg / 2;

1352
	if (p->is_write)
1353
		vcpu_write_sys_reg(vcpu, p->regval, reg);
1354
	else
1355
		p->regval = vcpu_read_sys_reg(vcpu, reg);
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
	return true;
}

static bool access_ccsidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
			  const struct sys_reg_desc *r)
{
	u32 csselr;

	if (p->is_write)
		return write_to_read_only(vcpu, p, r);

	csselr = vcpu_read_sys_reg(vcpu, CSSELR_EL1);
	p->regval = get_ccsidr(csselr);
1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383

	/*
	 * Guests should not be doing cache operations by set/way at all, and
	 * for this reason, we trap them and attempt to infer the intent, so
	 * that we can flush the entire guest's address space at the appropriate
	 * time.
	 * To prevent this trapping from causing performance problems, let's
	 * expose the geometry of all data and unified caches (which are
	 * guaranteed to be PIPT and thus non-aliasing) as 1 set and 1 way.
	 * [If guests should attempt to infer aliasing properties from the
	 * geometry (which is not permitted by the architecture), they would
	 * only do so for virtually indexed caches.]
	 */
	if (!(csselr & 1)) // data or unified cache
		p->regval &= ~GENMASK(27, 3);
1384 1385 1386
	return true;
}

1387 1388 1389 1390 1391 1392 1393
static bool access_mte_regs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
			    const struct sys_reg_desc *r)
{
	kvm_inject_undefined(vcpu);
	return false;
}

1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
/* sys_reg_desc initialiser for known cpufeature ID registers */
#define ID_SANITISED(name) {			\
	SYS_DESC(SYS_##name),			\
	.access	= access_id_reg,		\
	.get_user = get_id_reg,			\
	.set_user = set_id_reg,			\
}

/*
 * sys_reg_desc initialiser for architecturally unallocated cpufeature ID
 * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
 * (1 <= crm < 8, 0 <= Op2 < 8).
 */
#define ID_UNALLOCATED(crm, op2) {			\
	Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2),	\
	.access = access_raz_id_reg,			\
	.get_user = get_raz_id_reg,			\
	.set_user = set_raz_id_reg,			\
}

/*
 * sys_reg_desc initialiser for known ID registers that we hide from guests.
 * For now, these are exposed just like unallocated ID regs: they appear
 * RAZ for the guest.
 */
#define ID_HIDDEN(name) {			\
	SYS_DESC(SYS_##name),			\
	.access = access_raz_id_reg,		\
	.get_user = get_raz_id_reg,		\
	.set_user = set_raz_id_reg,		\
}

1426 1427 1428
/*
 * Architected system registers.
 * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
1429
 *
1430 1431 1432 1433 1434 1435
 * Debug handling: We do trap most, if not all debug related system
 * registers. The implementation is good enough to ensure that a guest
 * can use these with minimal performance degradation. The drawback is
 * that we don't implement any of the external debug, none of the
 * OSlock protocol. This should be revisited if we ever encounter a
 * more demanding guest...
1436 1437
 */
static const struct sys_reg_desc sys_reg_descs[] = {
1438 1439 1440
	{ SYS_DESC(SYS_DC_ISW), access_dcsw },
	{ SYS_DESC(SYS_DC_CSW), access_dcsw },
	{ SYS_DESC(SYS_DC_CISW), access_dcsw },
1441

1442 1443
	DBG_BCR_BVR_WCR_WVR_EL1(0),
	DBG_BCR_BVR_WCR_WVR_EL1(1),
1444 1445
	{ SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
	{ SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
	DBG_BCR_BVR_WCR_WVR_EL1(2),
	DBG_BCR_BVR_WCR_WVR_EL1(3),
	DBG_BCR_BVR_WCR_WVR_EL1(4),
	DBG_BCR_BVR_WCR_WVR_EL1(5),
	DBG_BCR_BVR_WCR_WVR_EL1(6),
	DBG_BCR_BVR_WCR_WVR_EL1(7),
	DBG_BCR_BVR_WCR_WVR_EL1(8),
	DBG_BCR_BVR_WCR_WVR_EL1(9),
	DBG_BCR_BVR_WCR_WVR_EL1(10),
	DBG_BCR_BVR_WCR_WVR_EL1(11),
	DBG_BCR_BVR_WCR_WVR_EL1(12),
	DBG_BCR_BVR_WCR_WVR_EL1(13),
	DBG_BCR_BVR_WCR_WVR_EL1(14),
	DBG_BCR_BVR_WCR_WVR_EL1(15),

1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
	{ SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
	{ SYS_DESC(SYS_OSLAR_EL1), trap_raz_wi },
	{ SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1 },
	{ SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
	{ SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
	{ SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
	{ SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
	{ SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },

	{ SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
	{ SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
	// DBGDTR[TR]X_EL0 share the same encoding
	{ SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },

	{ SYS_DESC(SYS_DBGVCR32_EL2), NULL, reset_val, DBGVCR32_EL2, 0 },
1476

1477
	{ SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },
1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502

	/*
	 * ID regs: all ID_SANITISED() entries here must have corresponding
	 * entries in arm64_ftr_regs[].
	 */

	/* AArch64 mappings of the AArch32 ID registers */
	/* CRm=1 */
	ID_SANITISED(ID_PFR0_EL1),
	ID_SANITISED(ID_PFR1_EL1),
	ID_SANITISED(ID_DFR0_EL1),
	ID_HIDDEN(ID_AFR0_EL1),
	ID_SANITISED(ID_MMFR0_EL1),
	ID_SANITISED(ID_MMFR1_EL1),
	ID_SANITISED(ID_MMFR2_EL1),
	ID_SANITISED(ID_MMFR3_EL1),

	/* CRm=2 */
	ID_SANITISED(ID_ISAR0_EL1),
	ID_SANITISED(ID_ISAR1_EL1),
	ID_SANITISED(ID_ISAR2_EL1),
	ID_SANITISED(ID_ISAR3_EL1),
	ID_SANITISED(ID_ISAR4_EL1),
	ID_SANITISED(ID_ISAR5_EL1),
	ID_SANITISED(ID_MMFR4_EL1),
1503
	ID_SANITISED(ID_ISAR6_EL1),
1504 1505 1506 1507 1508 1509

	/* CRm=3 */
	ID_SANITISED(MVFR0_EL1),
	ID_SANITISED(MVFR1_EL1),
	ID_SANITISED(MVFR2_EL1),
	ID_UNALLOCATED(3,3),
1510
	ID_SANITISED(ID_PFR2_EL1),
1511
	ID_HIDDEN(ID_DFR1_EL1),
1512
	ID_SANITISED(ID_MMFR5_EL1),
1513 1514 1515 1516 1517 1518 1519 1520
	ID_UNALLOCATED(3,7),

	/* AArch64 ID registers */
	/* CRm=4 */
	ID_SANITISED(ID_AA64PFR0_EL1),
	ID_SANITISED(ID_AA64PFR1_EL1),
	ID_UNALLOCATED(4,2),
	ID_UNALLOCATED(4,3),
1521
	{ SYS_DESC(SYS_ID_AA64ZFR0_EL1), access_id_aa64zfr0_el1, .get_user = get_id_aa64zfr0_el1, .set_user = set_id_aa64zfr0_el1, .visibility = sve_id_visibility },
1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
	ID_UNALLOCATED(4,5),
	ID_UNALLOCATED(4,6),
	ID_UNALLOCATED(4,7),

