pgtable.c 16.5 KB
Newer Older
1
#include <linux/mm.h>
2
#include <linux/gfp.h>
3
#include <asm/pgalloc.h>
4
#include <asm/pgtable.h>
5
#include <asm/tlb.h>
I
Ingo Molnar 已提交
6
#include <asm/fixmap.h>
7
#include <asm/mtrr.h>
8

9
#define PGALLOC_GFP (GFP_KERNEL_ACCOUNT | __GFP_NOTRACK | __GFP_ZERO)
10

11 12 13 14 15 16 17 18
#ifdef CONFIG_HIGHPTE
#define PGALLOC_USER_GFP __GFP_HIGHMEM
#else
#define PGALLOC_USER_GFP 0
#endif

gfp_t __userpte_alloc_gfp = PGALLOC_GFP | PGALLOC_USER_GFP;

19 20
pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
{
21
	return (pte_t *)__get_free_page(PGALLOC_GFP & ~__GFP_ACCOUNT);
22 23 24 25 26 27
}

pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
{
	struct page *pte;

28
	pte = alloc_pages(__userpte_alloc_gfp, 0);
29 30 31 32 33 34
	if (!pte)
		return NULL;
	if (!pgtable_page_ctor(pte)) {
		__free_page(pte);
		return NULL;
	}
35 36 37
	return pte;
}

38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
static int __init setup_userpte(char *arg)
{
	if (!arg)
		return -EINVAL;

	/*
	 * "userpte=nohigh" disables allocation of user pagetables in
	 * high memory.
	 */
	if (strcmp(arg, "nohigh") == 0)
		__userpte_alloc_gfp &= ~__GFP_HIGHMEM;
	else
		return -EINVAL;
	return 0;
}
early_param("userpte", setup_userpte);

55
void ___pte_free_tlb(struct mmu_gather *tlb, struct page *pte)
56 57
{
	pgtable_page_dtor(pte);
58
	paravirt_release_pte(page_to_pfn(pte));
59
	tlb_remove_table(tlb, pte);
60 61
}

62
#if CONFIG_PGTABLE_LEVELS > 2
63
void ___pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd)
64
{
65
	struct page *page = virt_to_page(pmd);
66
	paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT);
67 68 69 70 71 72 73
	/*
	 * NOTE! For PAE, any changes to the top page-directory-pointer-table
	 * entries need a full cr3 reload to flush.
	 */
#ifdef CONFIG_X86_PAE
	tlb->need_flush_all = 1;
#endif
74
	pgtable_pmd_page_dtor(page);
75
	tlb_remove_table(tlb, page);
76
}
77

78
#if CONFIG_PGTABLE_LEVELS > 3
79
void ___pud_free_tlb(struct mmu_gather *tlb, pud_t *pud)
80
{
81
	paravirt_release_pud(__pa(pud) >> PAGE_SHIFT);
82
	tlb_remove_table(tlb, virt_to_page(pud));
83
}
84 85 86 87 88

#if CONFIG_PGTABLE_LEVELS > 4
void ___p4d_free_tlb(struct mmu_gather *tlb, p4d_t *p4d)
{
	paravirt_release_p4d(__pa(p4d) >> PAGE_SHIFT);
89
	tlb_remove_table(tlb, virt_to_page(p4d));
90 91
}
#endif	/* CONFIG_PGTABLE_LEVELS > 4 */
92 93
#endif	/* CONFIG_PGTABLE_LEVELS > 3 */
#endif	/* CONFIG_PGTABLE_LEVELS > 2 */
94

95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
static inline void pgd_list_add(pgd_t *pgd)
{
	struct page *page = virt_to_page(pgd);

	list_add(&page->lru, &pgd_list);
}

static inline void pgd_list_del(pgd_t *pgd)
{
	struct page *page = virt_to_page(pgd);

	list_del(&page->lru);
}

#define UNSHARED_PTRS_PER_PGD				\
J
Jeremy Fitzhardinge 已提交
110
	(SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD)
111

