sys_regs.c 65.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * Copyright (C) 2012,2013 - ARM Ltd
 * Author: Marc Zyngier <marc.zyngier@arm.com>
 *
 * Derived from arch/arm/kvm/coproc.c:
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Authors: Rusty Russell <rusty@rustcorp.com.au>
 *          Christoffer Dall <c.dall@virtualopensystems.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

23
#include <linux/bsearch.h>
24
#include <linux/kvm_host.h>
25
#include <linux/mm.h>
26
#include <linux/printk.h>
27
#include <linux/uaccess.h>
28

29 30
#include <asm/cacheflush.h>
#include <asm/cputype.h>
31
#include <asm/debug-monitors.h>
32 33
#include <asm/esr.h>
#include <asm/kvm_arm.h>
34
#include <asm/kvm_asm.h>
35 36 37 38
#include <asm/kvm_coproc.h>
#include <asm/kvm_emulate.h>
#include <asm/kvm_host.h>
#include <asm/kvm_mmu.h>
39
#include <asm/perf_event.h>
40
#include <asm/sysreg.h>
41

42 43 44 45
#include <trace/events/kvm.h>

#include "sys_regs.h"

46 47
#include "trace.h"

48 49 50 51 52
/*
 * All of this file is extremly similar to the ARM coproc.c, but the
 * types are different. My gut feeling is that it should be pretty
 * easy to merge, but that would be an ABI breakage -- again. VFP
 * would also need to be abstracted.
53 54 55 56
 *
 * For AArch32, we only take care of what is being trapped. Anything
 * that has to do with init and userspace access has to go via the
 * 64bit interface.
57 58
 */

59
static bool read_from_write_only(struct kvm_vcpu *vcpu,
60 61
				 struct sys_reg_params *params,
				 const struct sys_reg_desc *r)
62 63 64 65 66 67 68
{
	WARN_ONCE(1, "Unexpected sys_reg read to write-only register\n");
	print_sys_reg_instr(params);
	kvm_inject_undefined(vcpu);
	return false;
}

69 70 71 72 73 74 75 76 77 78
static bool write_to_read_only(struct kvm_vcpu *vcpu,
			       struct sys_reg_params *params,
			       const struct sys_reg_desc *r)
{
	WARN_ONCE(1, "Unexpected sys_reg write to read-only register\n");
	print_sys_reg_instr(params);
	kvm_inject_undefined(vcpu);
	return false;
}

79 80 81 82 83 84 85 86 87 88 89 90 91
/* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
static u32 cache_levels;

/* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
#define CSSELR_MAX 12

/* Which cache CCSIDR represents depends on CSSELR value. */
static u32 get_ccsidr(u32 csselr)
{
	u32 ccsidr;

	/* Make sure noone else changes CSSELR during this! */
	local_irq_disable();
92
	write_sysreg(csselr, csselr_el1);
93
	isb();
94
	ccsidr = read_sysreg(ccsidr_el1);
95 96 97 98 99
	local_irq_enable();

	return ccsidr;
}

100 101 102
/*
 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
 */
103
static bool access_dcsw(struct kvm_vcpu *vcpu,
104
			struct sys_reg_params *p,
105 106 107
			const struct sys_reg_desc *r)
{
	if (!p->is_write)
108
		return read_from_write_only(vcpu, p, r);
109

110
	kvm_set_way_flush(vcpu);
111 112 113
	return true;
}

114 115
/*
 * Generic accessor for VM registers. Only called as long as HCR_TVM
116 117
 * is set. If the guest enables the MMU, we stop trapping the VM
 * sys_regs and leave it in complete control of the caches.
118 119
 */
static bool access_vm_reg(struct kvm_vcpu *vcpu,
120
			  struct sys_reg_params *p,
121 122
			  const struct sys_reg_desc *r)
{
123
	bool was_enabled = vcpu_has_cache_enabled(vcpu);
124 125
	u64 val;
	int reg = r->reg;
126 127 128

	BUG_ON(!p->is_write);

129 130 131 132 133 134
	/* See the 32bit mapping in kvm_host.h */
	if (p->is_aarch32)
		reg = r->reg / 2;

	if (!p->is_aarch32 || !p->is_32bit) {
		val = p->regval;
135
	} else {
136
		val = vcpu_read_sys_reg(vcpu, reg);
137 138 139 140 141
		if (r->reg % 2)
			val = (p->regval << 32) | (u64)lower_32_bits(val);
		else
			val = ((u64)upper_32_bits(val) << 32) |
				lower_32_bits(p->regval);
142
	}
143
	vcpu_write_sys_reg(vcpu, val, reg);
144

145
	kvm_toggle_cache(vcpu, was_enabled);
146 147 148
	return true;
}

149 150 151 152 153 154 155
/*
 * Trap handler for the GICv3 SGI generation system register.
 * Forward the request to the VGIC emulation.
 * The cp15_64 code makes sure this automatically works
 * for both AArch64 and AArch32 accesses.
 */
static bool access_gic_sgi(struct kvm_vcpu *vcpu,
156
			   struct sys_reg_params *p,
157 158 159
			   const struct sys_reg_desc *r)
{
	if (!p->is_write)
160
		return read_from_write_only(vcpu, p, r);
161

162
	vgic_v3_dispatch_sgi(vcpu, p->regval);
163 164 165 166

	return true;
}

167 168 169 170 171 172 173 174 175 176 177
static bool access_gic_sre(struct kvm_vcpu *vcpu,
			   struct sys_reg_params *p,
			   const struct sys_reg_desc *r)
{
	if (p->is_write)
		return ignore_write(vcpu, p);

	p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
	return true;
}

178
static bool trap_raz_wi(struct kvm_vcpu *vcpu,
179
			struct sys_reg_params *p,
180
			const struct sys_reg_desc *r)
181 182 183 184 185 186 187
{
	if (p->is_write)
		return ignore_write(vcpu, p);
	else
		return read_zero(vcpu, p);
}

188 189 190 191 192 193 194 195
static bool trap_undef(struct kvm_vcpu *vcpu,
		       struct sys_reg_params *p,
		       const struct sys_reg_desc *r)
{
	kvm_inject_undefined(vcpu);
	return false;
}

196
static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
197
			   struct sys_reg_params *p,
198 199 200 201 202
			   const struct sys_reg_desc *r)
{
	if (p->is_write) {
		return ignore_write(vcpu, p);
	} else {
203
		p->regval = (1 << 3);
204 205 206 207 208
		return true;
	}
}

static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
209
				   struct sys_reg_params *p,
210 211 212 213 214
				   const struct sys_reg_desc *r)
{
	if (p->is_write) {
		return ignore_write(vcpu, p);
	} else {
215
		p->regval = read_sysreg(dbgauthstatus_el1);
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
		return true;
	}
}

/*
 * We want to avoid world-switching all the DBG registers all the
 * time:
 * 
 * - If we've touched any debug register, it is likely that we're
 *   going to touch more of them. It then makes sense to disable the
 *   traps and start doing the save/restore dance
 * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
 *   then mandatory to save/restore the registers, as the guest
 *   depends on them.
 * 
 * For this, we use a DIRTY bit, indicating the guest has modified the
 * debug registers, used as follow:
 *
 * On guest entry:
 * - If the dirty bit is set (because we're coming back from trapping),
 *   disable the traps, save host registers, restore guest registers.
 * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
 *   set the dirty bit, disable the traps, save host registers,
 *   restore guest registers.
 * - Otherwise, enable the traps
 *
 * On guest exit:
 * - If the dirty bit is set, save guest registers, restore host
 *   registers and clear the dirty bit. This ensure that the host can
 *   now use the debug registers.
 */
static bool trap_debug_regs(struct kvm_vcpu *vcpu,
248
			    struct sys_reg_params *p,
249 250 251
			    const struct sys_reg_desc *r)
{
	if (p->is_write) {
252
		vcpu_write_sys_reg(vcpu, p->regval, r->reg);
253 254
		vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
	} else {
255
		p->regval = vcpu_read_sys_reg(vcpu, r->reg);
256 257
	}

258
	trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
259

260 261 262
	return true;
}

263 264 265 266 267 268 269 270 271
/*
 * reg_to_dbg/dbg_to_reg
 *
 * A 32 bit write to a debug register leave top bits alone
 * A 32 bit read from a debug register only returns the bottom bits
 *
 * All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the
 * hyp.S code switches between host and guest values in future.
 */
272 273 274
static void reg_to_dbg(struct kvm_vcpu *vcpu,
		       struct sys_reg_params *p,
		       u64 *dbg_reg)
275
{
276
	u64 val = p->regval;
277 278 279 280 281 282 283 284 285 286

	if (p->is_32bit) {
		val &= 0xffffffffUL;
		val |= ((*dbg_reg >> 32) << 32);
	}

	*dbg_reg = val;
	vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
}

287 288 289
static void dbg_to_reg(struct kvm_vcpu *vcpu,
		       struct sys_reg_params *p,
		       u64 *dbg_reg)
290
{
291
	p->regval = *dbg_reg;
292
	if (p->is_32bit)
293
		p->regval &= 0xffffffffUL;
294 295
}

296 297 298
static bool trap_bvr(struct kvm_vcpu *vcpu,
		     struct sys_reg_params *p,
		     const struct sys_reg_desc *rd)
299 300 301 302 303 304 305 306
{
	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];

	if (p->is_write)
		reg_to_dbg(vcpu, p, dbg_reg);
	else
		dbg_to_reg(vcpu, p, dbg_reg);

307 308
	trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);

309 310 311 312 313 314 315 316
	return true;
}

static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
		const struct kvm_one_reg *reg, void __user *uaddr)
{
	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];

317
	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
318 319 320 321 322 323 324 325 326 327 328 329 330 331
		return -EFAULT;
	return 0;
}

static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
	const struct kvm_one_reg *reg, void __user *uaddr)
{
	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];

	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
		return -EFAULT;
	return 0;
}

332 333
static void reset_bvr(struct kvm_vcpu *vcpu,
		      const struct sys_reg_desc *rd)
334 335 336 337
{
	vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg] = rd->val;
}