	/* CRm=5 */
	ID_SANITISED(ID_AA64DFR0_EL1),
	ID_SANITISED(ID_AA64DFR1_EL1),
	ID_UNALLOCATED(5,2),
	ID_UNALLOCATED(5,3),
	ID_HIDDEN(ID_AA64AFR0_EL1),
	ID_HIDDEN(ID_AA64AFR1_EL1),
	ID_UNALLOCATED(5,6),
	ID_UNALLOCATED(5,7),

	/* CRm=6 */
	ID_SANITISED(ID_AA64ISAR0_EL1),
	ID_SANITISED(ID_AA64ISAR1_EL1),
	ID_UNALLOCATED(6,2),
	ID_UNALLOCATED(6,3),
	ID_UNALLOCATED(6,4),
	ID_UNALLOCATED(6,5),
	ID_UNALLOCATED(6,6),
	ID_UNALLOCATED(6,7),

	/* CRm=7 */
	ID_SANITISED(ID_AA64MMFR0_EL1),
	ID_SANITISED(ID_AA64MMFR1_EL1),
	ID_SANITISED(ID_AA64MMFR2_EL1),
	ID_UNALLOCATED(7,3),
	ID_UNALLOCATED(7,4),
	ID_UNALLOCATED(7,5),
	ID_UNALLOCATED(7,6),
	ID_UNALLOCATED(7,7),

1556
	{ SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
1557
	{ SYS_DESC(SYS_ACTLR_EL1), access_actlr, reset_actlr, ACTLR_EL1 },
1558
	{ SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
1559 1560 1561 1562

	{ SYS_DESC(SYS_RGSR_EL1), access_mte_regs },
	{ SYS_DESC(SYS_GCR_EL1), access_mte_regs },

1563
	{ SYS_DESC(SYS_ZCR_EL1), NULL, reset_val, ZCR_EL1, 0, .visibility = sve_visibility },
1564 1565 1566 1567
	{ SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
	{ SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
	{ SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },

1568 1569 1570 1571 1572 1573
	PTRAUTH_KEY(APIA),
	PTRAUTH_KEY(APIB),
	PTRAUTH_KEY(APDA),
	PTRAUTH_KEY(APDB),
	PTRAUTH_KEY(APGA),

1574 1575 1576
	{ SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
	{ SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
	{ SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },
1577 1578 1579 1580 1581 1582 1583 1584 1585 1586

	{ SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi },
	{ SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi },
	{ SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi },
	{ SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi },
	{ SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi },
	{ SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi },
	{ SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi },
	{ SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi },

1587 1588 1589
	{ SYS_DESC(SYS_TFSR_EL1), access_mte_regs },
	{ SYS_DESC(SYS_TFSRE0_EL1), access_mte_regs },

1590 1591
	{ SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
	{ SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
1592

1593
	{ SYS_DESC(SYS_PMINTENSET_EL1), access_pminten, reset_unknown, PMINTENSET_EL1 },
1594
	{ SYS_DESC(SYS_PMINTENCLR_EL1), access_pminten, reset_unknown, PMINTENSET_EL1 },
1595

1596 1597
	{ SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
	{ SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
1598

1599 1600 1601 1602 1603
	{ SYS_DESC(SYS_LORSA_EL1), trap_loregion },
	{ SYS_DESC(SYS_LOREA_EL1), trap_loregion },
	{ SYS_DESC(SYS_LORN_EL1), trap_loregion },
	{ SYS_DESC(SYS_LORC_EL1), trap_loregion },
	{ SYS_DESC(SYS_LORID_EL1), trap_loregion },
1604

1605
	{ SYS_DESC(SYS_VBAR_EL1), NULL, reset_val, VBAR_EL1, 0 },
1606
	{ SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 },
1607

1608
	{ SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only },
1609
	{ SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only },
1610
	{ SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only },
1611
	{ SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only },
1612
	{ SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only },
1613
	{ SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
1614 1615
	{ SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi },
	{ SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi },
1616
	{ SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only },
1617
	{ SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only },
1618
	{ SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only },
1619
	{ SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
1620

1621 1622
	{ SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
	{ SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
1623

1624
	{ SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
1625

1626 1627 1628 1629
	{ SYS_DESC(SYS_CCSIDR_EL1), access_ccsidr },
	{ SYS_DESC(SYS_CLIDR_EL1), access_clidr },
	{ SYS_DESC(SYS_CSSELR_EL1), access_csselr, reset_unknown, CSSELR_EL1 },
	{ SYS_DESC(SYS_CTR_EL0), access_ctr },
1630

1631
	{ SYS_DESC(SYS_PMCR_EL0), access_pmcr, reset_pmcr, PMCR_EL0 },
1632
	{ SYS_DESC(SYS_PMCNTENSET_EL0), access_pmcnten, reset_unknown, PMCNTENSET_EL0 },
1633 1634
	{ SYS_DESC(SYS_PMCNTENCLR_EL0), access_pmcnten, reset_unknown, PMCNTENSET_EL0 },
	{ SYS_DESC(SYS_PMOVSCLR_EL0), access_pmovs, reset_unknown, PMOVSSET_EL0 },
1635 1636 1637 1638 1639 1640 1641 1642 1643
	{ SYS_DESC(SYS_PMSWINC_EL0), access_pmswinc, reset_unknown, PMSWINC_EL0 },
	{ SYS_DESC(SYS_PMSELR_EL0), access_pmselr, reset_unknown, PMSELR_EL0 },
	{ SYS_DESC(SYS_PMCEID0_EL0), access_pmceid },
	{ SYS_DESC(SYS_PMCEID1_EL0), access_pmceid },
	{ SYS_DESC(SYS_PMCCNTR_EL0), access_pmu_evcntr, reset_unknown, PMCCNTR_EL0 },
	{ SYS_DESC(SYS_PMXEVTYPER_EL0), access_pmu_evtyper },
	{ SYS_DESC(SYS_PMXEVCNTR_EL0), access_pmu_evcntr },
	/*
	 * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
1644 1645
	 * in 32bit mode. Here we choose to reset it as zero for consistency.
	 */
1646 1647
	{ SYS_DESC(SYS_PMUSERENR_EL0), access_pmuserenr, reset_val, PMUSERENR_EL0, 0 },
	{ SYS_DESC(SYS_PMOVSSET_EL0), access_pmovs, reset_unknown, PMOVSSET_EL0 },
1648

1649 1650
	{ SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
	{ SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675