112 113 114 115 116 117 118 119 120 121 122 123 124

static void pgd_set_mm(pgd_t *pgd, struct mm_struct *mm)
{
	BUILD_BUG_ON(sizeof(virt_to_page(pgd)->index) < sizeof(mm));
	virt_to_page(pgd)->index = (pgoff_t)mm;
}

struct mm_struct *pgd_page_get_mm(struct page *page)
{
	return (struct mm_struct *)page->index;
}

static void pgd_ctor(struct mm_struct *mm, pgd_t *pgd)
125 126 127 128
{
	/* If the pgd points to a shared pagetable level (either the
	   ptes in non-PAE, or shared PMD in PAE), then just copy the
	   references from swapper_pg_dir. */
129 130
	if (CONFIG_PGTABLE_LEVELS == 2 ||
	    (CONFIG_PGTABLE_LEVELS == 3 && SHARED_KERNEL_PMD) ||
131
	    CONFIG_PGTABLE_LEVELS >= 4) {
J
Jeremy Fitzhardinge 已提交
132 133
		clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY,
				swapper_pg_dir + KERNEL_PGD_BOUNDARY,
134 135 136 137
				KERNEL_PGD_PTRS);
	}

	/* list required to sync kernel mapping updates */
138 139
	if (!SHARED_KERNEL_PMD) {
		pgd_set_mm(pgd, mm);
140
		pgd_list_add(pgd);
141
	}
142 143
}

J
Jan Beulich 已提交
144
static void pgd_dtor(pgd_t *pgd)
145 146 147 148
{
	if (SHARED_KERNEL_PMD)
		return;

A
Andrea Arcangeli 已提交
149
	spin_lock(&pgd_lock);
150
	pgd_list_del(pgd);
A
Andrea Arcangeli 已提交
151
	spin_unlock(&pgd_lock);
152 153
}

J
Jeremy Fitzhardinge 已提交
154 155 156 157 158 159 160 161
/*
 * List of all pgd's needed for non-PAE so it can invalidate entries
 * in both cached and uncached pgd's; not needed for PAE since the
 * kernel pmd is shared. If PAE were not to share the pmd a similar
 * tactic would be needed. This is essentially codepath-based locking
 * against pageattr.c; it is the unique case in which a valid change
 * of kernel pagetables can't be lazily synchronized by vmalloc faults.
 * vmalloc faults work because attached pagetables are never freed.
162
 * -- nyc
J
Jeremy Fitzhardinge 已提交
163 164
 */

165
#ifdef CONFIG_X86_PAE
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
/*
 * In PAE mode, we need to do a cr3 reload (=tlb flush) when
 * updating the top-level pagetable entries to guarantee the
 * processor notices the update.  Since this is expensive, and
 * all 4 top-level entries are used almost immediately in a
 * new process's life, we just pre-populate them here.
 *
 * Also, if we're in a paravirt environment where the kernel pmd is
 * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
 * and initialize the kernel pmds here.
 */
#define PREALLOCATED_PMDS	UNSHARED_PTRS_PER_PGD

void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd)
{
	paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT);

	/* Note: almost everything apart from _PAGE_PRESENT is
	   reserved at the pmd (PDPT) level. */
	set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT));

	/*
	 * According to Intel App note "TLBs, Paging-Structure Caches,
	 * and Their Invalidation", April 2007, document 317080-001,
	 * section 8.1: in PAE mode we explicitly have to flush the
	 * TLB via cr3 if the top-level pgd is changed...
	 */
193
	flush_tlb_mm(mm);
194 195 196 197 198 199 200 201
}
#else  /* !CONFIG_X86_PAE */

/* No need to prepopulate any pagetable entries in non-PAE modes. */
#define PREALLOCATED_PMDS	0

#endif	/* CONFIG_X86_PAE */

202
static void free_pmds(struct mm_struct *mm, pmd_t *pmds[])
203 204 205 206
{
	int i;

	for(i = 0; i < PREALLOCATED_PMDS; i++)
207 208
		if (pmds[i]) {
			pgtable_pmd_page_dtor(virt_to_page(pmds[i]));
209
			free_page((unsigned long)pmds[i]);
210
			mm_dec_nr_pmds(mm);
211
		}
212 213
}

