machine.c 51.4 KB
Newer Older
1
#include "callchain.h"
2 3
#include "debug.h"
#include "event.h"
4 5
#include "evsel.h"
#include "hist.h"
6 7
#include "machine.h"
#include "map.h"
8
#include "sort.h"
9
#include "strlist.h"
10
#include "thread.h"
11
#include "vdso.h"
12
#include <stdbool.h>
13
#include <symbol/kallsyms.h>
14
#include "unwind.h"
15
#include "linux/hash.h"
16

17 18
static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);

19 20 21 22
static void dsos__init(struct dsos *dsos)
{
	INIT_LIST_HEAD(&dsos->head);
	dsos->root = RB_ROOT;
23
	pthread_rwlock_init(&dsos->lock, NULL);
24 25
}

26 27
int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
{
28
	memset(machine, 0, sizeof(*machine));
29
	map_groups__init(&machine->kmaps, machine);
30
	RB_CLEAR_NODE(&machine->rb_node);
31
	dsos__init(&machine->dsos);
32 33

	machine->threads = RB_ROOT;
34
	pthread_rwlock_init(&machine->threads_lock, NULL);
35
	machine->nr_threads = 0;
36 37 38
	INIT_LIST_HEAD(&machine->dead_threads);
	machine->last_match = NULL;

39
	machine->vdso_info = NULL;
40
	machine->env = NULL;
41

42 43
	machine->pid = pid;

44
	machine->symbol_filter = NULL;
45
	machine->id_hdr_size = 0;
46
	machine->kptr_restrict_warned = false;
47
	machine->comm_exec = false;
48
	machine->kernel_start = 0;
49

50 51
	memset(machine->vmlinux_maps, 0, sizeof(machine->vmlinux_maps));

52 53 54 55 56
	machine->root_dir = strdup(root_dir);
	if (machine->root_dir == NULL)
		return -ENOMEM;

	if (pid != HOST_KERNEL_ID) {
57
		struct thread *thread = machine__findnew_thread(machine, -1,
58
								pid);
59 60 61 62 63 64
		char comm[64];

		if (thread == NULL)
			return -ENOMEM;

		snprintf(comm, sizeof(comm), "[guest/%d]", pid);
65
		thread__set_comm(thread, comm, 0);
66
		thread__put(thread);
67 68
	}

69 70
	machine->current_tid = NULL;

71 72 73
	return 0;
}

74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
struct machine *machine__new_host(void)
{
	struct machine *machine = malloc(sizeof(*machine));

	if (machine != NULL) {
		machine__init(machine, "", HOST_KERNEL_ID);

		if (machine__create_kernel_maps(machine) < 0)
			goto out_delete;
	}

	return machine;
out_delete:
	free(machine);
	return NULL;
}

91
static void dsos__purge(struct dsos *dsos)
92 93 94
{
	struct dso *pos, *n;

95 96
	pthread_rwlock_wrlock(&dsos->lock);

97
	list_for_each_entry_safe(pos, n, &dsos->head, node) {
98
		RB_CLEAR_NODE(&pos->rb_node);
99
		pos->root = NULL;
100 101
		list_del_init(&pos->node);
		dso__put(pos);
102
	}
103 104

	pthread_rwlock_unlock(&dsos->lock);
105
}
106

107 108 109
static void dsos__exit(struct dsos *dsos)
{
	dsos__purge(dsos);
110
	pthread_rwlock_destroy(&dsos->lock);
111 112
}

113 114
void machine__delete_threads(struct machine *machine)
{
115
	struct rb_node *nd;
116

117 118
	pthread_rwlock_wrlock(&machine->threads_lock);
	nd = rb_first(&machine->threads);
119 120 121 122
	while (nd) {
		struct thread *t = rb_entry(nd, struct thread, rb_node);

		nd = rb_next(nd);
123
		__machine__remove_thread(machine, t, false);
124
	}
125
	pthread_rwlock_unlock(&machine->threads_lock);
126 127
}

128 129
void machine__exit(struct machine *machine)
{
130
	machine__destroy_kernel_maps(machine);
131
	map_groups__exit(&machine->kmaps);
132
	dsos__exit(&machine->dsos);
133
	machine__exit_vdso(machine);
134
	zfree(&machine->root_dir);
135
	zfree(&machine->current_tid);
136
	pthread_rwlock_destroy(&machine->threads_lock);
137 138 139 140 141 142 143 144
}

void machine__delete(struct machine *machine)
{
	machine__exit(machine);
	free(machine);
}

145 146 147 148
void machines__init(struct machines *machines)
{
	machine__init(&machines->host, "", HOST_KERNEL_ID);
	machines->guests = RB_ROOT;
149
	machines->symbol_filter = NULL;
150 151 152 153 154 155 156 157 158
}

void machines__exit(struct machines *machines)
{
	machine__exit(&machines->host);
	/* XXX exit guest */
}

struct machine *machines__add(struct machines *machines, pid_t pid,
159 160
			      const char *root_dir)
{
161
	struct rb_node **p = &machines->guests.rb_node;
162 163 164 165 166 167 168 169 170 171 172
	struct rb_node *parent = NULL;
	struct machine *pos, *machine = malloc(sizeof(*machine));

	if (machine == NULL)
		return NULL;

	if (machine__init(machine, root_dir, pid) != 0) {
		free(machine);
		return NULL;
	}

173 174
	machine->symbol_filter = machines->symbol_filter;

175 176 177 178 179 180 181 182 183 184
	while (*p != NULL) {
		parent = *p;
		pos = rb_entry(parent, struct machine, rb_node);
		if (pid < pos->pid)
			p = &(*p)->rb_left;
		else
			p = &(*p)->rb_right;
	}

	rb_link_node(&machine->rb_node, parent, p);
185
	rb_insert_color(&machine->rb_node, &machines->guests);
186 187 188 189

	return machine;
}

190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
void machines__set_symbol_filter(struct machines *machines,
				 symbol_filter_t symbol_filter)
{
	struct rb_node *nd;

	machines->symbol_filter = symbol_filter;
	machines->host.symbol_filter = symbol_filter;

	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
		struct machine *machine = rb_entry(nd, struct machine, rb_node);

		machine->symbol_filter = symbol_filter;
	}
}

205 206 207 208 209 210 211 212 213 214 215 216 217
void machines__set_comm_exec(struct machines *machines, bool comm_exec)
{
	struct rb_node *nd;

	machines->host.comm_exec = comm_exec;

	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
		struct machine *machine = rb_entry(nd, struct machine, rb_node);

		machine->comm_exec = comm_exec;
	}
}

218
struct machine *machines__find(struct machines *machines, pid_t pid)
219
{
220
	struct rb_node **p = &machines->guests.rb_node;
221 222 223 224
	struct rb_node *parent = NULL;
	struct machine *machine;
	struct machine *default_machine = NULL;

225 226 227
	if (pid == HOST_KERNEL_ID)
		return &machines->host;

228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
	while (*p != NULL) {
		parent = *p;
		machine = rb_entry(parent, struct machine, rb_node);
		if (pid < machine->pid)
			p = &(*p)->rb_left;
		else if (pid > machine->pid)
			p = &(*p)->rb_right;
		else
			return machine;
		if (!machine->pid)
			default_machine = machine;
	}

	return default_machine;
}

244
struct machine *machines__findnew(struct machines *machines, pid_t pid)
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
{
	char path[PATH_MAX];
	const char *root_dir = "";
	struct machine *machine = machines__find(machines, pid);

	if (machine && (machine->pid == pid))
		goto out;

	if ((pid != HOST_KERNEL_ID) &&
	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
	    (symbol_conf.guestmount)) {
		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
		if (access(path, R_OK)) {
			static struct strlist *seen;

			if (!seen)
261
				seen = strlist__new(NULL, NULL);
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277

			if (!strlist__has_entry(seen, path)) {
				pr_err("Can't access file %s\n", path);
				strlist__add(seen, path);
			}
			machine = NULL;
			goto out;
		}
		root_dir = path;
	}

	machine = machines__add(machines, pid, root_dir);
out:
	return machine;
}

278 279
void machines__process_guests(struct machines *machines,
			      machine__process_t process, void *data)
280 281 282
{
	struct rb_node *nd;