338 339 340
static bool trap_bcr(struct kvm_vcpu *vcpu,
		     struct sys_reg_params *p,
		     const struct sys_reg_desc *rd)
341 342 343 344 345 346 347 348
{
	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];

	if (p->is_write)
		reg_to_dbg(vcpu, p, dbg_reg);
	else
		dbg_to_reg(vcpu, p, dbg_reg);

349 350
	trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);

351 352 353 354 355 356 357 358
	return true;
}

static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
		const struct kvm_one_reg *reg, void __user *uaddr)
{
	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];

359
	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
		return -EFAULT;

	return 0;
}

static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
	const struct kvm_one_reg *reg, void __user *uaddr)
{
	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];

	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
		return -EFAULT;
	return 0;
}

375 376
static void reset_bcr(struct kvm_vcpu *vcpu,
		      const struct sys_reg_desc *rd)
377 378 379 380
{
	vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg] = rd->val;
}

381 382 383
static bool trap_wvr(struct kvm_vcpu *vcpu,
		     struct sys_reg_params *p,
		     const struct sys_reg_desc *rd)
384 385 386 387 388 389 390 391
{
	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];

	if (p->is_write)
		reg_to_dbg(vcpu, p, dbg_reg);
	else
		dbg_to_reg(vcpu, p, dbg_reg);

392 393 394
	trace_trap_reg(__func__, rd->reg, p->is_write,
		vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg]);

395 396 397 398 399 400 401 402
	return true;
}

static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
		const struct kvm_one_reg *reg, void __user *uaddr)
{
	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];

403
	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
404 405 406 407 408 409 410 411 412 413 414 415 416 417
		return -EFAULT;
	return 0;
}

static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
	const struct kvm_one_reg *reg, void __user *uaddr)
{
	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];

	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
		return -EFAULT;
	return 0;
}

418 419
static void reset_wvr(struct kvm_vcpu *vcpu,
		      const struct sys_reg_desc *rd)
420 421 422 423
{
	vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg] = rd->val;
}

424 425 426
static bool trap_wcr(struct kvm_vcpu *vcpu,
		     struct sys_reg_params *p,
		     const struct sys_reg_desc *rd)
427 428 429 430 431 432 433 434
{
	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];

	if (p->is_write)
		reg_to_dbg(vcpu, p, dbg_reg);
	else
		dbg_to_reg(vcpu, p, dbg_reg);

435 436
	trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);

437 438 439 440 441 442 443 444
	return true;
}

static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
		const struct kvm_one_reg *reg, void __user *uaddr)
{
	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];

445
	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
446 447 448 449 450 451 452 453 454 455 456 457 458 459
		return -EFAULT;
	return 0;
}

static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
	const struct kvm_one_reg *reg, void __user *uaddr)
{
	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];

	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
		return -EFAULT;
	return 0;
}

460 461
static void reset_wcr(struct kvm_vcpu *vcpu,
		      const struct sys_reg_desc *rd)
462 463 464 465
{
	vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg] = rd->val;
}

466 467
static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
{
468 469
	u64 amair = read_sysreg(amair_el1);
	vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1);
470 471 472 473
}

static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
{
474 475
	u64 mpidr;

476
	/*
477 478 479 480 481
	 * Map the vcpu_id into the first three affinity level fields of
	 * the MPIDR. We limit the number of VCPUs in level 0 due to a
	 * limitation to 16 CPUs in that level in the ICC_SGIxR registers
	 * of the GICv3 to be able to address each CPU directly when
	 * sending IPIs.
482
	 */
483 484 485
	mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
	mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
	mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
486
	vcpu_write_sys_reg(vcpu, (1ULL << 31) | mpidr, MPIDR_EL1);
487 488
}

489 490 491 492
static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
{
	u64 pmcr, val;

493 494 495
	pmcr = read_sysreg(pmcr_el0);
	/*
	 * Writable bits of PMCR_EL0 (ARMV8_PMU_PMCR_MASK) are reset to UNKNOWN
496 497 498 499
	 * except PMCR.E resetting to zero.
	 */
	val = ((pmcr & ~ARMV8_PMU_PMCR_MASK)
	       | (ARMV8_PMU_PMCR_MASK & 0xdecafbad)) & (~ARMV8_PMU_PMCR_E);
500
	__vcpu_sys_reg(vcpu, PMCR_EL0) = val;
501 502
}

503
static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
504
{
505
	u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0);
506
	bool enabled = (reg & flags) || vcpu_mode_priv(vcpu);
507

508 509
	if (!enabled)
		kvm_inject_undefined(vcpu);
510

511
	return !enabled;
512 513
}

514
static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
515
{
516 517
	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
}
518

519 520 521
static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
{
	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
522 523 524 525
}

static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
{
526
	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
527 528 529 530
}

static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
{
531
	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
532 533
}

534 535 536 537 538 539 540 541
static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
			const struct sys_reg_desc *r)
{
	u64 val;

	if (!kvm_arm_pmu_v3_ready(vcpu))
		return trap_raz_wi(vcpu, p, r);

542 543 544
	if (pmu_access_el0_disabled(vcpu))
		return false;

545 546
	if (p->is_write) {
		/* Only update writeable bits of PMCR */
547
		val = __vcpu_sys_reg(vcpu, PMCR_EL0);
548 549
		val &= ~ARMV8_PMU_PMCR_MASK;
		val |= p->regval & ARMV8_PMU_PMCR_MASK;
550
		__vcpu_sys_reg(vcpu, PMCR_EL0) = val;
551
		kvm_pmu_handle_pmcr(vcpu, val);
552 553
	} else {
		/* PMCR.P & PMCR.C are RAZ */
554
		val = __vcpu_sys_reg(vcpu, PMCR_EL0)
555 556 557 558 559 560 561
		      & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
		p->regval = val;
	}

	return true;
}

562 563 564 565 566 567
static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
			  const struct sys_reg_desc *r)
{
	if (!kvm_arm_pmu_v3_ready(vcpu))
		return trap_raz_wi(vcpu, p, r);

568 569 570
	if (pmu_access_event_counter_el0_disabled(vcpu))
		return false;

571
	if (p->is_write)
572
		__vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
573 574
	else
		/* return PMSELR.SEL field */
575
		p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0)
576 577 578 579 580
			    & ARMV8_PMU_COUNTER_MASK;

	return true;
}

581 582 583 584 585 586 587 588 589 590
static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
			  const struct sys_reg_desc *r)
{
	u64 pmceid;

	if (!kvm_arm_pmu_v3_ready(vcpu))
		return trap_raz_wi(vcpu, p, r);

	BUG_ON(p->is_write);

591 592 593
	if (pmu_access_el0_disabled(vcpu))
		return false;

594
	if (!(p->Op2 & 1))
595
		pmceid = read_sysreg(pmceid0_el0);
596
	else
597
		pmceid = read_sysreg(pmceid1_el0);
598 599 600 601 602 603

	p->regval = pmceid;

	return true;
}

604 605 606 607
static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
{
	u64 pmcr, val;

608
	pmcr = __vcpu_sys_reg(vcpu, PMCR_EL0);
609
	val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
610 611
	if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
		kvm_inject_undefined(vcpu);
612
		return false;
613
	}
614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629

	return true;
}

static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
			      struct sys_reg_params *p,
			      const struct sys_reg_desc *r)
{
	u64 idx;

	if (!kvm_arm_pmu_v3_ready(vcpu))
		return trap_raz_wi(vcpu, p, r);

	if (r->CRn == 9 && r->CRm == 13) {
		if (r->Op2 == 2) {
			/* PMXEVCNTR_EL0 */
630 631 632
			if (pmu_access_event_counter_el0_disabled(vcpu))
				return false;

633
			idx = __vcpu_sys_reg(vcpu, PMSELR_EL0)
634 635 636
			      & ARMV8_PMU_COUNTER_MASK;
		} else if (r->Op2 == 0) {
			/* PMCCNTR_EL0 */
637 638 639
			if (pmu_access_cycle_counter_el0_disabled(vcpu))
				return false;

640 641
			idx = ARMV8_PMU_CYCLE_IDX;
		} else {
642
			return false;
643
		}
644 645 646 647 648 649
	} else if (r->CRn == 0 && r->CRm == 9) {
		/* PMCCNTR */
		if (pmu_access_event_counter_el0_disabled(vcpu))
			return false;

		idx = ARMV8_PMU_CYCLE_IDX;
650 651
	} else if (r->CRn == 14 && (r->CRm & 12) == 8) {
		/* PMEVCNTRn_EL0 */
652 653 654
		if (pmu_access_event_counter_el0_disabled(vcpu))
			return false;

655 656
		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
	} else {
657
		return false;
658 659 660 661 662
	}

	if (!pmu_counter_idx_valid(vcpu, idx))
		return false;

663 664 665 666
	if (p->is_write) {
		if (pmu_access_el0_disabled(vcpu))
			return false;

667
		kvm_pmu_set_counter_value(vcpu, idx, p->regval);
668
	} else {
669
		p->regval = kvm_pmu_get_counter_value(vcpu, idx);
670
	}
671 672 673 674

	return true;
}

675 676 677 678 679 680 681 682
static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
			       const struct sys_reg_desc *r)
{
	u64 idx, reg;

	if (!kvm_arm_pmu_v3_ready(vcpu))
		return trap_raz_wi(vcpu, p, r);

683 684 685
	if (pmu_access_el0_disabled(vcpu))
		return false;

686 687
	if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
		/* PMXEVTYPER_EL0 */
688
		idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
		reg = PMEVTYPER0_EL0 + idx;
	} else if (r->CRn == 14 && (r->CRm & 12) == 12) {
		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
		if (idx == ARMV8_PMU_CYCLE_IDX)
			reg = PMCCFILTR_EL0;
		else
			/* PMEVTYPERn_EL0 */
			reg = PMEVTYPER0_EL0 + idx;
	} else {
		BUG();
	}

	if (!pmu_counter_idx_valid(vcpu, idx))
		return false;

	if (p->is_write) {
		kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
706
		__vcpu_sys_reg(vcpu, reg) = p->regval & ARMV8_PMU_EVTYPE_MASK;
707
	} else {
708
		p->regval = __vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK;
709 710 711 712 713
	}

	return true;
}

714 715 716 717 718 719 720 721
static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
			   const struct sys_reg_desc *r)
{
	u64 val, mask;

	if (!kvm_arm_pmu_v3_ready(vcpu))
		return trap_raz_wi(vcpu, p, r);

