kvm-s390.c 74.2 KB
Newer Older
1
/*
2
 * hosting zSeries kernel virtual machines
3
 *
4
 * Copyright IBM Corp. 2008, 2009
5 6 7 8 9 10 11 12
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License (version 2 only)
 * as published by the Free Software Foundation.
 *
 *    Author(s): Carsten Otte <cotte@de.ibm.com>
 *               Christian Borntraeger <borntraeger@de.ibm.com>
 *               Heiko Carstens <heiko.carstens@de.ibm.com>
13
 *               Christian Ehrhardt <ehrhardt@de.ibm.com>
14
 *               Jason J. Herne <jjherne@us.ibm.com>
15 16 17 18 19
 */

#include <linux/compiler.h>
#include <linux/err.h>
#include <linux/fs.h>
20
#include <linux/hrtimer.h>
21 22 23 24
#include <linux/init.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <linux/module.h>
25
#include <linux/random.h>
26
#include <linux/slab.h>
27
#include <linux/timer.h>
28
#include <linux/vmalloc.h>
29
#include <asm/asm-offsets.h>
30
#include <asm/lowcore.h>
31
#include <asm/etr.h>
32
#include <asm/pgtable.h>
33
#include <asm/nmi.h>
34
#include <asm/switch_to.h>
35
#include <asm/isc.h>
36
#include <asm/sclp.h>
37
#include "kvm-s390.h"
38 39
#include "gaccess.h"

40 41 42 43
#define KMSG_COMPONENT "kvm-s390"
#undef pr_fmt
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt

44 45
#define CREATE_TRACE_POINTS
#include "trace.h"
46
#include "trace-s390.h"
47

48
#define MEM_OP_MAX_SIZE 65536	/* Maximum transfer size for KVM_S390_MEM_OP */
49 50 51
#define LOCAL_IRQS 32
#define VCPU_IRQS_MAX_BUF (sizeof(struct kvm_s390_irq) * \
			   (KVM_MAX_VCPUS + LOCAL_IRQS))
52

53 54 55 56
#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU

struct kvm_stats_debugfs_item debugfs_entries[] = {
	{ "userspace_handled", VCPU_STAT(exit_userspace) },
57
	{ "exit_null", VCPU_STAT(exit_null) },
58 59 60 61
	{ "exit_validity", VCPU_STAT(exit_validity) },
	{ "exit_stop_request", VCPU_STAT(exit_stop_request) },
	{ "exit_external_request", VCPU_STAT(exit_external_request) },
	{ "exit_external_interrupt", VCPU_STAT(exit_external_interrupt) },
62 63 64
	{ "exit_instruction", VCPU_STAT(exit_instruction) },
	{ "exit_program_interruption", VCPU_STAT(exit_program_interruption) },
	{ "exit_instr_and_program_int", VCPU_STAT(exit_instr_and_program) },
65
	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
66
	{ "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
67
	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
68
	{ "instruction_lctlg", VCPU_STAT(instruction_lctlg) },
69
	{ "instruction_lctl", VCPU_STAT(instruction_lctl) },
70 71
	{ "instruction_stctl", VCPU_STAT(instruction_stctl) },
	{ "instruction_stctg", VCPU_STAT(instruction_stctg) },
72
	{ "deliver_emergency_signal", VCPU_STAT(deliver_emergency_signal) },
73
	{ "deliver_external_call", VCPU_STAT(deliver_external_call) },
74 75 76 77 78 79 80
	{ "deliver_service_signal", VCPU_STAT(deliver_service_signal) },
	{ "deliver_virtio_interrupt", VCPU_STAT(deliver_virtio_interrupt) },
	{ "deliver_stop_signal", VCPU_STAT(deliver_stop_signal) },
	{ "deliver_prefix_signal", VCPU_STAT(deliver_prefix_signal) },
	{ "deliver_restart_signal", VCPU_STAT(deliver_restart_signal) },
	{ "deliver_program_interruption", VCPU_STAT(deliver_program_int) },
	{ "exit_wait_state", VCPU_STAT(exit_wait_state) },
81
	{ "instruction_pfmf", VCPU_STAT(instruction_pfmf) },
82 83 84 85 86
	{ "instruction_stidp", VCPU_STAT(instruction_stidp) },
	{ "instruction_spx", VCPU_STAT(instruction_spx) },
	{ "instruction_stpx", VCPU_STAT(instruction_stpx) },
	{ "instruction_stap", VCPU_STAT(instruction_stap) },
	{ "instruction_storage_key", VCPU_STAT(instruction_storage_key) },
87
	{ "instruction_ipte_interlock", VCPU_STAT(instruction_ipte_interlock) },
88 89
	{ "instruction_stsch", VCPU_STAT(instruction_stsch) },
	{ "instruction_chsc", VCPU_STAT(instruction_chsc) },
90
	{ "instruction_essa", VCPU_STAT(instruction_essa) },
91 92
	{ "instruction_stsi", VCPU_STAT(instruction_stsi) },
	{ "instruction_stfl", VCPU_STAT(instruction_stfl) },
93
	{ "instruction_tprot", VCPU_STAT(instruction_tprot) },
94
	{ "instruction_sigp_sense", VCPU_STAT(instruction_sigp_sense) },
95
	{ "instruction_sigp_sense_running", VCPU_STAT(instruction_sigp_sense_running) },
96
	{ "instruction_sigp_external_call", VCPU_STAT(instruction_sigp_external_call) },
97
	{ "instruction_sigp_emergency", VCPU_STAT(instruction_sigp_emergency) },
98 99
	{ "instruction_sigp_cond_emergency", VCPU_STAT(instruction_sigp_cond_emergency) },
	{ "instruction_sigp_start", VCPU_STAT(instruction_sigp_start) },
100
	{ "instruction_sigp_stop", VCPU_STAT(instruction_sigp_stop) },
101 102
	{ "instruction_sigp_stop_store_status", VCPU_STAT(instruction_sigp_stop_store_status) },
	{ "instruction_sigp_store_status", VCPU_STAT(instruction_sigp_store_status) },
103
	{ "instruction_sigp_store_adtl_status", VCPU_STAT(instruction_sigp_store_adtl_status) },
104 105 106
	{ "instruction_sigp_set_arch", VCPU_STAT(instruction_sigp_arch) },
	{ "instruction_sigp_set_prefix", VCPU_STAT(instruction_sigp_prefix) },
	{ "instruction_sigp_restart", VCPU_STAT(instruction_sigp_restart) },
107 108 109
	{ "instruction_sigp_cpu_reset", VCPU_STAT(instruction_sigp_cpu_reset) },
	{ "instruction_sigp_init_cpu_reset", VCPU_STAT(instruction_sigp_init_cpu_reset) },
	{ "instruction_sigp_unknown", VCPU_STAT(instruction_sigp_unknown) },
110
	{ "diagnose_10", VCPU_STAT(diagnose_10) },
111
	{ "diagnose_44", VCPU_STAT(diagnose_44) },
112
	{ "diagnose_9c", VCPU_STAT(diagnose_9c) },
113 114 115
	{ "diagnose_258", VCPU_STAT(diagnose_258) },
	{ "diagnose_308", VCPU_STAT(diagnose_308) },
	{ "diagnose_500", VCPU_STAT(diagnose_500) },
116 117 118
	{ NULL }
};