214
static int preallocate_pmds(struct mm_struct *mm, pmd_t *pmds[])
215 216 217
{
	int i;
	bool failed = false;
218 219 220 221
	gfp_t gfp = PGALLOC_GFP;

	if (mm == &init_mm)
		gfp &= ~__GFP_ACCOUNT;
222 223

	for(i = 0; i < PREALLOCATED_PMDS; i++) {
224
		pmd_t *pmd = (pmd_t *)__get_free_page(gfp);
225
		if (!pmd)
226
			failed = true;
227
		if (pmd && !pgtable_pmd_page_ctor(virt_to_page(pmd))) {
228
			free_page((unsigned long)pmd);
229 230 231
			pmd = NULL;
			failed = true;
		}
232 233
		if (pmd)
			mm_inc_nr_pmds(mm);
234 235 236 237
		pmds[i] = pmd;
	}

	if (failed) {
238
		free_pmds(mm, pmds);
239 240 241 242 243 244
		return -ENOMEM;
	}

	return 0;
}

245 246 247 248 249 250 251 252 253 254
/*
 * Mop up any pmd pages which may still be attached to the pgd.
 * Normally they will be freed by munmap/exit_mmap, but any pmd we
 * preallocate which never got a corresponding vma will need to be
 * freed manually.
 */
static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp)
{
	int i;

255
	for(i = 0; i < PREALLOCATED_PMDS; i++) {
256 257 258 259 260 261 262
		pgd_t pgd = pgdp[i];

		if (pgd_val(pgd) != 0) {
			pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd);

			pgdp[i] = native_make_pgd(0);

263
			paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT);
264
			pmd_free(mm, pmd);
265
			mm_dec_nr_pmds(mm);
266 267 268 269
		}
	}
}

270
static void pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmds[])
271
{
272
	p4d_t *p4d;
273 274 275
	pud_t *pud;
	int i;

276 277 278
	if (PREALLOCATED_PMDS == 0) /* Work around gcc-3.4.x bug */
		return;

279 280
	p4d = p4d_offset(pgd, 0);
	pud = pud_offset(p4d, 0);
281

282
	for (i = 0; i < PREALLOCATED_PMDS; i++, pud++) {
283
		pmd_t *pmd = pmds[i];
284

J
Jeremy Fitzhardinge 已提交
285
		if (i >= KERNEL_PGD_BOUNDARY)
286 287 288 289 290 291
			memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]),
			       sizeof(pmd_t) * PTRS_PER_PMD);

		pud_populate(mm, pud, pmd);
	}
}
292

293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
/*
 * Xen paravirt assumes pgd table should be in one page. 64 bit kernel also
 * assumes that pgd should be in one page.
 *
 * But kernel with PAE paging that is not running as a Xen domain
 * only needs to allocate 32 bytes for pgd instead of one page.
 */
#ifdef CONFIG_X86_PAE

#include <linux/slab.h>

#define PGD_SIZE	(PTRS_PER_PGD * sizeof(pgd_t))
#define PGD_ALIGN	32

static struct kmem_cache *pgd_cache;

static int __init pgd_cache_init(void)
{
	/*
	 * When PAE kernel is running as a Xen domain, it does not use
	 * shared kernel pmd. And this requires a whole page for pgd.
	 */
	if (!SHARED_KERNEL_PMD)
		return 0;

	/*
	 * when PAE kernel is not running as a Xen domain, it uses
	 * shared kernel pmd. Shared kernel pmd does not require a whole
	 * page for pgd. We are able to just allocate a 32-byte for pgd.
	 * During boot time, we create a 32-byte slab for pgd table allocation.
	 */
	pgd_cache = kmem_cache_create("pgd_cache", PGD_SIZE, PGD_ALIGN,
				      SLAB_PANIC, NULL);
	if (!pgd_cache)
		return -ENOMEM;

	return 0;
}
core_initcall(pgd_cache_init);

static inline pgd_t *_pgd_alloc(void)
{
	/*
	 * If no SHARED_KERNEL_PMD, PAE kernel is running as a Xen domain.
	 * We allocate one page for pgd.
	 */
	if (!SHARED_KERNEL_PMD)
		return (pgd_t *)__get_free_page(PGALLOC_GFP);