722 723 724
	if (pmu_access_el0_disabled(vcpu))
		return false;

725 726 727 728 729
	mask = kvm_pmu_valid_counter_mask(vcpu);
	if (p->is_write) {
		val = p->regval & mask;
		if (r->Op2 & 0x1) {
			/* accessing PMCNTENSET_EL0 */
730
			__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
731 732 733
			kvm_pmu_enable_counter(vcpu, val);
		} else {
			/* accessing PMCNTENCLR_EL0 */
734
			__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
735 736 737
			kvm_pmu_disable_counter(vcpu, val);
		}
	} else {
738
		p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & mask;
739 740 741 742 743
	}

	return true;
}

744 745 746 747 748 749 750 751
static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
			   const struct sys_reg_desc *r)
{
	u64 mask = kvm_pmu_valid_counter_mask(vcpu);

	if (!kvm_arm_pmu_v3_ready(vcpu))
		return trap_raz_wi(vcpu, p, r);

752 753
	if (!vcpu_mode_priv(vcpu)) {
		kvm_inject_undefined(vcpu);
754
		return false;
755
	}
756

757 758 759 760 761
	if (p->is_write) {
		u64 val = p->regval & mask;

		if (r->Op2 & 0x1)
			/* accessing PMINTENSET_EL1 */
762
			__vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
763 764
		else
			/* accessing PMINTENCLR_EL1 */
765
			__vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
766
	} else {
767
		p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1) & mask;
768 769 770 771 772
	}

	return true;
}

773 774 775 776 777 778 779 780
static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
			 const struct sys_reg_desc *r)
{
	u64 mask = kvm_pmu_valid_counter_mask(vcpu);

	if (!kvm_arm_pmu_v3_ready(vcpu))
		return trap_raz_wi(vcpu, p, r);

781 782 783
	if (pmu_access_el0_disabled(vcpu))
		return false;

784 785 786
	if (p->is_write) {
		if (r->CRm & 0x2)
			/* accessing PMOVSSET_EL0 */
787
			__vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask);
788 789
		else
			/* accessing PMOVSCLR_EL0 */
790
			__vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
791
	} else {
792
		p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0) & mask;
793 794 795 796 797
	}

	return true;
}

798 799 800 801 802 803 804 805
static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
			   const struct sys_reg_desc *r)
{
	u64 mask;

	if (!kvm_arm_pmu_v3_ready(vcpu))
		return trap_raz_wi(vcpu, p, r);

806
	if (!p->is_write)
807
		return read_from_write_only(vcpu, p, r);
808

809 810 811
	if (pmu_write_swinc_el0_disabled(vcpu))
		return false;

812 813 814
	mask = kvm_pmu_valid_counter_mask(vcpu);
	kvm_pmu_software_increment(vcpu, p->regval & mask);
	return true;
815 816
}

817 818 819 820 821 822 823
static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
			     const struct sys_reg_desc *r)
{
	if (!kvm_arm_pmu_v3_ready(vcpu))
		return trap_raz_wi(vcpu, p, r);

	if (p->is_write) {
824 825
		if (!vcpu_mode_priv(vcpu)) {
			kvm_inject_undefined(vcpu);
826
			return false;
827
		}
828

829 830
		__vcpu_sys_reg(vcpu, PMUSERENR_EL0) =
			       p->regval & ARMV8_PMU_USERENR_MASK;
831
	} else {
832
		p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0)
833 834 835 836 837 838
			    & ARMV8_PMU_USERENR_MASK;
	}

	return true;
}

839 840
/* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
#define DBG_BCR_BVR_WCR_WVR_EL1(n)					\
841
	{ SYS_DESC(SYS_DBGBVRn_EL1(n)),					\
842
	  trap_bvr, reset_bvr, n, 0, get_bvr, set_bvr },		\
843
	{ SYS_DESC(SYS_DBGBCRn_EL1(n)),					\
844
	  trap_bcr, reset_bcr, n, 0, get_bcr, set_bcr },		\
845
	{ SYS_DESC(SYS_DBGWVRn_EL1(n)),					\
846
	  trap_wvr, reset_wvr, n, 0,  get_wvr, set_wvr },		\
847
	{ SYS_DESC(SYS_DBGWCRn_EL1(n)),					\
848
	  trap_wcr, reset_wcr, n, 0,  get_wcr, set_wcr }
849

850 851
/* Macro to expand the PMEVCNTRn_EL0 register */
#define PMU_PMEVCNTR_EL0(n)						\
852
	{ SYS_DESC(SYS_PMEVCNTRn_EL0(n)),					\
853 854
	  access_pmu_evcntr, reset_unknown, (PMEVCNTR0_EL0 + n), }

855 856
/* Macro to expand the PMEVTYPERn_EL0 register */
#define PMU_PMEVTYPER_EL0(n)						\
857
	{ SYS_DESC(SYS_PMEVTYPERn_EL0(n)),					\
858 859
	  access_pmu_evtyper, reset_unknown, (PMEVTYPER0_EL0 + n), }

860 861 862 863
static bool access_cntp_tval(struct kvm_vcpu *vcpu,
		struct sys_reg_params *p,
		const struct sys_reg_desc *r)
{
864
	u64 now = kvm_phys_timer_read();
865
	u64 cval;
866

867 868 869 870 871 872 873
	if (p->is_write) {
		kvm_arm_timer_set_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL,
				      p->regval + now);
	} else {
		cval = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL);
		p->regval = cval - now;
	}
874

875 876 877 878 879 880 881
	return true;
}

static bool access_cntp_ctl(struct kvm_vcpu *vcpu,
		struct sys_reg_params *p,
		const struct sys_reg_desc *r)
{
882 883 884 885
	if (p->is_write)
		kvm_arm_timer_set_reg(vcpu, KVM_REG_ARM_PTIMER_CTL, p->regval);
	else
		p->regval = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_PTIMER_CTL);
886

887 888 889 890 891 892 893
	return true;
}

static bool access_cntp_cval(struct kvm_vcpu *vcpu,
		struct sys_reg_params *p,
		const struct sys_reg_desc *r)
{
894
	if (p->is_write)
895
		kvm_arm_timer_set_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL, p->regval);
896
	else
897
		p->regval = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL);
898

899 900 901
	return true;
}

902 903 904 905 906
/* Read a sanitised cpufeature ID register by sys_reg_desc */
static u64 read_id_reg(struct sys_reg_desc const *r, bool raz)
{
	u32 id = sys_reg((u32)r->Op0, (u32)r->Op1,
			 (u32)r->CRn, (u32)r->CRm, (u32)r->Op2);
907
	u64 val = raz ? 0 : read_sanitised_ftr_reg(id);
908

909 910 911 912 913 914
	if (id == SYS_ID_AA64PFR0_EL1) {
		if (val & (0xfUL << ID_AA64PFR0_SVE_SHIFT))
			pr_err_once("kvm [%i]: SVE unsupported for guests, suppressing\n",
				    task_pid_nr(current));

		val &= ~(0xfUL << ID_AA64PFR0_SVE_SHIFT);
915 916 917 918 919 920
	} else if (id == SYS_ID_AA64MMFR1_EL1) {
		if (val & (0xfUL << ID_AA64MMFR1_LOR_SHIFT))
			pr_err_once("kvm [%i]: LORegions unsupported for guests, suppressing\n",
				    task_pid_nr(current));

		val &= ~(0xfUL << ID_AA64MMFR1_LOR_SHIFT);
921 922 923
	}

	return val;
924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
}

/* cpufeature ID register access trap handlers */

static bool __access_id_reg(struct kvm_vcpu *vcpu,
			    struct sys_reg_params *p,
			    const struct sys_reg_desc *r,
			    bool raz)
{
	if (p->is_write)
		return write_to_read_only(vcpu, p, r);

	p->regval = read_id_reg(r, raz);
	return true;
}

static bool access_id_reg(struct kvm_vcpu *vcpu,
			  struct sys_reg_params *p,
			  const struct sys_reg_desc *r)
{
	return __access_id_reg(vcpu, p, r, false);
}

static bool access_raz_id_reg(struct kvm_vcpu *vcpu,
			      struct sys_reg_params *p,
			      const struct sys_reg_desc *r)
{
	return __access_id_reg(vcpu, p, r, true);
}

static int reg_from_user(u64 *val, const void __user *uaddr, u64 id);
static int reg_to_user(void __user *uaddr, const u64 *val, u64 id);
static u64 sys_reg_to_index(const struct sys_reg_desc *reg);

/*
 * cpufeature ID register user accessors
 *
 * For now, these registers are immutable for userspace, so no values
 * are stored, and for set_id_reg() we don't allow the effective value
 * to be changed.
 */
static int __get_id_reg(const struct sys_reg_desc *rd, void __user *uaddr,
			bool raz)
{
	const u64 id = sys_reg_to_index(rd);
	const u64 val = read_id_reg(rd, raz);

	return reg_to_user(uaddr, &val, id);
}

static int __set_id_reg(const struct sys_reg_desc *rd, void __user *uaddr,
			bool raz)
{
	const u64 id = sys_reg_to_index(rd);
	int err;
	u64 val;

	err = reg_from_user(&val, uaddr, id);
	if (err)
		return err;

	/* This is what we mean by invariant: you can't change it. */
	if (val != read_id_reg(rd, raz))
		return -EINVAL;

	return 0;
}

static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
		      const struct kvm_one_reg *reg, void __user *uaddr)
{
	return __get_id_reg(rd, uaddr, false);
}

static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
		      const struct kvm_one_reg *reg, void __user *uaddr)
{
	return __set_id_reg(rd, uaddr, false);
}

static int get_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
			  const struct kvm_one_reg *reg, void __user *uaddr)
{
	return __get_id_reg(rd, uaddr, true);
}

static int set_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
			  const struct kvm_one_reg *reg, void __user *uaddr)
{
	return __set_id_reg(rd, uaddr, true);
}