119 120
/* upper facilities limit for kvm */
unsigned long kvm_s390_fac_list_mask[] = {
121
	0xffe6fffbfcfdfc40UL,
122
	0x005e800000000000UL,
123
};
124

125
unsigned long kvm_s390_fac_list_mask_size(void)
126
{
127 128
	BUILD_BUG_ON(ARRAY_SIZE(kvm_s390_fac_list_mask) > S390_ARCH_FAC_MASK_SIZE_U64);
	return ARRAY_SIZE(kvm_s390_fac_list_mask);
129 130
}

131
static struct gmap_notifier gmap_notifier;
132
debug_info_t *kvm_s390_dbf;
133

134
/* Section: not file related */
135
int kvm_arch_hardware_enable(void)
136 137
{
	/* every s390 is virtualization enabled ;-) */
138
	return 0;
139 140
}

141 142
static void kvm_gmap_notifier(struct gmap *gmap, unsigned long address);

143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
/*
 * This callback is executed during stop_machine(). All CPUs are therefore
 * temporarily stopped. In order not to change guest behavior, we have to
 * disable preemption whenever we touch the epoch of kvm and the VCPUs,
 * so a CPU won't be stopped while calculating with the epoch.
 */
static int kvm_clock_sync(struct notifier_block *notifier, unsigned long val,
			  void *v)
{
	struct kvm *kvm;
	struct kvm_vcpu *vcpu;
	int i;
	unsigned long long *delta = v;

	list_for_each_entry(kvm, &vm_list, vm_list) {
		kvm->arch.epoch -= *delta;
		kvm_for_each_vcpu(i, vcpu, kvm) {
			vcpu->arch.sie_block->epoch -= *delta;
		}
	}
	return NOTIFY_OK;
}

static struct notifier_block kvm_clock_notifier = {
	.notifier_call = kvm_clock_sync,
};

170 171
int kvm_arch_hardware_setup(void)
{
172 173
	gmap_notifier.notifier_call = kvm_gmap_notifier;
	gmap_register_ipte_notifier(&gmap_notifier);
174 175
	atomic_notifier_chain_register(&s390_epoch_delta_notifier,
				       &kvm_clock_notifier);
176 177 178 179 180
	return 0;
}

void kvm_arch_hardware_unsetup(void)
{
181
	gmap_unregister_ipte_notifier(&gmap_notifier);
182 183
	atomic_notifier_chain_unregister(&s390_epoch_delta_notifier,
					 &kvm_clock_notifier);
184 185 186 187
}

int kvm_arch_init(void *opaque)
{
188 189 190 191 192 193 194 195 196
	kvm_s390_dbf = debug_register("kvm-trace", 32, 1, 7 * sizeof(long));
	if (!kvm_s390_dbf)
		return -ENOMEM;

	if (debug_register_view(kvm_s390_dbf, &debug_sprintf_view)) {
		debug_unregister(kvm_s390_dbf);
		return -ENOMEM;
	}

