sys_regs.c 64.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * Copyright (C) 2012,2013 - ARM Ltd
 * Author: Marc Zyngier <marc.zyngier@arm.com>
 *
 * Derived from arch/arm/kvm/coproc.c:
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Authors: Rusty Russell <rusty@rustcorp.com.au>
 *          Christoffer Dall <c.dall@virtualopensystems.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

23
#include <linux/bsearch.h>
24
#include <linux/kvm_host.h>
25
#include <linux/mm.h>
26
#include <linux/printk.h>
27
#include <linux/uaccess.h>
28

29 30
#include <asm/cacheflush.h>
#include <asm/cputype.h>
31
#include <asm/debug-monitors.h>
32 33
#include <asm/esr.h>
#include <asm/kvm_arm.h>
34
#include <asm/kvm_asm.h>
35 36 37 38
#include <asm/kvm_coproc.h>
#include <asm/kvm_emulate.h>
#include <asm/kvm_host.h>
#include <asm/kvm_mmu.h>
39
#include <asm/perf_event.h>
40
#include <asm/sysreg.h>
41

42 43 44 45
#include <trace/events/kvm.h>

#include "sys_regs.h"

46 47
#include "trace.h"

48 49 50 51 52
/*
 * All of this file is extremly similar to the ARM coproc.c, but the
 * types are different. My gut feeling is that it should be pretty
 * easy to merge, but that would be an ABI breakage -- again. VFP
 * would also need to be abstracted.
53 54 55 56
 *
 * For AArch32, we only take care of what is being trapped. Anything
 * that has to do with init and userspace access has to go via the
 * 64bit interface.
57 58
 */

59
static bool read_from_write_only(struct kvm_vcpu *vcpu,
60 61
				 struct sys_reg_params *params,
				 const struct sys_reg_desc *r)
62 63 64 65 66 67 68
{
	WARN_ONCE(1, "Unexpected sys_reg read to write-only register\n");
	print_sys_reg_instr(params);
	kvm_inject_undefined(vcpu);
	return false;
}

69 70 71 72 73 74 75 76 77 78
static bool write_to_read_only(struct kvm_vcpu *vcpu,
			       struct sys_reg_params *params,
			       const struct sys_reg_desc *r)
{
	WARN_ONCE(1, "Unexpected sys_reg write to read-only register\n");
	print_sys_reg_instr(params);
	kvm_inject_undefined(vcpu);
	return false;
}

79 80 81 82 83 84 85 86 87 88 89 90 91
/* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
static u32 cache_levels;

/* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
#define CSSELR_MAX 12

/* Which cache CCSIDR represents depends on CSSELR value. */
static u32 get_ccsidr(u32 csselr)
{
	u32 ccsidr;

	/* Make sure noone else changes CSSELR during this! */
	local_irq_disable();
92
	write_sysreg(csselr, csselr_el1);
93
	isb();
94
	ccsidr = read_sysreg(ccsidr_el1);
95 96 97 98 99
	local_irq_enable();

	return ccsidr;
}

100 101 102
/*
 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
 */
103
static bool access_dcsw(struct kvm_vcpu *vcpu,
104
			struct sys_reg_params *p,
105 106 107
			const struct sys_reg_desc *r)
{
	if (!p->is_write)
108
		return read_from_write_only(vcpu, p, r);
109

110
	kvm_set_way_flush(vcpu);
111 112 113
	return true;
}

114 115
/*
 * Generic accessor for VM registers. Only called as long as HCR_TVM
116 117
 * is set. If the guest enables the MMU, we stop trapping the VM
 * sys_regs and leave it in complete control of the caches.
118 119
 */
static bool access_vm_reg(struct kvm_vcpu *vcpu,
120
			  struct sys_reg_params *p,
121 122
			  const struct sys_reg_desc *r)
{
123
	bool was_enabled = vcpu_has_cache_enabled(vcpu);
124 125 126

	BUG_ON(!p->is_write);

127
	if (!p->is_aarch32) {
128
		vcpu_sys_reg(vcpu, r->reg) = p->regval;
129 130
	} else {
		if (!p->is_32bit)
131 132
			vcpu_cp15_64_high(vcpu, r->reg) = upper_32_bits(p->regval);
		vcpu_cp15_64_low(vcpu, r->reg) = lower_32_bits(p->regval);
133
	}
134

135
	kvm_toggle_cache(vcpu, was_enabled);
136 137 138
	return true;
}

139 140 141 142 143 144 145
/*
 * Trap handler for the GICv3 SGI generation system register.
 * Forward the request to the VGIC emulation.
 * The cp15_64 code makes sure this automatically works
 * for both AArch64 and AArch32 accesses.
 */
static bool access_gic_sgi(struct kvm_vcpu *vcpu,
146
			   struct sys_reg_params *p,
147 148 149
			   const struct sys_reg_desc *r)
{
	if (!p->is_write)
150
		return read_from_write_only(vcpu, p, r);
151

152
	vgic_v3_dispatch_sgi(vcpu, p->regval);
153 154 155 156

	return true;
}

157 158 159 160 161 162 163 164 165 166 167
static bool access_gic_sre(struct kvm_vcpu *vcpu,
			   struct sys_reg_params *p,
			   const struct sys_reg_desc *r)
{
	if (p->is_write)
		return ignore_write(vcpu, p);

	p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
	return true;
}

168
static bool trap_raz_wi(struct kvm_vcpu *vcpu,
169
			struct sys_reg_params *p,
170
			const struct sys_reg_desc *r)
171 172 173 174 175 176 177
{
	if (p->is_write)
		return ignore_write(vcpu, p);
	else
		return read_zero(vcpu, p);
}

178
static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
179
			   struct sys_reg_params *p,
180 181 182 183 184
			   const struct sys_reg_desc *r)
{
	if (p->is_write) {
		return ignore_write(vcpu, p);
	} else {
185
		p->regval = (1 << 3);
186 187 188 189 190
		return true;
	}
}

static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
191
				   struct sys_reg_params *p,
192 193 194 195 196
				   const struct sys_reg_desc *r)
{
	if (p->is_write) {
		return ignore_write(vcpu, p);
	} else {
197
		p->regval = read_sysreg(dbgauthstatus_el1);
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
		return true;
	}
}

/*
 * We want to avoid world-switching all the DBG registers all the
 * time:
 * 
 * - If we've touched any debug register, it is likely that we're
 *   going to touch more of them. It then makes sense to disable the
 *   traps and start doing the save/restore dance
 * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
 *   then mandatory to save/restore the registers, as the guest
 *   depends on them.
 * 
 * For this, we use a DIRTY bit, indicating the guest has modified the
 * debug registers, used as follow:
 *
 * On guest entry:
 * - If the dirty bit is set (because we're coming back from trapping),
 *   disable the traps, save host registers, restore guest registers.
 * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
 *   set the dirty bit, disable the traps, save host registers,
 *   restore guest registers.
 * - Otherwise, enable the traps
 *
 * On guest exit:
 * - If the dirty bit is set, save guest registers, restore host
 *   registers and clear the dirty bit. This ensure that the host can
 *   now use the debug registers.
 */
static bool trap_debug_regs(struct kvm_vcpu *vcpu,
230
			    struct sys_reg_params *p,
231 232 233
			    const struct sys_reg_desc *r)
{
	if (p->is_write) {
234
		vcpu_sys_reg(vcpu, r->reg) = p->regval;
235 236
		vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
	} else {
237
		p->regval = vcpu_sys_reg(vcpu, r->reg);
238 239
	}

240
	trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
241

242 243 244
	return true;
}

245 246 247 248 249 250 251 252 253
/*
 * reg_to_dbg/dbg_to_reg
 *
 * A 32 bit write to a debug register leave top bits alone
 * A 32 bit read from a debug register only returns the bottom bits
 *
 * All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the
 * hyp.S code switches between host and guest values in future.
 */
254 255 256
static void reg_to_dbg(struct kvm_vcpu *vcpu,
		       struct sys_reg_params *p,
		       u64 *dbg_reg)
257
{
258
	u64 val = p->regval;
259 260 261 262 263 264 265 266 267 268

	if (p->is_32bit) {
		val &= 0xffffffffUL;
		val |= ((*dbg_reg >> 32) << 32);
	}

	*dbg_reg = val;
	vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
}

269 270 271
static void dbg_to_reg(struct kvm_vcpu *vcpu,
		       struct sys_reg_params *p,
		       u64 *dbg_reg)
272
{
273
	p->regval = *dbg_reg;
274
	if (p->is_32bit)
275
		p->regval &= 0xffffffffUL;
276 277
}

278 279 280
static bool trap_bvr(struct kvm_vcpu *vcpu,
		     struct sys_reg_params *p,
		     const struct sys_reg_desc *rd)
281 282 283 284 285 286 287 288
{
	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];

	if (p->is_write)
		reg_to_dbg(vcpu, p, dbg_reg);
	else
		dbg_to_reg(vcpu, p, dbg_reg);

289 290
	trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);

291 292 293 294 295 296 297 298
	return true;
}

static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
		const struct kvm_one_reg *reg, void __user *uaddr)
{
	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];

299
	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
300 301 302 303 304 305 306 307 308 309 310 311 312 313
		return -EFAULT;
	return 0;
}

static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
	const struct kvm_one_reg *reg, void __user *uaddr)
{
	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];

	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
		return -EFAULT;
	return 0;
}

314 315
static void reset_bvr(struct kvm_vcpu *vcpu,
		      const struct sys_reg_desc *rd)
316 317 318 319
{
	vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg] = rd->val;
}

320 321 322
static bool trap_bcr(struct kvm_vcpu *vcpu,
		     struct sys_reg_params *p,
		     const struct sys_reg_desc *rd)
323 324 325 326 327 328 329 330
{
	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];

	if (p->is_write)
		reg_to_dbg(vcpu, p, dbg_reg);
	else
		dbg_to_reg(vcpu, p, dbg_reg);

