pgtable.c 15.5 KB
Newer Older
1
#include <linux/mm.h>
2
#include <linux/gfp.h>
3
#include <asm/pgalloc.h>
4
#include <asm/pgtable.h>
5
#include <asm/tlb.h>
I
Ingo Molnar 已提交
6
#include <asm/fixmap.h>
7
#include <asm/mtrr.h>
8

9 10
#define PGALLOC_GFP GFP_KERNEL | __GFP_NOTRACK | __GFP_REPEAT | __GFP_ZERO

11 12 13 14 15 16 17 18
#ifdef CONFIG_HIGHPTE
#define PGALLOC_USER_GFP __GFP_HIGHMEM
#else
#define PGALLOC_USER_GFP 0
#endif

gfp_t __userpte_alloc_gfp = PGALLOC_GFP | PGALLOC_USER_GFP;

19 20
pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
{
21
	return (pte_t *)__get_free_page(PGALLOC_GFP);
22 23 24 25 26 27
}

pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
{
	struct page *pte;

28
	pte = alloc_pages(__userpte_alloc_gfp, 0);
29 30 31 32 33 34
	if (!pte)
		return NULL;
	if (!pgtable_page_ctor(pte)) {
		__free_page(pte);
		return NULL;
	}
35 36 37
	return pte;
}

38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
static int __init setup_userpte(char *arg)
{
	if (!arg)
		return -EINVAL;

	/*
	 * "userpte=nohigh" disables allocation of user pagetables in
	 * high memory.
	 */
	if (strcmp(arg, "nohigh") == 0)
		__userpte_alloc_gfp &= ~__GFP_HIGHMEM;
	else
		return -EINVAL;
	return 0;
}
early_param("userpte", setup_userpte);

55
void ___pte_free_tlb(struct mmu_gather *tlb, struct page *pte)
56 57
{
	pgtable_page_dtor(pte);
58
	paravirt_release_pte(page_to_pfn(pte));
59 60 61
	tlb_remove_page(tlb, pte);
}

62
#if CONFIG_PGTABLE_LEVELS > 2
63
void ___pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd)
64
{
65
	struct page *page = virt_to_page(pmd);
66
	paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT);
67 68 69 70 71 72 73
	/*
	 * NOTE! For PAE, any changes to the top page-directory-pointer-table
	 * entries need a full cr3 reload to flush.
	 */
#ifdef CONFIG_X86_PAE
	tlb->need_flush_all = 1;
#endif
74 75
	pgtable_pmd_page_dtor(page);
	tlb_remove_page(tlb, page);
76
}
77

78
#if CONFIG_PGTABLE_LEVELS > 3
79
void ___pud_free_tlb(struct mmu_gather *tlb, pud_t *pud)
80
{
81
	paravirt_release_pud(__pa(pud) >> PAGE_SHIFT);
82 83
	tlb_remove_page(tlb, virt_to_page(pud));
}
84 85
#endif	/* CONFIG_PGTABLE_LEVELS > 3 */
#endif	/* CONFIG_PGTABLE_LEVELS > 2 */
86

87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
static inline void pgd_list_add(pgd_t *pgd)
{
	struct page *page = virt_to_page(pgd);

	list_add(&page->lru, &pgd_list);
}

static inline void pgd_list_del(pgd_t *pgd)
{
	struct page *page = virt_to_page(pgd);

	list_del(&page->lru);
}

#define UNSHARED_PTRS_PER_PGD				\
J
Jeremy Fitzhardinge 已提交
102
	(SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD)
103