197 198
	/* Register floating interrupt controller interface. */
	return kvm_register_device_ops(&kvm_flic_ops, KVM_DEV_TYPE_FLIC);
199 200
}

201 202 203 204 205
void kvm_arch_exit(void)
{
	debug_unregister(kvm_s390_dbf);
}

206 207 208 209 210 211 212 213 214
/* Section: device related */
long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	if (ioctl == KVM_S390_ENABLE_SIE)
		return s390_enable_sie();
	return -EINVAL;
}

215
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
216
{
217 218
	int r;

219
	switch (ext) {
220
	case KVM_CAP_S390_PSW:
221
	case KVM_CAP_S390_GMAP:
222
	case KVM_CAP_SYNC_MMU:
223 224 225
#ifdef CONFIG_KVM_S390_UCONTROL
	case KVM_CAP_S390_UCONTROL:
#endif
226
	case KVM_CAP_ASYNC_PF:
227
	case KVM_CAP_SYNC_REGS:
228
	case KVM_CAP_ONE_REG:
229
	case KVM_CAP_ENABLE_CAP:
230
	case KVM_CAP_S390_CSS_SUPPORT:
C
Cornelia Huck 已提交
231
	case KVM_CAP_IOEVENTFD:
232
	case KVM_CAP_DEVICE_CTRL:
233
	case KVM_CAP_ENABLE_CAP_VM:
234
	case KVM_CAP_S390_IRQCHIP:
235
	case KVM_CAP_VM_ATTRIBUTES:
236
	case KVM_CAP_MP_STATE:
237
	case KVM_CAP_S390_INJECT_IRQ:
238
	case KVM_CAP_S390_USER_SIGP:
239
	case KVM_CAP_S390_USER_STSI:
240
	case KVM_CAP_S390_SKEYS:
241
	case KVM_CAP_S390_IRQ_STATE:
242 243
		r = 1;
		break;
244 245 246
	case KVM_CAP_S390_MEM_OP:
		r = MEM_OP_MAX_SIZE;
		break;
247 248
	case KVM_CAP_NR_VCPUS:
	case KVM_CAP_MAX_VCPUS:
249 250
		r = sclp.has_esca ? KVM_S390_ESCA_CPU_SLOTS
				  : KVM_S390_BSCA_CPU_SLOTS;
251
		break;
252 253 254
	case KVM_CAP_NR_MEMSLOTS:
		r = KVM_USER_MEM_SLOTS;
		break;
255
	case KVM_CAP_S390_COW:
256
		r = MACHINE_HAS_ESOP;
257
		break;
258 259 260
	case KVM_CAP_S390_VECTOR_REGISTERS:
		r = MACHINE_HAS_VX;
		break;
261 262 263
	case KVM_CAP_S390_RI:
		r = test_facility(64);
		break;
264
	default:
265
		r = 0;
266
	}
267
	return r;
268 269
}

270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
static void kvm_s390_sync_dirty_log(struct kvm *kvm,
					struct kvm_memory_slot *memslot)
{
	gfn_t cur_gfn, last_gfn;
	unsigned long address;
	struct gmap *gmap = kvm->arch.gmap;

	down_read(&gmap->mm->mmap_sem);
	/* Loop over all guest pages */
	last_gfn = memslot->base_gfn + memslot->npages;
	for (cur_gfn = memslot->base_gfn; cur_gfn <= last_gfn; cur_gfn++) {
		address = gfn_to_hva_memslot(memslot, cur_gfn);

		if (gmap_test_and_clear_dirty(address, gmap))
			mark_page_dirty(kvm, cur_gfn);
	}
	up_read(&gmap->mm->mmap_sem);
}

289
/* Section: vm related */
290 291
static void sca_del_vcpu(struct kvm_vcpu *vcpu);

292 293 294 295 296 297
/*
 * Get (and clear) the dirty memory log for a memory slot.
 */
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
			       struct kvm_dirty_log *log)
{
298 299
	int r;
	unsigned long n;
300
	struct kvm_memslots *slots;
301 302 303 304 305 306 307 308 309
	struct kvm_memory_slot *memslot;
	int is_dirty = 0;

	mutex_lock(&kvm->slots_lock);

	r = -EINVAL;
	if (log->slot >= KVM_USER_MEM_SLOTS)
		goto out;

310 311
	slots = kvm_memslots(kvm);
	memslot = id_to_memslot(slots, log->slot);
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
	r = -ENOENT;
	if (!memslot->dirty_bitmap)
		goto out;

	kvm_s390_sync_dirty_log(kvm, memslot);
	r = kvm_get_dirty_log(kvm, log, &is_dirty);
	if (r)
		goto out;