283
	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
		struct machine *pos = rb_entry(nd, struct machine, rb_node);
		process(pos, data);
	}
}

char *machine__mmap_name(struct machine *machine, char *bf, size_t size)
{
	if (machine__is_host(machine))
		snprintf(bf, size, "[%s]", "kernel.kallsyms");
	else if (machine__is_default_guest(machine))
		snprintf(bf, size, "[%s]", "guest.kernel.kallsyms");
	else {
		snprintf(bf, size, "[%s.%d]", "guest.kernel.kallsyms",
			 machine->pid);
	}

	return bf;
}

303
void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
304 305 306 307
{
	struct rb_node *node;
	struct machine *machine;

308 309 310
	machines->host.id_hdr_size = id_hdr_size;

	for (node = rb_first(&machines->guests); node; node = rb_next(node)) {
311 312 313 314 315 316 317
		machine = rb_entry(node, struct machine, rb_node);
		machine->id_hdr_size = id_hdr_size;
	}

	return;
}

318 319 320 321 322 323 324 325 326 327 328 329 330
static void machine__update_thread_pid(struct machine *machine,
				       struct thread *th, pid_t pid)
{
	struct thread *leader;

	if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
		return;

	th->pid_ = pid;

	if (th->pid_ == th->tid)
		return;

331
	leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
332 333 334 335
	if (!leader)
		goto out_err;

	if (!leader->mg)
336
		leader->mg = map_groups__new(machine);
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352

	if (!leader->mg)
		goto out_err;

	if (th->mg == leader->mg)
		return;

	if (th->mg) {
		/*
		 * Maps are created from MMAP events which provide the pid and
		 * tid.  Consequently there never should be any maps on a thread
		 * with an unknown pid.  Just print an error if there are.
		 */
		if (!map_groups__empty(th->mg))
			pr_err("Discarding thread maps for %d:%d\n",
			       th->pid_, th->tid);
353
		map_groups__put(th->mg);
354 355 356
	}

	th->mg = map_groups__get(leader->mg);
357 358
out_put:
	thread__put(leader);
359 360 361
	return;
out_err:
	pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
362
	goto out_put;
363 364
}

365 366 367 368
/*
 * Caller must eventually drop thread->refcnt returned with a successfull
 * lookup/new thread inserted.
 */
369 370 371
static struct thread *____machine__findnew_thread(struct machine *machine,
						  pid_t pid, pid_t tid,
						  bool create)
372 373 374 375 376 377
{
	struct rb_node **p = &machine->threads.rb_node;
	struct rb_node *parent = NULL;
	struct thread *th;

	/*
378
	 * Front-end cache - TID lookups come in blocks,
379 380 381
	 * so most of the time we dont have to look up
	 * the full rbtree:
	 */
382
	th = machine->last_match;
383 384 385
	if (th != NULL) {
		if (th->tid == tid) {
			machine__update_thread_pid(machine, th, pid);
386
			return thread__get(th);
387 388
		}

389
		machine->last_match = NULL;
390
	}
391 392 393 394 395

	while (*p != NULL) {
		parent = *p;
		th = rb_entry(parent, struct thread, rb_node);

396
		if (th->tid == tid) {
397
			machine->last_match = th;
398
			machine__update_thread_pid(machine, th, pid);
399
			return thread__get(th);
400 401
		}

402
		if (tid < th->tid)
403 404 405 406 407 408 409 410
			p = &(*p)->rb_left;
		else
			p = &(*p)->rb_right;
	}

	if (!create)
		return NULL;

411
	th = thread__new(pid, tid);
412 413 414
	if (th != NULL) {
		rb_link_node(&th->rb_node, parent, p);
		rb_insert_color(&th->rb_node, &machine->threads);
415 416 417 418 419 420 421 422 423

		/*
		 * We have to initialize map_groups separately
		 * after rb tree is updated.
		 *
		 * The reason is that we call machine__findnew_thread
		 * within thread__init_map_groups to find the thread
		 * leader and that would screwed the rb tree.
		 */
424
		if (thread__init_map_groups(th, machine)) {
425
			rb_erase_init(&th->rb_node, &machine->threads);
426
			RB_CLEAR_NODE(&th->rb_node);
427
			thread__put(th);
428
			return NULL;
429
		}
430 431 432 433
		/*
		 * It is now in the rbtree, get a ref
		 */
		thread__get(th);
434
		machine->last_match = th;
435
		++machine->nr_threads;
436 437 438 439 440
	}

	return th;
}

441 442 443 444 445
struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
{
	return ____machine__findnew_thread(machine, pid, tid, true);
}

446 447
struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
				       pid_t tid)
448
{
449 450 451
	struct thread *th;

	pthread_rwlock_wrlock(&machine->threads_lock);
452
	th = __machine__findnew_thread(machine, pid, tid);
453 454
	pthread_rwlock_unlock(&machine->threads_lock);
	return th;
455 456
}

457 458
struct thread *machine__find_thread(struct machine *machine, pid_t pid,
				    pid_t tid)
459
{
460 461
	struct thread *th;
	pthread_rwlock_rdlock(&machine->threads_lock);
462
	th =  ____machine__findnew_thread(machine, pid, tid, false);
463 464
	pthread_rwlock_unlock(&machine->threads_lock);
	return th;
465
}
466

467 468 469 470 471 472 473 474 475
struct comm *machine__thread_exec_comm(struct machine *machine,
				       struct thread *thread)
{
	if (machine->comm_exec)
		return thread__exec_comm(thread);
	else
		return thread__comm(thread);
}

476 477
int machine__process_comm_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample)
478
{
479 480 481
	struct thread *thread = machine__findnew_thread(machine,
							event->comm.pid,
							event->comm.tid);
482
	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
483
	int err = 0;
484

485 486 487
	if (exec)
		machine->comm_exec = true;

488 489 490
	if (dump_trace)
		perf_event__fprintf_comm(event, stdout);

491 492
	if (thread == NULL ||
	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
493
		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
494
		err = -1;
495 496
	}

497 498 499
	thread__put(thread);

	return err;
500 501 502
}

int machine__process_lost_event(struct machine *machine __maybe_unused,
503
				union perf_event *event, struct perf_sample *sample __maybe_unused)
504 505 506 507 508 509
{
	dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n",
		    event->lost.id, event->lost.lost);
	return 0;
}

510 511 512 513 514 515 516 517
int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
					union perf_event *event, struct perf_sample *sample)
{
	dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n",
		    sample->id, event->lost_samples.lost);
	return 0;
}

518 519 520
static struct dso *machine__findnew_module_dso(struct machine *machine,
					       struct kmod_path *m,
					       const char *filename)
521 522 523
{
	struct dso *dso;

524 525 526
	pthread_rwlock_wrlock(&machine->dsos.lock);

	dso = __dsos__find(&machine->dsos, m->name, true);
527
	if (!dso) {
528
		dso = __dsos__addnew(&machine->dsos, m->name);
529
		if (dso == NULL)
530
			goto out_unlock;
531 532 533 534 535 536 537

		if (machine__is_host(machine))
			dso->symtab_type = DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE;
		else
			dso->symtab_type = DSO_BINARY_TYPE__GUEST_KMODULE;

		/* _KMODULE_COMP should be next to _KMODULE */
538
		if (m->kmod && m->comp)
539
			dso->symtab_type++;
540 541 542

		dso__set_short_name(dso, strdup(m->name), true);
		dso__set_long_name(dso, strdup(filename), true);
543 544
	}

545
	dso__get(dso);
546 547
out_unlock:
	pthread_rwlock_unlock(&machine->dsos.lock);
548 549 550
	return dso;
}

551 552 553 554 555 556 557 558
int machine__process_aux_event(struct machine *machine __maybe_unused,
			       union perf_event *event)
{
	if (dump_trace)
		perf_event__fprintf_aux(event, stdout);
	return 0;
}