331 332
	trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);

333 334 335 336 337 338 339 340
	return true;
}

static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
		const struct kvm_one_reg *reg, void __user *uaddr)
{
	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];

341
	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
		return -EFAULT;

	return 0;
}

static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
	const struct kvm_one_reg *reg, void __user *uaddr)
{
	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];

	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
		return -EFAULT;
	return 0;
}

357 358
static void reset_bcr(struct kvm_vcpu *vcpu,
		      const struct sys_reg_desc *rd)
359 360 361 362
{
	vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg] = rd->val;
}

363 364 365
static bool trap_wvr(struct kvm_vcpu *vcpu,
		     struct sys_reg_params *p,
		     const struct sys_reg_desc *rd)
366 367 368 369 370 371 372 373
{
	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];

	if (p->is_write)
		reg_to_dbg(vcpu, p, dbg_reg);
	else
		dbg_to_reg(vcpu, p, dbg_reg);

374 375 376
	trace_trap_reg(__func__, rd->reg, p->is_write,
		vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg]);

377 378 379 380 381 382 383 384
	return true;
}

static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
		const struct kvm_one_reg *reg, void __user *uaddr)
{
	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];

385
	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
386 387 388 389 390 391 392 393 394 395 396 397 398 399
		return -EFAULT;
	return 0;
}

static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
	const struct kvm_one_reg *reg, void __user *uaddr)
{
	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];

	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
		return -EFAULT;
	return 0;
}

400 401
static void reset_wvr(struct kvm_vcpu *vcpu,
		      const struct sys_reg_desc *rd)
402 403 404 405
{
	vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg] = rd->val;
}

406 407 408
static bool trap_wcr(struct kvm_vcpu *vcpu,
		     struct sys_reg_params *p,
		     const struct sys_reg_desc *rd)
409 410 411 412 413 414 415 416
{
	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];

	if (p->is_write)
		reg_to_dbg(vcpu, p, dbg_reg);
	else
		dbg_to_reg(vcpu, p, dbg_reg);

417 418
	trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);

419 420 421 422 423 424 425 426
	return true;
}

static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
		const struct kvm_one_reg *reg, void __user *uaddr)
{
	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];

427
	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
428 429 430 431 432 433 434 435 436 437 438 439 440 441
		return -EFAULT;
	return 0;
}

static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
	const struct kvm_one_reg *reg, void __user *uaddr)
{
	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];

	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
		return -EFAULT;
	return 0;
}

442 443
static void reset_wcr(struct kvm_vcpu *vcpu,
		      const struct sys_reg_desc *rd)
444 445 446 447
{
	vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg] = rd->val;
}

448 449
static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
{
450
	vcpu_sys_reg(vcpu, AMAIR_EL1) = read_sysreg(amair_el1);
451 452 453 454
}

static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
{
455 456
	u64 mpidr;

457
	/*
458 459 460 461 462
	 * Map the vcpu_id into the first three affinity level fields of
	 * the MPIDR. We limit the number of VCPUs in level 0 due to a
	 * limitation to 16 CPUs in that level in the ICC_SGIxR registers
	 * of the GICv3 to be able to address each CPU directly when
	 * sending IPIs.
463
	 */
464 465 466 467
	mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
	mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
	mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
	vcpu_sys_reg(vcpu, MPIDR_EL1) = (1ULL << 31) | mpidr;
468 469
}

470 471 472 473
static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
{
	u64 pmcr, val;

474 475 476
	pmcr = read_sysreg(pmcr_el0);
	/*
	 * Writable bits of PMCR_EL0 (ARMV8_PMU_PMCR_MASK) are reset to UNKNOWN
477 478 479 480 481 482 483
	 * except PMCR.E resetting to zero.
	 */
	val = ((pmcr & ~ARMV8_PMU_PMCR_MASK)
	       | (ARMV8_PMU_PMCR_MASK & 0xdecafbad)) & (~ARMV8_PMU_PMCR_E);
	vcpu_sys_reg(vcpu, PMCR_EL0) = val;
}

484
static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
485 486
{
	u64 reg = vcpu_sys_reg(vcpu, PMUSERENR_EL0);
487
	bool enabled = (reg & flags) || vcpu_mode_priv(vcpu);
488

489 490
	if (!enabled)
		kvm_inject_undefined(vcpu);
491

492
	return !enabled;
493 494
}

495
static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
496
{
497 498
	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
}
499

500 501 502
static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
{
	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
503 504 505 506
}

static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
{
507
	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
508 509 510 511
}

static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
{
512
	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
513 514
}

515 516 517 518 519 520 521 522
static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
			const struct sys_reg_desc *r)
{
	u64 val;

	if (!kvm_arm_pmu_v3_ready(vcpu))
		return trap_raz_wi(vcpu, p, r);

523 524 525
	if (pmu_access_el0_disabled(vcpu))
		return false;

526 527 528 529 530 531
	if (p->is_write) {
		/* Only update writeable bits of PMCR */
		val = vcpu_sys_reg(vcpu, PMCR_EL0);
		val &= ~ARMV8_PMU_PMCR_MASK;
		val |= p->regval & ARMV8_PMU_PMCR_MASK;
		vcpu_sys_reg(vcpu, PMCR_EL0) = val;
532
		kvm_pmu_handle_pmcr(vcpu, val);
533 534 535 536 537 538 539 540 541 542
	} else {
		/* PMCR.P & PMCR.C are RAZ */
		val = vcpu_sys_reg(vcpu, PMCR_EL0)
		      & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
		p->regval = val;
	}

	return true;
}

543 544 545 546 547 548
static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
			  const struct sys_reg_desc *r)
{
	if (!kvm_arm_pmu_v3_ready(vcpu))
		return trap_raz_wi(vcpu, p, r);

549 550 551
	if (pmu_access_event_counter_el0_disabled(vcpu))
		return false;

552 553 554 555 556 557 558 559 560 561
	if (p->is_write)
		vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
	else
		/* return PMSELR.SEL field */
		p->regval = vcpu_sys_reg(vcpu, PMSELR_EL0)
			    & ARMV8_PMU_COUNTER_MASK;

	return true;
}

562 563 564 565 566 567 568 569 570 571
static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
			  const struct sys_reg_desc *r)
{
	u64 pmceid;

	if (!kvm_arm_pmu_v3_ready(vcpu))
		return trap_raz_wi(vcpu, p, r);

	BUG_ON(p->is_write);

572 573 574
	if (pmu_access_el0_disabled(vcpu))
		return false;

575
	if (!(p->Op2 & 1))
576
		pmceid = read_sysreg(pmceid0_el0);
577
	else
578
		pmceid = read_sysreg(pmceid1_el0);
579 580 581 582 583 584

	p->regval = pmceid;

	return true;
}

585 586 587 588 589 590
static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
{
	u64 pmcr, val;

	pmcr = vcpu_sys_reg(vcpu, PMCR_EL0);
	val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
591 592
	if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
		kvm_inject_undefined(vcpu);
593
		return false;
594
	}
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610

	return true;
}

static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
			      struct sys_reg_params *p,
			      const struct sys_reg_desc *r)
{
	u64 idx;

	if (!kvm_arm_pmu_v3_ready(vcpu))
		return trap_raz_wi(vcpu, p, r);

	if (r->CRn == 9 && r->CRm == 13) {
		if (r->Op2 == 2) {
			/* PMXEVCNTR_EL0 */
611 612 613
			if (pmu_access_event_counter_el0_disabled(vcpu))
				return false;

614 615 616 617
			idx = vcpu_sys_reg(vcpu, PMSELR_EL0)
			      & ARMV8_PMU_COUNTER_MASK;
		} else if (r->Op2 == 0) {
			/* PMCCNTR_EL0 */
618 619 620
			if (pmu_access_cycle_counter_el0_disabled(vcpu))
				return false;

621 622
			idx = ARMV8_PMU_CYCLE_IDX;
		} else {
623
			return false;
624
		}
625 626 627 628 629 630
	} else if (r->CRn == 0 && r->CRm == 9) {
		/* PMCCNTR */
		if (pmu_access_event_counter_el0_disabled(vcpu))
			return false;

		idx = ARMV8_PMU_CYCLE_IDX;
631 632
	} else if (r->CRn == 14 && (r->CRm & 12) == 8) {
		/* PMEVCNTRn_EL0 */
633 634 635
		if (pmu_access_event_counter_el0_disabled(vcpu))
			return false;

636 637
		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
	} else {
638
		return false;
639 640 641 642 643
	}

	if (!pmu_counter_idx_valid(vcpu, idx))
		return false;

644 645 646 647
	if (p->is_write) {
		if (pmu_access_el0_disabled(vcpu))
			return false;

648
		kvm_pmu_set_counter_value(vcpu, idx, p->regval);
649
	} else {
650
		p->regval = kvm_pmu_get_counter_value(vcpu, idx);
651
	}
652 653 654 655

	return true;
}

656 657 658 659 660 661 662 663
static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
			       const struct sys_reg_desc *r)
{
	u64 idx, reg;

	if (!kvm_arm_pmu_v3_ready(vcpu))
		return trap_raz_wi(vcpu, p, r);

664 665 666
	if (pmu_access_el0_disabled(vcpu))
		return false;

667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
	if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
		/* PMXEVTYPER_EL0 */
		idx = vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
		reg = PMEVTYPER0_EL0 + idx;
	} else if (r->CRn == 14 && (r->CRm & 12) == 12) {
		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
		if (idx == ARMV8_PMU_CYCLE_IDX)
			reg = PMCCFILTR_EL0;
		else
			/* PMEVTYPERn_EL0 */
			reg = PMEVTYPER0_EL0 + idx;
	} else {
		BUG();
	}

	if (!pmu_counter_idx_valid(vcpu, idx))
		return false;

	if (p->is_write) {
		kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
		vcpu_sys_reg(vcpu, reg) = p->regval & ARMV8_PMU_EVTYPE_MASK;
	} else {
		p->regval = vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK;
	}

	return true;
}

695 696 697 698 699 700 701 702
static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
			   const struct sys_reg_desc *r)
{
	u64 val, mask;

	if (!kvm_arm_pmu_v3_ready(vcpu))
		return trap_raz_wi(vcpu, p, r);