	/* Clear the dirty log */
	if (is_dirty) {
		n = kvm_dirty_bitmap_bytes(memslot);
		memset(memslot->dirty_bitmap, 0, n);
	}
	r = 0;
out:
	mutex_unlock(&kvm->slots_lock);
	return r;
330 331
}

332 333 334 335 336 337 338 339
static int kvm_vm_ioctl_enable_cap(struct kvm *kvm, struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
340
	case KVM_CAP_S390_IRQCHIP:
341
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_IRQCHIP");
342 343 344
		kvm->arch.use_irqchip = 1;
		r = 0;
		break;
345
	case KVM_CAP_S390_USER_SIGP:
346
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_SIGP");
347 348 349
		kvm->arch.user_sigp = 1;
		r = 0;
		break;
350
	case KVM_CAP_S390_VECTOR_REGISTERS:
351 352 353 354
		mutex_lock(&kvm->lock);
		if (atomic_read(&kvm->online_vcpus)) {
			r = -EBUSY;
		} else if (MACHINE_HAS_VX) {
355 356 357 358 359
			set_kvm_facility(kvm->arch.model.fac->mask, 129);
			set_kvm_facility(kvm->arch.model.fac->list, 129);
			r = 0;
		} else
			r = -EINVAL;
360
		mutex_unlock(&kvm->lock);
361 362
		VM_EVENT(kvm, 3, "ENABLE: CAP_S390_VECTOR_REGISTERS %s",
			 r ? "(not available)" : "(success)");
363
		break;
364 365 366 367 368 369 370 371 372 373 374 375 376 377
	case KVM_CAP_S390_RI:
		r = -EINVAL;
		mutex_lock(&kvm->lock);
		if (atomic_read(&kvm->online_vcpus)) {
			r = -EBUSY;
		} else if (test_facility(64)) {
			set_kvm_facility(kvm->arch.model.fac->mask, 64);
			set_kvm_facility(kvm->arch.model.fac->list, 64);
			r = 0;
		}
		mutex_unlock(&kvm->lock);
		VM_EVENT(kvm, 3, "ENABLE: CAP_S390_RI %s",
			 r ? "(not available)" : "(success)");
		break;
378
	case KVM_CAP_S390_USER_STSI:
379
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_STSI");
380 381 382
		kvm->arch.user_stsi = 1;
		r = 0;
		break;
383 384 385 386 387 388 389
	default:
		r = -EINVAL;
		break;
	}
	return r;
}

390 391 392 393 394 395 396
static int kvm_s390_get_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->attr) {
	case KVM_S390_VM_MEM_LIMIT_SIZE:
		ret = 0;
397
		VM_EVENT(kvm, 3, "QUERY: max guest memory: %lu bytes",
398 399
			 kvm->arch.mem_limit);
		if (put_user(kvm->arch.mem_limit, (u64 __user *)attr->addr))
400 401 402 403 404 405 406 407 408 409
			ret = -EFAULT;
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

static int kvm_s390_set_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
410 411 412 413 414
{
	int ret;
	unsigned int idx;
	switch (attr->attr) {
	case KVM_S390_VM_MEM_ENABLE_CMMA:
415 416 417 418 419
		/* enable CMMA only for z10 and later (EDAT_1) */
		ret = -EINVAL;
		if (!MACHINE_IS_LPAR || !MACHINE_HAS_EDAT1)
			break;

420
		ret = -EBUSY;
421
		VM_EVENT(kvm, 3, "%s", "ENABLE: CMMA support");
422 423 424 425 426 427 428 429
		mutex_lock(&kvm->lock);
		if (atomic_read(&kvm->online_vcpus) == 0) {
			kvm->arch.use_cmma = 1;
			ret = 0;
		}
		mutex_unlock(&kvm->lock);
		break;
	case KVM_S390_VM_MEM_CLR_CMMA:
430 431 432 433
		ret = -EINVAL;
		if (!kvm->arch.use_cmma)
			break;

434
		VM_EVENT(kvm, 3, "%s", "RESET: CMMA states");
435 436
		mutex_lock(&kvm->lock);
		idx = srcu_read_lock(&kvm->srcu);
437
		s390_reset_cmma(kvm->arch.gmap->mm);
438 439 440 441
		srcu_read_unlock(&kvm->srcu, idx);
		mutex_unlock(&kvm->lock);
		ret = 0;
		break;
442 443 444 445 446 447 448 449 450
	case KVM_S390_VM_MEM_LIMIT_SIZE: {
		unsigned long new_limit;

		if (kvm_is_ucontrol(kvm))
			return -EINVAL;

		if (get_user(new_limit, (u64 __user *)attr->addr))
			return -EFAULT;

451 452
		if (kvm->arch.mem_limit != KVM_S390_NO_MEM_LIMIT &&
		    new_limit > kvm->arch.mem_limit)
453 454
			return -E2BIG;

455 456 457 458 459 460 461
		if (!new_limit)
			return -EINVAL;

		/* gmap_alloc takes last usable address */
		if (new_limit != KVM_S390_NO_MEM_LIMIT)
			new_limit -= 1;