	{ SYS_DESC(SYS_AMCR_EL0), access_amu },
	{ SYS_DESC(SYS_AMCFGR_EL0), access_amu },
	{ SYS_DESC(SYS_AMCGCR_EL0), access_amu },
	{ SYS_DESC(SYS_AMUSERENR_EL0), access_amu },
	{ SYS_DESC(SYS_AMCNTENCLR0_EL0), access_amu },
	{ SYS_DESC(SYS_AMCNTENSET0_EL0), access_amu },
	{ SYS_DESC(SYS_AMCNTENCLR1_EL0), access_amu },
	{ SYS_DESC(SYS_AMCNTENSET1_EL0), access_amu },
	AMU_AMEVCNTR0_EL0(0),
	AMU_AMEVCNTR0_EL0(1),
	AMU_AMEVCNTR0_EL0(2),
	AMU_AMEVCNTR0_EL0(3),
	AMU_AMEVCNTR0_EL0(4),
	AMU_AMEVCNTR0_EL0(5),
	AMU_AMEVCNTR0_EL0(6),
	AMU_AMEVCNTR0_EL0(7),
	AMU_AMEVCNTR0_EL0(8),
	AMU_AMEVCNTR0_EL0(9),
	AMU_AMEVCNTR0_EL0(10),
	AMU_AMEVCNTR0_EL0(11),
	AMU_AMEVCNTR0_EL0(12),
	AMU_AMEVCNTR0_EL0(13),
	AMU_AMEVCNTR0_EL0(14),
	AMU_AMEVCNTR0_EL0(15),
V
Vladimir Murzin 已提交
1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691
	AMU_AMEVTYPER0_EL0(0),
	AMU_AMEVTYPER0_EL0(1),
	AMU_AMEVTYPER0_EL0(2),
	AMU_AMEVTYPER0_EL0(3),
	AMU_AMEVTYPER0_EL0(4),
	AMU_AMEVTYPER0_EL0(5),
	AMU_AMEVTYPER0_EL0(6),
	AMU_AMEVTYPER0_EL0(7),
	AMU_AMEVTYPER0_EL0(8),
	AMU_AMEVTYPER0_EL0(9),
	AMU_AMEVTYPER0_EL0(10),
	AMU_AMEVTYPER0_EL0(11),
	AMU_AMEVTYPER0_EL0(12),
	AMU_AMEVTYPER0_EL0(13),
	AMU_AMEVTYPER0_EL0(14),
	AMU_AMEVTYPER0_EL0(15),
1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
	AMU_AMEVCNTR1_EL0(0),
	AMU_AMEVCNTR1_EL0(1),
	AMU_AMEVCNTR1_EL0(2),
	AMU_AMEVCNTR1_EL0(3),
	AMU_AMEVCNTR1_EL0(4),
	AMU_AMEVCNTR1_EL0(5),
	AMU_AMEVCNTR1_EL0(6),
	AMU_AMEVCNTR1_EL0(7),
	AMU_AMEVCNTR1_EL0(8),
	AMU_AMEVCNTR1_EL0(9),
	AMU_AMEVCNTR1_EL0(10),
	AMU_AMEVCNTR1_EL0(11),
	AMU_AMEVCNTR1_EL0(12),
	AMU_AMEVCNTR1_EL0(13),
	AMU_AMEVCNTR1_EL0(14),
	AMU_AMEVCNTR1_EL0(15),
V
Vladimir Murzin 已提交
1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
	AMU_AMEVTYPER1_EL0(0),
	AMU_AMEVTYPER1_EL0(1),
	AMU_AMEVTYPER1_EL0(2),
	AMU_AMEVTYPER1_EL0(3),
	AMU_AMEVTYPER1_EL0(4),
	AMU_AMEVTYPER1_EL0(5),
	AMU_AMEVTYPER1_EL0(6),
	AMU_AMEVTYPER1_EL0(7),
	AMU_AMEVTYPER1_EL0(8),
	AMU_AMEVTYPER1_EL0(9),
	AMU_AMEVTYPER1_EL0(10),
	AMU_AMEVTYPER1_EL0(11),
	AMU_AMEVTYPER1_EL0(12),
	AMU_AMEVTYPER1_EL0(13),
	AMU_AMEVTYPER1_EL0(14),
	AMU_AMEVTYPER1_EL0(15),
1724

1725 1726 1727
	{ SYS_DESC(SYS_CNTP_TVAL_EL0), access_arch_timer },
	{ SYS_DESC(SYS_CNTP_CTL_EL0), access_arch_timer },
	{ SYS_DESC(SYS_CNTP_CVAL_EL0), access_arch_timer },
1728

1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
	/* PMEVCNTRn_EL0 */
	PMU_PMEVCNTR_EL0(0),
	PMU_PMEVCNTR_EL0(1),
	PMU_PMEVCNTR_EL0(2),
	PMU_PMEVCNTR_EL0(3),
	PMU_PMEVCNTR_EL0(4),
	PMU_PMEVCNTR_EL0(5),
	PMU_PMEVCNTR_EL0(6),
	PMU_PMEVCNTR_EL0(7),
	PMU_PMEVCNTR_EL0(8),
	PMU_PMEVCNTR_EL0(9),
	PMU_PMEVCNTR_EL0(10),
	PMU_PMEVCNTR_EL0(11),
	PMU_PMEVCNTR_EL0(12),
	PMU_PMEVCNTR_EL0(13),
	PMU_PMEVCNTR_EL0(14),
	PMU_PMEVCNTR_EL0(15),
	PMU_PMEVCNTR_EL0(16),
	PMU_PMEVCNTR_EL0(17),
	PMU_PMEVCNTR_EL0(18),
	PMU_PMEVCNTR_EL0(19),
	PMU_PMEVCNTR_EL0(20),
	PMU_PMEVCNTR_EL0(21),
	PMU_PMEVCNTR_EL0(22),
	PMU_PMEVCNTR_EL0(23),
	PMU_PMEVCNTR_EL0(24),
	PMU_PMEVCNTR_EL0(25),
	PMU_PMEVCNTR_EL0(26),
	PMU_PMEVCNTR_EL0(27),
	PMU_PMEVCNTR_EL0(28),
	PMU_PMEVCNTR_EL0(29),
	PMU_PMEVCNTR_EL0(30),
1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792
	/* PMEVTYPERn_EL0 */
	PMU_PMEVTYPER_EL0(0),
	PMU_PMEVTYPER_EL0(1),
	PMU_PMEVTYPER_EL0(2),
	PMU_PMEVTYPER_EL0(3),
	PMU_PMEVTYPER_EL0(4),
	PMU_PMEVTYPER_EL0(5),
	PMU_PMEVTYPER_EL0(6),
	PMU_PMEVTYPER_EL0(7),
	PMU_PMEVTYPER_EL0(8),
	PMU_PMEVTYPER_EL0(9),
	PMU_PMEVTYPER_EL0(10),
	PMU_PMEVTYPER_EL0(11),
	PMU_PMEVTYPER_EL0(12),
	PMU_PMEVTYPER_EL0(13),
	PMU_PMEVTYPER_EL0(14),
	PMU_PMEVTYPER_EL0(15),
	PMU_PMEVTYPER_EL0(16),
	PMU_PMEVTYPER_EL0(17),
	PMU_PMEVTYPER_EL0(18),
	PMU_PMEVTYPER_EL0(19),
	PMU_PMEVTYPER_EL0(20),
	PMU_PMEVTYPER_EL0(21),
	PMU_PMEVTYPER_EL0(22),
	PMU_PMEVTYPER_EL0(23),
	PMU_PMEVTYPER_EL0(24),
	PMU_PMEVTYPER_EL0(25),
	PMU_PMEVTYPER_EL0(26),
	PMU_PMEVTYPER_EL0(27),
	PMU_PMEVTYPER_EL0(28),
	PMU_PMEVTYPER_EL0(29),
	PMU_PMEVTYPER_EL0(30),
1793 1794
	/*
	 * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
1795 1796
	 * in 32bit mode. Here we choose to reset it as zero for consistency.
	 */
1797
	{ SYS_DESC(SYS_PMCCFILTR_EL0), access_pmu_evtyper, reset_val, PMCCFILTR_EL0, 0 },
1798