/* sys_reg_desc initialiser for known cpufeature ID registers */
#define ID_SANITISED(name) {			\
	SYS_DESC(SYS_##name),			\
	.access	= access_id_reg,		\
	.get_user = get_id_reg,			\
	.set_user = set_id_reg,			\
}

/*
 * sys_reg_desc initialiser for architecturally unallocated cpufeature ID
 * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
 * (1 <= crm < 8, 0 <= Op2 < 8).
 */
#define ID_UNALLOCATED(crm, op2) {			\
	Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2),	\
	.access = access_raz_id_reg,			\
	.get_user = get_raz_id_reg,			\
	.set_user = set_raz_id_reg,			\
}

/*
 * sys_reg_desc initialiser for known ID registers that we hide from guests.
 * For now, these are exposed just like unallocated ID regs: they appear
 * RAZ for the guest.
 */
#define ID_HIDDEN(name) {			\
	SYS_DESC(SYS_##name),			\
	.access = access_raz_id_reg,		\
	.get_user = get_raz_id_reg,		\
	.set_user = set_raz_id_reg,		\
}

1048 1049 1050
/*
 * Architected system registers.
 * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
1051
 *
1052 1053 1054 1055 1056 1057
 * Debug handling: We do trap most, if not all debug related system
 * registers. The implementation is good enough to ensure that a guest
 * can use these with minimal performance degradation. The drawback is
 * that we don't implement any of the external debug, none of the
 * OSlock protocol. This should be revisited if we ever encounter a
 * more demanding guest...
1058 1059
 */
static const struct sys_reg_desc sys_reg_descs[] = {
1060 1061 1062
	{ SYS_DESC(SYS_DC_ISW), access_dcsw },
	{ SYS_DESC(SYS_DC_CSW), access_dcsw },
	{ SYS_DESC(SYS_DC_CISW), access_dcsw },
1063

1064 1065
	DBG_BCR_BVR_WCR_WVR_EL1(0),
	DBG_BCR_BVR_WCR_WVR_EL1(1),
1066 1067
	{ SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
	{ SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
	DBG_BCR_BVR_WCR_WVR_EL1(2),
	DBG_BCR_BVR_WCR_WVR_EL1(3),
	DBG_BCR_BVR_WCR_WVR_EL1(4),
	DBG_BCR_BVR_WCR_WVR_EL1(5),
	DBG_BCR_BVR_WCR_WVR_EL1(6),
	DBG_BCR_BVR_WCR_WVR_EL1(7),
	DBG_BCR_BVR_WCR_WVR_EL1(8),
	DBG_BCR_BVR_WCR_WVR_EL1(9),
	DBG_BCR_BVR_WCR_WVR_EL1(10),
	DBG_BCR_BVR_WCR_WVR_EL1(11),
	DBG_BCR_BVR_WCR_WVR_EL1(12),
	DBG_BCR_BVR_WCR_WVR_EL1(13),
	DBG_BCR_BVR_WCR_WVR_EL1(14),
	DBG_BCR_BVR_WCR_WVR_EL1(15),

1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
	{ SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
	{ SYS_DESC(SYS_OSLAR_EL1), trap_raz_wi },
	{ SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1 },
	{ SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
	{ SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
	{ SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
	{ SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
	{ SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },

	{ SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
	{ SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
	// DBGDTR[TR]X_EL0 share the same encoding
	{ SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },

	{ SYS_DESC(SYS_DBGVCR32_EL2), NULL, reset_val, DBGVCR32_EL2, 0 },
1098

1099
	{ SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177

	/*
	 * ID regs: all ID_SANITISED() entries here must have corresponding
	 * entries in arm64_ftr_regs[].
	 */

	/* AArch64 mappings of the AArch32 ID registers */
	/* CRm=1 */
	ID_SANITISED(ID_PFR0_EL1),
	ID_SANITISED(ID_PFR1_EL1),
	ID_SANITISED(ID_DFR0_EL1),
	ID_HIDDEN(ID_AFR0_EL1),
	ID_SANITISED(ID_MMFR0_EL1),
	ID_SANITISED(ID_MMFR1_EL1),
	ID_SANITISED(ID_MMFR2_EL1),
	ID_SANITISED(ID_MMFR3_EL1),

	/* CRm=2 */
	ID_SANITISED(ID_ISAR0_EL1),
	ID_SANITISED(ID_ISAR1_EL1),
	ID_SANITISED(ID_ISAR2_EL1),
	ID_SANITISED(ID_ISAR3_EL1),
	ID_SANITISED(ID_ISAR4_EL1),
	ID_SANITISED(ID_ISAR5_EL1),
	ID_SANITISED(ID_MMFR4_EL1),
	ID_UNALLOCATED(2,7),

	/* CRm=3 */
	ID_SANITISED(MVFR0_EL1),
	ID_SANITISED(MVFR1_EL1),
	ID_SANITISED(MVFR2_EL1),
	ID_UNALLOCATED(3,3),
	ID_UNALLOCATED(3,4),
	ID_UNALLOCATED(3,5),
	ID_UNALLOCATED(3,6),
	ID_UNALLOCATED(3,7),

	/* AArch64 ID registers */
	/* CRm=4 */
	ID_SANITISED(ID_AA64PFR0_EL1),
	ID_SANITISED(ID_AA64PFR1_EL1),
	ID_UNALLOCATED(4,2),
	ID_UNALLOCATED(4,3),
	ID_UNALLOCATED(4,4),
	ID_UNALLOCATED(4,5),
	ID_UNALLOCATED(4,6),
	ID_UNALLOCATED(4,7),

	/* CRm=5 */
	ID_SANITISED(ID_AA64DFR0_EL1),
	ID_SANITISED(ID_AA64DFR1_EL1),
	ID_UNALLOCATED(5,2),
	ID_UNALLOCATED(5,3),
	ID_HIDDEN(ID_AA64AFR0_EL1),
	ID_HIDDEN(ID_AA64AFR1_EL1),
	ID_UNALLOCATED(5,6),
	ID_UNALLOCATED(5,7),

	/* CRm=6 */
	ID_SANITISED(ID_AA64ISAR0_EL1),
	ID_SANITISED(ID_AA64ISAR1_EL1),
	ID_UNALLOCATED(6,2),
	ID_UNALLOCATED(6,3),
	ID_UNALLOCATED(6,4),
	ID_UNALLOCATED(6,5),
	ID_UNALLOCATED(6,6),
	ID_UNALLOCATED(6,7),

	/* CRm=7 */
	ID_SANITISED(ID_AA64MMFR0_EL1),
	ID_SANITISED(ID_AA64MMFR1_EL1),
	ID_SANITISED(ID_AA64MMFR2_EL1),
	ID_UNALLOCATED(7,3),
	ID_UNALLOCATED(7,4),
	ID_UNALLOCATED(7,5),
	ID_UNALLOCATED(7,6),
	ID_UNALLOCATED(7,7),

1178 1179 1180 1181 1182 1183 1184 1185 1186
	{ SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
	{ SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
	{ SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
	{ SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
	{ SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },

	{ SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
	{ SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
	{ SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196

	{ SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi },
	{ SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi },
	{ SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi },
	{ SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi },
	{ SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi },
	{ SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi },
	{ SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi },
	{ SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi },

1197 1198
	{ SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
	{ SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
1199

1200 1201
	{ SYS_DESC(SYS_PMINTENSET_EL1), access_pminten, reset_unknown, PMINTENSET_EL1 },
	{ SYS_DESC(SYS_PMINTENCLR_EL1), access_pminten, NULL, PMINTENSET_EL1 },
1202

1203 1204
	{ SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
	{ SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
1205

1206 1207 1208 1209 1210 1211
	{ SYS_DESC(SYS_LORSA_EL1), trap_undef },
	{ SYS_DESC(SYS_LOREA_EL1), trap_undef },
	{ SYS_DESC(SYS_LORN_EL1), trap_undef },
	{ SYS_DESC(SYS_LORC_EL1), trap_undef },
	{ SYS_DESC(SYS_LORID_EL1), trap_undef },

1212
	{ SYS_DESC(SYS_VBAR_EL1), NULL, reset_val, VBAR_EL1, 0 },
1213
	{ SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 },
1214

1215
	{ SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only },
1216
	{ SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only },
1217
	{ SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only },
1218
	{ SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only },
1219
	{ SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only },
1220
	{ SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
1221
	{ SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only },
1222
	{ SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only },
1223
	{ SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only },
1224
	{ SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
1225

1226 1227
	{ SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
	{ SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
1228

1229
	{ SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
1230

1231
	{ SYS_DESC(SYS_CSSELR_EL1), NULL, reset_unknown, CSSELR_EL1 },
1232

1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
	{ SYS_DESC(SYS_PMCR_EL0), access_pmcr, reset_pmcr, },
	{ SYS_DESC(SYS_PMCNTENSET_EL0), access_pmcnten, reset_unknown, PMCNTENSET_EL0 },
	{ SYS_DESC(SYS_PMCNTENCLR_EL0), access_pmcnten, NULL, PMCNTENSET_EL0 },
	{ SYS_DESC(SYS_PMOVSCLR_EL0), access_pmovs, NULL, PMOVSSET_EL0 },
	{ SYS_DESC(SYS_PMSWINC_EL0), access_pmswinc, reset_unknown, PMSWINC_EL0 },
	{ SYS_DESC(SYS_PMSELR_EL0), access_pmselr, reset_unknown, PMSELR_EL0 },
	{ SYS_DESC(SYS_PMCEID0_EL0), access_pmceid },
	{ SYS_DESC(SYS_PMCEID1_EL0), access_pmceid },
	{ SYS_DESC(SYS_PMCCNTR_EL0), access_pmu_evcntr, reset_unknown, PMCCNTR_EL0 },
	{ SYS_DESC(SYS_PMXEVTYPER_EL0), access_pmu_evtyper },
	{ SYS_DESC(SYS_PMXEVCNTR_EL0), access_pmu_evcntr },
	/*
	 * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
1246 1247
	 * in 32bit mode. Here we choose to reset it as zero for consistency.
	 */
1248 1249
	{ SYS_DESC(SYS_PMUSERENR_EL0), access_pmuserenr, reset_val, PMUSERENR_EL0, 0 },
	{ SYS_DESC(SYS_PMOVSSET_EL0), access_pmovs, reset_unknown, PMOVSSET_EL0 },
1250