462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
		ret = -EBUSY;
		mutex_lock(&kvm->lock);
		if (atomic_read(&kvm->online_vcpus) == 0) {
			/* gmap_alloc will round the limit up */
			struct gmap *new = gmap_alloc(current->mm, new_limit);

			if (!new) {
				ret = -ENOMEM;
			} else {
				gmap_free(kvm->arch.gmap);
				new->private = kvm;
				kvm->arch.gmap = new;
				ret = 0;
			}
		}
		mutex_unlock(&kvm->lock);
478 479 480
		VM_EVENT(kvm, 3, "SET: max guest address: %lu", new_limit);
		VM_EVENT(kvm, 3, "New guest asce: 0x%pK",
			 (void *) kvm->arch.gmap->asce);
481 482
		break;
	}
483 484 485 486 487 488 489
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

490 491 492 493 494 495 496
static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu);

static int kvm_s390_vm_set_crypto(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_vcpu *vcpu;
	int i;

497
	if (!test_kvm_facility(kvm, 76))
498 499 500 501 502 503 504 505 506
		return -EINVAL;

	mutex_lock(&kvm->lock);
	switch (attr->attr) {
	case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
		get_random_bytes(
			kvm->arch.crypto.crycb->aes_wrapping_key_mask,
			sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
		kvm->arch.crypto.aes_kw = 1;
507
		VM_EVENT(kvm, 3, "%s", "ENABLE: AES keywrapping support");
508 509 510 511 512 513
		break;
	case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
		get_random_bytes(
			kvm->arch.crypto.crycb->dea_wrapping_key_mask,
			sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
		kvm->arch.crypto.dea_kw = 1;
514
		VM_EVENT(kvm, 3, "%s", "ENABLE: DEA keywrapping support");
515 516 517 518 519
		break;
	case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
		kvm->arch.crypto.aes_kw = 0;
		memset(kvm->arch.crypto.crycb->aes_wrapping_key_mask, 0,
			sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
520
		VM_EVENT(kvm, 3, "%s", "DISABLE: AES keywrapping support");
521 522 523 524 525
		break;
	case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
		kvm->arch.crypto.dea_kw = 0;
		memset(kvm->arch.crypto.crycb->dea_wrapping_key_mask, 0,
			sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
526
		VM_EVENT(kvm, 3, "%s", "DISABLE: DEA keywrapping support");
527 528 529 530 531 532 533 534 535 536 537 538 539 540
		break;
	default:
		mutex_unlock(&kvm->lock);
		return -ENXIO;
	}

	kvm_for_each_vcpu(i, vcpu, kvm) {
		kvm_s390_vcpu_crypto_setup(vcpu);
		exit_sie(vcpu);
	}
	mutex_unlock(&kvm->lock);
	return 0;
}

541 542 543 544 545 546 547 548 549 550
static int kvm_s390_set_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
{
	u8 gtod_high;

	if (copy_from_user(&gtod_high, (void __user *)attr->addr,
					   sizeof(gtod_high)))
		return -EFAULT;

	if (gtod_high != 0)
		return -EINVAL;
551
	VM_EVENT(kvm, 3, "SET: TOD extension: 0x%x", gtod_high);
552 553 554 555 556 557

	return 0;
}

static int kvm_s390_set_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
{
558
	u64 gtod;
559 560 561 562

	if (copy_from_user(&gtod, (void __user *)attr->addr, sizeof(gtod)))
		return -EFAULT;

563
	kvm_s390_set_tod_clock(kvm, gtod);
564
	VM_EVENT(kvm, 3, "SET: TOD base: 0x%llx", gtod);
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
	return 0;
}

static int kvm_s390_set_tod(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	if (attr->flags)
		return -EINVAL;

	switch (attr->attr) {
	case KVM_S390_VM_TOD_HIGH:
		ret = kvm_s390_set_tod_high(kvm, attr);
		break;
	case KVM_S390_VM_TOD_LOW:
		ret = kvm_s390_set_tod_low(kvm, attr);
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

static int kvm_s390_get_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
{
	u8 gtod_high = 0;

	if (copy_to_user((void __user *)attr->addr, &gtod_high,
					 sizeof(gtod_high)))
		return -EFAULT;
596
	VM_EVENT(kvm, 3, "QUERY: TOD extension: 0x%x", gtod_high);
597 598 599 600 601 602

	return 0;
}

static int kvm_s390_get_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
{
603
	u64 gtod;
604