104 105 106 107 108 109 110 111 112 113 114 115 116

static void pgd_set_mm(pgd_t *pgd, struct mm_struct *mm)
{
	BUILD_BUG_ON(sizeof(virt_to_page(pgd)->index) < sizeof(mm));
	virt_to_page(pgd)->index = (pgoff_t)mm;
}

struct mm_struct *pgd_page_get_mm(struct page *page)
{
	return (struct mm_struct *)page->index;
}

static void pgd_ctor(struct mm_struct *mm, pgd_t *pgd)
117 118 119 120
{
	/* If the pgd points to a shared pagetable level (either the
	   ptes in non-PAE, or shared PMD in PAE), then just copy the
	   references from swapper_pg_dir. */
121 122 123
	if (CONFIG_PGTABLE_LEVELS == 2 ||
	    (CONFIG_PGTABLE_LEVELS == 3 && SHARED_KERNEL_PMD) ||
	    CONFIG_PGTABLE_LEVELS == 4) {
J
Jeremy Fitzhardinge 已提交
124 125
		clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY,
				swapper_pg_dir + KERNEL_PGD_BOUNDARY,
126 127 128 129
				KERNEL_PGD_PTRS);
	}

	/* list required to sync kernel mapping updates */
130 131
	if (!SHARED_KERNEL_PMD) {
		pgd_set_mm(pgd, mm);
132
		pgd_list_add(pgd);
133
	}
134 135
}

J
Jan Beulich 已提交
136
static void pgd_dtor(pgd_t *pgd)
137 138 139 140
{
	if (SHARED_KERNEL_PMD)
		return;

A
Andrea Arcangeli 已提交
141
	spin_lock(&pgd_lock);
142
	pgd_list_del(pgd);
A
Andrea Arcangeli 已提交
143
	spin_unlock(&pgd_lock);
144 145
}

J
Jeremy Fitzhardinge 已提交
146 147 148 149 150 151 152 153
/*
 * List of all pgd's needed for non-PAE so it can invalidate entries
 * in both cached and uncached pgd's; not needed for PAE since the
 * kernel pmd is shared. If PAE were not to share the pmd a similar
 * tactic would be needed. This is essentially codepath-based locking
 * against pageattr.c; it is the unique case in which a valid change
 * of kernel pagetables can't be lazily synchronized by vmalloc faults.
 * vmalloc faults work because attached pagetables are never freed.
154
 * -- nyc
J
Jeremy Fitzhardinge 已提交
155 156
 */

157
#ifdef CONFIG_X86_PAE
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
/*
 * In PAE mode, we need to do a cr3 reload (=tlb flush) when
 * updating the top-level pagetable entries to guarantee the
 * processor notices the update.  Since this is expensive, and
 * all 4 top-level entries are used almost immediately in a
 * new process's life, we just pre-populate them here.
 *
 * Also, if we're in a paravirt environment where the kernel pmd is
 * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
 * and initialize the kernel pmds here.
 */
#define PREALLOCATED_PMDS	UNSHARED_PTRS_PER_PGD

void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd)
{
	paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT);

	/* Note: almost everything apart from _PAGE_PRESENT is
	   reserved at the pmd (PDPT) level. */
	set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT));

	/*
	 * According to Intel App note "TLBs, Paging-Structure Caches,
	 * and Their Invalidation", April 2007, document 317080-001,
	 * section 8.1: in PAE mode we explicitly have to flush the
	 * TLB via cr3 if the top-level pgd is changed...
	 */
185
	flush_tlb_mm(mm);
186 187 188 189 190 191 192 193
}
#else  /* !CONFIG_X86_PAE */

/* No need to prepopulate any pagetable entries in non-PAE modes. */
#define PREALLOCATED_PMDS	0

#endif	/* CONFIG_X86_PAE */

194
static void free_pmds(struct mm_struct *mm, pmd_t *pmds[])
195 196 197 198
{
	int i;

	for(i = 0; i < PREALLOCATED_PMDS; i++)
199 200
		if (pmds[i]) {
			pgtable_pmd_page_dtor(virt_to_page(pmds[i]));
201
			free_page((unsigned long)pmds[i]);
202
			mm_dec_nr_pmds(mm);
203
		}
204 205
}