	/*
	 * Now PAE kernel is not running as a Xen domain. We can allocate
	 * a 32-byte slab for pgd to save memory space.
	 */
	return kmem_cache_alloc(pgd_cache, PGALLOC_GFP);
}

static inline void _pgd_free(pgd_t *pgd)
{
	if (!SHARED_KERNEL_PMD)
		free_page((unsigned long)pgd);
	else
		kmem_cache_free(pgd_cache, pgd);
}
#else
static inline pgd_t *_pgd_alloc(void)
{
	return (pgd_t *)__get_free_page(PGALLOC_GFP);
}

static inline void _pgd_free(pgd_t *pgd)
{
	free_page((unsigned long)pgd);
}
#endif /* CONFIG_X86_PAE */

368
pgd_t *pgd_alloc(struct mm_struct *mm)
369
{
370 371
	pgd_t *pgd;
	pmd_t *pmds[PREALLOCATED_PMDS];
372

373
	pgd = _pgd_alloc();
374 375 376 377 378 379

	if (pgd == NULL)
		goto out;

	mm->pgd = pgd;

380
	if (preallocate_pmds(mm, pmds) != 0)
381 382 383 384
		goto out_free_pgd;

	if (paravirt_pgd_alloc(mm) != 0)
		goto out_free_pmds;
385 386

	/*
387 388 389
	 * Make sure that pre-populating the pmds is atomic with
	 * respect to anything walking the pgd_list, so that they
	 * never see a partially populated pgd.
390
	 */
A
Andrea Arcangeli 已提交
391
	spin_lock(&pgd_lock);
392

393
	pgd_ctor(mm, pgd);
394
	pgd_prepopulate_pmd(mm, pgd, pmds);
395

A
Andrea Arcangeli 已提交
396
	spin_unlock(&pgd_lock);
397 398

	return pgd;
399 400

out_free_pmds:
401
	free_pmds(mm, pmds);
402
out_free_pgd:
403
	_pgd_free(pgd);
404 405
out:
	return NULL;
406 407 408 409 410 411
}

void pgd_free(struct mm_struct *mm, pgd_t *pgd)
{
	pgd_mop_up_pmds(mm, pgd);
	pgd_dtor(pgd);
412
	paravirt_pgd_free(mm, pgd);
413
	_pgd_free(pgd);
414
}
415

416 417 418 419 420 421 422
/*
 * Used to set accessed or dirty bits in the page table entries
 * on other architectures. On x86, the accessed and dirty bits
 * are tracked by hardware. However, do_wp_page calls this function
 * to also make the pte writeable at the same time the dirty bit is
 * set. In that case we do actually need to write the PTE.
 */
423 424 425 426 427 428 429 430
int ptep_set_access_flags(struct vm_area_struct *vma,
			  unsigned long address, pte_t *ptep,
			  pte_t entry, int dirty)
{
	int changed = !pte_same(*ptep, entry);

	if (changed && dirty) {
		*ptep = entry;
431
		pte_update(vma->vm_mm, address, ptep);
432 433 434 435
	}

	return changed;
}
436

437 438 439 440 441 442 443 444 445 446 447
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
int pmdp_set_access_flags(struct vm_area_struct *vma,
			  unsigned long address, pmd_t *pmdp,
			  pmd_t entry, int dirty)
{
	int changed = !pmd_same(*pmdp, entry);

	VM_BUG_ON(address & ~HPAGE_PMD_MASK);

	if (changed && dirty) {
		*pmdp = entry;
448 449 450 451 452 453
		/*
		 * We had a write-protection fault here and changed the pmd
		 * to to more permissive. No need to flush the TLB for that,
		 * #PF is architecturally guaranteed to do that and in the
		 * worst-case we'll generate a spurious fault.
		 */
454 455 456 457
	}

	return changed;
}
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477

int pudp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
			  pud_t *pudp, pud_t entry, int dirty)
{
	int changed = !pud_same(*pudp, entry);