1799 1800
	{ SYS_DESC(SYS_DACR32_EL2), NULL, reset_unknown, DACR32_EL2 },
	{ SYS_DESC(SYS_IFSR32_EL2), NULL, reset_unknown, IFSR32_EL2 },
1801
	{ SYS_DESC(SYS_FPEXC32_EL2), NULL, reset_val, FPEXC32_EL2, 0x700 },
1802 1803
};

1804
static bool trap_dbgidr(struct kvm_vcpu *vcpu,
1805
			struct sys_reg_params *p,
1806 1807 1808 1809 1810
			const struct sys_reg_desc *r)
{
	if (p->is_write) {
		return ignore_write(vcpu, p);
	} else {
1811 1812
		u64 dfr = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
		u64 pfr = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1813
		u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL3_SHIFT);
1814

1815 1816 1817 1818
		p->regval = ((((dfr >> ID_AA64DFR0_WRPS_SHIFT) & 0xf) << 28) |
			     (((dfr >> ID_AA64DFR0_BRPS_SHIFT) & 0xf) << 24) |
			     (((dfr >> ID_AA64DFR0_CTX_CMPS_SHIFT) & 0xf) << 20)
			     | (6 << 16) | (el3 << 14) | (el3 << 12));
1819 1820 1821 1822 1823
		return true;
	}
}

static bool trap_debug32(struct kvm_vcpu *vcpu,
1824
			 struct sys_reg_params *p,
1825 1826 1827
			 const struct sys_reg_desc *r)
{
	if (p->is_write) {
1828
		vcpu_cp14(vcpu, r->reg) = p->regval;
1829
		vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
1830
	} else {
1831
		p->regval = vcpu_cp14(vcpu, r->reg);
1832 1833 1834 1835 1836
	}

	return true;
}

1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847
/* AArch32 debug register mappings
 *
 * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
 * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
 *
 * All control registers and watchpoint value registers are mapped to
 * the lower 32 bits of their AArch64 equivalents. We share the trap
 * handlers with the above AArch64 code which checks what mode the
 * system is in.
 */

1848 1849 1850
static bool trap_xvr(struct kvm_vcpu *vcpu,
		     struct sys_reg_params *p,
		     const struct sys_reg_desc *rd)
1851 1852 1853 1854 1855 1856 1857
{
	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];

	if (p->is_write) {
		u64 val = *dbg_reg;

		val &= 0xffffffffUL;
1858
		val |= p->regval << 32;
1859 1860
		*dbg_reg = val;

1861
		vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
1862
	} else {
1863
		p->regval = *dbg_reg >> 32;
1864 1865
	}

1866 1867
	trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);

1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882
	return true;
}

#define DBG_BCR_BVR_WCR_WVR(n)						\
	/* DBGBVRn */							\
	{ Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, 	\
	/* DBGBCRn */							\
	{ Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n },	\
	/* DBGWVRn */							\
	{ Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n },	\
	/* DBGWCRn */							\
	{ Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }

#define DBGBXVR(n)							\
	{ Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_xvr, NULL, n }
1883 1884 1885 1886

/*
 * Trapped cp14 registers. We generally ignore most of the external
 * debug, on the principle that they don't really make sense to a
1887
 * guest. Revisit this one day, would this principle change.
1888
 */
1889
static const struct sys_reg_desc cp14_regs[] = {
1890 1891 1892 1893 1894 1895 1896 1897 1898 1899
	/* DBGIDR */
	{ Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr },
	/* DBGDTRRXext */
	{ Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },

	DBG_BCR_BVR_WCR_WVR(0),
	/* DBGDSCRint */
	{ Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
	DBG_BCR_BVR_WCR_WVR(1),
	/* DBGDCCINT */
1900
	{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug32, NULL, cp14_DBGDCCINT },
1901
	/* DBGDSCRext */
1902
	{ Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug32, NULL, cp14_DBGDSCRext },
1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916
	DBG_BCR_BVR_WCR_WVR(2),
	/* DBGDTR[RT]Xint */
	{ Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
	/* DBGDTR[RT]Xext */
	{ Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
	DBG_BCR_BVR_WCR_WVR(3),
	DBG_BCR_BVR_WCR_WVR(4),
	DBG_BCR_BVR_WCR_WVR(5),
	/* DBGWFAR */
	{ Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
	/* DBGOSECCR */
	{ Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
	DBG_BCR_BVR_WCR_WVR(6),
	/* DBGVCR */
1917
	{ Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug32, NULL, cp14_DBGVCR },
1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
	DBG_BCR_BVR_WCR_WVR(7),
	DBG_BCR_BVR_WCR_WVR(8),
	DBG_BCR_BVR_WCR_WVR(9),
	DBG_BCR_BVR_WCR_WVR(10),
	DBG_BCR_BVR_WCR_WVR(11),
	DBG_BCR_BVR_WCR_WVR(12),
	DBG_BCR_BVR_WCR_WVR(13),
	DBG_BCR_BVR_WCR_WVR(14),
	DBG_BCR_BVR_WCR_WVR(15),

	/* DBGDRAR (32bit) */
	{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },

	DBGBXVR(0),
	/* DBGOSLAR */
	{ Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi },
	DBGBXVR(1),
	/* DBGOSLSR */
	{ Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 },
	DBGBXVR(2),
	DBGBXVR(3),
	/* DBGOSDLR */
	{ Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
	DBGBXVR(4),
	/* DBGPRCR */
	{ Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
	DBGBXVR(5),
	DBGBXVR(6),
	DBGBXVR(7),
	DBGBXVR(8),
	DBGBXVR(9),
	DBGBXVR(10),
	DBGBXVR(11),
	DBGBXVR(12),
	DBGBXVR(13),
	DBGBXVR(14),
	DBGBXVR(15),

	/* DBGDSAR (32bit) */
	{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },

	/* DBGDEVID2 */
	{ Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
	/* DBGDEVID1 */
	{ Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
	/* DBGDEVID */
	{ Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
	/* DBGCLAIMSET */
	{ Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
	/* DBGCLAIMCLR */
	{ Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
	/* DBGAUTHSTATUS */
	{ Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
1971 1972
};

1973 1974
/* Trapped cp14 64bit registers */
static const struct sys_reg_desc cp14_64_regs[] = {
1975 1976 1977 1978 1979
	/* DBGDRAR (64bit) */
	{ Op1( 0), CRm( 1), .access = trap_raz_wi },

	/* DBGDSAR (64bit) */
	{ Op1( 0), CRm( 2), .access = trap_raz_wi },
1980 1981
};

1982 1983 1984 1985 1986 1987 1988
/* Macro to expand the PMEVCNTRn register */
#define PMU_PMEVCNTR(n)							\
	/* PMEVCNTRn */							\
	{ Op1(0), CRn(0b1110),						\
	  CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),		\
	  access_pmu_evcntr }

1989 1990 1991 1992 1993 1994 1995
/* Macro to expand the PMEVTYPERn register */
#define PMU_PMEVTYPER(n)						\
	/* PMEVTYPERn */						\
	{ Op1(0), CRn(0b1110),						\
	  CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),		\
	  access_pmu_evtyper }