703 704 705
	if (pmu_access_el0_disabled(vcpu))
		return false;

706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
	mask = kvm_pmu_valid_counter_mask(vcpu);
	if (p->is_write) {
		val = p->regval & mask;
		if (r->Op2 & 0x1) {
			/* accessing PMCNTENSET_EL0 */
			vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
			kvm_pmu_enable_counter(vcpu, val);
		} else {
			/* accessing PMCNTENCLR_EL0 */
			vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
			kvm_pmu_disable_counter(vcpu, val);
		}
	} else {
		p->regval = vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & mask;
	}

	return true;
}

725 726 727 728 729 730 731 732
static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
			   const struct sys_reg_desc *r)
{
	u64 mask = kvm_pmu_valid_counter_mask(vcpu);

	if (!kvm_arm_pmu_v3_ready(vcpu))
		return trap_raz_wi(vcpu, p, r);

733 734
	if (!vcpu_mode_priv(vcpu)) {
		kvm_inject_undefined(vcpu);
735
		return false;
736
	}
737

738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
	if (p->is_write) {
		u64 val = p->regval & mask;

		if (r->Op2 & 0x1)
			/* accessing PMINTENSET_EL1 */
			vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
		else
			/* accessing PMINTENCLR_EL1 */
			vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
	} else {
		p->regval = vcpu_sys_reg(vcpu, PMINTENSET_EL1) & mask;
	}

	return true;
}

754 755 756 757 758 759 760 761
static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
			 const struct sys_reg_desc *r)
{
	u64 mask = kvm_pmu_valid_counter_mask(vcpu);

	if (!kvm_arm_pmu_v3_ready(vcpu))
		return trap_raz_wi(vcpu, p, r);

762 763 764
	if (pmu_access_el0_disabled(vcpu))
		return false;

765 766 767
	if (p->is_write) {
		if (r->CRm & 0x2)
			/* accessing PMOVSSET_EL0 */
768
			vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask);
769 770 771 772 773 774 775 776 777 778
		else
			/* accessing PMOVSCLR_EL0 */
			vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
	} else {
		p->regval = vcpu_sys_reg(vcpu, PMOVSSET_EL0) & mask;
	}

	return true;
}

779 780 781 782 783 784 785 786
static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
			   const struct sys_reg_desc *r)
{
	u64 mask;

	if (!kvm_arm_pmu_v3_ready(vcpu))
		return trap_raz_wi(vcpu, p, r);

787
	if (!p->is_write)
788
		return read_from_write_only(vcpu, p, r);
789

790 791 792
	if (pmu_write_swinc_el0_disabled(vcpu))
		return false;

793 794 795
	mask = kvm_pmu_valid_counter_mask(vcpu);
	kvm_pmu_software_increment(vcpu, p->regval & mask);
	return true;
796 797
}

798 799 800 801 802 803 804
static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
			     const struct sys_reg_desc *r)
{
	if (!kvm_arm_pmu_v3_ready(vcpu))
		return trap_raz_wi(vcpu, p, r);

	if (p->is_write) {
805 806
		if (!vcpu_mode_priv(vcpu)) {
			kvm_inject_undefined(vcpu);
807
			return false;
808
		}
809 810 811 812 813 814 815 816 817 818 819

		vcpu_sys_reg(vcpu, PMUSERENR_EL0) = p->regval
						    & ARMV8_PMU_USERENR_MASK;
	} else {
		p->regval = vcpu_sys_reg(vcpu, PMUSERENR_EL0)
			    & ARMV8_PMU_USERENR_MASK;
	}

	return true;
}

820 821
/* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
#define DBG_BCR_BVR_WCR_WVR_EL1(n)					\
822
	{ SYS_DESC(SYS_DBGBVRn_EL1(n)),					\
823
	  trap_bvr, reset_bvr, n, 0, get_bvr, set_bvr },		\
824
	{ SYS_DESC(SYS_DBGBCRn_EL1(n)),					\
825
	  trap_bcr, reset_bcr, n, 0, get_bcr, set_bcr },		\
826
	{ SYS_DESC(SYS_DBGWVRn_EL1(n)),					\
827
	  trap_wvr, reset_wvr, n, 0,  get_wvr, set_wvr },		\
828
	{ SYS_DESC(SYS_DBGWCRn_EL1(n)),					\
829
	  trap_wcr, reset_wcr, n, 0,  get_wcr, set_wcr }
830

831 832
/* Macro to expand the PMEVCNTRn_EL0 register */
#define PMU_PMEVCNTR_EL0(n)						\
833
	{ SYS_DESC(SYS_PMEVCNTRn_EL0(n)),					\
834 835
	  access_pmu_evcntr, reset_unknown, (PMEVCNTR0_EL0 + n), }

836 837
/* Macro to expand the PMEVTYPERn_EL0 register */
#define PMU_PMEVTYPER_EL0(n)						\
838
	{ SYS_DESC(SYS_PMEVTYPERn_EL0(n)),					\
839 840
	  access_pmu_evtyper, reset_unknown, (PMEVTYPER0_EL0 + n), }

841 842 843 844
static bool access_cntp_tval(struct kvm_vcpu *vcpu,
		struct sys_reg_params *p,
		const struct sys_reg_desc *r)
{
845
	u64 now = kvm_phys_timer_read();
846
	u64 cval;
847

848 849 850 851 852 853 854
	if (p->is_write) {
		kvm_arm_timer_set_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL,
				      p->regval + now);
	} else {
		cval = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL);
		p->regval = cval - now;
	}
855

856 857 858 859 860 861 862
	return true;
}

static bool access_cntp_ctl(struct kvm_vcpu *vcpu,
		struct sys_reg_params *p,
		const struct sys_reg_desc *r)
{
863 864 865 866
	if (p->is_write)
		kvm_arm_timer_set_reg(vcpu, KVM_REG_ARM_PTIMER_CTL, p->regval);
	else
		p->regval = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_PTIMER_CTL);
867

868 869 870 871 872 873 874
	return true;
}

static bool access_cntp_cval(struct kvm_vcpu *vcpu,
		struct sys_reg_params *p,
		const struct sys_reg_desc *r)
{
875
	if (p->is_write)
876
		kvm_arm_timer_set_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL, p->regval);
877
	else
878
		p->regval = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL);
879

880 881 882
	return true;
}

883 884 885 886 887
/* Read a sanitised cpufeature ID register by sys_reg_desc */
static u64 read_id_reg(struct sys_reg_desc const *r, bool raz)
{
	u32 id = sys_reg((u32)r->Op0, (u32)r->Op1,
			 (u32)r->CRn, (u32)r->CRm, (u32)r->Op2);
888
	u64 val = raz ? 0 : read_sanitised_ftr_reg(id);
889

890 891 892 893 894 895 896 897 898
	if (id == SYS_ID_AA64PFR0_EL1) {
		if (val & (0xfUL << ID_AA64PFR0_SVE_SHIFT))
			pr_err_once("kvm [%i]: SVE unsupported for guests, suppressing\n",
				    task_pid_nr(current));

		val &= ~(0xfUL << ID_AA64PFR0_SVE_SHIFT);
	}

	return val;
899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
}

/* cpufeature ID register access trap handlers */

static bool __access_id_reg(struct kvm_vcpu *vcpu,
			    struct sys_reg_params *p,
			    const struct sys_reg_desc *r,
			    bool raz)
{
	if (p->is_write)
		return write_to_read_only(vcpu, p, r);

	p->regval = read_id_reg(r, raz);
	return true;
}

static bool access_id_reg(struct kvm_vcpu *vcpu,
			  struct sys_reg_params *p,
			  const struct sys_reg_desc *r)
{
	return __access_id_reg(vcpu, p, r, false);
}

static bool access_raz_id_reg(struct kvm_vcpu *vcpu,
			      struct sys_reg_params *p,
			      const struct sys_reg_desc *r)
{
	return __access_id_reg(vcpu, p, r, true);
}

static int reg_from_user(u64 *val, const void __user *uaddr, u64 id);
static int reg_to_user(void __user *uaddr, const u64 *val, u64 id);
static u64 sys_reg_to_index(const struct sys_reg_desc *reg);

/*
 * cpufeature ID register user accessors
 *
 * For now, these registers are immutable for userspace, so no values
 * are stored, and for set_id_reg() we don't allow the effective value
 * to be changed.
 */
static int __get_id_reg(const struct sys_reg_desc *rd, void __user *uaddr,
			bool raz)
{
	const u64 id = sys_reg_to_index(rd);
	const u64 val = read_id_reg(rd, raz);

	return reg_to_user(uaddr, &val, id);
}

static int __set_id_reg(const struct sys_reg_desc *rd, void __user *uaddr,
			bool raz)
{
	const u64 id = sys_reg_to_index(rd);
	int err;
	u64 val;

	err = reg_from_user(&val, uaddr, id);
	if (err)
		return err;

	/* This is what we mean by invariant: you can't change it. */
	if (val != read_id_reg(rd, raz))
		return -EINVAL;

	return 0;
}

static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
		      const struct kvm_one_reg *reg, void __user *uaddr)
{
	return __get_id_reg(rd, uaddr, false);
}

static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
		      const struct kvm_one_reg *reg, void __user *uaddr)
{
	return __set_id_reg(rd, uaddr, false);
}

static int get_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
			  const struct kvm_one_reg *reg, void __user *uaddr)
{
	return __get_id_reg(rd, uaddr, true);
}

static int set_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
			  const struct kvm_one_reg *reg, void __user *uaddr)
{
	return __set_id_reg(rd, uaddr, true);
}