	VM_BUG_ON(address & ~HPAGE_PUD_MASK);

	if (changed && dirty) {
		*pudp = entry;
		/*
		 * We had a write-protection fault here and changed the pud
		 * to to more permissive. No need to flush the TLB for that,
		 * #PF is architecturally guaranteed to do that and in the
		 * worst-case we'll generate a spurious fault.
		 */
	}

	return changed;
}
478 479
#endif

480 481 482 483 484 485 486
int ptep_test_and_clear_young(struct vm_area_struct *vma,
			      unsigned long addr, pte_t *ptep)
{
	int ret = 0;

	if (pte_young(*ptep))
		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
487
					 (unsigned long *) &ptep->pte);
488 489 490 491 492 493

	if (ret)
		pte_update(vma->vm_mm, addr, ptep);

	return ret;
}
494

495 496 497 498 499 500 501 502
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
int pmdp_test_and_clear_young(struct vm_area_struct *vma,
			      unsigned long addr, pmd_t *pmdp)
{
	int ret = 0;

	if (pmd_young(*pmdp))
		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
J
Johannes Weiner 已提交
503
					 (unsigned long *)pmdp);
504 505 506

	return ret;
}
507 508 509 510 511 512 513 514 515 516 517
int pudp_test_and_clear_young(struct vm_area_struct *vma,
			      unsigned long addr, pud_t *pudp)
{
	int ret = 0;

	if (pud_young(*pudp))
		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
					 (unsigned long *)pudp);

	return ret;
}
518 519
#endif

520 521 522
int ptep_clear_flush_young(struct vm_area_struct *vma,
			   unsigned long address, pte_t *ptep)
{
523 524 525 526 527 528 529 530 531 532 533 534 535 536
	/*
	 * On x86 CPUs, clearing the accessed bit without a TLB flush
	 * doesn't cause data corruption. [ It could cause incorrect
	 * page aging and the (mistaken) reclaim of hot pages, but the
	 * chance of that should be relatively low. ]
	 *
	 * So as a performance optimization don't flush the TLB when
	 * clearing the accessed bit, it will eventually be flushed by
	 * a context switch or a VM operation anyway. [ In the rare
	 * event of it not getting flushed for a long time the delay
	 * shouldn't really matter because there's no real memory
	 * pressure for swapout to react to. ]
	 */
	return ptep_test_and_clear_young(vma, address, ptep);
537
}
J
Jeremy Fitzhardinge 已提交
538

539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
int pmdp_clear_flush_young(struct vm_area_struct *vma,
			   unsigned long address, pmd_t *pmdp)
{
	int young;

	VM_BUG_ON(address & ~HPAGE_PMD_MASK);

	young = pmdp_test_and_clear_young(vma, address, pmdp);
	if (young)
		flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);

	return young;
}
#endif

555 556 557 558 559 560 561 562 563 564 565
/**
 * reserve_top_address - reserves a hole in the top of kernel address space
 * @reserve - size of hole to reserve
 *
 * Can be used to relocate the fixmap area and poke a hole in the top
 * of kernel address space to make room for a hypervisor.
 */
void __init reserve_top_address(unsigned long reserve)
{
#ifdef CONFIG_X86_32
	BUG_ON(fixmaps_set > 0);
566 567 568
	__FIXADDR_TOP = round_down(-reserve, 1 << PMD_SHIFT) - PAGE_SIZE;
	printk(KERN_INFO "Reserving virtual address space above 0x%08lx (rounded to 0x%08lx)\n",
	       -reserve, __FIXADDR_TOP + PAGE_SIZE);
569 570 571
#endif
}

J
Jeremy Fitzhardinge 已提交
572 573
int fixmaps_set;

574
void __native_set_fixmap(enum fixed_addresses idx, pte_t pte)
J
Jeremy Fitzhardinge 已提交
575 576 577 578 579 580 581
{
	unsigned long address = __fix_to_virt(idx);

	if (idx >= __end_of_fixed_addresses) {
		BUG();
		return;
	}
582
	set_pte_vaddr(address, pte);
J
Jeremy Fitzhardinge 已提交
583 584
	fixmaps_set++;
}
585