559 560 561 562 563 564 565 566
int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
					union perf_event *event)
{
	if (dump_trace)
		perf_event__fprintf_itrace_start(event, stdout);
	return 0;
}

567 568 569 570 571 572 573 574
int machine__process_switch_event(struct machine *machine __maybe_unused,
				  union perf_event *event)
{
	if (dump_trace)
		perf_event__fprintf_switch(event, stdout);
	return 0;
}

575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename)
{
	const char *dup_filename;

	if (!filename || !dso || !dso->long_name)
		return;
	if (dso->long_name[0] != '[')
		return;
	if (!strchr(filename, '/'))
		return;

	dup_filename = strdup(filename);
	if (!dup_filename)
		return;

590
	dso__set_long_name(dso, dup_filename, true);
591 592
}

593 594
struct map *machine__findnew_module_map(struct machine *machine, u64 start,
					const char *filename)
595
{
596
	struct map *map = NULL;
597
	struct dso *dso = NULL;
598
	struct kmod_path m;
599

600
	if (kmod_path__parse_name(&m, filename))
601 602
		return NULL;

603 604
	map = map_groups__find_by_name(&machine->kmaps, MAP__FUNCTION,
				       m.name);
605 606 607 608 609 610 611
	if (map) {
		/*
		 * If the map's dso is an offline module, give dso__load()
		 * a chance to find the file path of that module by fixing
		 * long_name.
		 */
		dso__adjust_kmod_long_name(map->dso, filename);
612
		goto out;
613
	}
614

615
	dso = machine__findnew_module_dso(machine, &m, filename);
616 617 618
	if (dso == NULL)
		goto out;

619 620
	map = map__new2(start, dso, MAP__FUNCTION);
	if (map == NULL)
621
		goto out;
622 623

	map_groups__insert(&machine->kmaps, map);
624

625 626
	/* Put the map here because map_groups__insert alread got it */
	map__put(map);
627
out:
628 629
	/* put the dso here, corresponding to  machine__findnew_module_dso */
	dso__put(dso);
630
	free(m.name);
631 632 633
	return map;
}

634
size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
635 636
{
	struct rb_node *nd;
637
	size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
638

639
	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
640
		struct machine *pos = rb_entry(nd, struct machine, rb_node);
641
		ret += __dsos__fprintf(&pos->dsos.head, fp);
642 643 644 645 646
	}

	return ret;
}

647
size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
648 649
				     bool (skip)(struct dso *dso, int parm), int parm)
{
650
	return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
651 652
}

653
size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
654 655 656
				     bool (skip)(struct dso *dso, int parm), int parm)
{
	struct rb_node *nd;
657
	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
658

659
	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
660 661 662 663 664 665 666 667 668 669
		struct machine *pos = rb_entry(nd, struct machine, rb_node);
		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
	}
	return ret;
}

size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
{
	int i;
	size_t printed = 0;
670
	struct dso *kdso = machine__kernel_map(machine)->dso;
671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686

	if (kdso->has_build_id) {
		char filename[PATH_MAX];
		if (dso__build_id_filename(kdso, filename, sizeof(filename)))
			printed += fprintf(fp, "[0] %s\n", filename);
	}

	for (i = 0; i < vmlinux_path__nr_entries; ++i)
		printed += fprintf(fp, "[%d] %s\n",
				   i + kdso->has_build_id, vmlinux_path[i]);

	return printed;
}

size_t machine__fprintf(struct machine *machine, FILE *fp)
{
687
	size_t ret;
688 689
	struct rb_node *nd;

690 691
	pthread_rwlock_rdlock(&machine->threads_lock);

692 693
	ret = fprintf(fp, "Threads: %u\n", machine->nr_threads);

694 695 696 697 698 699
	for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
		struct thread *pos = rb_entry(nd, struct thread, rb_node);

		ret += thread__fprintf(pos, fp);
	}

700 701
	pthread_rwlock_unlock(&machine->threads_lock);

702 703 704 705 706 707 708 709 710 711 712
	return ret;
}

static struct dso *machine__get_kernel(struct machine *machine)
{
	const char *vmlinux_name = NULL;
	struct dso *kernel;

	if (machine__is_host(machine)) {
		vmlinux_name = symbol_conf.vmlinux_name;
		if (!vmlinux_name)
713
			vmlinux_name = DSO__NAME_KALLSYMS;
714

715 716
		kernel = machine__findnew_kernel(machine, vmlinux_name,
						 "[kernel]", DSO_TYPE_KERNEL);
717 718 719 720 721 722 723 724 725
	} else {
		char bf[PATH_MAX];

		if (machine__is_default_guest(machine))
			vmlinux_name = symbol_conf.default_guest_vmlinux_name;
		if (!vmlinux_name)
			vmlinux_name = machine__mmap_name(machine, bf,
							  sizeof(bf));

726 727 728
		kernel = machine__findnew_kernel(machine, vmlinux_name,
						 "[guest.kernel]",
						 DSO_TYPE_GUEST_KERNEL);
729 730 731 732 733 734 735 736 737 738 739 740
	}

	if (kernel != NULL && (!kernel->has_build_id))
		dso__read_running_kernel_build_id(kernel, machine);

	return kernel;
}

struct process_args {
	u64 start;
};

741 742 743 744 745 746 747 748 749
static void machine__get_kallsyms_filename(struct machine *machine, char *buf,
					   size_t bufsz)
{
	if (machine__is_default_guest(machine))
		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
	else
		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
}

750 751 752 753 754 755
const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};

/* Figure out the start address of kernel map from /proc/kallsyms.
 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
 * symbol_name if it's not that important.
 */
756 757
static u64 machine__get_running_kernel_start(struct machine *machine,
					     const char **symbol_name)
758
{
759
	char filename[PATH_MAX];
760 761 762
	int i;
	const char *name;
	u64 addr = 0;
763

764
	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
765 766 767 768

	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
		return 0;

769 770 771 772 773 774 775 776
	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
		addr = kallsyms__get_function_start(filename, name);
		if (addr)
			break;
	}

	if (symbol_name)
		*symbol_name = name;
777

778
	return addr;
779 780 781 782 783
}

int __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
{
	enum map_type type;
784
	u64 start = machine__get_running_kernel_start(machine, NULL);
785

786 787 788
	/* In case of renewal the kernel map, destroy previous one */
	machine__destroy_kernel_maps(machine);

789 790
	for (type = 0; type < MAP__NR_TYPES; ++type) {
		struct kmap *kmap;
791
		struct map *map;
792 793 794 795 796 797 798 799

		machine->vmlinux_maps[type] = map__new2(start, kernel, type);
		if (machine->vmlinux_maps[type] == NULL)
			return -1;

		machine->vmlinux_maps[type]->map_ip =
			machine->vmlinux_maps[type]->unmap_ip =
				identity__map_ip;
800
		map = __machine__kernel_map(machine, type);
801
		kmap = map__kmap(map);
802 803 804
		if (!kmap)
			return -1;

805
		kmap->kmaps = &machine->kmaps;
806
		map_groups__insert(&machine->kmaps, map);
807 808 809 810 811 812 813 814 815 816 817
	}

	return 0;
}

void machine__destroy_kernel_maps(struct machine *machine)
{
	enum map_type type;

	for (type = 0; type < MAP__NR_TYPES; ++type) {
		struct kmap *kmap;
818
		struct map *map = __machine__kernel_map(machine, type);
819

820
		if (map == NULL)
821 822
			continue;

823 824
		kmap = map__kmap(map);
		map_groups__remove(&machine->kmaps, map);
825
		if (kmap && kmap->ref_reloc_sym) {
826 827 828 829 830
			/*
			 * ref_reloc_sym is shared among all maps, so free just
			 * on one of them.
			 */
			if (type == MAP__FUNCTION) {
831 832 833 834
				zfree((char **)&kmap->ref_reloc_sym->name);
				zfree(&kmap->ref_reloc_sym);
			} else
				kmap->ref_reloc_sym = NULL;
835 836
		}