/* sys_reg_desc initialiser for known cpufeature ID registers */
#define ID_SANITISED(name) {			\
	SYS_DESC(SYS_##name),			\
	.access	= access_id_reg,		\
	.get_user = get_id_reg,			\
	.set_user = set_id_reg,			\
}

/*
 * sys_reg_desc initialiser for architecturally unallocated cpufeature ID
 * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
 * (1 <= crm < 8, 0 <= Op2 < 8).
 */
#define ID_UNALLOCATED(crm, op2) {			\
	Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2),	\
	.access = access_raz_id_reg,			\
	.get_user = get_raz_id_reg,			\
	.set_user = set_raz_id_reg,			\
}

/*
 * sys_reg_desc initialiser for known ID registers that we hide from guests.
 * For now, these are exposed just like unallocated ID regs: they appear
 * RAZ for the guest.
 */
#define ID_HIDDEN(name) {			\
	SYS_DESC(SYS_##name),			\
	.access = access_raz_id_reg,		\
	.get_user = get_raz_id_reg,		\
	.set_user = set_raz_id_reg,		\
}

1023 1024 1025
/*
 * Architected system registers.
 * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
1026
 *
1027 1028 1029 1030 1031 1032
 * Debug handling: We do trap most, if not all debug related system
 * registers. The implementation is good enough to ensure that a guest
 * can use these with minimal performance degradation. The drawback is
 * that we don't implement any of the external debug, none of the
 * OSlock protocol. This should be revisited if we ever encounter a
 * more demanding guest...
1033 1034
 */
static const struct sys_reg_desc sys_reg_descs[] = {
1035 1036 1037
	{ SYS_DESC(SYS_DC_ISW), access_dcsw },
	{ SYS_DESC(SYS_DC_CSW), access_dcsw },
	{ SYS_DESC(SYS_DC_CISW), access_dcsw },
1038

1039 1040
	DBG_BCR_BVR_WCR_WVR_EL1(0),
	DBG_BCR_BVR_WCR_WVR_EL1(1),
1041 1042
	{ SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
	{ SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
	DBG_BCR_BVR_WCR_WVR_EL1(2),
	DBG_BCR_BVR_WCR_WVR_EL1(3),
	DBG_BCR_BVR_WCR_WVR_EL1(4),
	DBG_BCR_BVR_WCR_WVR_EL1(5),
	DBG_BCR_BVR_WCR_WVR_EL1(6),
	DBG_BCR_BVR_WCR_WVR_EL1(7),
	DBG_BCR_BVR_WCR_WVR_EL1(8),
	DBG_BCR_BVR_WCR_WVR_EL1(9),
	DBG_BCR_BVR_WCR_WVR_EL1(10),
	DBG_BCR_BVR_WCR_WVR_EL1(11),
	DBG_BCR_BVR_WCR_WVR_EL1(12),
	DBG_BCR_BVR_WCR_WVR_EL1(13),
	DBG_BCR_BVR_WCR_WVR_EL1(14),
	DBG_BCR_BVR_WCR_WVR_EL1(15),

1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
	{ SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
	{ SYS_DESC(SYS_OSLAR_EL1), trap_raz_wi },
	{ SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1 },
	{ SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
	{ SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
	{ SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
	{ SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
	{ SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },

	{ SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
	{ SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
	// DBGDTR[TR]X_EL0 share the same encoding
	{ SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },

	{ SYS_DESC(SYS_DBGVCR32_EL2), NULL, reset_val, DBGVCR32_EL2, 0 },
1073

1074
	{ SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152

	/*
	 * ID regs: all ID_SANITISED() entries here must have corresponding
	 * entries in arm64_ftr_regs[].
	 */

	/* AArch64 mappings of the AArch32 ID registers */
	/* CRm=1 */
	ID_SANITISED(ID_PFR0_EL1),
	ID_SANITISED(ID_PFR1_EL1),
	ID_SANITISED(ID_DFR0_EL1),
	ID_HIDDEN(ID_AFR0_EL1),
	ID_SANITISED(ID_MMFR0_EL1),
	ID_SANITISED(ID_MMFR1_EL1),
	ID_SANITISED(ID_MMFR2_EL1),
	ID_SANITISED(ID_MMFR3_EL1),

	/* CRm=2 */
	ID_SANITISED(ID_ISAR0_EL1),
	ID_SANITISED(ID_ISAR1_EL1),
	ID_SANITISED(ID_ISAR2_EL1),
	ID_SANITISED(ID_ISAR3_EL1),
	ID_SANITISED(ID_ISAR4_EL1),
	ID_SANITISED(ID_ISAR5_EL1),
	ID_SANITISED(ID_MMFR4_EL1),
	ID_UNALLOCATED(2,7),

	/* CRm=3 */
	ID_SANITISED(MVFR0_EL1),
	ID_SANITISED(MVFR1_EL1),
	ID_SANITISED(MVFR2_EL1),
	ID_UNALLOCATED(3,3),
	ID_UNALLOCATED(3,4),
	ID_UNALLOCATED(3,5),
	ID_UNALLOCATED(3,6),
	ID_UNALLOCATED(3,7),

	/* AArch64 ID registers */
	/* CRm=4 */
	ID_SANITISED(ID_AA64PFR0_EL1),
	ID_SANITISED(ID_AA64PFR1_EL1),
	ID_UNALLOCATED(4,2),
	ID_UNALLOCATED(4,3),
	ID_UNALLOCATED(4,4),
	ID_UNALLOCATED(4,5),
	ID_UNALLOCATED(4,6),
	ID_UNALLOCATED(4,7),

	/* CRm=5 */
	ID_SANITISED(ID_AA64DFR0_EL1),
	ID_SANITISED(ID_AA64DFR1_EL1),
	ID_UNALLOCATED(5,2),
	ID_UNALLOCATED(5,3),
	ID_HIDDEN(ID_AA64AFR0_EL1),
	ID_HIDDEN(ID_AA64AFR1_EL1),
	ID_UNALLOCATED(5,6),
	ID_UNALLOCATED(5,7),

	/* CRm=6 */
	ID_SANITISED(ID_AA64ISAR0_EL1),
	ID_SANITISED(ID_AA64ISAR1_EL1),
	ID_UNALLOCATED(6,2),
	ID_UNALLOCATED(6,3),
	ID_UNALLOCATED(6,4),
	ID_UNALLOCATED(6,5),
	ID_UNALLOCATED(6,6),
	ID_UNALLOCATED(6,7),

	/* CRm=7 */
	ID_SANITISED(ID_AA64MMFR0_EL1),
	ID_SANITISED(ID_AA64MMFR1_EL1),
	ID_SANITISED(ID_AA64MMFR2_EL1),
	ID_UNALLOCATED(7,3),
	ID_UNALLOCATED(7,4),
	ID_UNALLOCATED(7,5),
	ID_UNALLOCATED(7,6),
	ID_UNALLOCATED(7,7),

1153 1154 1155 1156 1157 1158 1159 1160 1161
	{ SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
	{ SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
	{ SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
	{ SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
	{ SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },

	{ SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
	{ SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
	{ SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171

	{ SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi },
	{ SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi },
	{ SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi },
	{ SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi },
	{ SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi },
	{ SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi },
	{ SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi },
	{ SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi },

1172 1173
	{ SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
	{ SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
1174

1175 1176
	{ SYS_DESC(SYS_PMINTENSET_EL1), access_pminten, reset_unknown, PMINTENSET_EL1 },
	{ SYS_DESC(SYS_PMINTENCLR_EL1), access_pminten, NULL, PMINTENSET_EL1 },
1177

1178 1179
	{ SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
	{ SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
1180

1181
	{ SYS_DESC(SYS_VBAR_EL1), NULL, reset_val, VBAR_EL1, 0 },
1182
	{ SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 },
1183

1184
	{ SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only },
1185
	{ SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only },
1186
	{ SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only },
1187
	{ SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only },
1188
	{ SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only },
1189
	{ SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
1190
	{ SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only },
1191
	{ SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only },
1192
	{ SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only },
1193
	{ SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
1194

1195 1196
	{ SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
	{ SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
1197

1198
	{ SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
1199

1200
	{ SYS_DESC(SYS_CSSELR_EL1), NULL, reset_unknown, CSSELR_EL1 },
1201

1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
	{ SYS_DESC(SYS_PMCR_EL0), access_pmcr, reset_pmcr, },
	{ SYS_DESC(SYS_PMCNTENSET_EL0), access_pmcnten, reset_unknown, PMCNTENSET_EL0 },
	{ SYS_DESC(SYS_PMCNTENCLR_EL0), access_pmcnten, NULL, PMCNTENSET_EL0 },
	{ SYS_DESC(SYS_PMOVSCLR_EL0), access_pmovs, NULL, PMOVSSET_EL0 },
	{ SYS_DESC(SYS_PMSWINC_EL0), access_pmswinc, reset_unknown, PMSWINC_EL0 },
	{ SYS_DESC(SYS_PMSELR_EL0), access_pmselr, reset_unknown, PMSELR_EL0 },
	{ SYS_DESC(SYS_PMCEID0_EL0), access_pmceid },
	{ SYS_DESC(SYS_PMCEID1_EL0), access_pmceid },
	{ SYS_DESC(SYS_PMCCNTR_EL0), access_pmu_evcntr, reset_unknown, PMCCNTR_EL0 },
	{ SYS_DESC(SYS_PMXEVTYPER_EL0), access_pmu_evtyper },
	{ SYS_DESC(SYS_PMXEVCNTR_EL0), access_pmu_evcntr },
	/*
	 * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
1215 1216
	 * in 32bit mode. Here we choose to reset it as zero for consistency.
	 */
1217 1218
	{ SYS_DESC(SYS_PMUSERENR_EL0), access_pmuserenr, reset_val, PMUSERENR_EL0, 0 },
	{ SYS_DESC(SYS_PMOVSSET_EL0), access_pmovs, reset_unknown, PMOVSSET_EL0 },
1219