1251 1252
	{ SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
	{ SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
1253

1254 1255 1256
	{ SYS_DESC(SYS_CNTP_TVAL_EL0), access_cntp_tval },
	{ SYS_DESC(SYS_CNTP_CTL_EL0), access_cntp_ctl },
	{ SYS_DESC(SYS_CNTP_CVAL_EL0), access_cntp_cval },
1257

1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
	/* PMEVCNTRn_EL0 */
	PMU_PMEVCNTR_EL0(0),
	PMU_PMEVCNTR_EL0(1),
	PMU_PMEVCNTR_EL0(2),
	PMU_PMEVCNTR_EL0(3),
	PMU_PMEVCNTR_EL0(4),
	PMU_PMEVCNTR_EL0(5),
	PMU_PMEVCNTR_EL0(6),
	PMU_PMEVCNTR_EL0(7),
	PMU_PMEVCNTR_EL0(8),
	PMU_PMEVCNTR_EL0(9),
	PMU_PMEVCNTR_EL0(10),
	PMU_PMEVCNTR_EL0(11),
	PMU_PMEVCNTR_EL0(12),
	PMU_PMEVCNTR_EL0(13),
	PMU_PMEVCNTR_EL0(14),
	PMU_PMEVCNTR_EL0(15),
	PMU_PMEVCNTR_EL0(16),
	PMU_PMEVCNTR_EL0(17),
	PMU_PMEVCNTR_EL0(18),
	PMU_PMEVCNTR_EL0(19),
	PMU_PMEVCNTR_EL0(20),
	PMU_PMEVCNTR_EL0(21),
	PMU_PMEVCNTR_EL0(22),
	PMU_PMEVCNTR_EL0(23),
	PMU_PMEVCNTR_EL0(24),
	PMU_PMEVCNTR_EL0(25),
	PMU_PMEVCNTR_EL0(26),
	PMU_PMEVCNTR_EL0(27),
	PMU_PMEVCNTR_EL0(28),
	PMU_PMEVCNTR_EL0(29),
	PMU_PMEVCNTR_EL0(30),
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
	/* PMEVTYPERn_EL0 */
	PMU_PMEVTYPER_EL0(0),
	PMU_PMEVTYPER_EL0(1),
	PMU_PMEVTYPER_EL0(2),
	PMU_PMEVTYPER_EL0(3),
	PMU_PMEVTYPER_EL0(4),
	PMU_PMEVTYPER_EL0(5),
	PMU_PMEVTYPER_EL0(6),
	PMU_PMEVTYPER_EL0(7),
	PMU_PMEVTYPER_EL0(8),
	PMU_PMEVTYPER_EL0(9),
	PMU_PMEVTYPER_EL0(10),
	PMU_PMEVTYPER_EL0(11),
	PMU_PMEVTYPER_EL0(12),
	PMU_PMEVTYPER_EL0(13),
	PMU_PMEVTYPER_EL0(14),
	PMU_PMEVTYPER_EL0(15),
	PMU_PMEVTYPER_EL0(16),
	PMU_PMEVTYPER_EL0(17),
	PMU_PMEVTYPER_EL0(18),
	PMU_PMEVTYPER_EL0(19),
	PMU_PMEVTYPER_EL0(20),
	PMU_PMEVTYPER_EL0(21),
	PMU_PMEVTYPER_EL0(22),
	PMU_PMEVTYPER_EL0(23),
	PMU_PMEVTYPER_EL0(24),
	PMU_PMEVTYPER_EL0(25),
	PMU_PMEVTYPER_EL0(26),
	PMU_PMEVTYPER_EL0(27),
	PMU_PMEVTYPER_EL0(28),
	PMU_PMEVTYPER_EL0(29),
	PMU_PMEVTYPER_EL0(30),
1322 1323
	/*
	 * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
1324 1325
	 * in 32bit mode. Here we choose to reset it as zero for consistency.
	 */
1326
	{ SYS_DESC(SYS_PMCCFILTR_EL0), access_pmu_evtyper, reset_val, PMCCFILTR_EL0, 0 },
1327

1328 1329 1330
	{ SYS_DESC(SYS_DACR32_EL2), NULL, reset_unknown, DACR32_EL2 },
	{ SYS_DESC(SYS_IFSR32_EL2), NULL, reset_unknown, IFSR32_EL2 },
	{ SYS_DESC(SYS_FPEXC32_EL2), NULL, reset_val, FPEXC32_EL2, 0x70 },
1331 1332
};

1333
static bool trap_dbgidr(struct kvm_vcpu *vcpu,
1334
			struct sys_reg_params *p,
1335 1336 1337 1338 1339
			const struct sys_reg_desc *r)
{
	if (p->is_write) {
		return ignore_write(vcpu, p);
	} else {
1340 1341
		u64 dfr = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
		u64 pfr = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1342
		u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL3_SHIFT);
1343

1344 1345 1346 1347
		p->regval = ((((dfr >> ID_AA64DFR0_WRPS_SHIFT) & 0xf) << 28) |
			     (((dfr >> ID_AA64DFR0_BRPS_SHIFT) & 0xf) << 24) |
			     (((dfr >> ID_AA64DFR0_CTX_CMPS_SHIFT) & 0xf) << 20)
			     | (6 << 16) | (el3 << 14) | (el3 << 12));
1348 1349 1350 1351 1352
		return true;
	}
}

static bool trap_debug32(struct kvm_vcpu *vcpu,
1353
			 struct sys_reg_params *p,
1354 1355 1356
			 const struct sys_reg_desc *r)
{
	if (p->is_write) {
1357
		vcpu_cp14(vcpu, r->reg) = p->regval;
1358 1359
		vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
	} else {
1360
		p->regval = vcpu_cp14(vcpu, r->reg);
1361 1362 1363 1364 1365
	}

	return true;
}

1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
/* AArch32 debug register mappings
 *
 * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
 * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
 *
 * All control registers and watchpoint value registers are mapped to
 * the lower 32 bits of their AArch64 equivalents. We share the trap
 * handlers with the above AArch64 code which checks what mode the
 * system is in.
 */

1377 1378 1379
static bool trap_xvr(struct kvm_vcpu *vcpu,
		     struct sys_reg_params *p,
		     const struct sys_reg_desc *rd)
1380 1381 1382 1383 1384 1385 1386
{
	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];

	if (p->is_write) {
		u64 val = *dbg_reg;

		val &= 0xffffffffUL;
1387
		val |= p->regval << 32;
1388 1389 1390 1391
		*dbg_reg = val;

		vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
	} else {
1392
		p->regval = *dbg_reg >> 32;
1393 1394
	}

1395 1396
	trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);

1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
	return true;
}

#define DBG_BCR_BVR_WCR_WVR(n)						\
	/* DBGBVRn */							\
	{ Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, 	\
	/* DBGBCRn */							\
	{ Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n },	\
	/* DBGWVRn */							\
	{ Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n },	\
	/* DBGWCRn */							\
	{ Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }

#define DBGBXVR(n)							\
	{ Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_xvr, NULL, n }
1412 1413 1414 1415

/*
 * Trapped cp14 registers. We generally ignore most of the external
 * debug, on the principle that they don't really make sense to a
1416
 * guest. Revisit this one day, would this principle change.
1417
 */
1418
static const struct sys_reg_desc cp14_regs[] = {
1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
	/* DBGIDR */
	{ Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr },
	/* DBGDTRRXext */
	{ Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },

	DBG_BCR_BVR_WCR_WVR(0),
	/* DBGDSCRint */
	{ Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
	DBG_BCR_BVR_WCR_WVR(1),
	/* DBGDCCINT */
	{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug32 },
	/* DBGDSCRext */
	{ Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug32 },
	DBG_BCR_BVR_WCR_WVR(2),
	/* DBGDTR[RT]Xint */
	{ Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
	/* DBGDTR[RT]Xext */
	{ Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
	DBG_BCR_BVR_WCR_WVR(3),
	DBG_BCR_BVR_WCR_WVR(4),
	DBG_BCR_BVR_WCR_WVR(5),
	/* DBGWFAR */
	{ Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
	/* DBGOSECCR */
	{ Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
	DBG_BCR_BVR_WCR_WVR(6),
	/* DBGVCR */
	{ Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug32 },
	DBG_BCR_BVR_WCR_WVR(7),
	DBG_BCR_BVR_WCR_WVR(8),
	DBG_BCR_BVR_WCR_WVR(9),
	DBG_BCR_BVR_WCR_WVR(10),
	DBG_BCR_BVR_WCR_WVR(11),
	DBG_BCR_BVR_WCR_WVR(12),
	DBG_BCR_BVR_WCR_WVR(13),
	DBG_BCR_BVR_WCR_WVR(14),
	DBG_BCR_BVR_WCR_WVR(15),

	/* DBGDRAR (32bit) */
	{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },

	DBGBXVR(0),
	/* DBGOSLAR */
	{ Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi },
	DBGBXVR(1),
	/* DBGOSLSR */
	{ Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 },
	DBGBXVR(2),
	DBGBXVR(3),
	/* DBGOSDLR */
	{ Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
	DBGBXVR(4),
	/* DBGPRCR */
	{ Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
	DBGBXVR(5),
	DBGBXVR(6),
	DBGBXVR(7),
	DBGBXVR(8),
	DBGBXVR(9),
	DBGBXVR(10),
	DBGBXVR(11),
	DBGBXVR(12),
	DBGBXVR(13),
	DBGBXVR(14),
	DBGBXVR(15),

	/* DBGDSAR (32bit) */
	{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },

	/* DBGDEVID2 */
	{ Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
	/* DBGDEVID1 */
	{ Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
	/* DBGDEVID */
	{ Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
	/* DBGCLAIMSET */
	{ Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
	/* DBGCLAIMCLR */
	{ Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
	/* DBGAUTHSTATUS */
	{ Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
1500 1501
};