605
	gtod = kvm_s390_get_tod_clock_fast(kvm);
606 607
	if (copy_to_user((void __user *)attr->addr, &gtod, sizeof(gtod)))
		return -EFAULT;
608
	VM_EVENT(kvm, 3, "QUERY: TOD base: 0x%llx", gtod);
609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633

	return 0;
}

static int kvm_s390_get_tod(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	if (attr->flags)
		return -EINVAL;

	switch (attr->attr) {
	case KVM_S390_VM_TOD_HIGH:
		ret = kvm_s390_get_tod_high(kvm, attr);
		break;
	case KVM_S390_VM_TOD_LOW:
		ret = kvm_s390_get_tod_low(kvm, attr);
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
static int kvm_s390_set_processor(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_processor *proc;
	int ret = 0;

	mutex_lock(&kvm->lock);
	if (atomic_read(&kvm->online_vcpus)) {
		ret = -EBUSY;
		goto out;
	}
	proc = kzalloc(sizeof(*proc), GFP_KERNEL);
	if (!proc) {
		ret = -ENOMEM;
		goto out;
	}
	if (!copy_from_user(proc, (void __user *)attr->addr,
			    sizeof(*proc))) {
		memcpy(&kvm->arch.model.cpu_id, &proc->cpuid,
		       sizeof(struct cpuid));
		kvm->arch.model.ibc = proc->ibc;
654
		memcpy(kvm->arch.model.fac->list, proc->fac_list,
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
		       S390_ARCH_FAC_LIST_SIZE_BYTE);
	} else
		ret = -EFAULT;
	kfree(proc);
out:
	mutex_unlock(&kvm->lock);
	return ret;
}

static int kvm_s390_set_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->attr) {
	case KVM_S390_VM_CPU_PROCESSOR:
		ret = kvm_s390_set_processor(kvm, attr);
		break;
	}
	return ret;
}

static int kvm_s390_get_processor(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_processor *proc;
	int ret = 0;

	proc = kzalloc(sizeof(*proc), GFP_KERNEL);
	if (!proc) {
		ret = -ENOMEM;
		goto out;
	}
	memcpy(&proc->cpuid, &kvm->arch.model.cpu_id, sizeof(struct cpuid));
	proc->ibc = kvm->arch.model.ibc;
688
	memcpy(&proc->fac_list, kvm->arch.model.fac->list, S390_ARCH_FAC_LIST_SIZE_BYTE);
689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
	if (copy_to_user((void __user *)attr->addr, proc, sizeof(*proc)))
		ret = -EFAULT;
	kfree(proc);
out:
	return ret;
}

static int kvm_s390_get_machine(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_machine *mach;
	int ret = 0;

	mach = kzalloc(sizeof(*mach), GFP_KERNEL);
	if (!mach) {
		ret = -ENOMEM;
		goto out;
	}
	get_cpu_id((struct cpuid *) &mach->cpuid);
707
	mach->ibc = sclp.ibc;
708 709
	memcpy(&mach->fac_mask, kvm->arch.model.fac->mask,
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
710
	memcpy((unsigned long *)&mach->fac_list, S390_lowcore.stfle_fac_list,
711
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
	if (copy_to_user((void __user *)attr->addr, mach, sizeof(*mach)))
		ret = -EFAULT;
	kfree(mach);
out:
	return ret;
}

static int kvm_s390_get_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->attr) {
	case KVM_S390_VM_CPU_PROCESSOR:
		ret = kvm_s390_get_processor(kvm, attr);
		break;
	case KVM_S390_VM_CPU_MACHINE:
		ret = kvm_s390_get_machine(kvm, attr);
		break;
	}
	return ret;
}

734 735 736 737 738
static int kvm_s390_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->group) {
739
	case KVM_S390_VM_MEM_CTRL:
740
		ret = kvm_s390_set_mem_control(kvm, attr);
741
		break;
742 743 744
	case KVM_S390_VM_TOD:
		ret = kvm_s390_set_tod(kvm, attr);
		break;
745 746 747
	case KVM_S390_VM_CPU_MODEL:
		ret = kvm_s390_set_cpu_model(kvm, attr);
		break;
748 749 750
	case KVM_S390_VM_CRYPTO:
		ret = kvm_s390_vm_set_crypto(kvm, attr);
		break;
751 752 753 754 755 756 757 758 759 760
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
}

static int kvm_s390_vm_get_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
761 762 763 764 765 766
	int ret;

	switch (attr->group) {
	case KVM_S390_VM_MEM_CTRL:
		ret = kvm_s390_get_mem_control(kvm, attr);
		break;
767 768 769
	case KVM_S390_VM_TOD:
		ret = kvm_s390_get_tod(kvm, attr);
		break;
770 771 772
	case KVM_S390_VM_CPU_MODEL:
		ret = kvm_s390_get_cpu_model(kvm, attr);
		break;
773 774 775 776 777 778
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
779 780 781 782 783 784 785
}

static int kvm_s390_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->group) {
786 787 788 789
	case KVM_S390_VM_MEM_CTRL:
		switch (attr->attr) {
		case KVM_S390_VM_MEM_ENABLE_CMMA:
		case KVM_S390_VM_MEM_CLR_CMMA:
790
		case KVM_S390_VM_MEM_LIMIT_SIZE:
791 792 793 794 795 796 797
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
798 799 800 801 802 803 804 805 806 807 808
	case KVM_S390_VM_TOD:
		switch (attr->attr) {
		case KVM_S390_VM_TOD_LOW:
		case KVM_S390_VM_TOD_HIGH:
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
809 810 811 812 813 814 815 816 817 818 819
	case KVM_S390_VM_CPU_MODEL:
		switch (attr->attr) {
		case KVM_S390_VM_CPU_PROCESSOR:
		case KVM_S390_VM_CPU_MACHINE:
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
820 821 822 823 824 825 826 827 828 829 830 831 832
	case KVM_S390_VM_CRYPTO:
		switch (attr->attr) {
		case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
		case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
		case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
		case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
833 834 835 836 837 838 839 840
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
}