206
static int preallocate_pmds(struct mm_struct *mm, pmd_t *pmds[])
207 208 209 210 211
{
	int i;
	bool failed = false;

	for(i = 0; i < PREALLOCATED_PMDS; i++) {
212
		pmd_t *pmd = (pmd_t *)__get_free_page(PGALLOC_GFP);
213
		if (!pmd)
214
			failed = true;
215
		if (pmd && !pgtable_pmd_page_ctor(virt_to_page(pmd))) {
216
			free_page((unsigned long)pmd);
217 218 219
			pmd = NULL;
			failed = true;
		}
220 221
		if (pmd)
			mm_inc_nr_pmds(mm);
222 223 224 225
		pmds[i] = pmd;
	}

	if (failed) {
226
		free_pmds(mm, pmds);
227 228 229 230 231 232
		return -ENOMEM;
	}

	return 0;
}

233 234 235 236 237 238 239 240 241 242
/*
 * Mop up any pmd pages which may still be attached to the pgd.
 * Normally they will be freed by munmap/exit_mmap, but any pmd we
 * preallocate which never got a corresponding vma will need to be
 * freed manually.
 */
static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp)
{
	int i;

243
	for(i = 0; i < PREALLOCATED_PMDS; i++) {
244 245 246 247 248 249 250
		pgd_t pgd = pgdp[i];

		if (pgd_val(pgd) != 0) {
			pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd);

			pgdp[i] = native_make_pgd(0);

251
			paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT);
252
			pmd_free(mm, pmd);
253
			mm_dec_nr_pmds(mm);
254 255 256 257
		}
	}
}

258
static void pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmds[])
259 260 261 262
{
	pud_t *pud;
	int i;

263 264 265
	if (PREALLOCATED_PMDS == 0) /* Work around gcc-3.4.x bug */
		return;

266 267
	pud = pud_offset(pgd, 0);

268
	for (i = 0; i < PREALLOCATED_PMDS; i++, pud++) {
269
		pmd_t *pmd = pmds[i];
270

J
Jeremy Fitzhardinge 已提交
271
		if (i >= KERNEL_PGD_BOUNDARY)
272 273 274 275 276 277
			memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]),
			       sizeof(pmd_t) * PTRS_PER_PMD);

		pud_populate(mm, pud, pmd);
	}
}
278

279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
/*
 * Xen paravirt assumes pgd table should be in one page. 64 bit kernel also
 * assumes that pgd should be in one page.
 *
 * But kernel with PAE paging that is not running as a Xen domain
 * only needs to allocate 32 bytes for pgd instead of one page.
 */
#ifdef CONFIG_X86_PAE

#include <linux/slab.h>

#define PGD_SIZE	(PTRS_PER_PGD * sizeof(pgd_t))
#define PGD_ALIGN	32

static struct kmem_cache *pgd_cache;

static int __init pgd_cache_init(void)
{
	/*
	 * When PAE kernel is running as a Xen domain, it does not use
	 * shared kernel pmd. And this requires a whole page for pgd.
	 */
	if (!SHARED_KERNEL_PMD)
		return 0;

	/*
	 * when PAE kernel is not running as a Xen domain, it uses
	 * shared kernel pmd. Shared kernel pmd does not require a whole
	 * page for pgd. We are able to just allocate a 32-byte for pgd.
	 * During boot time, we create a 32-byte slab for pgd table allocation.
	 */
	pgd_cache = kmem_cache_create("pgd_cache", PGD_SIZE, PGD_ALIGN,
				      SLAB_PANIC, NULL);
	if (!pgd_cache)
		return -ENOMEM;

	return 0;
}
core_initcall(pgd_cache_init);

static inline pgd_t *_pgd_alloc(void)
{
	/*
	 * If no SHARED_KERNEL_PMD, PAE kernel is running as a Xen domain.
	 * We allocate one page for pgd.
	 */
	if (!SHARED_KERNEL_PMD)
		return (pgd_t *)__get_free_page(PGALLOC_GFP);