837
		map__put(machine->vmlinux_maps[type]);
838 839 840 841
		machine->vmlinux_maps[type] = NULL;
	}
}

842
int machines__create_guest_kernel_maps(struct machines *machines)
843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
{
	int ret = 0;
	struct dirent **namelist = NULL;
	int i, items = 0;
	char path[PATH_MAX];
	pid_t pid;
	char *endp;

	if (symbol_conf.default_guest_vmlinux_name ||
	    symbol_conf.default_guest_modules ||
	    symbol_conf.default_guest_kallsyms) {
		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
	}

	if (symbol_conf.guestmount) {
		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
		if (items <= 0)
			return -ENOENT;
		for (i = 0; i < items; i++) {
			if (!isdigit(namelist[i]->d_name[0])) {
				/* Filter out . and .. */
				continue;
			}
			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
			if ((*endp != '\0') ||
			    (endp == namelist[i]->d_name) ||
			    (errno == ERANGE)) {
				pr_debug("invalid directory (%s). Skipping.\n",
					 namelist[i]->d_name);
				continue;
			}
			sprintf(path, "%s/%s/proc/kallsyms",
				symbol_conf.guestmount,
				namelist[i]->d_name);
			ret = access(path, R_OK);
			if (ret) {
				pr_debug("Can't access file %s\n", path);
				goto failure;
			}
			machines__create_kernel_maps(machines, pid);
		}
failure:
		free(namelist);
	}

	return ret;
}

891
void machines__destroy_kernel_maps(struct machines *machines)
892
{
893 894 895
	struct rb_node *next = rb_first(&machines->guests);

	machine__destroy_kernel_maps(&machines->host);
896 897 898 899 900

	while (next) {
		struct machine *pos = rb_entry(next, struct machine, rb_node);

		next = rb_next(&pos->rb_node);
901
		rb_erase(&pos->rb_node, &machines->guests);
902 903 904 905
		machine__delete(pos);
	}
}

906
int machines__create_kernel_maps(struct machines *machines, pid_t pid)
907 908 909 910 911 912 913 914 915
{
	struct machine *machine = machines__findnew(machines, pid);

	if (machine == NULL)
		return -1;

	return machine__create_kernel_maps(machine);
}

916 917
int __machine__load_kallsyms(struct machine *machine, const char *filename,
			     enum map_type type, bool no_kcore, symbol_filter_t filter)
918
{
919
	struct map *map = machine__kernel_map(machine);
920
	int ret = __dso__load_kallsyms(map->dso, filename, map, no_kcore, filter);
921 922 923 924 925 926 927 928 929 930 931 932 933 934

	if (ret > 0) {
		dso__set_loaded(map->dso, type);
		/*
		 * Since /proc/kallsyms will have multiple sessions for the
		 * kernel, with modules between them, fixup the end of all
		 * sections.
		 */
		__map_groups__fixup_end(&machine->kmaps, type);
	}

	return ret;
}

935 936 937 938 939 940
int machine__load_kallsyms(struct machine *machine, const char *filename,
			   enum map_type type, symbol_filter_t filter)
{
	return __machine__load_kallsyms(machine, filename, type, false, filter);
}

941 942 943
int machine__load_vmlinux_path(struct machine *machine, enum map_type type,
			       symbol_filter_t filter)
{
944
	struct map *map = machine__kernel_map(machine);
945 946
	int ret = dso__load_vmlinux_path(map->dso, map, filter);

947
	if (ret > 0)
948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
		dso__set_loaded(map->dso, type);

	return ret;
}

static void map_groups__fixup_end(struct map_groups *mg)
{
	int i;
	for (i = 0; i < MAP__NR_TYPES; ++i)
		__map_groups__fixup_end(mg, i);
}

static char *get_kernel_version(const char *root_dir)
{
	char version[PATH_MAX];
	FILE *file;
	char *name, *tmp;
	const char *prefix = "Linux version ";

	sprintf(version, "%s/proc/version", root_dir);
	file = fopen(version, "r");
	if (!file)
		return NULL;

	version[0] = '\0';
	tmp = fgets(version, sizeof(version), file);
	fclose(file);

	name = strstr(version, prefix);
	if (!name)
		return NULL;
	name += strlen(prefix);
	tmp = strchr(name, ' ');
	if (tmp)
		*tmp = '\0';

	return strdup(name);
}

987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
static bool is_kmod_dso(struct dso *dso)
{
	return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
	       dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
}

static int map_groups__set_module_path(struct map_groups *mg, const char *path,
				       struct kmod_path *m)
{
	struct map *map;
	char *long_name;

	map = map_groups__find_by_name(mg, MAP__FUNCTION, m->name);
	if (map == NULL)
		return 0;

	long_name = strdup(path);
	if (long_name == NULL)
		return -ENOMEM;

	dso__set_long_name(map->dso, long_name, true);
	dso__kernel_module_get_build_id(map->dso, "");

	/*
	 * Full name could reveal us kmod compression, so
	 * we need to update the symtab_type if needed.
	 */
	if (m->comp && is_kmod_dso(map->dso))
		map->dso->symtab_type++;

	return 0;
}

1020
static int map_groups__set_modules_path_dir(struct map_groups *mg,
1021
				const char *dir_name, int depth)
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
{
	struct dirent *dent;
	DIR *dir = opendir(dir_name);
	int ret = 0;

	if (!dir) {
		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
		return -1;
	}

	while ((dent = readdir(dir)) != NULL) {
		char path[PATH_MAX];
		struct stat st;

		/*sshfs might return bad dent->d_type, so we have to stat*/
		snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
		if (stat(path, &st))
			continue;

		if (S_ISDIR(st.st_mode)) {
			if (!strcmp(dent->d_name, ".") ||
			    !strcmp(dent->d_name, ".."))
				continue;

1046 1047 1048 1049 1050 1051 1052 1053 1054
			/* Do not follow top-level source and build symlinks */
			if (depth == 0) {
				if (!strcmp(dent->d_name, "source") ||
				    !strcmp(dent->d_name, "build"))
					continue;
			}

			ret = map_groups__set_modules_path_dir(mg, path,
							       depth + 1);
1055 1056 1057
			if (ret < 0)
				goto out;
		} else {
1058
			struct kmod_path m;
1059

1060 1061 1062
			ret = kmod_path__parse_name(&m, dent->d_name);
			if (ret)
				goto out;
1063

1064 1065
			if (m.kmod)
				ret = map_groups__set_module_path(mg, path, &m);
1066

1067
			free(m.name);
1068

1069
			if (ret)
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
				goto out;
		}
	}

out:
	closedir(dir);
	return ret;
}

static int machine__set_modules_path(struct machine *machine)
{
	char *version;
	char modules_path[PATH_MAX];

	version = get_kernel_version(machine->root_dir);
	if (!version)
		return -1;

1088
	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1089 1090 1091
		 machine->root_dir, version);
	free(version);

1092
	return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1093 1094
}

1095
static int machine__create_module(void *arg, const char *name, u64 start)
1096
{
1097
	struct machine *machine = arg;
1098
	struct map *map;
1099

1100
	map = machine__findnew_module_map(machine, start, name);
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
	if (map == NULL)
		return -1;

	dso__kernel_module_get_build_id(map->dso, machine->root_dir);

	return 0;
}

static int machine__create_modules(struct machine *machine)
{
1111 1112 1113
	const char *modules;
	char path[PATH_MAX];

1114
	if (machine__is_default_guest(machine)) {
1115
		modules = symbol_conf.default_guest_modules;
1116 1117
	} else {
		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1118 1119 1120
		modules = path;
	}

1121
	if (symbol__restricted_filename(modules, "/proc/modules"))
1122 1123
		return -1;

1124
	if (modules__parse(modules, machine, machine__create_module))
1125 1126
		return -1;

1127 1128
	if (!machine__set_modules_path(machine))
		return 0;
1129

1130
	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1131

1132
	return 0;
1133 1134 1135 1136 1137
}

int machine__create_kernel_maps(struct machine *machine)
{
	struct dso *kernel = machine__get_kernel(machine);
1138
	const char *name;
1139
	u64 addr;
1140 1141
	int ret;