586 587
void native_set_fixmap(enum fixed_addresses idx, phys_addr_t phys,
		       pgprot_t flags)
588 589 590
{
	__native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags));
}
591 592

#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
#ifdef CONFIG_X86_5LEVEL
/**
 * p4d_set_huge - setup kernel P4D mapping
 *
 * No 512GB pages yet -- always return 0
 */
int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
{
	return 0;
}

/**
 * p4d_clear_huge - clear kernel P4D mapping when it is set
 *
 * No 512GB pages yet -- always return 0
 */
int p4d_clear_huge(p4d_t *p4d)
{
	return 0;
}
#endif

615 616 617
/**
 * pud_set_huge - setup kernel PUD mapping
 *
618 619 620 621 622 623 624 625 626 627 628 629
 * MTRRs can override PAT memory types with 4KiB granularity. Therefore, this
 * function sets up a huge page only if any of the following conditions are met:
 *
 * - MTRRs are disabled, or
 *
 * - MTRRs are enabled and the range is completely covered by a single MTRR, or
 *
 * - MTRRs are enabled and the corresponding MTRR memory type is WB, which
 *   has no effect on the requested PAT memory type.
 *
 * Callers should try to decrease page size (1GB -> 2MB -> 4K) if the bigger
 * page mapping attempt fails.
630 631 632
 *
 * Returns 1 on success and 0 on failure.
 */
633 634
int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
{
635
	u8 mtrr, uniform;
636

637 638 639
	mtrr = mtrr_type_lookup(addr, addr + PUD_SIZE, &uniform);
	if ((mtrr != MTRR_TYPE_INVALID) && (!uniform) &&
	    (mtrr != MTRR_TYPE_WRBACK))
640 641 642 643 644 645 646 647 648 649 650
		return 0;

	prot = pgprot_4k_2_large(prot);

	set_pte((pte_t *)pud, pfn_pte(
		(u64)addr >> PAGE_SHIFT,
		__pgprot(pgprot_val(prot) | _PAGE_PSE)));

	return 1;
}

651 652 653
/**
 * pmd_set_huge - setup kernel PMD mapping
 *
654
 * See text over pud_set_huge() above.
655 656 657
 *
 * Returns 1 on success and 0 on failure.
 */
658 659
int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
{
660
	u8 mtrr, uniform;
661

662 663 664 665 666
	mtrr = mtrr_type_lookup(addr, addr + PMD_SIZE, &uniform);
	if ((mtrr != MTRR_TYPE_INVALID) && (!uniform) &&
	    (mtrr != MTRR_TYPE_WRBACK)) {
		pr_warn_once("%s: Cannot satisfy [mem %#010llx-%#010llx] with a huge-page mapping due to MTRR override.\n",
			     __func__, addr, addr + PMD_SIZE);
667
		return 0;
668
	}
669 670 671 672 673 674 675 676 677 678

	prot = pgprot_4k_2_large(prot);

	set_pte((pte_t *)pmd, pfn_pte(
		(u64)addr >> PAGE_SHIFT,
		__pgprot(pgprot_val(prot) | _PAGE_PSE)));

	return 1;
}

679 680 681 682 683
/**
 * pud_clear_huge - clear kernel PUD mapping when it is set
 *
 * Returns 1 on success and 0 on failure (no PUD map is found).
 */
684 685 686 687 688 689 690 691 692 693
int pud_clear_huge(pud_t *pud)
{
	if (pud_large(*pud)) {
		pud_clear(pud);
		return 1;
	}

	return 0;
}

694 695 696 697 698
/**
 * pmd_clear_huge - clear kernel PMD mapping when it is set
 *
 * Returns 1 on success and 0 on failure (no PMD map is found).
 */
699 700 701 702 703 704 705 706 707 708
int pmd_clear_huge(pmd_t *pmd)
{
	if (pmd_large(*pmd)) {
		pmd_clear(pmd);
		return 1;
	}

	return 0;
}
#endif	/* CONFIG_HAVE_ARCH_HUGE_VMAP */