1502 1503
/* Trapped cp14 64bit registers */
static const struct sys_reg_desc cp14_64_regs[] = {
1504 1505 1506 1507 1508
	/* DBGDRAR (64bit) */
	{ Op1( 0), CRm( 1), .access = trap_raz_wi },

	/* DBGDSAR (64bit) */
	{ Op1( 0), CRm( 2), .access = trap_raz_wi },
1509 1510
};

1511 1512 1513 1514 1515 1516 1517
/* Macro to expand the PMEVCNTRn register */
#define PMU_PMEVCNTR(n)							\
	/* PMEVCNTRn */							\
	{ Op1(0), CRn(0b1110),						\
	  CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),		\
	  access_pmu_evcntr }

1518 1519 1520 1521 1522 1523 1524
/* Macro to expand the PMEVTYPERn register */
#define PMU_PMEVTYPER(n)						\
	/* PMEVTYPERn */						\
	{ Op1(0), CRn(0b1110),						\
	  CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),		\
	  access_pmu_evtyper }

1525 1526 1527 1528 1529
/*
 * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
 * depending on the way they are accessed (as a 32bit or a 64bit
 * register).
 */
1530
static const struct sys_reg_desc cp15_regs[] = {
1531 1532
	{ Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi },

1533
	{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, c1_SCTLR },
1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
	{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
	{ Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 },
	{ Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, c2_TTBCR },
	{ Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, c3_DACR },
	{ Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, c5_DFSR },
	{ Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, c5_IFSR },
	{ Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, c5_ADFSR },
	{ Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, c5_AIFSR },
	{ Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, c6_DFAR },
	{ Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, c6_IFAR },

1545 1546 1547 1548 1549 1550
	/*
	 * DC{C,I,CI}SW operations:
	 */
	{ Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
	{ Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
	{ Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
1551

1552
	/* PMU */
1553
	{ Op1( 0), CRn( 9), CRm(12), Op2( 0), access_pmcr },
1554 1555
	{ Op1( 0), CRn( 9), CRm(12), Op2( 1), access_pmcnten },
	{ Op1( 0), CRn( 9), CRm(12), Op2( 2), access_pmcnten },
1556
	{ Op1( 0), CRn( 9), CRm(12), Op2( 3), access_pmovs },
1557
	{ Op1( 0), CRn( 9), CRm(12), Op2( 4), access_pmswinc },
1558
	{ Op1( 0), CRn( 9), CRm(12), Op2( 5), access_pmselr },
1559 1560
	{ Op1( 0), CRn( 9), CRm(12), Op2( 6), access_pmceid },
	{ Op1( 0), CRn( 9), CRm(12), Op2( 7), access_pmceid },
1561
	{ Op1( 0), CRn( 9), CRm(13), Op2( 0), access_pmu_evcntr },
1562
	{ Op1( 0), CRn( 9), CRm(13), Op2( 1), access_pmu_evtyper },
1563
	{ Op1( 0), CRn( 9), CRm(13), Op2( 2), access_pmu_evcntr },
1564
	{ Op1( 0), CRn( 9), CRm(14), Op2( 0), access_pmuserenr },
1565 1566
	{ Op1( 0), CRn( 9), CRm(14), Op2( 1), access_pminten },
	{ Op1( 0), CRn( 9), CRm(14), Op2( 2), access_pminten },
1567
	{ Op1( 0), CRn( 9), CRm(14), Op2( 3), access_pmovs },
1568 1569 1570 1571 1572

	{ Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, c10_PRRR },
	{ Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, c10_NMRR },
	{ Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, c10_AMAIR0 },
	{ Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, c10_AMAIR1 },
1573 1574

	/* ICC_SRE */
1575
	{ Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
1576

1577
	{ Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, c13_CID },
1578

1579 1580 1581 1582 1583
	/* CNTP_TVAL */
	{ Op1( 0), CRn(14), CRm( 2), Op2( 0), access_cntp_tval },
	/* CNTP_CTL */
	{ Op1( 0), CRn(14), CRm( 2), Op2( 1), access_cntp_ctl },

1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
	/* PMEVCNTRn */
	PMU_PMEVCNTR(0),
	PMU_PMEVCNTR(1),
	PMU_PMEVCNTR(2),
	PMU_PMEVCNTR(3),
	PMU_PMEVCNTR(4),
	PMU_PMEVCNTR(5),
	PMU_PMEVCNTR(6),
	PMU_PMEVCNTR(7),
	PMU_PMEVCNTR(8),
	PMU_PMEVCNTR(9),
	PMU_PMEVCNTR(10),
	PMU_PMEVCNTR(11),
	PMU_PMEVCNTR(12),
	PMU_PMEVCNTR(13),
	PMU_PMEVCNTR(14),
	PMU_PMEVCNTR(15),
	PMU_PMEVCNTR(16),
	PMU_PMEVCNTR(17),
	PMU_PMEVCNTR(18),
	PMU_PMEVCNTR(19),
	PMU_PMEVCNTR(20),
	PMU_PMEVCNTR(21),
	PMU_PMEVCNTR(22),
	PMU_PMEVCNTR(23),
	PMU_PMEVCNTR(24),
	PMU_PMEVCNTR(25),
	PMU_PMEVCNTR(26),
	PMU_PMEVCNTR(27),
	PMU_PMEVCNTR(28),
	PMU_PMEVCNTR(29),
	PMU_PMEVCNTR(30),
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649
	/* PMEVTYPERn */
	PMU_PMEVTYPER(0),
	PMU_PMEVTYPER(1),
	PMU_PMEVTYPER(2),
	PMU_PMEVTYPER(3),
	PMU_PMEVTYPER(4),
	PMU_PMEVTYPER(5),
	PMU_PMEVTYPER(6),
	PMU_PMEVTYPER(7),
	PMU_PMEVTYPER(8),
	PMU_PMEVTYPER(9),
	PMU_PMEVTYPER(10),
	PMU_PMEVTYPER(11),
	PMU_PMEVTYPER(12),
	PMU_PMEVTYPER(13),
	PMU_PMEVTYPER(14),
	PMU_PMEVTYPER(15),
	PMU_PMEVTYPER(16),
	PMU_PMEVTYPER(17),
	PMU_PMEVTYPER(18),
	PMU_PMEVTYPER(19),
	PMU_PMEVTYPER(20),
	PMU_PMEVTYPER(21),
	PMU_PMEVTYPER(22),
	PMU_PMEVTYPER(23),
	PMU_PMEVTYPER(24),
	PMU_PMEVTYPER(25),
	PMU_PMEVTYPER(26),
	PMU_PMEVTYPER(27),
	PMU_PMEVTYPER(28),
	PMU_PMEVTYPER(29),
	PMU_PMEVTYPER(30),
	/* PMCCFILTR */
	{ Op1(0), CRn(14), CRm(15), Op2(7), access_pmu_evtyper },
1650 1651 1652 1653
};

static const struct sys_reg_desc cp15_64_regs[] = {
	{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
1654
	{ Op1( 0), CRn( 0), CRm( 9), Op2( 0), access_pmu_evcntr },
1655
	{ Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi },
1656
	{ Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 },
1657
	{ Op1( 2), CRn( 0), CRm(14), Op2( 0), access_cntp_cval },
1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669
};

/* Target specific emulation tables */
static struct kvm_sys_reg_target_table *target_tables[KVM_ARM_NUM_TARGETS];

void kvm_register_target_sys_reg_table(unsigned int target,
				       struct kvm_sys_reg_target_table *table)
{
	target_tables[target] = table;
}

/* Get specific register table for this target. */
1670 1671 1672
static const struct sys_reg_desc *get_target_table(unsigned target,
						   bool mode_is_64,
						   size_t *num)
1673 1674 1675 1676
{
	struct kvm_sys_reg_target_table *table;

	table = target_tables[target];
1677 1678 1679 1680 1681 1682 1683
	if (mode_is_64) {
		*num = table->table64.num;
		return table->table64.table;
	} else {
		*num = table->table32.num;
		return table->table32.table;
	}
1684 1685
}

1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
#define reg_to_match_value(x)						\
	({								\
		unsigned long val;					\
		val  = (x)->Op0 << 14;					\
		val |= (x)->Op1 << 11;					\
		val |= (x)->CRn << 7;					\
		val |= (x)->CRm << 3;					\
		val |= (x)->Op2;					\
		val;							\
	 })

static int match_sys_reg(const void *key, const void *elt)
{
	const unsigned long pval = (unsigned long)key;
	const struct sys_reg_desc *r = elt;

	return pval - reg_to_match_value(r);
}

1705 1706 1707 1708
static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
					 const struct sys_reg_desc table[],
					 unsigned int num)
{
1709 1710 1711
	unsigned long pval = reg_to_match_value(params);

	return bsearch((void *)pval, table, num, sizeof(table[0]), match_sys_reg);
1712 1713
}

1714 1715 1716 1717 1718 1719
int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
	kvm_inject_undefined(vcpu);
	return 1;
}

1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
static void perform_access(struct kvm_vcpu *vcpu,
			   struct sys_reg_params *params,
			   const struct sys_reg_desc *r)
{
	/*
	 * Not having an accessor means that we have configured a trap
	 * that we don't know how to handle. This certainly qualifies
	 * as a gross bug that should be fixed right away.
	 */
	BUG_ON(!r->access);

	/* Skip instruction if instructed so */
	if (likely(r->access(vcpu, params, r)))
		kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
}

1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
/*
 * emulate_cp --  tries to match a sys_reg access in a handling table, and
 *                call the corresponding trap handler.
 *
 * @params: pointer to the descriptor of the access
 * @table: array of trap descriptors
 * @num: size of the trap descriptor array
 *
 * Return 0 if the access has been handled, and -1 if not.
 */
static int emulate_cp(struct kvm_vcpu *vcpu,
1747
		      struct sys_reg_params *params,
1748 1749
		      const struct sys_reg_desc *table,
		      size_t num)
1750
{
1751
	const struct sys_reg_desc *r;
1752

1753 1754
	if (!table)
		return -1;	/* Not handled */
1755 1756 1757

	r = find_reg(params, table, num);