1996 1997 1998 1999 2000
/*
 * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
 * depending on the way they are accessed (as a 32bit or a 64bit
 * register).
 */
2001
static const struct sys_reg_desc cp15_regs[] = {
2002
	{ Op1( 0), CRn( 0), CRm( 0), Op2( 1), access_ctr },
2003
	{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, c1_SCTLR },
2004 2005
	{ Op1( 0), CRn( 1), CRm( 0), Op2( 1), access_actlr },
	{ Op1( 0), CRn( 1), CRm( 0), Op2( 3), access_actlr },
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
	{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
	{ Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 },
	{ Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, c2_TTBCR },
	{ Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, c3_DACR },
	{ Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, c5_DFSR },
	{ Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, c5_IFSR },
	{ Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, c5_ADFSR },
	{ Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, c5_AIFSR },
	{ Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, c6_DFAR },
	{ Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, c6_IFAR },

2017 2018 2019 2020 2021 2022
	/*
	 * DC{C,I,CI}SW operations:
	 */
	{ Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
	{ Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
	{ Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
2023

2024
	/* PMU */
2025
	{ Op1( 0), CRn( 9), CRm(12), Op2( 0), access_pmcr },
2026 2027
	{ Op1( 0), CRn( 9), CRm(12), Op2( 1), access_pmcnten },
	{ Op1( 0), CRn( 9), CRm(12), Op2( 2), access_pmcnten },
2028
	{ Op1( 0), CRn( 9), CRm(12), Op2( 3), access_pmovs },
2029
	{ Op1( 0), CRn( 9), CRm(12), Op2( 4), access_pmswinc },
2030
	{ Op1( 0), CRn( 9), CRm(12), Op2( 5), access_pmselr },
2031 2032
	{ Op1( 0), CRn( 9), CRm(12), Op2( 6), access_pmceid },
	{ Op1( 0), CRn( 9), CRm(12), Op2( 7), access_pmceid },
2033
	{ Op1( 0), CRn( 9), CRm(13), Op2( 0), access_pmu_evcntr },
2034
	{ Op1( 0), CRn( 9), CRm(13), Op2( 1), access_pmu_evtyper },
2035
	{ Op1( 0), CRn( 9), CRm(13), Op2( 2), access_pmu_evcntr },
2036
	{ Op1( 0), CRn( 9), CRm(14), Op2( 0), access_pmuserenr },
2037 2038
	{ Op1( 0), CRn( 9), CRm(14), Op2( 1), access_pminten },
	{ Op1( 0), CRn( 9), CRm(14), Op2( 2), access_pminten },
2039
	{ Op1( 0), CRn( 9), CRm(14), Op2( 3), access_pmovs },
2040 2041 2042 2043 2044

	{ Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, c10_PRRR },
	{ Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, c10_NMRR },
	{ Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, c10_AMAIR0 },
	{ Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, c10_AMAIR1 },
2045 2046

	/* ICC_SRE */
2047
	{ Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
2048

2049
	{ Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, c13_CID },
2050

2051 2052 2053
	/* Arch Tmers */
	{ SYS_DESC(SYS_AARCH32_CNTP_TVAL), access_arch_timer },
	{ SYS_DESC(SYS_AARCH32_CNTP_CTL), access_arch_timer },
2054

2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086
	/* PMEVCNTRn */
	PMU_PMEVCNTR(0),
	PMU_PMEVCNTR(1),
	PMU_PMEVCNTR(2),
	PMU_PMEVCNTR(3),
	PMU_PMEVCNTR(4),
	PMU_PMEVCNTR(5),
	PMU_PMEVCNTR(6),
	PMU_PMEVCNTR(7),
	PMU_PMEVCNTR(8),
	PMU_PMEVCNTR(9),
	PMU_PMEVCNTR(10),
	PMU_PMEVCNTR(11),
	PMU_PMEVCNTR(12),
	PMU_PMEVCNTR(13),
	PMU_PMEVCNTR(14),
	PMU_PMEVCNTR(15),
	PMU_PMEVCNTR(16),
	PMU_PMEVCNTR(17),
	PMU_PMEVCNTR(18),
	PMU_PMEVCNTR(19),
	PMU_PMEVCNTR(20),
	PMU_PMEVCNTR(21),
	PMU_PMEVCNTR(22),
	PMU_PMEVCNTR(23),
	PMU_PMEVCNTR(24),
	PMU_PMEVCNTR(25),
	PMU_PMEVCNTR(26),
	PMU_PMEVCNTR(27),
	PMU_PMEVCNTR(28),
	PMU_PMEVCNTR(29),
	PMU_PMEVCNTR(30),
2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120
	/* PMEVTYPERn */
	PMU_PMEVTYPER(0),
	PMU_PMEVTYPER(1),
	PMU_PMEVTYPER(2),
	PMU_PMEVTYPER(3),
	PMU_PMEVTYPER(4),
	PMU_PMEVTYPER(5),
	PMU_PMEVTYPER(6),
	PMU_PMEVTYPER(7),
	PMU_PMEVTYPER(8),
	PMU_PMEVTYPER(9),
	PMU_PMEVTYPER(10),
	PMU_PMEVTYPER(11),
	PMU_PMEVTYPER(12),
	PMU_PMEVTYPER(13),
	PMU_PMEVTYPER(14),
	PMU_PMEVTYPER(15),
	PMU_PMEVTYPER(16),
	PMU_PMEVTYPER(17),
	PMU_PMEVTYPER(18),
	PMU_PMEVTYPER(19),
	PMU_PMEVTYPER(20),
	PMU_PMEVTYPER(21),
	PMU_PMEVTYPER(22),
	PMU_PMEVTYPER(23),
	PMU_PMEVTYPER(24),
	PMU_PMEVTYPER(25),
	PMU_PMEVTYPER(26),
	PMU_PMEVTYPER(27),
	PMU_PMEVTYPER(28),
	PMU_PMEVTYPER(29),
	PMU_PMEVTYPER(30),
	/* PMCCFILTR */
	{ Op1(0), CRn(14), CRm(15), Op2(7), access_pmu_evtyper },
2121 2122 2123 2124

	{ Op1(1), CRn( 0), CRm( 0), Op2(0), access_ccsidr },
	{ Op1(1), CRn( 0), CRm( 0), Op2(1), access_clidr },
	{ Op1(2), CRn( 0), CRm( 0), Op2(0), access_csselr, NULL, c0_CSSELR },
2125 2126 2127 2128
};

static const struct sys_reg_desc cp15_64_regs[] = {
	{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
2129
	{ Op1( 0), CRn( 0), CRm( 9), Op2( 0), access_pmu_evcntr },
2130
	{ Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */
2131
	{ Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 },
2132 2133
	{ Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */
	{ Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */
2134
	{ SYS_DESC(SYS_AARCH32_CNTP_CVAL),    access_arch_timer },
2135 2136
};

2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157
static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n,
			      bool is_32)
{
	unsigned int i;

	for (i = 0; i < n; i++) {
		if (!is_32 && table[i].reg && !table[i].reset) {
			kvm_err("sys_reg table %p entry %d has lacks reset\n",
				table, i);
			return 1;
		}

		if (i && cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
			kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
			return 1;
		}
	}

	return 0;
}

2158 2159 2160 2161 2162
static int match_sys_reg(const void *key, const void *elt)
{
	const unsigned long pval = (unsigned long)key;
	const struct sys_reg_desc *r = elt;