1220 1221
	{ SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
	{ SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
1222

1223 1224 1225
	{ SYS_DESC(SYS_CNTP_TVAL_EL0), access_cntp_tval },
	{ SYS_DESC(SYS_CNTP_CTL_EL0), access_cntp_ctl },
	{ SYS_DESC(SYS_CNTP_CVAL_EL0), access_cntp_cval },
1226

1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
	/* PMEVCNTRn_EL0 */
	PMU_PMEVCNTR_EL0(0),
	PMU_PMEVCNTR_EL0(1),
	PMU_PMEVCNTR_EL0(2),
	PMU_PMEVCNTR_EL0(3),
	PMU_PMEVCNTR_EL0(4),
	PMU_PMEVCNTR_EL0(5),
	PMU_PMEVCNTR_EL0(6),
	PMU_PMEVCNTR_EL0(7),
	PMU_PMEVCNTR_EL0(8),
	PMU_PMEVCNTR_EL0(9),
	PMU_PMEVCNTR_EL0(10),
	PMU_PMEVCNTR_EL0(11),
	PMU_PMEVCNTR_EL0(12),
	PMU_PMEVCNTR_EL0(13),
	PMU_PMEVCNTR_EL0(14),
	PMU_PMEVCNTR_EL0(15),
	PMU_PMEVCNTR_EL0(16),
	PMU_PMEVCNTR_EL0(17),
	PMU_PMEVCNTR_EL0(18),
	PMU_PMEVCNTR_EL0(19),
	PMU_PMEVCNTR_EL0(20),
	PMU_PMEVCNTR_EL0(21),
	PMU_PMEVCNTR_EL0(22),
	PMU_PMEVCNTR_EL0(23),
	PMU_PMEVCNTR_EL0(24),
	PMU_PMEVCNTR_EL0(25),
	PMU_PMEVCNTR_EL0(26),
	PMU_PMEVCNTR_EL0(27),
	PMU_PMEVCNTR_EL0(28),
	PMU_PMEVCNTR_EL0(29),
	PMU_PMEVCNTR_EL0(30),
1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
	/* PMEVTYPERn_EL0 */
	PMU_PMEVTYPER_EL0(0),
	PMU_PMEVTYPER_EL0(1),
	PMU_PMEVTYPER_EL0(2),
	PMU_PMEVTYPER_EL0(3),
	PMU_PMEVTYPER_EL0(4),
	PMU_PMEVTYPER_EL0(5),
	PMU_PMEVTYPER_EL0(6),
	PMU_PMEVTYPER_EL0(7),
	PMU_PMEVTYPER_EL0(8),
	PMU_PMEVTYPER_EL0(9),
	PMU_PMEVTYPER_EL0(10),
	PMU_PMEVTYPER_EL0(11),
	PMU_PMEVTYPER_EL0(12),
	PMU_PMEVTYPER_EL0(13),
	PMU_PMEVTYPER_EL0(14),
	PMU_PMEVTYPER_EL0(15),
	PMU_PMEVTYPER_EL0(16),
	PMU_PMEVTYPER_EL0(17),
	PMU_PMEVTYPER_EL0(18),
	PMU_PMEVTYPER_EL0(19),
	PMU_PMEVTYPER_EL0(20),
	PMU_PMEVTYPER_EL0(21),
	PMU_PMEVTYPER_EL0(22),
	PMU_PMEVTYPER_EL0(23),
	PMU_PMEVTYPER_EL0(24),
	PMU_PMEVTYPER_EL0(25),
	PMU_PMEVTYPER_EL0(26),
	PMU_PMEVTYPER_EL0(27),
	PMU_PMEVTYPER_EL0(28),
	PMU_PMEVTYPER_EL0(29),
	PMU_PMEVTYPER_EL0(30),
1291 1292
	/*
	 * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
1293 1294
	 * in 32bit mode. Here we choose to reset it as zero for consistency.
	 */
1295
	{ SYS_DESC(SYS_PMCCFILTR_EL0), access_pmu_evtyper, reset_val, PMCCFILTR_EL0, 0 },
1296

1297 1298 1299
	{ SYS_DESC(SYS_DACR32_EL2), NULL, reset_unknown, DACR32_EL2 },
	{ SYS_DESC(SYS_IFSR32_EL2), NULL, reset_unknown, IFSR32_EL2 },
	{ SYS_DESC(SYS_FPEXC32_EL2), NULL, reset_val, FPEXC32_EL2, 0x70 },
1300 1301
};

1302
static bool trap_dbgidr(struct kvm_vcpu *vcpu,
1303
			struct sys_reg_params *p,
1304 1305 1306 1307 1308
			const struct sys_reg_desc *r)
{
	if (p->is_write) {
		return ignore_write(vcpu, p);
	} else {
1309 1310
		u64 dfr = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
		u64 pfr = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1311
		u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL3_SHIFT);
1312

1313 1314 1315 1316
		p->regval = ((((dfr >> ID_AA64DFR0_WRPS_SHIFT) & 0xf) << 28) |
			     (((dfr >> ID_AA64DFR0_BRPS_SHIFT) & 0xf) << 24) |
			     (((dfr >> ID_AA64DFR0_CTX_CMPS_SHIFT) & 0xf) << 20)
			     | (6 << 16) | (el3 << 14) | (el3 << 12));
1317 1318 1319 1320 1321
		return true;
	}
}

static bool trap_debug32(struct kvm_vcpu *vcpu,
1322
			 struct sys_reg_params *p,
1323 1324 1325
			 const struct sys_reg_desc *r)
{
	if (p->is_write) {
1326
		vcpu_cp14(vcpu, r->reg) = p->regval;
1327 1328
		vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
	} else {
1329
		p->regval = vcpu_cp14(vcpu, r->reg);
1330 1331 1332 1333 1334
	}

	return true;
}

1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
/* AArch32 debug register mappings
 *
 * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
 * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
 *
 * All control registers and watchpoint value registers are mapped to
 * the lower 32 bits of their AArch64 equivalents. We share the trap
 * handlers with the above AArch64 code which checks what mode the
 * system is in.
 */

1346 1347 1348
static bool trap_xvr(struct kvm_vcpu *vcpu,
		     struct sys_reg_params *p,
		     const struct sys_reg_desc *rd)
1349 1350 1351 1352 1353 1354 1355
{
	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];

	if (p->is_write) {
		u64 val = *dbg_reg;

		val &= 0xffffffffUL;
1356
		val |= p->regval << 32;
1357 1358 1359 1360
		*dbg_reg = val;

		vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
	} else {
1361
		p->regval = *dbg_reg >> 32;
1362 1363
	}

1364 1365
	trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);

1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
	return true;
}

#define DBG_BCR_BVR_WCR_WVR(n)						\
	/* DBGBVRn */							\
	{ Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, 	\
	/* DBGBCRn */							\
	{ Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n },	\
	/* DBGWVRn */							\
	{ Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n },	\
	/* DBGWCRn */							\
	{ Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }

#define DBGBXVR(n)							\
	{ Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_xvr, NULL, n }
1381 1382 1383 1384

/*
 * Trapped cp14 registers. We generally ignore most of the external
 * debug, on the principle that they don't really make sense to a
1385
 * guest. Revisit this one day, would this principle change.
1386
 */
1387
static const struct sys_reg_desc cp14_regs[] = {
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
	/* DBGIDR */
	{ Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr },
	/* DBGDTRRXext */
	{ Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },

	DBG_BCR_BVR_WCR_WVR(0),
	/* DBGDSCRint */
	{ Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
	DBG_BCR_BVR_WCR_WVR(1),
	/* DBGDCCINT */
	{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug32 },
	/* DBGDSCRext */
	{ Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug32 },
	DBG_BCR_BVR_WCR_WVR(2),
	/* DBGDTR[RT]Xint */
	{ Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
	/* DBGDTR[RT]Xext */
	{ Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
	DBG_BCR_BVR_WCR_WVR(3),
	DBG_BCR_BVR_WCR_WVR(4),
	DBG_BCR_BVR_WCR_WVR(5),
	/* DBGWFAR */
	{ Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
	/* DBGOSECCR */
	{ Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
	DBG_BCR_BVR_WCR_WVR(6),
	/* DBGVCR */
	{ Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug32 },
	DBG_BCR_BVR_WCR_WVR(7),
	DBG_BCR_BVR_WCR_WVR(8),
	DBG_BCR_BVR_WCR_WVR(9),
	DBG_BCR_BVR_WCR_WVR(10),
	DBG_BCR_BVR_WCR_WVR(11),
	DBG_BCR_BVR_WCR_WVR(12),
	DBG_BCR_BVR_WCR_WVR(13),
	DBG_BCR_BVR_WCR_WVR(14),
	DBG_BCR_BVR_WCR_WVR(15),

	/* DBGDRAR (32bit) */
	{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },

	DBGBXVR(0),
	/* DBGOSLAR */
	{ Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi },
	DBGBXVR(1),
	/* DBGOSLSR */
	{ Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 },
	DBGBXVR(2),
	DBGBXVR(3),
	/* DBGOSDLR */
	{ Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
	DBGBXVR(4),
	/* DBGPRCR */
	{ Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
	DBGBXVR(5),
	DBGBXVR(6),
	DBGBXVR(7),
	DBGBXVR(8),
	DBGBXVR(9),
	DBGBXVR(10),
	DBGBXVR(11),
	DBGBXVR(12),
	DBGBXVR(13),
	DBGBXVR(14),
	DBGBXVR(15),

	/* DBGDSAR (32bit) */
	{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },

	/* DBGDEVID2 */
	{ Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
	/* DBGDEVID1 */
	{ Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
	/* DBGDEVID */
	{ Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
	/* DBGCLAIMSET */
	{ Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
	/* DBGCLAIMCLR */
	{ Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
	/* DBGAUTHSTATUS */
	{ Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
1469 1470
};