841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
static long kvm_s390_get_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
{
	uint8_t *keys;
	uint64_t hva;
	unsigned long curkey;
	int i, r = 0;

	if (args->flags != 0)
		return -EINVAL;

	/* Is this guest using storage keys? */
	if (!mm_use_skey(current->mm))
		return KVM_S390_GET_SKEYS_NONE;

	/* Enforce sane limit on memory allocation */
	if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
		return -EINVAL;

	keys = kmalloc_array(args->count, sizeof(uint8_t),
			     GFP_KERNEL | __GFP_NOWARN);
	if (!keys)
		keys = vmalloc(sizeof(uint8_t) * args->count);
	if (!keys)
		return -ENOMEM;

	for (i = 0; i < args->count; i++) {
		hva = gfn_to_hva(kvm, args->start_gfn + i);
		if (kvm_is_error_hva(hva)) {
			r = -EFAULT;
			goto out;
		}

		curkey = get_guest_storage_key(current->mm, hva);
		if (IS_ERR_VALUE(curkey)) {
			r = curkey;
			goto out;
		}
		keys[i] = curkey;
	}

	r = copy_to_user((uint8_t __user *)args->skeydata_addr, keys,
			 sizeof(uint8_t) * args->count);
	if (r)
		r = -EFAULT;
out:
	kvfree(keys);
	return r;
}

static long kvm_s390_set_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
{
	uint8_t *keys;
	uint64_t hva;
	int i, r = 0;

	if (args->flags != 0)
		return -EINVAL;

	/* Enforce sane limit on memory allocation */
	if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
		return -EINVAL;

	keys = kmalloc_array(args->count, sizeof(uint8_t),
			     GFP_KERNEL | __GFP_NOWARN);
	if (!keys)
		keys = vmalloc(sizeof(uint8_t) * args->count);
	if (!keys)
		return -ENOMEM;

	r = copy_from_user(keys, (uint8_t __user *)args->skeydata_addr,
			   sizeof(uint8_t) * args->count);
	if (r) {
		r = -EFAULT;
		goto out;
	}

	/* Enable storage key handling for the guest */
918 919 920
	r = s390_enable_skey();
	if (r)
		goto out;
921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944

	for (i = 0; i < args->count; i++) {
		hva = gfn_to_hva(kvm, args->start_gfn + i);
		if (kvm_is_error_hva(hva)) {
			r = -EFAULT;
			goto out;
		}

		/* Lowest order bit is reserved */
		if (keys[i] & 0x01) {
			r = -EINVAL;
			goto out;
		}

		r = set_guest_storage_key(current->mm, hva,
					  (unsigned long)keys[i], 0);
		if (r)
			goto out;
	}
out:
	kvfree(keys);
	return r;
}

945 946 947 948 949
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;
950
	struct kvm_device_attr attr;
951 952 953
	int r;

	switch (ioctl) {
954 955 956 957 958 959 960 961 962
	case KVM_S390_INTERRUPT: {
		struct kvm_s390_interrupt s390int;

		r = -EFAULT;
		if (copy_from_user(&s390int, argp, sizeof(s390int)))
			break;
		r = kvm_s390_inject_vm(kvm, &s390int);
		break;
	}
963 964 965 966 967 968 969 970
	case KVM_ENABLE_CAP: {
		struct kvm_enable_cap cap;
		r = -EFAULT;
		if (copy_from_user(&cap, argp, sizeof(cap)))
			break;
		r = kvm_vm_ioctl_enable_cap(kvm, &cap);
		break;
	}
971 972 973 974 975 976 977
	case KVM_CREATE_IRQCHIP: {
		struct kvm_irq_routing_entry routing;

		r = -EINVAL;
		if (kvm->arch.use_irqchip) {
			/* Set up dummy routing. */
			memset(&routing, 0, sizeof(routing));
978
			r = kvm_set_irq_routing(kvm, &routing, 0, 0);
979 980 981
		}
		break;
	}
982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002
	case KVM_SET_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_set_attr(kvm, &attr);
		break;
	}
	case KVM_GET_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_get_attr(kvm, &attr);
		break;
	}
	case KVM_HAS_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_has_attr(kvm, &attr);
		break;
	}
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
	case KVM_S390_GET_SKEYS: {
		struct kvm_s390_skeys args;

		r = -EFAULT;
		if (copy_from_user(&args, argp,
				   sizeof(struct kvm_s390_skeys)))
			break;
		r = kvm_s390_get_skeys(kvm, &args);
		break;
	}
	case KVM_S390_SET_SKEYS: {
		struct kvm_s390_skeys args;

		r = -EFAULT;
		if (copy_from_user(&args, argp,
				   sizeof(struct kvm_s390_skeys)))
			break;
		r = kvm_s390_set_skeys(kvm, &args);
		break;
	}
1023
	default:
1024
		r = -ENOTTY;
1025 1026 1027 1028 1029
	}

	return r;
}

1030 1031 1032
static int kvm_s390_query_ap_config(u8 *config)
{
	u32 fcn_code = 0x04000000UL;
1033
	u32 cc = 0;
1034