1758
	if (r) {
1759 1760
		perform_access(vcpu, params, r);
		return 0;
1761 1762 1763 1764 1765 1766 1767 1768 1769 1770
	}

	/* Not handled */
	return -1;
}

static void unhandled_cp_access(struct kvm_vcpu *vcpu,
				struct sys_reg_params *params)
{
	u8 hsr_ec = kvm_vcpu_trap_get_class(vcpu);
D
Dan Carpenter 已提交
1771
	int cp = -1;
1772 1773

	switch(hsr_ec) {
1774 1775
	case ESR_ELx_EC_CP15_32:
	case ESR_ELx_EC_CP15_64:
1776 1777
		cp = 15;
		break;
1778 1779
	case ESR_ELx_EC_CP14_MR:
	case ESR_ELx_EC_CP14_64:
1780 1781 1782
		cp = 14;
		break;
	default:
D
Dan Carpenter 已提交
1783
		WARN_ON(1);
1784 1785
	}

1786 1787
	kvm_err("Unsupported guest CP%d access at: %08lx\n",
		cp, *vcpu_pc(vcpu));
1788 1789 1790 1791 1792
	print_sys_reg_instr(params);
	kvm_inject_undefined(vcpu);
}

/**
1793
 * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
1794 1795 1796
 * @vcpu: The VCPU pointer
 * @run:  The kvm_run struct
 */
1797 1798 1799 1800 1801
static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
			    const struct sys_reg_desc *global,
			    size_t nr_global,
			    const struct sys_reg_desc *target_specific,
			    size_t nr_specific)
1802 1803 1804
{
	struct sys_reg_params params;
	u32 hsr = kvm_vcpu_get_hsr(vcpu);
1805 1806
	int Rt = kvm_vcpu_sys_get_rt(vcpu);
	int Rt2 = (hsr >> 10) & 0x1f;
1807

1808 1809
	params.is_aarch32 = true;
	params.is_32bit = false;
1810 1811 1812 1813 1814 1815 1816 1817 1818
	params.CRm = (hsr >> 1) & 0xf;
	params.is_write = ((hsr & 1) == 0);

	params.Op0 = 0;
	params.Op1 = (hsr >> 16) & 0xf;
	params.Op2 = 0;
	params.CRn = 0;

	/*
1819
	 * Make a 64-bit value out of Rt and Rt2. As we use the same trap
1820 1821 1822
	 * backends between AArch32 and AArch64, we get away with it.
	 */
	if (params.is_write) {
1823 1824
		params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
		params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
1825 1826
	}

1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
	/*
	 * Try to emulate the coprocessor access using the target
	 * specific table first, and using the global table afterwards.
	 * If either of the tables contains a handler, handle the
	 * potential register operation in the case of a read and return
	 * with success.
	 */
	if (!emulate_cp(vcpu, &params, target_specific, nr_specific) ||
	    !emulate_cp(vcpu, &params, global, nr_global)) {
		/* Split up the value between registers for the read side */
		if (!params.is_write) {
			vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
			vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
		}
1841

1842
		return 1;
1843 1844
	}

1845
	unhandled_cp_access(vcpu, &params);
1846 1847 1848 1849
	return 1;
}

/**
1850
 * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
1851 1852 1853
 * @vcpu: The VCPU pointer
 * @run:  The kvm_run struct
 */
1854 1855 1856 1857 1858
static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
			    const struct sys_reg_desc *global,
			    size_t nr_global,
			    const struct sys_reg_desc *target_specific,
			    size_t nr_specific)
1859 1860 1861
{
	struct sys_reg_params params;
	u32 hsr = kvm_vcpu_get_hsr(vcpu);
1862
	int Rt  = kvm_vcpu_sys_get_rt(vcpu);
1863

1864 1865
	params.is_aarch32 = true;
	params.is_32bit = true;
1866
	params.CRm = (hsr >> 1) & 0xf;
1867
	params.regval = vcpu_get_reg(vcpu, Rt);
1868 1869 1870 1871 1872 1873
	params.is_write = ((hsr & 1) == 0);
	params.CRn = (hsr >> 10) & 0xf;
	params.Op0 = 0;
	params.Op1 = (hsr >> 14) & 0x7;
	params.Op2 = (hsr >> 17) & 0x7;

1874 1875 1876 1877
	if (!emulate_cp(vcpu, &params, target_specific, nr_specific) ||
	    !emulate_cp(vcpu, &params, global, nr_global)) {
		if (!params.is_write)
			vcpu_set_reg(vcpu, Rt, params.regval);
1878
		return 1;
1879
	}
1880 1881

	unhandled_cp_access(vcpu, &params);
1882 1883 1884
	return 1;
}

1885 1886 1887 1888 1889 1890 1891
int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
	const struct sys_reg_desc *target_specific;
	size_t num;

	target_specific = get_target_table(vcpu->arch.target, false, &num);
	return kvm_handle_cp_64(vcpu,
1892
				cp15_64_regs, ARRAY_SIZE(cp15_64_regs),
1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
				target_specific, num);
}

int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
	const struct sys_reg_desc *target_specific;
	size_t num;

	target_specific = get_target_table(vcpu->arch.target, false, &num);
	return kvm_handle_cp_32(vcpu,
				cp15_regs, ARRAY_SIZE(cp15_regs),
				target_specific, num);
}

int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
	return kvm_handle_cp_64(vcpu,
1910
				cp14_64_regs, ARRAY_SIZE(cp14_64_regs),
1911 1912 1913 1914 1915 1916 1917 1918 1919 1920
				NULL, 0);
}

int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
	return kvm_handle_cp_32(vcpu,
				cp14_regs, ARRAY_SIZE(cp14_regs),
				NULL, 0);
}

1921
static int emulate_sys_reg(struct kvm_vcpu *vcpu,
1922
			   struct sys_reg_params *params)
1923 1924 1925 1926
{
	size_t num;
	const struct sys_reg_desc *table, *r;

1927
	table = get_target_table(vcpu->arch.target, true, &num);
1928 1929 1930 1931 1932 1933 1934

	/* Search target-specific then generic table. */
	r = find_reg(params, table, num);
	if (!r)
		r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));

	if (likely(r)) {
1935
		perform_access(vcpu, params, r);
1936 1937 1938 1939
	} else {
		kvm_err("Unsupported guest sys_reg access at: %lx\n",
			*vcpu_pc(vcpu));
		print_sys_reg_instr(params);
1940
		kvm_inject_undefined(vcpu);
1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
	}
	return 1;
}

static void reset_sys_reg_descs(struct kvm_vcpu *vcpu,
			      const struct sys_reg_desc *table, size_t num)
{
	unsigned long i;

	for (i = 0; i < num; i++)
		if (table[i].reset)
			table[i].reset(vcpu, &table[i]);
}

/**
 * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
 * @vcpu: The VCPU pointer
 * @run:  The kvm_run struct
 */
int kvm_handle_sys_reg(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
	struct sys_reg_params params;
	unsigned long esr = kvm_vcpu_get_hsr(vcpu);
1964
	int Rt = kvm_vcpu_sys_get_rt(vcpu);
1965
	int ret;
1966

1967 1968
	trace_kvm_handle_sys_reg(esr);

1969 1970
	params.is_aarch32 = false;
	params.is_32bit = false;
1971 1972 1973 1974 1975
	params.Op0 = (esr >> 20) & 3;
	params.Op1 = (esr >> 14) & 0x7;
	params.CRn = (esr >> 10) & 0xf;
	params.CRm = (esr >> 1) & 0xf;
	params.Op2 = (esr >> 17) & 0x7;
1976
	params.regval = vcpu_get_reg(vcpu, Rt);
1977 1978
	params.is_write = !(esr & 1);

1979 1980 1981 1982 1983
	ret = emulate_sys_reg(vcpu, &params);

	if (!params.is_write)
		vcpu_set_reg(vcpu, Rt, params.regval);
	return ret;
1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
}

/******************************************************************************
 * Userspace API
 *****************************************************************************/

static bool index_to_params(u64 id, struct sys_reg_params *params)
{
	switch (id & KVM_REG_SIZE_MASK) {
	case KVM_REG_SIZE_U64:
		/* Any unused index bits means it's not valid. */
		if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
			      | KVM_REG_ARM_COPROC_MASK
			      | KVM_REG_ARM64_SYSREG_OP0_MASK
			      | KVM_REG_ARM64_SYSREG_OP1_MASK
			      | KVM_REG_ARM64_SYSREG_CRN_MASK
			      | KVM_REG_ARM64_SYSREG_CRM_MASK
			      | KVM_REG_ARM64_SYSREG_OP2_MASK))
			return false;
		params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
			       >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
		params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
			       >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
		params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
			       >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
		params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
			       >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
		params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
			       >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
		return true;
	default:
		return false;
	}
}

2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029
const struct sys_reg_desc *find_reg_by_id(u64 id,
					  struct sys_reg_params *params,
					  const struct sys_reg_desc table[],
					  unsigned int num)
{
	if (!index_to_params(id, params))
		return NULL;

	return find_reg(params, table, num);
}

2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041
/* Decode an index value, and find the sys_reg_desc entry. */
static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
						    u64 id)
{
	size_t num;
	const struct sys_reg_desc *table, *r;
	struct sys_reg_params params;

	/* We only do sys_reg for now. */
	if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
		return NULL;

2042
	table = get_target_table(vcpu->arch.target, true, &num);
2043
	r = find_reg_by_id(id, &params, table, num);
2044 2045 2046
	if (!r)
		r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));

2047 2048
	/* Not saved in the sys_reg array and not otherwise accessible? */
	if (r && !(r->reg || r->get_user))
2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065
		r = NULL;

	return r;
}

/*
 * These are the invariant sys_reg registers: we let the guest see the
 * host versions of these, so they're part of the guest state.
 *
 * A future CPU may provide a mechanism to present different values to
 * the guest, or a future kvm may trap them.
 */

#define FUNCTION_INVARIANT(reg)						\
	static void get_##reg(struct kvm_vcpu *v,			\
			      const struct sys_reg_desc *r)		\
	{								\
2066
		((struct sys_reg_desc *)r)->val = read_sysreg(reg);	\
2067 2068 2069 2070 2071 2072 2073 2074 2075 2076
	}