1142
	if (kernel == NULL)
1143
		return -1;
1144

1145 1146 1147
	ret = __machine__create_kernel_maps(machine, kernel);
	dso__put(kernel);
	if (ret < 0)
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
		return -1;

	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
		if (machine__is_host(machine))
			pr_debug("Problems creating module maps, "
				 "continuing anyway...\n");
		else
			pr_debug("Problems creating module maps for guest %d, "
				 "continuing anyway...\n", machine->pid);
	}

	/*
	 * Now that we have all the maps created, just set the ->end of them:
	 */
	map_groups__fixup_end(&machine->kmaps);
1163

1164 1165 1166
	addr = machine__get_running_kernel_start(machine, &name);
	if (!addr) {
	} else if (maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps, name, addr)) {
1167 1168 1169 1170
		machine__destroy_kernel_maps(machine);
		return -1;
	}

1171 1172 1173
	return 0;
}

1174 1175 1176
static void machine__set_kernel_mmap_len(struct machine *machine,
					 union perf_event *event)
{
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
	int i;

	for (i = 0; i < MAP__NR_TYPES; i++) {
		machine->vmlinux_maps[i]->start = event->mmap.start;
		machine->vmlinux_maps[i]->end   = (event->mmap.start +
						   event->mmap.len);
		/*
		 * Be a bit paranoid here, some perf.data file came with
		 * a zero sized synthesized MMAP event for the kernel.
		 */
		if (machine->vmlinux_maps[i]->end == 0)
			machine->vmlinux_maps[i]->end = ~0ULL;
	}
1190 1191
}

1192 1193 1194 1195
static bool machine__uses_kcore(struct machine *machine)
{
	struct dso *dso;

1196
	list_for_each_entry(dso, &machine->dsos.head, node) {
1197 1198 1199 1200 1201 1202 1203
		if (dso__is_kcore(dso))
			return true;
	}

	return false;
}

1204 1205 1206 1207 1208 1209 1210 1211
static int machine__process_kernel_mmap_event(struct machine *machine,
					      union perf_event *event)
{
	struct map *map;
	char kmmap_prefix[PATH_MAX];
	enum dso_kernel_type kernel_type;
	bool is_kernel_mmap;

1212 1213 1214 1215
	/* If we have maps from kcore then we do not need or want any others */
	if (machine__uses_kcore(machine))
		return 0;

1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
	machine__mmap_name(machine, kmmap_prefix, sizeof(kmmap_prefix));
	if (machine__is_host(machine))
		kernel_type = DSO_TYPE_KERNEL;
	else
		kernel_type = DSO_TYPE_GUEST_KERNEL;

	is_kernel_mmap = memcmp(event->mmap.filename,
				kmmap_prefix,
				strlen(kmmap_prefix) - 1) == 0;
	if (event->mmap.filename[0] == '/' ||
	    (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1227 1228
		map = machine__findnew_module_map(machine, event->mmap.start,
						  event->mmap.filename);
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
		if (map == NULL)
			goto out_problem;

		map->end = map->start + event->mmap.len;
	} else if (is_kernel_mmap) {
		const char *symbol_name = (event->mmap.filename +
				strlen(kmmap_prefix));
		/*
		 * Should be there already, from the build-id table in
		 * the header.
		 */
1240 1241 1242
		struct dso *kernel = NULL;
		struct dso *dso;

1243 1244
		pthread_rwlock_rdlock(&machine->dsos.lock);

1245
		list_for_each_entry(dso, &machine->dsos.head, node) {
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265

			/*
			 * The cpumode passed to is_kernel_module is not the
			 * cpumode of *this* event. If we insist on passing
			 * correct cpumode to is_kernel_module, we should
			 * record the cpumode when we adding this dso to the
			 * linked list.
			 *
			 * However we don't really need passing correct
			 * cpumode.  We know the correct cpumode must be kernel
			 * mode (if not, we should not link it onto kernel_dsos
			 * list).
			 *
			 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
			 * is_kernel_module() treats it as a kernel cpumode.
			 */

			if (!dso->kernel ||
			    is_kernel_module(dso->long_name,
					     PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1266 1267
				continue;

1268

1269 1270 1271 1272
			kernel = dso;
			break;
		}

1273 1274
		pthread_rwlock_unlock(&machine->dsos.lock);

1275
		if (kernel == NULL)
1276
			kernel = machine__findnew_dso(machine, kmmap_prefix);
1277 1278 1279 1280
		if (kernel == NULL)
			goto out_problem;

		kernel->kernel = kernel_type;
1281 1282
		if (__machine__create_kernel_maps(machine, kernel) < 0) {
			dso__put(kernel);
1283
			goto out_problem;
1284
		}
1285

1286 1287
		if (strstr(kernel->long_name, "vmlinux"))
			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1288

1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
		machine__set_kernel_mmap_len(machine, event);

		/*
		 * Avoid using a zero address (kptr_restrict) for the ref reloc
		 * symbol. Effectively having zero here means that at record
		 * time /proc/sys/kernel/kptr_restrict was non zero.
		 */
		if (event->mmap.pgoff != 0) {
			maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps,
							 symbol_name,
							 event->mmap.pgoff);
		}

		if (machine__is_default_guest(machine)) {
			/*
			 * preload dso of guest kernel and modules
			 */
1306
			dso__load(kernel, machine__kernel_map(machine), NULL);
1307 1308 1309 1310 1311 1312 1313
		}
	}
	return 0;
out_problem:
	return -1;
}

1314
int machine__process_mmap2_event(struct machine *machine,
1315
				 union perf_event *event,
1316
				 struct perf_sample *sample)
1317 1318 1319 1320 1321 1322 1323 1324 1325
{
	struct thread *thread;
	struct map *map;
	enum map_type type;
	int ret = 0;

	if (dump_trace)
		perf_event__fprintf_mmap2(event, stdout);

1326 1327
	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1328 1329 1330 1331 1332 1333 1334
		ret = machine__process_kernel_mmap_event(machine, event);
		if (ret < 0)
			goto out_problem;
		return 0;
	}

	thread = machine__findnew_thread(machine, event->mmap2.pid,
1335
					event->mmap2.tid);
1336 1337 1338 1339 1340 1341 1342 1343
	if (thread == NULL)
		goto out_problem;

	if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
		type = MAP__VARIABLE;
	else
		type = MAP__FUNCTION;

1344
	map = map__new(machine, event->mmap2.start,
1345 1346 1347 1348
			event->mmap2.len, event->mmap2.pgoff,
			event->mmap2.pid, event->mmap2.maj,
			event->mmap2.min, event->mmap2.ino,
			event->mmap2.ino_generation,
1349 1350
			event->mmap2.prot,
			event->mmap2.flags,
1351
			event->mmap2.filename, type, thread);
1352 1353

	if (map == NULL)
1354
		goto out_problem_map;
1355 1356

	thread__insert_map(thread, map);
1357
	thread__put(thread);
1358
	map__put(map);
1359 1360
	return 0;

1361 1362
out_problem_map:
	thread__put(thread);
1363 1364 1365 1366 1367
out_problem:
	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
	return 0;
}

1368
int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1369
				struct perf_sample *sample)
1370 1371 1372
{
	struct thread *thread;
	struct map *map;
1373
	enum map_type type;
1374 1375 1376 1377 1378
	int ret = 0;

	if (dump_trace)
		perf_event__fprintf_mmap(event, stdout);

1379 1380
	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1381 1382 1383 1384 1385 1386
		ret = machine__process_kernel_mmap_event(machine, event);
		if (ret < 0)
			goto out_problem;
		return 0;
	}

1387
	thread = machine__findnew_thread(machine, event->mmap.pid,
1388
					 event->mmap.tid);
1389 1390
	if (thread == NULL)
		goto out_problem;
1391 1392 1393 1394 1395 1396

	if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
		type = MAP__VARIABLE;
	else
		type = MAP__FUNCTION;