	/*
	 * Now PAE kernel is not running as a Xen domain. We can allocate
	 * a 32-byte slab for pgd to save memory space.
	 */
	return kmem_cache_alloc(pgd_cache, PGALLOC_GFP);
}

static inline void _pgd_free(pgd_t *pgd)
{
	if (!SHARED_KERNEL_PMD)
		free_page((unsigned long)pgd);
	else
		kmem_cache_free(pgd_cache, pgd);
}
#else
static inline pgd_t *_pgd_alloc(void)
{
	return (pgd_t *)__get_free_page(PGALLOC_GFP);
}

static inline void _pgd_free(pgd_t *pgd)
{
	free_page((unsigned long)pgd);
}
#endif /* CONFIG_X86_PAE */

354
pgd_t *pgd_alloc(struct mm_struct *mm)
355
{
356 357
	pgd_t *pgd;
	pmd_t *pmds[PREALLOCATED_PMDS];
358

359
	pgd = _pgd_alloc();
360 361 362 363 364 365

	if (pgd == NULL)
		goto out;

	mm->pgd = pgd;

366
	if (preallocate_pmds(mm, pmds) != 0)
367 368 369 370
		goto out_free_pgd;

	if (paravirt_pgd_alloc(mm) != 0)
		goto out_free_pmds;
371 372

	/*
373 374 375
	 * Make sure that pre-populating the pmds is atomic with
	 * respect to anything walking the pgd_list, so that they
	 * never see a partially populated pgd.
376
	 */
A
Andrea Arcangeli 已提交
377
	spin_lock(&pgd_lock);
378

379
	pgd_ctor(mm, pgd);
380
	pgd_prepopulate_pmd(mm, pgd, pmds);
381

A
Andrea Arcangeli 已提交
382
	spin_unlock(&pgd_lock);
383 384

	return pgd;
385 386

out_free_pmds:
387
	free_pmds(mm, pmds);
388
out_free_pgd:
389
	_pgd_free(pgd);
390 391
out:
	return NULL;
392 393 394 395 396 397
}

void pgd_free(struct mm_struct *mm, pgd_t *pgd)
{
	pgd_mop_up_pmds(mm, pgd);
	pgd_dtor(pgd);
398
	paravirt_pgd_free(mm, pgd);
399
	_pgd_free(pgd);
400
}
401

402 403 404 405 406 407 408
/*
 * Used to set accessed or dirty bits in the page table entries
 * on other architectures. On x86, the accessed and dirty bits
 * are tracked by hardware. However, do_wp_page calls this function
 * to also make the pte writeable at the same time the dirty bit is
 * set. In that case we do actually need to write the PTE.
 */
409 410 411 412 413 414 415 416 417 418 419 420 421
int ptep_set_access_flags(struct vm_area_struct *vma,
			  unsigned long address, pte_t *ptep,
			  pte_t entry, int dirty)
{
	int changed = !pte_same(*ptep, entry);

	if (changed && dirty) {
		*ptep = entry;
		pte_update_defer(vma->vm_mm, address, ptep);
	}

	return changed;
}
422

423 424 425 426 427 428 429 430 431 432 433 434
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
int pmdp_set_access_flags(struct vm_area_struct *vma,
			  unsigned long address, pmd_t *pmdp,
			  pmd_t entry, int dirty)
{
	int changed = !pmd_same(*pmdp, entry);