FUNCTION_INVARIANT(midr_el1)
FUNCTION_INVARIANT(ctr_el0)
FUNCTION_INVARIANT(revidr_el1)
FUNCTION_INVARIANT(clidr_el1)
FUNCTION_INVARIANT(aidr_el1)

/* ->val is filled in by kvm_sys_reg_table_init() */
static struct sys_reg_desc invariant_sys_regs[] = {
2077 2078 2079 2080 2081
	{ SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 },
	{ SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 },
	{ SYS_DESC(SYS_CLIDR_EL1), NULL, get_clidr_el1 },
	{ SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 },
	{ SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 },
2082 2083
};

2084
static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
2085 2086 2087 2088 2089 2090
{
	if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
		return -EFAULT;
	return 0;
}

2091
static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102
{
	if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
		return -EFAULT;
	return 0;
}

static int get_invariant_sys_reg(u64 id, void __user *uaddr)
{
	struct sys_reg_params params;
	const struct sys_reg_desc *r;

2103 2104
	r = find_reg_by_id(id, &params, invariant_sys_regs,
			   ARRAY_SIZE(invariant_sys_regs));
2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
	if (!r)
		return -ENOENT;

	return reg_to_user(uaddr, &r->val, id);
}

static int set_invariant_sys_reg(u64 id, void __user *uaddr)
{
	struct sys_reg_params params;
	const struct sys_reg_desc *r;
	int err;
	u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */

2118 2119
	r = find_reg_by_id(id, &params, invariant_sys_regs,
			   ARRAY_SIZE(invariant_sys_regs));
2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138
	if (!r)
		return -ENOENT;

	err = reg_from_user(&val, uaddr, id);
	if (err)
		return err;

	/* This is what we mean by invariant: you can't change it. */
	if (r->val != val)
		return -EINVAL;

	return 0;
}

static bool is_valid_cache(u32 val)
{
	u32 level, ctype;

	if (val >= CSSELR_MAX)
2139
		return false;
2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230

	/* Bottom bit is Instruction or Data bit.  Next 3 bits are level. */
	level = (val >> 1);
	ctype = (cache_levels >> (level * 3)) & 7;

	switch (ctype) {
	case 0: /* No cache */
		return false;
	case 1: /* Instruction cache only */
		return (val & 1);
	case 2: /* Data cache only */
	case 4: /* Unified cache */
		return !(val & 1);
	case 3: /* Separate instruction and data caches */
		return true;
	default: /* Reserved: we can't know instruction or data. */
		return false;
	}
}

static int demux_c15_get(u64 id, void __user *uaddr)
{
	u32 val;
	u32 __user *uval = uaddr;

	/* Fail if we have unknown bits set. */
	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
		return -ENOENT;

	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
		if (KVM_REG_SIZE(id) != 4)
			return -ENOENT;
		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
		if (!is_valid_cache(val))
			return -ENOENT;

		return put_user(get_ccsidr(val), uval);
	default:
		return -ENOENT;
	}
}

static int demux_c15_set(u64 id, void __user *uaddr)
{
	u32 val, newval;
	u32 __user *uval = uaddr;

	/* Fail if we have unknown bits set. */
	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
		return -ENOENT;

	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
		if (KVM_REG_SIZE(id) != 4)
			return -ENOENT;
		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
		if (!is_valid_cache(val))
			return -ENOENT;

		if (get_user(newval, uval))
			return -EFAULT;

		/* This is also invariant: you can't change it. */
		if (newval != get_ccsidr(val))
			return -EINVAL;
		return 0;
	default:
		return -ENOENT;
	}
}

int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
{
	const struct sys_reg_desc *r;
	void __user *uaddr = (void __user *)(unsigned long)reg->addr;

	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
		return demux_c15_get(reg->id, uaddr);

	if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
		return -ENOENT;

	r = index_to_sys_reg_desc(vcpu, reg->id);
	if (!r)
		return get_invariant_sys_reg(reg->id, uaddr);

2231 2232 2233
	if (r->get_user)
		return (r->get_user)(vcpu, r, reg, uaddr);

2234
	return reg_to_user(uaddr, &__vcpu_sys_reg(vcpu, r->reg), reg->id);
2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251
}

int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
{
	const struct sys_reg_desc *r;
	void __user *uaddr = (void __user *)(unsigned long)reg->addr;

	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
		return demux_c15_set(reg->id, uaddr);

	if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
		return -ENOENT;

	r = index_to_sys_reg_desc(vcpu, reg->id);
	if (!r)
		return set_invariant_sys_reg(reg->id, uaddr);

2252 2253 2254
	if (r->set_user)
		return (r->set_user)(vcpu, r, reg, uaddr);

2255
	return reg_from_user(&__vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270
}

static unsigned int num_demux_regs(void)
{
	unsigned int i, count = 0;

	for (i = 0; i < CSSELR_MAX; i++)
		if (is_valid_cache(i))
			count++;

	return count;
}

static int write_demux_regids(u64 __user *uindices)
{
2271
	u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307
	unsigned int i;

	val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
	for (i = 0; i < CSSELR_MAX; i++) {
		if (!is_valid_cache(i))
			continue;
		if (put_user(val | i, uindices))
			return -EFAULT;
		uindices++;
	}
	return 0;
}

static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
{
	return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
		KVM_REG_ARM64_SYSREG |
		(reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
		(reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
		(reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
		(reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
		(reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
}

static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
{
	if (!*uind)
		return true;

	if (put_user(sys_reg_to_index(reg), *uind))
		return false;

	(*uind)++;
	return true;
}

2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325
static int walk_one_sys_reg(const struct sys_reg_desc *rd,
			    u64 __user **uind,
			    unsigned int *total)
{
	/*
	 * Ignore registers we trap but don't save,
	 * and for which no custom user accessor is provided.
	 */
	if (!(rd->reg || rd->get_user))
		return 0;

	if (!copy_reg_to_user(rd, uind))
		return -EFAULT;

	(*total)++;
	return 0;
}

2326 2327 2328 2329 2330 2331
/* Assumed ordered tables, see kvm_sys_reg_table_init. */
static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
{
	const struct sys_reg_desc *i1, *i2, *end1, *end2;
	unsigned int total = 0;
	size_t num;
2332
	int err;
2333 2334

	/* We check for duplicates here, to allow arch-specific overrides. */
2335
	i1 = get_target_table(vcpu->arch.target, true, &num);
2336 2337 2338 2339 2340 2341 2342 2343 2344 2345
	end1 = i1 + num;
	i2 = sys_reg_descs;
	end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);

	BUG_ON(i1 == end1 || i2 == end2);

	/* Walk carefully, as both tables may refer to the same register. */
	while (i1 || i2) {
		int cmp = cmp_sys_reg(i1, i2);
		/* target-specific overrides generic entry. */
2346 2347 2348 2349 2350 2351 2352
		if (cmp <= 0)
			err = walk_one_sys_reg(i1, &uind, &total);
		else
			err = walk_one_sys_reg(i2, &uind, &total);

		if (err)
			return err;
2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388

		if (cmp <= 0 && ++i1 == end1)
			i1 = NULL;
		if (cmp >= 0 && ++i2 == end2)
			i2 = NULL;
	}
	return total;
}

unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
{
	return ARRAY_SIZE(invariant_sys_regs)
		+ num_demux_regs()
		+ walk_sys_regs(vcpu, (u64 __user *)NULL);
}

int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
{
	unsigned int i;
	int err;

	/* Then give them all the invariant registers' indices. */
	for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
		if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
			return -EFAULT;
		uindices++;
	}

	err = walk_sys_regs(vcpu, uindices);
	if (err < 0)
		return err;
	uindices += err;

	return write_demux_regids(uindices);
}

2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402
static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n)
{
	unsigned int i;

	for (i = 1; i < n; i++) {
		if (cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
			kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
			return 1;
		}
	}

	return 0;
}

2403 2404 2405 2406 2407 2408
void kvm_sys_reg_table_init(void)
{
	unsigned int i;
	struct sys_reg_desc clidr;

	/* Make sure tables are unique and in order. */
2409 2410 2411 2412 2413 2414
	BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs)));
	BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs)));
	BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs)));
	BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
	BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs)));
	BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs)));
2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456

	/* We abuse the reset function to overwrite the table itself. */
	for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
		invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);

	/*
	 * CLIDR format is awkward, so clean it up.  See ARM B4.1.20:
	 *
	 *   If software reads the Cache Type fields from Ctype1
	 *   upwards, once it has seen a value of 0b000, no caches
	 *   exist at further-out levels of the hierarchy. So, for
	 *   example, if Ctype3 is the first Cache Type field with a
	 *   value of 0b000, the values of Ctype4 to Ctype7 must be
	 *   ignored.
	 */
	get_clidr_el1(NULL, &clidr); /* Ugly... */
	cache_levels = clidr.val;
	for (i = 0; i < 7; i++)
		if (((cache_levels >> (i*3)) & 7) == 0)
			break;
	/* Clear all higher bits. */
	cache_levels &= (1 << (i*3))-1;
}

/**
 * kvm_reset_sys_regs - sets system registers to reset value
 * @vcpu: The VCPU pointer
 *
 * This function finds the right table above and sets the registers on the
 * virtual CPU struct to their architecturally defined reset values.
 */
void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
{
	size_t num;
	const struct sys_reg_desc *table;

	/* Catch someone adding a register without putting in reset entry. */
	memset(&vcpu->arch.ctxt.sys_regs, 0x42, sizeof(vcpu->arch.ctxt.sys_regs));

	/* Generic chip reset first (so target could override). */
	reset_sys_reg_descs(vcpu, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));

2457
	table = get_target_table(vcpu->arch.target, true, &num);
2458 2459 2460
	reset_sys_reg_descs(vcpu, table, num);

	for (num = 1; num < NR_SYS_REGS; num++)
2461 2462
		if (__vcpu_sys_reg(vcpu, num) == 0x4242424242424242)
			panic("Didn't reset __vcpu_sys_reg(%zi)", num);
2463
}