1471 1472
/* Trapped cp14 64bit registers */
static const struct sys_reg_desc cp14_64_regs[] = {
1473 1474 1475 1476 1477
	/* DBGDRAR (64bit) */
	{ Op1( 0), CRm( 1), .access = trap_raz_wi },

	/* DBGDSAR (64bit) */
	{ Op1( 0), CRm( 2), .access = trap_raz_wi },
1478 1479
};

1480 1481 1482 1483 1484 1485 1486
/* Macro to expand the PMEVCNTRn register */
#define PMU_PMEVCNTR(n)							\
	/* PMEVCNTRn */							\
	{ Op1(0), CRn(0b1110),						\
	  CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),		\
	  access_pmu_evcntr }

1487 1488 1489 1490 1491 1492 1493
/* Macro to expand the PMEVTYPERn register */
#define PMU_PMEVTYPER(n)						\
	/* PMEVTYPERn */						\
	{ Op1(0), CRn(0b1110),						\
	  CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),		\
	  access_pmu_evtyper }

1494 1495 1496 1497 1498
/*
 * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
 * depending on the way they are accessed (as a 32bit or a 64bit
 * register).
 */
1499
static const struct sys_reg_desc cp15_regs[] = {
1500 1501
	{ Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi },

1502
	{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, c1_SCTLR },
1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
	{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
	{ Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 },
	{ Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, c2_TTBCR },
	{ Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, c3_DACR },
	{ Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, c5_DFSR },
	{ Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, c5_IFSR },
	{ Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, c5_ADFSR },
	{ Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, c5_AIFSR },
	{ Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, c6_DFAR },
	{ Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, c6_IFAR },

1514 1515 1516 1517 1518 1519
	/*
	 * DC{C,I,CI}SW operations:
	 */
	{ Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
	{ Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
	{ Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
1520

1521
	/* PMU */
1522
	{ Op1( 0), CRn( 9), CRm(12), Op2( 0), access_pmcr },
1523 1524
	{ Op1( 0), CRn( 9), CRm(12), Op2( 1), access_pmcnten },
	{ Op1( 0), CRn( 9), CRm(12), Op2( 2), access_pmcnten },
1525
	{ Op1( 0), CRn( 9), CRm(12), Op2( 3), access_pmovs },
1526
	{ Op1( 0), CRn( 9), CRm(12), Op2( 4), access_pmswinc },
1527
	{ Op1( 0), CRn( 9), CRm(12), Op2( 5), access_pmselr },
1528 1529
	{ Op1( 0), CRn( 9), CRm(12), Op2( 6), access_pmceid },
	{ Op1( 0), CRn( 9), CRm(12), Op2( 7), access_pmceid },
1530
	{ Op1( 0), CRn( 9), CRm(13), Op2( 0), access_pmu_evcntr },
1531
	{ Op1( 0), CRn( 9), CRm(13), Op2( 1), access_pmu_evtyper },
1532
	{ Op1( 0), CRn( 9), CRm(13), Op2( 2), access_pmu_evcntr },
1533
	{ Op1( 0), CRn( 9), CRm(14), Op2( 0), access_pmuserenr },
1534 1535
	{ Op1( 0), CRn( 9), CRm(14), Op2( 1), access_pminten },
	{ Op1( 0), CRn( 9), CRm(14), Op2( 2), access_pminten },
1536
	{ Op1( 0), CRn( 9), CRm(14), Op2( 3), access_pmovs },
1537 1538 1539 1540 1541

	{ Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, c10_PRRR },
	{ Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, c10_NMRR },
	{ Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, c10_AMAIR0 },
	{ Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, c10_AMAIR1 },
1542 1543

	/* ICC_SRE */
1544
	{ Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
1545

1546
	{ Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, c13_CID },
1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579

	/* PMEVCNTRn */
	PMU_PMEVCNTR(0),
	PMU_PMEVCNTR(1),
	PMU_PMEVCNTR(2),
	PMU_PMEVCNTR(3),
	PMU_PMEVCNTR(4),
	PMU_PMEVCNTR(5),
	PMU_PMEVCNTR(6),
	PMU_PMEVCNTR(7),
	PMU_PMEVCNTR(8),
	PMU_PMEVCNTR(9),
	PMU_PMEVCNTR(10),
	PMU_PMEVCNTR(11),
	PMU_PMEVCNTR(12),
	PMU_PMEVCNTR(13),
	PMU_PMEVCNTR(14),
	PMU_PMEVCNTR(15),
	PMU_PMEVCNTR(16),
	PMU_PMEVCNTR(17),
	PMU_PMEVCNTR(18),
	PMU_PMEVCNTR(19),
	PMU_PMEVCNTR(20),
	PMU_PMEVCNTR(21),
	PMU_PMEVCNTR(22),
	PMU_PMEVCNTR(23),
	PMU_PMEVCNTR(24),
	PMU_PMEVCNTR(25),
	PMU_PMEVCNTR(26),
	PMU_PMEVCNTR(27),
	PMU_PMEVCNTR(28),
	PMU_PMEVCNTR(29),
	PMU_PMEVCNTR(30),
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
	/* PMEVTYPERn */
	PMU_PMEVTYPER(0),
	PMU_PMEVTYPER(1),
	PMU_PMEVTYPER(2),
	PMU_PMEVTYPER(3),
	PMU_PMEVTYPER(4),
	PMU_PMEVTYPER(5),
	PMU_PMEVTYPER(6),
	PMU_PMEVTYPER(7),
	PMU_PMEVTYPER(8),
	PMU_PMEVTYPER(9),
	PMU_PMEVTYPER(10),
	PMU_PMEVTYPER(11),
	PMU_PMEVTYPER(12),
	PMU_PMEVTYPER(13),
	PMU_PMEVTYPER(14),
	PMU_PMEVTYPER(15),
	PMU_PMEVTYPER(16),
	PMU_PMEVTYPER(17),
	PMU_PMEVTYPER(18),
	PMU_PMEVTYPER(19),
	PMU_PMEVTYPER(20),
	PMU_PMEVTYPER(21),
	PMU_PMEVTYPER(22),
	PMU_PMEVTYPER(23),
	PMU_PMEVTYPER(24),
	PMU_PMEVTYPER(25),
	PMU_PMEVTYPER(26),
	PMU_PMEVTYPER(27),
	PMU_PMEVTYPER(28),
	PMU_PMEVTYPER(29),
	PMU_PMEVTYPER(30),
	/* PMCCFILTR */
	{ Op1(0), CRn(14), CRm(15), Op2(7), access_pmu_evtyper },
1614 1615 1616 1617
};

static const struct sys_reg_desc cp15_64_regs[] = {
	{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
1618
	{ Op1( 0), CRn( 0), CRm( 9), Op2( 0), access_pmu_evcntr },
1619
	{ Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi },
1620
	{ Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 },
1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
};

/* Target specific emulation tables */
static struct kvm_sys_reg_target_table *target_tables[KVM_ARM_NUM_TARGETS];

void kvm_register_target_sys_reg_table(unsigned int target,
				       struct kvm_sys_reg_target_table *table)
{
	target_tables[target] = table;
}

/* Get specific register table for this target. */
1633 1634 1635
static const struct sys_reg_desc *get_target_table(unsigned target,
						   bool mode_is_64,
						   size_t *num)
1636 1637 1638 1639
{
	struct kvm_sys_reg_target_table *table;

	table = target_tables[target];
1640 1641 1642 1643 1644 1645 1646
	if (mode_is_64) {
		*num = table->table64.num;
		return table->table64.table;
	} else {
		*num = table->table32.num;
		return table->table32.table;
	}
1647 1648
}

1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
#define reg_to_match_value(x)						\
	({								\
		unsigned long val;					\
		val  = (x)->Op0 << 14;					\
		val |= (x)->Op1 << 11;					\
		val |= (x)->CRn << 7;					\
		val |= (x)->CRm << 3;					\
		val |= (x)->Op2;					\
		val;							\
	 })

static int match_sys_reg(const void *key, const void *elt)
{
	const unsigned long pval = (unsigned long)key;
	const struct sys_reg_desc *r = elt;

	return pval - reg_to_match_value(r);
}

1668 1669 1670 1671
static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
					 const struct sys_reg_desc table[],
					 unsigned int num)
{
1672 1673 1674
	unsigned long pval = reg_to_match_value(params);

	return bsearch((void *)pval, table, num, sizeof(table[0]), match_sys_reg);
1675 1676
}

1677 1678 1679 1680 1681 1682
int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
	kvm_inject_undefined(vcpu);
	return 1;
}

1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698
static void perform_access(struct kvm_vcpu *vcpu,
			   struct sys_reg_params *params,
			   const struct sys_reg_desc *r)
{
	/*
	 * Not having an accessor means that we have configured a trap
	 * that we don't know how to handle. This certainly qualifies
	 * as a gross bug that should be fixed right away.
	 */
	BUG_ON(!r->access);

	/* Skip instruction if instructed so */
	if (likely(r->access(vcpu, params, r)))
		kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
}

1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
/*
 * emulate_cp --  tries to match a sys_reg access in a handling table, and
 *                call the corresponding trap handler.
 *
 * @params: pointer to the descriptor of the access
 * @table: array of trap descriptors
 * @num: size of the trap descriptor array
 *
 * Return 0 if the access has been handled, and -1 if not.
 */
static int emulate_cp(struct kvm_vcpu *vcpu,
1710
		      struct sys_reg_params *params,
1711 1712
		      const struct sys_reg_desc *table,
		      size_t num)
1713
{
1714
	const struct sys_reg_desc *r;
1715

1716 1717
	if (!table)
		return -1;	/* Not handled */
1718 1719 1720

	r = find_reg(params, table, num);

1721
	if (r) {
1722 1723
		perform_access(vcpu, params, r);
		return 0;
1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
	}