	VM_BUG_ON(address & ~HPAGE_PMD_MASK);

	if (changed && dirty) {
		*pmdp = entry;
		pmd_update_defer(vma->vm_mm, address, pmdp);
435 436 437 438 439 440
		/*
		 * We had a write-protection fault here and changed the pmd
		 * to to more permissive. No need to flush the TLB for that,
		 * #PF is architecturally guaranteed to do that and in the
		 * worst-case we'll generate a spurious fault.
		 */
441 442 443 444 445 446
	}

	return changed;
}
#endif

447 448 449 450 451 452 453
int ptep_test_and_clear_young(struct vm_area_struct *vma,
			      unsigned long addr, pte_t *ptep)
{
	int ret = 0;

	if (pte_young(*ptep))
		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
454
					 (unsigned long *) &ptep->pte);
455 456 457 458 459 460

	if (ret)
		pte_update(vma->vm_mm, addr, ptep);

	return ret;
}
461

462 463 464 465 466 467 468 469
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
int pmdp_test_and_clear_young(struct vm_area_struct *vma,
			      unsigned long addr, pmd_t *pmdp)
{
	int ret = 0;

	if (pmd_young(*pmdp))
		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
J
Johannes Weiner 已提交
470
					 (unsigned long *)pmdp);
471 472 473 474 475 476 477 478

	if (ret)
		pmd_update(vma->vm_mm, addr, pmdp);

	return ret;
}
#endif

479 480 481
int ptep_clear_flush_young(struct vm_area_struct *vma,
			   unsigned long address, pte_t *ptep)
{
482 483 484 485 486 487 488 489 490 491 492 493 494 495
	/*
	 * On x86 CPUs, clearing the accessed bit without a TLB flush
	 * doesn't cause data corruption. [ It could cause incorrect
	 * page aging and the (mistaken) reclaim of hot pages, but the
	 * chance of that should be relatively low. ]
	 *
	 * So as a performance optimization don't flush the TLB when
	 * clearing the accessed bit, it will eventually be flushed by
	 * a context switch or a VM operation anyway. [ In the rare
	 * event of it not getting flushed for a long time the delay
	 * shouldn't really matter because there's no real memory
	 * pressure for swapout to react to. ]
	 */
	return ptep_test_and_clear_young(vma, address, ptep);
496
}
J
Jeremy Fitzhardinge 已提交
497

498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
int pmdp_clear_flush_young(struct vm_area_struct *vma,
			   unsigned long address, pmd_t *pmdp)
{
	int young;

	VM_BUG_ON(address & ~HPAGE_PMD_MASK);

	young = pmdp_test_and_clear_young(vma, address, pmdp);
	if (young)
		flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);

	return young;
}

void pmdp_splitting_flush(struct vm_area_struct *vma,
			  unsigned long address, pmd_t *pmdp)
{
	int set;
	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
	set = !test_and_set_bit(_PAGE_BIT_SPLITTING,
J
Johannes Weiner 已提交
519
				(unsigned long *)pmdp);
520 521 522 523 524 525 526 527
	if (set) {
		pmd_update(vma->vm_mm, address, pmdp);
		/* need tlb flush only to serialize against gup-fast */
		flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
	}
}
#endif

528 529 530 531 532 533 534 535 536 537 538
/**
 * reserve_top_address - reserves a hole in the top of kernel address space
 * @reserve - size of hole to reserve
 *
 * Can be used to relocate the fixmap area and poke a hole in the top
 * of kernel address space to make room for a hypervisor.
 */
void __init reserve_top_address(unsigned long reserve)
{
#ifdef CONFIG_X86_32
	BUG_ON(fixmaps_set > 0);
539 540 541
	__FIXADDR_TOP = round_down(-reserve, 1 << PMD_SHIFT) - PAGE_SIZE;
	printk(KERN_INFO "Reserving virtual address space above 0x%08lx (rounded to 0x%08lx)\n",
	       -reserve, __FIXADDR_TOP + PAGE_SIZE);
542 543 544
#endif
}

J
Jeremy Fitzhardinge 已提交
545 546
int fixmaps_set;