1397
	map = map__new(machine, event->mmap.start,
1398
			event->mmap.len, event->mmap.pgoff,
1399
			event->mmap.pid, 0, 0, 0, 0, 0, 0,
1400
			event->mmap.filename,
1401
			type, thread);
1402

1403
	if (map == NULL)
1404
		goto out_problem_map;
1405 1406

	thread__insert_map(thread, map);
1407
	thread__put(thread);
1408
	map__put(map);
1409 1410
	return 0;

1411 1412
out_problem_map:
	thread__put(thread);
1413 1414 1415 1416 1417
out_problem:
	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
	return 0;
}

1418
static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1419
{
1420
	if (machine->last_match == th)
1421
		machine->last_match = NULL;
1422

1423
	BUG_ON(atomic_read(&th->refcnt) == 0);
1424 1425
	if (lock)
		pthread_rwlock_wrlock(&machine->threads_lock);
1426
	rb_erase_init(&th->rb_node, &machine->threads);
1427
	RB_CLEAR_NODE(&th->rb_node);
1428
	--machine->nr_threads;
1429
	/*
1430 1431 1432
	 * Move it first to the dead_threads list, then drop the reference,
	 * if this is the last reference, then the thread__delete destructor
	 * will be called and we will remove it from the dead_threads list.
1433 1434
	 */
	list_add_tail(&th->node, &machine->dead_threads);
1435 1436
	if (lock)
		pthread_rwlock_unlock(&machine->threads_lock);
1437
	thread__put(th);
1438 1439
}

1440 1441 1442 1443 1444
void machine__remove_thread(struct machine *machine, struct thread *th)
{
	return __machine__remove_thread(machine, th, true);
}

1445 1446
int machine__process_fork_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample)
1447
{
1448 1449 1450
	struct thread *thread = machine__find_thread(machine,
						     event->fork.pid,
						     event->fork.tid);
1451 1452 1453
	struct thread *parent = machine__findnew_thread(machine,
							event->fork.ppid,
							event->fork.ptid);
1454
	int err = 0;
1455

1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
	if (dump_trace)
		perf_event__fprintf_task(event, stdout);

	/*
	 * There may be an existing thread that is not actually the parent,
	 * either because we are processing events out of order, or because the
	 * (fork) event that would have removed the thread was lost. Assume the
	 * latter case and continue on as best we can.
	 */
	if (parent->pid_ != (pid_t)event->fork.ppid) {
		dump_printf("removing erroneous parent thread %d/%d\n",
			    parent->pid_, parent->tid);
		machine__remove_thread(machine, parent);
		thread__put(parent);
		parent = machine__findnew_thread(machine, event->fork.ppid,
						 event->fork.ptid);
	}

1474
	/* if a thread currently exists for the thread id remove it */
1475
	if (thread != NULL) {
1476
		machine__remove_thread(machine, thread);
1477 1478
		thread__put(thread);
	}
1479

1480 1481
	thread = machine__findnew_thread(machine, event->fork.pid,
					 event->fork.tid);
1482 1483

	if (thread == NULL || parent == NULL ||
1484
	    thread__fork(thread, parent, sample->time) < 0) {
1485
		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1486
		err = -1;
1487
	}
1488 1489
	thread__put(thread);
	thread__put(parent);
1490

1491
	return err;
1492 1493
}

1494 1495
int machine__process_exit_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample __maybe_unused)
1496
{
1497 1498 1499
	struct thread *thread = machine__find_thread(machine,
						     event->fork.pid,
						     event->fork.tid);
1500 1501 1502 1503

	if (dump_trace)
		perf_event__fprintf_task(event, stdout);

1504
	if (thread != NULL) {
1505
		thread__exited(thread);
1506 1507
		thread__put(thread);
	}
1508 1509 1510 1511

	return 0;
}

1512 1513
int machine__process_event(struct machine *machine, union perf_event *event,
			   struct perf_sample *sample)
1514 1515 1516 1517 1518
{
	int ret;

	switch (event->header.type) {
	case PERF_RECORD_COMM:
1519
		ret = machine__process_comm_event(machine, event, sample); break;
1520
	case PERF_RECORD_MMAP:
1521
		ret = machine__process_mmap_event(machine, event, sample); break;
1522
	case PERF_RECORD_MMAP2:
1523
		ret = machine__process_mmap2_event(machine, event, sample); break;
1524
	case PERF_RECORD_FORK:
1525
		ret = machine__process_fork_event(machine, event, sample); break;
1526
	case PERF_RECORD_EXIT:
1527
		ret = machine__process_exit_event(machine, event, sample); break;
1528
	case PERF_RECORD_LOST:
1529
		ret = machine__process_lost_event(machine, event, sample); break;
1530 1531
	case PERF_RECORD_AUX:
		ret = machine__process_aux_event(machine, event); break;
1532
	case PERF_RECORD_ITRACE_START:
1533
		ret = machine__process_itrace_start_event(machine, event); break;
1534 1535
	case PERF_RECORD_LOST_SAMPLES:
		ret = machine__process_lost_samples_event(machine, event, sample); break;
1536 1537 1538
	case PERF_RECORD_SWITCH:
	case PERF_RECORD_SWITCH_CPU_WIDE:
		ret = machine__process_switch_event(machine, event); break;
1539 1540 1541 1542 1543 1544 1545
	default:
		ret = -1;
		break;
	}

	return ret;
}
1546

1547
static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1548
{
1549
	if (sym->name && !regexec(regex, sym->name, 0, NULL, 0))
1550 1551 1552 1553
		return 1;
	return 0;
}

1554
static void ip__resolve_ams(struct thread *thread,
1555 1556 1557 1558 1559 1560
			    struct addr_map_symbol *ams,
			    u64 ip)
{
	struct addr_location al;

	memset(&al, 0, sizeof(al));
1561 1562 1563 1564 1565 1566 1567
	/*
	 * We cannot use the header.misc hint to determine whether a
	 * branch stack address is user, kernel, guest, hypervisor.
	 * Branches may straddle the kernel/user/hypervisor boundaries.
	 * Thus, we have to try consecutively until we find a match
	 * or else, the symbol is unknown
	 */
1568
	thread__find_cpumode_addr_location(thread, MAP__FUNCTION, ip, &al);
1569 1570 1571 1572 1573 1574 1575

	ams->addr = ip;
	ams->al_addr = al.addr;
	ams->sym = al.sym;
	ams->map = al.map;
}

1576
static void ip__resolve_data(struct thread *thread,
1577 1578 1579 1580 1581 1582
			     u8 m, struct addr_map_symbol *ams, u64 addr)
{
	struct addr_location al;

	memset(&al, 0, sizeof(al));

1583
	thread__find_addr_location(thread, m, MAP__VARIABLE, addr, &al);
1584 1585 1586 1587 1588 1589
	if (al.map == NULL) {
		/*
		 * some shared data regions have execute bit set which puts
		 * their mapping in the MAP__FUNCTION type array.
		 * Check there as a fallback option before dropping the sample.
		 */
1590
		thread__find_addr_location(thread, m, MAP__FUNCTION, addr, &al);
1591 1592
	}

1593 1594 1595 1596 1597 1598
	ams->addr = addr;
	ams->al_addr = al.addr;
	ams->sym = al.sym;
	ams->map = al.map;
}

1599 1600
struct mem_info *sample__resolve_mem(struct perf_sample *sample,
				     struct addr_location *al)
1601 1602 1603 1604 1605 1606
{
	struct mem_info *mi = zalloc(sizeof(*mi));

	if (!mi)
		return NULL;