	/* Not handled */
	return -1;
}

static void unhandled_cp_access(struct kvm_vcpu *vcpu,
				struct sys_reg_params *params)
{
	u8 hsr_ec = kvm_vcpu_trap_get_class(vcpu);
D
Dan Carpenter 已提交
1734
	int cp = -1;
1735 1736

	switch(hsr_ec) {
1737 1738
	case ESR_ELx_EC_CP15_32:
	case ESR_ELx_EC_CP15_64:
1739 1740
		cp = 15;
		break;
1741 1742
	case ESR_ELx_EC_CP14_MR:
	case ESR_ELx_EC_CP14_64:
1743 1744 1745
		cp = 14;
		break;
	default:
D
Dan Carpenter 已提交
1746
		WARN_ON(1);
1747 1748
	}

1749 1750
	kvm_err("Unsupported guest CP%d access at: %08lx\n",
		cp, *vcpu_pc(vcpu));
1751 1752 1753 1754 1755
	print_sys_reg_instr(params);
	kvm_inject_undefined(vcpu);
}

/**
1756
 * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
1757 1758 1759
 * @vcpu: The VCPU pointer
 * @run:  The kvm_run struct
 */
1760 1761 1762 1763 1764
static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
			    const struct sys_reg_desc *global,
			    size_t nr_global,
			    const struct sys_reg_desc *target_specific,
			    size_t nr_specific)
1765 1766 1767
{
	struct sys_reg_params params;
	u32 hsr = kvm_vcpu_get_hsr(vcpu);
1768 1769
	int Rt = kvm_vcpu_sys_get_rt(vcpu);
	int Rt2 = (hsr >> 10) & 0x1f;
1770

1771 1772
	params.is_aarch32 = true;
	params.is_32bit = false;
1773 1774 1775 1776 1777 1778 1779 1780 1781
	params.CRm = (hsr >> 1) & 0xf;
	params.is_write = ((hsr & 1) == 0);

	params.Op0 = 0;
	params.Op1 = (hsr >> 16) & 0xf;
	params.Op2 = 0;
	params.CRn = 0;

	/*
1782
	 * Make a 64-bit value out of Rt and Rt2. As we use the same trap
1783 1784 1785
	 * backends between AArch32 and AArch64, we get away with it.
	 */
	if (params.is_write) {
1786 1787
		params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
		params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
1788 1789
	}

1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
	/*
	 * Try to emulate the coprocessor access using the target
	 * specific table first, and using the global table afterwards.
	 * If either of the tables contains a handler, handle the
	 * potential register operation in the case of a read and return
	 * with success.
	 */
	if (!emulate_cp(vcpu, &params, target_specific, nr_specific) ||
	    !emulate_cp(vcpu, &params, global, nr_global)) {
		/* Split up the value between registers for the read side */
		if (!params.is_write) {
			vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
			vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
		}
1804

1805
		return 1;
1806 1807
	}

1808
	unhandled_cp_access(vcpu, &params);
1809 1810 1811 1812
	return 1;
}

/**
1813
 * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
1814 1815 1816
 * @vcpu: The VCPU pointer
 * @run:  The kvm_run struct
 */
1817 1818 1819 1820 1821
static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
			    const struct sys_reg_desc *global,
			    size_t nr_global,
			    const struct sys_reg_desc *target_specific,
			    size_t nr_specific)
1822 1823 1824
{
	struct sys_reg_params params;
	u32 hsr = kvm_vcpu_get_hsr(vcpu);
1825
	int Rt  = kvm_vcpu_sys_get_rt(vcpu);
1826

1827 1828
	params.is_aarch32 = true;
	params.is_32bit = true;
1829
	params.CRm = (hsr >> 1) & 0xf;
1830
	params.regval = vcpu_get_reg(vcpu, Rt);
1831 1832 1833 1834 1835 1836
	params.is_write = ((hsr & 1) == 0);
	params.CRn = (hsr >> 10) & 0xf;
	params.Op0 = 0;
	params.Op1 = (hsr >> 14) & 0x7;
	params.Op2 = (hsr >> 17) & 0x7;

1837 1838 1839 1840
	if (!emulate_cp(vcpu, &params, target_specific, nr_specific) ||
	    !emulate_cp(vcpu, &params, global, nr_global)) {
		if (!params.is_write)
			vcpu_set_reg(vcpu, Rt, params.regval);
1841
		return 1;
1842
	}
1843 1844

	unhandled_cp_access(vcpu, &params);
1845 1846 1847
	return 1;
}

1848 1849 1850 1851 1852 1853 1854
int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
	const struct sys_reg_desc *target_specific;
	size_t num;

	target_specific = get_target_table(vcpu->arch.target, false, &num);
	return kvm_handle_cp_64(vcpu,
1855
				cp15_64_regs, ARRAY_SIZE(cp15_64_regs),
1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
				target_specific, num);
}

int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
	const struct sys_reg_desc *target_specific;
	size_t num;

	target_specific = get_target_table(vcpu->arch.target, false, &num);
	return kvm_handle_cp_32(vcpu,
				cp15_regs, ARRAY_SIZE(cp15_regs),
				target_specific, num);
}

int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
	return kvm_handle_cp_64(vcpu,
1873
				cp14_64_regs, ARRAY_SIZE(cp14_64_regs),
1874 1875 1876 1877 1878 1879 1880 1881 1882 1883
				NULL, 0);
}

int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
	return kvm_handle_cp_32(vcpu,
				cp14_regs, ARRAY_SIZE(cp14_regs),
				NULL, 0);
}

1884
static int emulate_sys_reg(struct kvm_vcpu *vcpu,
1885
			   struct sys_reg_params *params)
1886 1887 1888 1889
{
	size_t num;
	const struct sys_reg_desc *table, *r;

1890
	table = get_target_table(vcpu->arch.target, true, &num);
1891 1892 1893 1894 1895 1896 1897

	/* Search target-specific then generic table. */
	r = find_reg(params, table, num);
	if (!r)
		r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));

	if (likely(r)) {
1898
		perform_access(vcpu, params, r);
1899 1900 1901 1902
	} else {
		kvm_err("Unsupported guest sys_reg access at: %lx\n",
			*vcpu_pc(vcpu));
		print_sys_reg_instr(params);
1903
		kvm_inject_undefined(vcpu);
1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926
	}
	return 1;
}

static void reset_sys_reg_descs(struct kvm_vcpu *vcpu,
			      const struct sys_reg_desc *table, size_t num)
{
	unsigned long i;

	for (i = 0; i < num; i++)
		if (table[i].reset)
			table[i].reset(vcpu, &table[i]);
}

/**
 * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
 * @vcpu: The VCPU pointer
 * @run:  The kvm_run struct
 */
int kvm_handle_sys_reg(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
	struct sys_reg_params params;
	unsigned long esr = kvm_vcpu_get_hsr(vcpu);
1927
	int Rt = kvm_vcpu_sys_get_rt(vcpu);
1928
	int ret;
1929

1930 1931
	trace_kvm_handle_sys_reg(esr);

1932 1933
	params.is_aarch32 = false;
	params.is_32bit = false;
1934 1935 1936 1937 1938
	params.Op0 = (esr >> 20) & 3;
	params.Op1 = (esr >> 14) & 0x7;
	params.CRn = (esr >> 10) & 0xf;
	params.CRm = (esr >> 1) & 0xf;
	params.Op2 = (esr >> 17) & 0x7;
1939
	params.regval = vcpu_get_reg(vcpu, Rt);
1940 1941
	params.is_write = !(esr & 1);

1942 1943 1944 1945 1946
	ret = emulate_sys_reg(vcpu, &params);

	if (!params.is_write)
		vcpu_set_reg(vcpu, Rt, params.regval);
	return ret;
1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
}

/******************************************************************************
 * Userspace API
 *****************************************************************************/

static bool index_to_params(u64 id, struct sys_reg_params *params)
{
	switch (id & KVM_REG_SIZE_MASK) {
	case KVM_REG_SIZE_U64:
		/* Any unused index bits means it's not valid. */
		if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
			      | KVM_REG_ARM_COPROC_MASK
			      | KVM_REG_ARM64_SYSREG_OP0_MASK
			      | KVM_REG_ARM64_SYSREG_OP1_MASK
			      | KVM_REG_ARM64_SYSREG_CRN_MASK
			      | KVM_REG_ARM64_SYSREG_CRM_MASK
			      | KVM_REG_ARM64_SYSREG_OP2_MASK))
			return false;
		params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
			       >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
		params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
			       >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
		params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
			       >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
		params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
			       >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
		params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
			       >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
		return true;
	default:
		return false;
	}
}

1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992
const struct sys_reg_desc *find_reg_by_id(u64 id,
					  struct sys_reg_params *params,
					  const struct sys_reg_desc table[],
					  unsigned int num)
{
	if (!index_to_params(id, params))
		return NULL;

	return find_reg(params, table, num);
}

1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
/* Decode an index value, and find the sys_reg_desc entry. */
static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
						    u64 id)
{
	size_t num;
	const struct sys_reg_desc *table, *r;
	struct sys_reg_params params;

	/* We only do sys_reg for now. */
	if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
		return NULL;

2005
	table = get_target_table(vcpu->arch.target, true, &num);
2006
	r = find_reg_by_id(id, &params, table, num);
2007 2008 2009
	if (!r)
		r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));

2010 2011
	/* Not saved in the sys_reg array and not otherwise accessible? */
	if (r && !(r->reg || r->get_user))
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028
		r = NULL;

	return r;
}

/*
 * These are the invariant sys_reg registers: we let the guest see the
 * host versions of these, so they're part of the guest state.
 *
 * A future CPU may provide a mechanism to present different values to
 * the guest, or a future kvm may trap them.
 */

#define FUNCTION_INVARIANT(reg)						\
	static void get_##reg(struct kvm_vcpu *v,			\
			      const struct sys_reg_desc *r)		\
	{								\
2029
		((struct sys_reg_desc *)r)->val = read_sysreg(reg);	\
2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
	}