2163
	return pval - reg_to_encoding(r);
2164 2165
}

2166 2167 2168 2169
static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
					 const struct sys_reg_desc table[],
					 unsigned int num)
{
2170
	unsigned long pval = reg_to_encoding(params);
2171 2172

	return bsearch((void *)pval, table, num, sizeof(table[0]), match_sys_reg);
2173 2174
}

2175
int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu)
2176 2177 2178 2179 2180
{
	kvm_inject_undefined(vcpu);
	return 1;
}

2181 2182 2183 2184
static void perform_access(struct kvm_vcpu *vcpu,
			   struct sys_reg_params *params,
			   const struct sys_reg_desc *r)
{
2185 2186
	trace_kvm_sys_access(*vcpu_pc(vcpu), params, r);

2187 2188 2189 2190 2191 2192
	/* Check for regs disabled by runtime config */
	if (sysreg_hidden_from_guest(vcpu, r)) {
		kvm_inject_undefined(vcpu);
		return;
	}

2193 2194 2195 2196 2197 2198 2199 2200 2201
	/*
	 * Not having an accessor means that we have configured a trap
	 * that we don't know how to handle. This certainly qualifies
	 * as a gross bug that should be fixed right away.
	 */
	BUG_ON(!r->access);

	/* Skip instruction if instructed so */
	if (likely(r->access(vcpu, params, r)))
2202
		kvm_incr_pc(vcpu);
2203 2204
}

2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215
/*
 * emulate_cp --  tries to match a sys_reg access in a handling table, and
 *                call the corresponding trap handler.
 *
 * @params: pointer to the descriptor of the access
 * @table: array of trap descriptors
 * @num: size of the trap descriptor array
 *
 * Return 0 if the access has been handled, and -1 if not.
 */
static int emulate_cp(struct kvm_vcpu *vcpu,
2216
		      struct sys_reg_params *params,
2217 2218
		      const struct sys_reg_desc *table,
		      size_t num)
2219
{
2220
	const struct sys_reg_desc *r;
2221

2222 2223
	if (!table)
		return -1;	/* Not handled */
2224 2225 2226

	r = find_reg(params, table, num);

2227
	if (r) {
2228 2229
		perform_access(vcpu, params, r);
		return 0;
2230 2231 2232 2233 2234 2235 2236 2237 2238
	}

	/* Not handled */
	return -1;
}

static void unhandled_cp_access(struct kvm_vcpu *vcpu,
				struct sys_reg_params *params)
{
G
Gavin Shan 已提交
2239
	u8 esr_ec = kvm_vcpu_trap_get_class(vcpu);
D
Dan Carpenter 已提交
2240
	int cp = -1;
2241

G
Gavin Shan 已提交
2242
	switch (esr_ec) {
2243 2244
	case ESR_ELx_EC_CP15_32:
	case ESR_ELx_EC_CP15_64:
2245 2246
		cp = 15;
		break;
2247 2248
	case ESR_ELx_EC_CP14_MR:
	case ESR_ELx_EC_CP14_64:
2249 2250 2251
		cp = 14;
		break;
	default:
D
Dan Carpenter 已提交
2252
		WARN_ON(1);
2253 2254
	}

2255 2256 2257
	print_sys_reg_msg(params,
			  "Unsupported guest CP%d access at: %08lx [%08lx]\n",
			  cp, *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2258 2259 2260 2261
	kvm_inject_undefined(vcpu);
}

/**
2262
 * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
2263 2264 2265
 * @vcpu: The VCPU pointer
 * @run:  The kvm_run struct
 */
2266 2267
static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
			    const struct sys_reg_desc *global,
2268
			    size_t nr_global)
2269 2270
{
	struct sys_reg_params params;
G
Gavin Shan 已提交
2271
	u32 esr = kvm_vcpu_get_esr(vcpu);
2272
	int Rt = kvm_vcpu_sys_get_rt(vcpu);
G
Gavin Shan 已提交
2273
	int Rt2 = (esr >> 10) & 0x1f;
2274

2275 2276
	params.is_aarch32 = true;
	params.is_32bit = false;
G
Gavin Shan 已提交
2277 2278
	params.CRm = (esr >> 1) & 0xf;
	params.is_write = ((esr & 1) == 0);
2279 2280

	params.Op0 = 0;
G
Gavin Shan 已提交
2281
	params.Op1 = (esr >> 16) & 0xf;
2282 2283 2284 2285
	params.Op2 = 0;
	params.CRn = 0;

	/*
2286
	 * Make a 64-bit value out of Rt and Rt2. As we use the same trap
2287 2288 2289
	 * backends between AArch32 and AArch64, we get away with it.
	 */
	if (params.is_write) {
2290 2291
		params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
		params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
2292 2293
	}

2294
	/*
2295
	 * If the table contains a handler, handle the
2296 2297 2298
	 * potential register operation in the case of a read and return
	 * with success.
	 */
2299
	if (!emulate_cp(vcpu, &params, global, nr_global)) {
2300 2301 2302 2303 2304
		/* Split up the value between registers for the read side */
		if (!params.is_write) {
			vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
			vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
		}
2305

2306
		return 1;
2307 2308
	}

2309
	unhandled_cp_access(vcpu, &params);
2310 2311 2312 2313
	return 1;
}

/**
2314
 * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
2315 2316 2317
 * @vcpu: The VCPU pointer
 * @run:  The kvm_run struct
 */
2318 2319
static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
			    const struct sys_reg_desc *global,
2320
			    size_t nr_global)
2321 2322
{
	struct sys_reg_params params;
G
Gavin Shan 已提交
2323
	u32 esr = kvm_vcpu_get_esr(vcpu);
2324
	int Rt  = kvm_vcpu_sys_get_rt(vcpu);
2325

2326 2327
	params.is_aarch32 = true;
	params.is_32bit = true;
G
Gavin Shan 已提交
2328
	params.CRm = (esr >> 1) & 0xf;
2329
	params.regval = vcpu_get_reg(vcpu, Rt);
G
Gavin Shan 已提交
2330 2331
	params.is_write = ((esr & 1) == 0);
	params.CRn = (esr >> 10) & 0xf;
2332
	params.Op0 = 0;
G
Gavin Shan 已提交
2333 2334
	params.Op1 = (esr >> 14) & 0x7;
	params.Op2 = (esr >> 17) & 0x7;
2335

2336
	if (!emulate_cp(vcpu, &params, global, nr_global)) {
2337 2338
		if (!params.is_write)
			vcpu_set_reg(vcpu, Rt, params.regval);
2339
		return 1;
2340
	}
2341 2342

	unhandled_cp_access(vcpu, &params);
2343 2344 2345
	return 1;
}

2346
int kvm_handle_cp15_64(struct kvm_vcpu *vcpu)
2347
{
2348
	return kvm_handle_cp_64(vcpu, cp15_64_regs, ARRAY_SIZE(cp15_64_regs));
2349 2350
}

2351
int kvm_handle_cp15_32(struct kvm_vcpu *vcpu)
2352
{
2353
	return kvm_handle_cp_32(vcpu, cp15_regs, ARRAY_SIZE(cp15_regs));
2354 2355
}