1607 1608
	ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
	ip__resolve_data(al->thread, al->cpumode, &mi->daddr, sample->addr);
1609 1610 1611 1612 1613
	mi->data_src.val = sample->data_src;

	return mi;
}

1614
static int add_callchain_ip(struct thread *thread,
1615
			    struct callchain_cursor *cursor,
1616 1617
			    struct symbol **parent,
			    struct addr_location *root_al,
1618
			    u8 *cpumode,
1619 1620 1621 1622 1623 1624
			    u64 ip)
{
	struct addr_location al;

	al.filtered = 0;
	al.sym = NULL;
1625
	if (!cpumode) {
1626 1627
		thread__find_cpumode_addr_location(thread, MAP__FUNCTION,
						   ip, &al);
1628
	} else {
1629 1630 1631
		if (ip >= PERF_CONTEXT_MAX) {
			switch (ip) {
			case PERF_CONTEXT_HV:
1632
				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
1633 1634
				break;
			case PERF_CONTEXT_KERNEL:
1635
				*cpumode = PERF_RECORD_MISC_KERNEL;
1636 1637
				break;
			case PERF_CONTEXT_USER:
1638
				*cpumode = PERF_RECORD_MISC_USER;
1639 1640 1641 1642 1643 1644 1645 1646
				break;
			default:
				pr_debug("invalid callchain context: "
					 "%"PRId64"\n", (s64) ip);
				/*
				 * It seems the callchain is corrupted.
				 * Discard all.
				 */
1647
				callchain_cursor_reset(cursor);
1648 1649 1650 1651
				return 1;
			}
			return 0;
		}
1652 1653
		thread__find_addr_location(thread, *cpumode, MAP__FUNCTION,
					   ip, &al);
1654 1655
	}

1656
	if (al.sym != NULL) {
1657
		if (perf_hpp_list.parent && !*parent &&
1658 1659 1660 1661 1662 1663 1664
		    symbol__match_regex(al.sym, &parent_regex))
			*parent = al.sym;
		else if (have_ignore_callees && root_al &&
		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
			/* Treat this symbol as the root,
			   forgetting its callees. */
			*root_al = al;
1665
			callchain_cursor_reset(cursor);
1666 1667 1668
		}
	}

1669 1670
	if (symbol_conf.hide_unresolved && al.sym == NULL)
		return 0;
1671
	return callchain_cursor_append(cursor, al.addr, al.map, al.sym);
1672 1673
}

1674 1675
struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
					   struct addr_location *al)
1676 1677
{
	unsigned int i;
1678 1679
	const struct branch_stack *bs = sample->branch_stack;
	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
1680 1681 1682 1683 1684

	if (!bi)
		return NULL;

	for (i = 0; i < bs->nr; i++) {
1685 1686
		ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
		ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
1687 1688 1689 1690 1691
		bi[i].flags = bs->entries[i].flags;
	}
	return bi;
}

1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
#define CHASHSZ 127
#define CHASHBITS 7
#define NO_ENTRY 0xff

#define PERF_MAX_BRANCH_DEPTH 127

/* Remove loops. */
static int remove_loops(struct branch_entry *l, int nr)
{
	int i, j, off;
	unsigned char chash[CHASHSZ];

	memset(chash, NO_ENTRY, sizeof(chash));

	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);

	for (i = 0; i < nr; i++) {
		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;

		/* no collision handling for now */
		if (chash[h] == NO_ENTRY) {
			chash[h] = i;
		} else if (l[chash[h]].from == l[i].from) {
			bool is_loop = true;
			/* check if it is a real loop */
			off = 0;
			for (j = chash[h]; j < i && i + off < nr; j++, off++)
				if (l[j].from != l[i + off].from) {
					is_loop = false;
					break;
				}
			if (is_loop) {
				memmove(l + i, l + i + off,
					(nr - (i + off)) * sizeof(*l));
				nr -= off;
			}
		}
	}
	return nr;
}

K
Kan Liang 已提交
1733 1734 1735 1736 1737 1738 1739 1740
/*
 * Recolve LBR callstack chain sample
 * Return:
 * 1 on success get LBR callchain information
 * 0 no available LBR callchain information, should try fp
 * negative error code on other errors.
 */
static int resolve_lbr_callchain_sample(struct thread *thread,
1741
					struct callchain_cursor *cursor,
K
Kan Liang 已提交
1742 1743 1744 1745
					struct perf_sample *sample,
					struct symbol **parent,
					struct addr_location *root_al,
					int max_stack)
1746
{
K
Kan Liang 已提交
1747 1748
	struct ip_callchain *chain = sample->callchain;
	int chain_nr = min(max_stack, (int)chain->nr);
1749
	u8 cpumode = PERF_RECORD_MISC_USER;
K
Kan Liang 已提交
1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773
	int i, j, err;
	u64 ip;

	for (i = 0; i < chain_nr; i++) {
		if (chain->ips[i] == PERF_CONTEXT_USER)
			break;
	}

	/* LBR only affects the user callchain */
	if (i != chain_nr) {
		struct branch_stack *lbr_stack = sample->branch_stack;
		int lbr_nr = lbr_stack->nr;
		/*
		 * LBR callstack can only get user call chain.
		 * The mix_chain_nr is kernel call chain
		 * number plus LBR user call chain number.
		 * i is kernel call chain number,
		 * 1 is PERF_CONTEXT_USER,
		 * lbr_nr + 1 is the user call chain number.
		 * For details, please refer to the comments
		 * in callchain__printf
		 */
		int mix_chain_nr = i + 1 + lbr_nr + 1;

1774
		if (mix_chain_nr > (int)sysctl_perf_event_max_stack + PERF_MAX_BRANCH_DEPTH) {
K
Kan Liang 已提交
1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795
			pr_warning("corrupted callchain. skipping...\n");
			return 0;
		}

		for (j = 0; j < mix_chain_nr; j++) {
			if (callchain_param.order == ORDER_CALLEE) {
				if (j < i + 1)
					ip = chain->ips[j];
				else if (j > i + 1)
					ip = lbr_stack->entries[j - i - 2].from;
				else
					ip = lbr_stack->entries[0].to;
			} else {
				if (j < lbr_nr)
					ip = lbr_stack->entries[lbr_nr - j - 1].from;
				else if (j > lbr_nr)
					ip = chain->ips[i + 1 - (j - lbr_nr)];
				else
					ip = lbr_stack->entries[0].to;
			}

1796
			err = add_callchain_ip(thread, cursor, parent, root_al, &cpumode, ip);
K
Kan Liang 已提交
1797 1798 1799 1800 1801 1802 1803 1804 1805 1806
			if (err)
				return (err < 0) ? err : 0;
		}
		return 1;
	}

	return 0;
}

static int thread__resolve_callchain_sample(struct thread *thread,
1807
					    struct callchain_cursor *cursor,
K
Kan Liang 已提交
1808 1809 1810 1811 1812 1813 1814 1815
					    struct perf_evsel *evsel,
					    struct perf_sample *sample,
					    struct symbol **parent,
					    struct addr_location *root_al,
					    int max_stack)
{
	struct branch_stack *branch = sample->branch_stack;
	struct ip_callchain *chain = sample->callchain;
1816
	int chain_nr = chain->nr;
1817
	u8 cpumode = PERF_RECORD_MISC_USER;
1818
	int i, j, err, nr_entries, nr_contexts;
1819 1820 1821
	int skip_idx = -1;
	int first_call = 0;

1822
	if (perf_evsel__has_branch_callstack(evsel)) {
1823
		err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
K
Kan Liang 已提交
1824 1825 1826 1827 1828
						   root_al, max_stack);
		if (err)
			return (err < 0) ? err : 0;
	}

1829 1830 1831 1832
	/*
	 * Based on DWARF debug information, some architectures skip
	 * a callchain entry saved by the kernel.
	 */
1833
	if (chain_nr < sysctl_perf_event_max_stack)
1834
		skip_idx = arch_skip_callchain_idx(thread, chain);
1835

1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879
	/*
	 * Add branches to call stack for easier browsing. This gives
	 * more context for a sample than just the callers.
	 *
	 * This uses individual histograms of paths compared to the
	 * aggregated histograms the normal LBR mode uses.
	 *
	 * Limitations for now:
	 * - No extra filters
	 * - No annotations (should annotate somehow)
	 */

	if (branch && callchain_param.branch_callstack) {
		int nr = min(max_stack, (int)branch->nr);
		struct branch_entry be[nr];