547
void __native_set_fixmap(enum fixed_addresses idx, pte_t pte)
J
Jeremy Fitzhardinge 已提交
548 549 550 551 552 553 554
{
	unsigned long address = __fix_to_virt(idx);

	if (idx >= __end_of_fixed_addresses) {
		BUG();
		return;
	}
555
	set_pte_vaddr(address, pte);
J
Jeremy Fitzhardinge 已提交
556 557
	fixmaps_set++;
}
558

559 560
void native_set_fixmap(enum fixed_addresses idx, phys_addr_t phys,
		       pgprot_t flags)
561 562 563
{
	__native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags));
}
564 565

#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
566 567 568
/**
 * pud_set_huge - setup kernel PUD mapping
 *
569 570 571 572 573 574 575 576 577 578 579 580
 * MTRRs can override PAT memory types with 4KiB granularity. Therefore, this
 * function sets up a huge page only if any of the following conditions are met:
 *
 * - MTRRs are disabled, or
 *
 * - MTRRs are enabled and the range is completely covered by a single MTRR, or
 *
 * - MTRRs are enabled and the corresponding MTRR memory type is WB, which
 *   has no effect on the requested PAT memory type.
 *
 * Callers should try to decrease page size (1GB -> 2MB -> 4K) if the bigger
 * page mapping attempt fails.
581 582 583
 *
 * Returns 1 on success and 0 on failure.
 */
584 585
int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
{
586
	u8 mtrr, uniform;
587

588 589 590
	mtrr = mtrr_type_lookup(addr, addr + PUD_SIZE, &uniform);
	if ((mtrr != MTRR_TYPE_INVALID) && (!uniform) &&
	    (mtrr != MTRR_TYPE_WRBACK))
591 592 593 594 595 596 597 598 599 600 601
		return 0;

	prot = pgprot_4k_2_large(prot);

	set_pte((pte_t *)pud, pfn_pte(
		(u64)addr >> PAGE_SHIFT,
		__pgprot(pgprot_val(prot) | _PAGE_PSE)));

	return 1;
}

602 603 604
/**
 * pmd_set_huge - setup kernel PMD mapping
 *
605
 * See text over pud_set_huge() above.
606 607 608
 *
 * Returns 1 on success and 0 on failure.
 */
609 610
int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
{
611
	u8 mtrr, uniform;
612

613 614 615 616 617
	mtrr = mtrr_type_lookup(addr, addr + PMD_SIZE, &uniform);
	if ((mtrr != MTRR_TYPE_INVALID) && (!uniform) &&
	    (mtrr != MTRR_TYPE_WRBACK)) {
		pr_warn_once("%s: Cannot satisfy [mem %#010llx-%#010llx] with a huge-page mapping due to MTRR override.\n",
			     __func__, addr, addr + PMD_SIZE);
618
		return 0;
619
	}
620 621 622 623 624 625 626 627 628 629

	prot = pgprot_4k_2_large(prot);

	set_pte((pte_t *)pmd, pfn_pte(
		(u64)addr >> PAGE_SHIFT,
		__pgprot(pgprot_val(prot) | _PAGE_PSE)));

	return 1;
}

630 631 632 633 634
/**
 * pud_clear_huge - clear kernel PUD mapping when it is set
 *
 * Returns 1 on success and 0 on failure (no PUD map is found).
 */
635 636 637 638 639 640 641 642 643 644
int pud_clear_huge(pud_t *pud)
{
	if (pud_large(*pud)) {
		pud_clear(pud);
		return 1;
	}

	return 0;
}

645 646 647 648 649
/**
 * pmd_clear_huge - clear kernel PMD mapping when it is set
 *
 * Returns 1 on success and 0 on failure (no PMD map is found).
 */
650 651 652 653 654 655 656 657 658 659
int pmd_clear_huge(pmd_t *pmd)
{
	if (pmd_large(*pmd)) {
		pmd_clear(pmd);
		return 1;
	}

	return 0;
}
#endif	/* CONFIG_HAVE_ARCH_HUGE_VMAP */