2356
int kvm_handle_cp14_64(struct kvm_vcpu *vcpu)
2357
{
2358
	return kvm_handle_cp_64(vcpu, cp14_64_regs, ARRAY_SIZE(cp14_64_regs));
2359 2360
}

2361
int kvm_handle_cp14_32(struct kvm_vcpu *vcpu)
2362
{
2363
	return kvm_handle_cp_32(vcpu, cp14_regs, ARRAY_SIZE(cp14_regs));
2364 2365
}

2366 2367 2368 2369 2370 2371
static bool is_imp_def_sys_reg(struct sys_reg_params *params)
{
	// See ARM DDI 0487E.a, section D12.3.2
	return params->Op0 == 3 && (params->CRn & 0b1011) == 0b1011;
}

2372
static int emulate_sys_reg(struct kvm_vcpu *vcpu,
2373
			   struct sys_reg_params *params)
2374
{
2375
	const struct sys_reg_desc *r;
2376

2377
	r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2378 2379

	if (likely(r)) {
2380
		perform_access(vcpu, params, r);
2381 2382
	} else if (is_imp_def_sys_reg(params)) {
		kvm_inject_undefined(vcpu);
2383
	} else {
2384 2385 2386
		print_sys_reg_msg(params,
				  "Unsupported guest sys_reg access at: %lx [%08lx]\n",
				  *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2387
		kvm_inject_undefined(vcpu);
2388 2389 2390 2391
	}
	return 1;
}

2392 2393 2394 2395 2396 2397 2398 2399
/**
 * kvm_reset_sys_regs - sets system registers to reset value
 * @vcpu: The VCPU pointer
 *
 * This function finds the right table above and sets the registers on the
 * virtual CPU struct to their architecturally defined reset values.
 */
void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
2400 2401 2402
{
	unsigned long i;

2403 2404 2405
	for (i = 0; i < ARRAY_SIZE(sys_reg_descs); i++)
		if (sys_reg_descs[i].reset)
			sys_reg_descs[i].reset(vcpu, &sys_reg_descs[i]);
2406 2407 2408 2409 2410 2411
}

/**
 * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
 * @vcpu: The VCPU pointer
 */
2412
int kvm_handle_sys_reg(struct kvm_vcpu *vcpu)
2413 2414
{
	struct sys_reg_params params;
G
Gavin Shan 已提交
2415
	unsigned long esr = kvm_vcpu_get_esr(vcpu);
2416
	int Rt = kvm_vcpu_sys_get_rt(vcpu);
2417
	int ret;
2418

2419 2420
	trace_kvm_handle_sys_reg(esr);

2421 2422
	params.is_aarch32 = false;
	params.is_32bit = false;
2423 2424 2425 2426 2427
	params.Op0 = (esr >> 20) & 3;
	params.Op1 = (esr >> 14) & 0x7;
	params.CRn = (esr >> 10) & 0xf;
	params.CRm = (esr >> 1) & 0xf;
	params.Op2 = (esr >> 17) & 0x7;
2428
	params.regval = vcpu_get_reg(vcpu, Rt);
2429 2430
	params.is_write = !(esr & 1);

2431 2432 2433 2434 2435
	ret = emulate_sys_reg(vcpu, &params);

	if (!params.is_write)
		vcpu_set_reg(vcpu, Rt, params.regval);
	return ret;
2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470
}

/******************************************************************************
 * Userspace API
 *****************************************************************************/

static bool index_to_params(u64 id, struct sys_reg_params *params)
{
	switch (id & KVM_REG_SIZE_MASK) {
	case KVM_REG_SIZE_U64:
		/* Any unused index bits means it's not valid. */
		if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
			      | KVM_REG_ARM_COPROC_MASK
			      | KVM_REG_ARM64_SYSREG_OP0_MASK
			      | KVM_REG_ARM64_SYSREG_OP1_MASK
			      | KVM_REG_ARM64_SYSREG_CRN_MASK
			      | KVM_REG_ARM64_SYSREG_CRM_MASK
			      | KVM_REG_ARM64_SYSREG_OP2_MASK))
			return false;
		params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
			       >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
		params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
			       >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
		params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
			       >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
		params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
			       >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
		params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
			       >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
		return true;
	default:
		return false;
	}
}

2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481
const struct sys_reg_desc *find_reg_by_id(u64 id,
					  struct sys_reg_params *params,
					  const struct sys_reg_desc table[],
					  unsigned int num)
{
	if (!index_to_params(id, params))
		return NULL;

	return find_reg(params, table, num);
}

2482 2483 2484 2485
/* Decode an index value, and find the sys_reg_desc entry. */
static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
						    u64 id)
{
2486
	const struct sys_reg_desc *r;
2487 2488 2489 2490 2491 2492
	struct sys_reg_params params;

	/* We only do sys_reg for now. */
	if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
		return NULL;

2493 2494 2495
	if (!index_to_params(id, &params))
		return NULL;

2496
	r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2497

2498 2499
	/* Not saved in the sys_reg array and not otherwise accessible? */
	if (r && !(r->reg || r->get_user))
2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516
		r = NULL;

	return r;
}

/*
 * These are the invariant sys_reg registers: we let the guest see the
 * host versions of these, so they're part of the guest state.
 *
 * A future CPU may provide a mechanism to present different values to
 * the guest, or a future kvm may trap them.
 */

#define FUNCTION_INVARIANT(reg)						\
	static void get_##reg(struct kvm_vcpu *v,			\
			      const struct sys_reg_desc *r)		\
	{								\
2517
		((struct sys_reg_desc *)r)->val = read_sysreg(reg);	\
2518 2519 2520 2521 2522 2523 2524
	}

FUNCTION_INVARIANT(midr_el1)
FUNCTION_INVARIANT(revidr_el1)
FUNCTION_INVARIANT(clidr_el1)
FUNCTION_INVARIANT(aidr_el1)

2525 2526 2527 2528 2529
static void get_ctr_el0(struct kvm_vcpu *v, const struct sys_reg_desc *r)
{
	((struct sys_reg_desc *)r)->val = read_sanitised_ftr_reg(SYS_CTR_EL0);
}

2530 2531
/* ->val is filled in by kvm_sys_reg_table_init() */
static struct sys_reg_desc invariant_sys_regs[] = {
2532 2533 2534 2535 2536
	{ SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 },
	{ SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 },
	{ SYS_DESC(SYS_CLIDR_EL1), NULL, get_clidr_el1 },
	{ SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 },
	{ SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 },
2537 2538
};

2539
static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
2540 2541 2542 2543 2544 2545
{
	if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
		return -EFAULT;
	return 0;
}

2546
static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557
{
	if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
		return -EFAULT;
	return 0;
}

static int get_invariant_sys_reg(u64 id, void __user *uaddr)
{
	struct sys_reg_params params;
	const struct sys_reg_desc *r;

2558 2559
	r = find_reg_by_id(id, &params, invariant_sys_regs,
			   ARRAY_SIZE(invariant_sys_regs));
2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572
	if (!r)
		return -ENOENT;

	return reg_to_user(uaddr, &r->val, id);
}

static int set_invariant_sys_reg(u64 id, void __user *uaddr)
{
	struct sys_reg_params params;
	const struct sys_reg_desc *r;
	int err;
	u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */

2573 2574
	r = find_reg_by_id(id, &params, invariant_sys_regs,
			   ARRAY_SIZE(invariant_sys_regs));
2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593
	if (!r)
		return -ENOENT;

	err = reg_from_user(&val, uaddr, id);
	if (err)
		return err;

	/* This is what we mean by invariant: you can't change it. */
	if (r->val != val)
		return -EINVAL;

	return 0;
}

static bool is_valid_cache(u32 val)
{
	u32 level, ctype;

	if (val >= CSSELR_MAX)
2594
		return false;
2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685

	/* Bottom bit is Instruction or Data bit.  Next 3 bits are level. */
	level = (val >> 1);
	ctype = (cache_levels >> (level * 3)) & 7;

	switch (ctype) {
	case 0: /* No cache */
		return false;
	case 1: /* Instruction cache only */
		return (val & 1);
	case 2: /* Data cache only */
	case 4: /* Unified cache */
		return !(val & 1);
	case 3: /* Separate instruction and data caches */
		return true;
	default: /* Reserved: we can't know instruction or data. */
		return false;
	}
}

static int demux_c15_get(u64 id, void __user *uaddr)
{
	u32 val;
	u32 __user *uval = uaddr;

	/* Fail if we have unknown bits set. */
	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
		return -ENOENT;

	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
		if (KVM_REG_SIZE(id) != 4)
			return -ENOENT;
		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
		if (!is_valid_cache(val))
			return -ENOENT;

		return put_user(get_ccsidr(val), uval);
	default:
		return -ENOENT;
	}
}

static int demux_c15_set(u64 id, void __user *uaddr)
{
	u32 val, newval;
	u32 __user *uval = uaddr;

	/* Fail if we have unknown bits set. */
	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
		return -ENOENT;

	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
		if (KVM_REG_SIZE(id) != 4)
			return -ENOENT;
		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
		if (!is_valid_cache(val))
			return -ENOENT;

		if (get_user(newval, uval))
			return -EFAULT;

		/* This is also invariant: you can't change it. */
		if (newval != get_ccsidr(val))
			return -EINVAL;
		return 0;
	default:
		return -ENOENT;
	}
}

int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
{
	const struct sys_reg_desc *r;
	void __user *uaddr = (void __user *)(unsigned long)reg->addr;

	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
		return demux_c15_get(reg->id, uaddr);

	if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
		return -ENOENT;

	r = index_to_sys_reg_desc(vcpu, reg->id);
	if (!r)
		return get_invariant_sys_reg(reg->id, uaddr);

2686 2687 2688 2689
	/* Check for regs disabled by runtime config */
	if (sysreg_hidden_from_user(vcpu, r))
		return -ENOENT;

2690 2691 2692
	if (r->get_user)
		return (r->get_user)(vcpu, r, reg, uaddr);

2693
	return reg_to_user(uaddr, &__vcpu_sys_reg(vcpu, r->reg), reg->id);
2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710
}

int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
{
	const struct sys_reg_desc *r;
	void __user *uaddr = (void __user *)(unsigned long)reg->addr;

	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
		return demux_c15_set(reg->id, uaddr);

	if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
		return -ENOENT;

	r = index_to_sys_reg_desc(vcpu, reg->id);
	if (!r)
		return set_invariant_sys_reg(reg->id, uaddr);

2711 2712 2713 2714
	/* Check for regs disabled by runtime config */
	if (sysreg_hidden_from_user(vcpu, r))
		return -ENOENT;

2715 2716 2717
	if (r->set_user)
		return (r->set_user)(vcpu, r, reg, uaddr);

2718
	return reg_from_user(&__vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733
}

static unsigned int num_demux_regs(void)
{
	unsigned int i, count = 0;

	for (i = 0; i < CSSELR_MAX; i++)
		if (is_valid_cache(i))
			count++;

	return count;
}

static int write_demux_regids(u64 __user *uindices)
{
2734
	u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770
	unsigned int i;

	val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
	for (i = 0; i < CSSELR_MAX; i++) {
		if (!is_valid_cache(i))
			continue;
		if (put_user(val | i, uindices))
			return -EFAULT;
		uindices++;
	}
	return 0;
}

static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
{
	return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
		KVM_REG_ARM64_SYSREG |
		(reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
		(reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
		(reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
		(reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
		(reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
}

static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
{
	if (!*uind)
		return true;

	if (put_user(sys_reg_to_index(reg), *uind))
		return false;

	(*uind)++;
	return true;
}

2771 2772
static int walk_one_sys_reg(const struct kvm_vcpu *vcpu,
			    const struct sys_reg_desc *rd,
2773 2774 2775 2776 2777 2778 2779 2780 2781 2782
			    u64 __user **uind,
			    unsigned int *total)
{
	/*
	 * Ignore registers we trap but don't save,
	 * and for which no custom user accessor is provided.
	 */
	if (!(rd->reg || rd->get_user))
		return 0;

2783 2784 2785
	if (sysreg_hidden_from_user(vcpu, rd))
		return 0;

2786 2787 2788 2789 2790 2791 2792
	if (!copy_reg_to_user(rd, uind))
		return -EFAULT;

	(*total)++;
	return 0;
}

2793 2794 2795
/* Assumed ordered tables, see kvm_sys_reg_table_init. */
static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
{
2796
	const struct sys_reg_desc *i2, *end2;
2797
	unsigned int total = 0;
2798
	int err;
2799 2800 2801 2802

	i2 = sys_reg_descs;
	end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);

2803 2804
	while (i2 != end2) {
		err = walk_one_sys_reg(vcpu, i2++, &uind, &total);
2805 2806
		if (err)
			return err;
2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843
	}
	return total;
}

unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
{
	return ARRAY_SIZE(invariant_sys_regs)
		+ num_demux_regs()
		+ walk_sys_regs(vcpu, (u64 __user *)NULL);
}

int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
{
	unsigned int i;
	int err;

	/* Then give them all the invariant registers' indices. */
	for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
		if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
			return -EFAULT;
		uindices++;
	}

	err = walk_sys_regs(vcpu, uindices);
	if (err < 0)
		return err;
	uindices += err;

	return write_demux_regids(uindices);
}

void kvm_sys_reg_table_init(void)
{
	unsigned int i;
	struct sys_reg_desc clidr;

	/* Make sure tables are unique and in order. */
2844 2845 2846 2847 2848 2849
	BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs), false));
	BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs), true));
	BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs), true));
	BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs), true));
	BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs), true));
	BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs), false));
2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872

	/* We abuse the reset function to overwrite the table itself. */
	for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
		invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);

	/*
	 * CLIDR format is awkward, so clean it up.  See ARM B4.1.20:
	 *
	 *   If software reads the Cache Type fields from Ctype1
	 *   upwards, once it has seen a value of 0b000, no caches
	 *   exist at further-out levels of the hierarchy. So, for
	 *   example, if Ctype3 is the first Cache Type field with a
	 *   value of 0b000, the values of Ctype4 to Ctype7 must be
	 *   ignored.
	 */
	get_clidr_el1(NULL, &clidr); /* Ugly... */
	cache_levels = clidr.val;
	for (i = 0; i < 7; i++)
		if (((cache_levels >> (i*3)) & 7) == 0)
			break;
	/* Clear all higher bits. */
	cache_levels &= (1 << (i*3))-1;
}