		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
			pr_warning("corrupted branch chain. skipping...\n");
			goto check_calls;
		}

		for (i = 0; i < nr; i++) {
			if (callchain_param.order == ORDER_CALLEE) {
				be[i] = branch->entries[i];
				/*
				 * Check for overlap into the callchain.
				 * The return address is one off compared to
				 * the branch entry. To adjust for this
				 * assume the calling instruction is not longer
				 * than 8 bytes.
				 */
				if (i == skip_idx ||
				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
					first_call++;
				else if (be[i].from < chain->ips[first_call] &&
				    be[i].from >= chain->ips[first_call] - 8)
					first_call++;
			} else
				be[i] = branch->entries[branch->nr - i - 1];
		}

		nr = remove_loops(be, nr);

		for (i = 0; i < nr; i++) {
1880
			err = add_callchain_ip(thread, cursor, parent, root_al,
1881
					       NULL, be[i].to);
1882
			if (!err)
1883
				err = add_callchain_ip(thread, cursor, parent, root_al,
1884
						       NULL, be[i].from);
1885 1886 1887 1888 1889 1890 1891 1892 1893
			if (err == -EINVAL)
				break;
			if (err)
				return err;
		}
		chain_nr -= nr;
	}

check_calls:
1894 1895
	for (i = first_call, nr_entries = 0, nr_contexts = 0;
	     i < chain_nr && nr_entries < max_stack; i++) {
1896 1897 1898
		u64 ip;

		if (callchain_param.order == ORDER_CALLEE)
1899
			j = i;
1900
		else
1901 1902 1903 1904 1905 1906 1907
			j = chain->nr - i - 1;

#ifdef HAVE_SKIP_CALLCHAIN_IDX
		if (j == skip_idx)
			continue;
#endif
		ip = chain->ips[j];
1908

1909 1910 1911 1912 1913 1914 1915 1916
		if (ip >= PERF_CONTEXT_MAX) {
			if (++nr_contexts > sysctl_perf_event_max_contexts_per_stack)
				goto out_corrupted_callchain;
		} else {
			if (++nr_entries > sysctl_perf_event_max_stack)
				goto out_corrupted_callchain;
		}

1917
		err = add_callchain_ip(thread, cursor, parent, root_al, &cpumode, ip);
1918 1919

		if (err)
1920
			return (err < 0) ? err : 0;
1921 1922 1923
	}

	return 0;
1924 1925 1926 1927

out_corrupted_callchain:
	pr_warning("corrupted callchain. skipping...\n");
	return 0;
1928 1929 1930 1931 1932
}

static int unwind_entry(struct unwind_entry *entry, void *arg)
{
	struct callchain_cursor *cursor = arg;
1933 1934 1935

	if (symbol_conf.hide_unresolved && entry->sym == NULL)
		return 0;
1936 1937 1938 1939
	return callchain_cursor_append(cursor, entry->ip,
				       entry->map, entry->sym);
}

1940 1941 1942 1943 1944
static int thread__resolve_callchain_unwind(struct thread *thread,
					    struct callchain_cursor *cursor,
					    struct perf_evsel *evsel,
					    struct perf_sample *sample,
					    int max_stack)
1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955
{
	/* Can we do dwarf post unwind? */
	if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) &&
	      (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER)))
		return 0;

	/* Bail out if nothing was captured. */
	if ((!sample->user_regs.regs) ||
	    (!sample->user_stack.size))
		return 0;

1956
	return unwind__get_entries(unwind_entry, cursor,
1957
				   thread, sample, max_stack);
1958
}
1959

1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994
int thread__resolve_callchain(struct thread *thread,
			      struct callchain_cursor *cursor,
			      struct perf_evsel *evsel,
			      struct perf_sample *sample,
			      struct symbol **parent,
			      struct addr_location *root_al,
			      int max_stack)
{
	int ret = 0;

	callchain_cursor_reset(&callchain_cursor);

	if (callchain_param.order == ORDER_CALLEE) {
		ret = thread__resolve_callchain_sample(thread, cursor,
						       evsel, sample,
						       parent, root_al,
						       max_stack);
		if (ret)
			return ret;
		ret = thread__resolve_callchain_unwind(thread, cursor,
						       evsel, sample,
						       max_stack);
	} else {
		ret = thread__resolve_callchain_unwind(thread, cursor,
						       evsel, sample,
						       max_stack);
		if (ret)
			return ret;
		ret = thread__resolve_callchain_sample(thread, cursor,
						       evsel, sample,
						       parent, root_al,
						       max_stack);
	}

	return ret;
1995
}
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

int machine__for_each_thread(struct machine *machine,
			     int (*fn)(struct thread *thread, void *p),
			     void *priv)
{
	struct rb_node *nd;
	struct thread *thread;
	int rc = 0;

	for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
		thread = rb_entry(nd, struct thread, rb_node);
		rc = fn(thread, priv);
		if (rc != 0)
			return rc;
	}

	list_for_each_entry(thread, &machine->dead_threads, node) {
		rc = fn(thread, priv);
		if (rc != 0)
			return rc;
	}
	return rc;
}
2019

2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040
int machines__for_each_thread(struct machines *machines,
			      int (*fn)(struct thread *thread, void *p),
			      void *priv)
{
	struct rb_node *nd;
	int rc = 0;

	rc = machine__for_each_thread(&machines->host, fn, priv);
	if (rc != 0)
		return rc;

	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
		struct machine *machine = rb_entry(nd, struct machine, rb_node);

		rc = machine__for_each_thread(machine, fn, priv);
		if (rc != 0)
			return rc;
	}
	return rc;
}

2041
int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool,
2042
				  struct target *target, struct thread_map *threads,
2043 2044
				  perf_event__handler_t process, bool data_mmap,
				  unsigned int proc_map_timeout)
2045
{
2046
	if (target__has_task(target))
2047
		return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap, proc_map_timeout);
2048
	else if (target__has_cpu(target))
2049
		return perf_event__synthesize_threads(tool, process, machine, data_mmap, proc_map_timeout);
2050 2051 2052
	/* command specified */
	return 0;
}
2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092

pid_t machine__get_current_tid(struct machine *machine, int cpu)
{
	if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid)
		return -1;

	return machine->current_tid[cpu];
}

int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
			     pid_t tid)
{
	struct thread *thread;

	if (cpu < 0)
		return -EINVAL;

	if (!machine->current_tid) {
		int i;

		machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t));
		if (!machine->current_tid)
			return -ENOMEM;
		for (i = 0; i < MAX_NR_CPUS; i++)
			machine->current_tid[i] = -1;
	}

	if (cpu >= MAX_NR_CPUS) {
		pr_err("Requested CPU %d too large. ", cpu);
		pr_err("Consider raising MAX_NR_CPUS\n");
		return -EINVAL;
	}

	machine->current_tid[cpu] = tid;

	thread = machine__findnew_thread(machine, pid, tid);
	if (!thread)
		return -ENOMEM;

	thread->cpu = cpu;
2093
	thread__put(thread);
2094 2095 2096

	return 0;
}
2097 2098 2099

int machine__get_kernel_start(struct machine *machine)
{
2100
	struct map *map = machine__kernel_map(machine);
2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118
	int err = 0;

	/*
	 * The only addresses above 2^63 are kernel addresses of a 64-bit
	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
	 * all addresses including kernel addresses are less than 2^32.  In
	 * that case (32-bit system), if the kernel mapping is unknown, all
	 * addresses will be assumed to be in user space - see
	 * machine__kernel_ip().
	 */
	machine->kernel_start = 1ULL << 63;
	if (map) {
		err = map__load(map, machine->symbol_filter);
		if (map->start)
			machine->kernel_start = map->start;
	}
	return err;
}
2119 2120 2121

struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
{
2122
	return dsos__findnew(&machine->dsos, filename);
2123
}
2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137

char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
{
	struct machine *machine = vmachine;
	struct map *map;
	struct symbol *sym = map_groups__find_symbol(&machine->kmaps, MAP__FUNCTION, *addrp, &map,  NULL);

	if (sym == NULL)
		return NULL;

	*modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
	*addrp = map->unmap_ip(map, sym->start);
	return sym->name;
}