FUNCTION_INVARIANT(midr_el1)
FUNCTION_INVARIANT(ctr_el0)
FUNCTION_INVARIANT(revidr_el1)
FUNCTION_INVARIANT(clidr_el1)
FUNCTION_INVARIANT(aidr_el1)

/* ->val is filled in by kvm_sys_reg_table_init() */
static struct sys_reg_desc invariant_sys_regs[] = {
2040 2041 2042 2043 2044
	{ SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 },
	{ SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 },
	{ SYS_DESC(SYS_CLIDR_EL1), NULL, get_clidr_el1 },
	{ SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 },
	{ SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 },
2045 2046
};

2047
static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
2048 2049 2050 2051 2052 2053
{
	if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
		return -EFAULT;
	return 0;
}

2054
static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065
{
	if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
		return -EFAULT;
	return 0;
}

static int get_invariant_sys_reg(u64 id, void __user *uaddr)
{
	struct sys_reg_params params;
	const struct sys_reg_desc *r;

2066 2067
	r = find_reg_by_id(id, &params, invariant_sys_regs,
			   ARRAY_SIZE(invariant_sys_regs));
2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080
	if (!r)
		return -ENOENT;

	return reg_to_user(uaddr, &r->val, id);
}

static int set_invariant_sys_reg(u64 id, void __user *uaddr)
{
	struct sys_reg_params params;
	const struct sys_reg_desc *r;
	int err;
	u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */

2081 2082
	r = find_reg_by_id(id, &params, invariant_sys_regs,
			   ARRAY_SIZE(invariant_sys_regs));
2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101
	if (!r)
		return -ENOENT;

	err = reg_from_user(&val, uaddr, id);
	if (err)
		return err;

	/* This is what we mean by invariant: you can't change it. */
	if (r->val != val)
		return -EINVAL;

	return 0;
}

static bool is_valid_cache(u32 val)
{
	u32 level, ctype;

	if (val >= CSSELR_MAX)
2102
		return false;
2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193

	/* Bottom bit is Instruction or Data bit.  Next 3 bits are level. */
	level = (val >> 1);
	ctype = (cache_levels >> (level * 3)) & 7;

	switch (ctype) {
	case 0: /* No cache */
		return false;
	case 1: /* Instruction cache only */
		return (val & 1);
	case 2: /* Data cache only */
	case 4: /* Unified cache */
		return !(val & 1);
	case 3: /* Separate instruction and data caches */
		return true;
	default: /* Reserved: we can't know instruction or data. */
		return false;
	}
}

static int demux_c15_get(u64 id, void __user *uaddr)
{
	u32 val;
	u32 __user *uval = uaddr;

	/* Fail if we have unknown bits set. */
	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
		return -ENOENT;

	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
		if (KVM_REG_SIZE(id) != 4)
			return -ENOENT;
		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
		if (!is_valid_cache(val))
			return -ENOENT;

		return put_user(get_ccsidr(val), uval);
	default:
		return -ENOENT;
	}
}

static int demux_c15_set(u64 id, void __user *uaddr)
{
	u32 val, newval;
	u32 __user *uval = uaddr;

	/* Fail if we have unknown bits set. */
	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
		return -ENOENT;

	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
		if (KVM_REG_SIZE(id) != 4)
			return -ENOENT;
		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
		if (!is_valid_cache(val))
			return -ENOENT;

		if (get_user(newval, uval))
			return -EFAULT;

		/* This is also invariant: you can't change it. */
		if (newval != get_ccsidr(val))
			return -EINVAL;
		return 0;
	default:
		return -ENOENT;
	}
}

int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
{
	const struct sys_reg_desc *r;
	void __user *uaddr = (void __user *)(unsigned long)reg->addr;

	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
		return demux_c15_get(reg->id, uaddr);

	if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
		return -ENOENT;

	r = index_to_sys_reg_desc(vcpu, reg->id);
	if (!r)
		return get_invariant_sys_reg(reg->id, uaddr);

2194 2195 2196
	if (r->get_user)
		return (r->get_user)(vcpu, r, reg, uaddr);

2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214
	return reg_to_user(uaddr, &vcpu_sys_reg(vcpu, r->reg), reg->id);
}

int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
{
	const struct sys_reg_desc *r;
	void __user *uaddr = (void __user *)(unsigned long)reg->addr;

	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
		return demux_c15_set(reg->id, uaddr);

	if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
		return -ENOENT;

	r = index_to_sys_reg_desc(vcpu, reg->id);
	if (!r)
		return set_invariant_sys_reg(reg->id, uaddr);

2215 2216 2217
	if (r->set_user)
		return (r->set_user)(vcpu, r, reg, uaddr);

2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233
	return reg_from_user(&vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
}

static unsigned int num_demux_regs(void)
{
	unsigned int i, count = 0;

	for (i = 0; i < CSSELR_MAX; i++)
		if (is_valid_cache(i))
			count++;

	return count;
}

static int write_demux_regids(u64 __user *uindices)
{
2234
	u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270
	unsigned int i;

	val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
	for (i = 0; i < CSSELR_MAX; i++) {
		if (!is_valid_cache(i))
			continue;
		if (put_user(val | i, uindices))
			return -EFAULT;
		uindices++;
	}
	return 0;
}

static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
{
	return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
		KVM_REG_ARM64_SYSREG |
		(reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
		(reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
		(reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
		(reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
		(reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
}

static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
{
	if (!*uind)
		return true;

	if (put_user(sys_reg_to_index(reg), *uind))
		return false;

	(*uind)++;
	return true;
}

2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288
static int walk_one_sys_reg(const struct sys_reg_desc *rd,
			    u64 __user **uind,
			    unsigned int *total)
{
	/*
	 * Ignore registers we trap but don't save,
	 * and for which no custom user accessor is provided.
	 */
	if (!(rd->reg || rd->get_user))
		return 0;

	if (!copy_reg_to_user(rd, uind))
		return -EFAULT;

	(*total)++;
	return 0;
}

2289 2290 2291 2292 2293 2294
/* Assumed ordered tables, see kvm_sys_reg_table_init. */
static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
{
	const struct sys_reg_desc *i1, *i2, *end1, *end2;
	unsigned int total = 0;
	size_t num;
2295
	int err;
2296 2297

	/* We check for duplicates here, to allow arch-specific overrides. */
2298
	i1 = get_target_table(vcpu->arch.target, true, &num);
2299 2300 2301 2302 2303 2304 2305 2306 2307 2308
	end1 = i1 + num;
	i2 = sys_reg_descs;
	end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);

	BUG_ON(i1 == end1 || i2 == end2);

	/* Walk carefully, as both tables may refer to the same register. */
	while (i1 || i2) {
		int cmp = cmp_sys_reg(i1, i2);
		/* target-specific overrides generic entry. */
2309 2310 2311 2312 2313 2314 2315
		if (cmp <= 0)
			err = walk_one_sys_reg(i1, &uind, &total);
		else
			err = walk_one_sys_reg(i2, &uind, &total);

		if (err)
			return err;
2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351

		if (cmp <= 0 && ++i1 == end1)
			i1 = NULL;
		if (cmp >= 0 && ++i2 == end2)
			i2 = NULL;
	}
	return total;
}

unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
{
	return ARRAY_SIZE(invariant_sys_regs)
		+ num_demux_regs()
		+ walk_sys_regs(vcpu, (u64 __user *)NULL);
}

int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
{
	unsigned int i;
	int err;

	/* Then give them all the invariant registers' indices. */
	for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
		if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
			return -EFAULT;
		uindices++;
	}

	err = walk_sys_regs(vcpu, uindices);
	if (err < 0)
		return err;
	uindices += err;

	return write_demux_regids(uindices);
}

2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365
static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n)
{
	unsigned int i;

	for (i = 1; i < n; i++) {
		if (cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
			kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
			return 1;
		}
	}

	return 0;
}

2366 2367 2368 2369 2370 2371
void kvm_sys_reg_table_init(void)
{
	unsigned int i;
	struct sys_reg_desc clidr;

	/* Make sure tables are unique and in order. */
2372 2373 2374 2375 2376 2377
	BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs)));
	BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs)));
	BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs)));
	BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
	BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs)));
	BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs)));
2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419

	/* We abuse the reset function to overwrite the table itself. */
	for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
		invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);

	/*
	 * CLIDR format is awkward, so clean it up.  See ARM B4.1.20:
	 *
	 *   If software reads the Cache Type fields from Ctype1
	 *   upwards, once it has seen a value of 0b000, no caches
	 *   exist at further-out levels of the hierarchy. So, for
	 *   example, if Ctype3 is the first Cache Type field with a
	 *   value of 0b000, the values of Ctype4 to Ctype7 must be
	 *   ignored.
	 */
	get_clidr_el1(NULL, &clidr); /* Ugly... */
	cache_levels = clidr.val;
	for (i = 0; i < 7; i++)
		if (((cache_levels >> (i*3)) & 7) == 0)
			break;
	/* Clear all higher bits. */
	cache_levels &= (1 << (i*3))-1;
}

/**
 * kvm_reset_sys_regs - sets system registers to reset value
 * @vcpu: The VCPU pointer
 *
 * This function finds the right table above and sets the registers on the
 * virtual CPU struct to their architecturally defined reset values.
 */
void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
{
	size_t num;
	const struct sys_reg_desc *table;

	/* Catch someone adding a register without putting in reset entry. */
	memset(&vcpu->arch.ctxt.sys_regs, 0x42, sizeof(vcpu->arch.ctxt.sys_regs));

	/* Generic chip reset first (so target could override). */
	reset_sys_reg_descs(vcpu, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));

2420
	table = get_target_table(vcpu->arch.target, true, &num);
2421 2422 2423 2424 2425 2426
	reset_sys_reg_descs(vcpu, table, num);

	for (num = 1; num < NR_SYS_REGS; num++)
		if (vcpu_sys_reg(vcpu, num) == 0x4242424242424242)
			panic("Didn't reset vcpu_sys_reg(%zi)", num);
}