1035
	memset(config, 0, 128);
1036 1037 1038 1039
	asm volatile(
		"lgr 0,%1\n"
		"lgr 2,%2\n"
		".long 0xb2af0000\n"		/* PQAP(QCI) */
1040
		"0: ipm %0\n"
1041
		"srl %0,28\n"
1042 1043 1044
		"1:\n"
		EX_TABLE(0b, 1b)
		: "+r" (cc)
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
		: "r" (fcn_code), "r" (config)
		: "cc", "0", "2", "memory"
	);

	return cc;
}

static int kvm_s390_apxa_installed(void)
{
	u8 config[128];
	int cc;

1057
	if (test_facility(12)) {
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
		cc = kvm_s390_query_ap_config(config);

		if (cc)
			pr_err("PQAP(QCI) failed with cc=%d", cc);
		else
			return config[0] & 0x40;
	}

	return 0;
}

static void kvm_s390_set_crycb_format(struct kvm *kvm)
{
	kvm->arch.crypto.crycbd = (__u32)(unsigned long) kvm->arch.crypto.crycb;

	if (kvm_s390_apxa_installed())
		kvm->arch.crypto.crycbd |= CRYCB_FORMAT2;
	else
		kvm->arch.crypto.crycbd |= CRYCB_FORMAT1;
}

1079 1080 1081 1082 1083 1084
static void kvm_s390_get_cpu_id(struct cpuid *cpu_id)
{
	get_cpu_id(cpu_id);
	cpu_id->version = 0xff;
}

1085 1086
static int kvm_s390_crypto_init(struct kvm *kvm)
{
1087
	if (!test_kvm_facility(kvm, 76))
1088 1089 1090 1091 1092 1093 1094
		return 0;

	kvm->arch.crypto.crycb = kzalloc(sizeof(*kvm->arch.crypto.crycb),
					 GFP_KERNEL | GFP_DMA);
	if (!kvm->arch.crypto.crycb)
		return -ENOMEM;

1095
	kvm_s390_set_crycb_format(kvm);
1096

1097 1098 1099 1100 1101 1102 1103
	/* Enable AES/DEA protected key functions by default */
	kvm->arch.crypto.aes_kw = 1;
	kvm->arch.crypto.dea_kw = 1;
	get_random_bytes(kvm->arch.crypto.crycb->aes_wrapping_key_mask,
			 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
	get_random_bytes(kvm->arch.crypto.crycb->dea_wrapping_key_mask,
			 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
1104

1105 1106 1107
	return 0;
}

1108 1109 1110
static void sca_dispose(struct kvm *kvm)
{
	if (kvm->arch.use_esca)
1111
		free_pages_exact(kvm->arch.sca, sizeof(struct esca_block));
1112 1113 1114 1115 1116
	else
		free_page((unsigned long)(kvm->arch.sca));
	kvm->arch.sca = NULL;
}

1117
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
1118
{
1119
	int i, rc;
1120
	char debug_name[16];
1121
	static unsigned long sca_offset;
1122

1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
	rc = -EINVAL;
#ifdef CONFIG_KVM_S390_UCONTROL
	if (type & ~KVM_VM_S390_UCONTROL)
		goto out_err;
	if ((type & KVM_VM_S390_UCONTROL) && (!capable(CAP_SYS_ADMIN)))
		goto out_err;
#else
	if (type)
		goto out_err;
#endif

1134 1135
	rc = s390_enable_sie();
	if (rc)
1136
		goto out_err;
1137

1138 1139
	rc = -ENOMEM;

1140
	kvm->arch.use_esca = 0; /* start with basic SCA */
1141
	rwlock_init(&kvm->arch.sca_lock);
1142
	kvm->arch.sca = (struct bsca_block *) get_zeroed_page(GFP_KERNEL);
1143
	if (!kvm->arch.sca)
1144
		goto out_err;
1145
	spin_lock(&kvm_lock);
1146
	sca_offset += 16;
1147
	if (sca_offset + sizeof(struct bsca_block) > PAGE_SIZE)
1148
		sca_offset = 0;
1149 1150
	kvm->arch.sca = (struct bsca_block *)
			((char *) kvm->arch.sca + sca_offset);
1151
	spin_unlock(&kvm_lock);
1152 1153 1154

	sprintf(debug_name, "kvm-%u", current->pid);

1155
	kvm->arch.dbf = debug_register(debug_name, 32, 1, 7 * sizeof(long));
1156
	if (!kvm->arch.dbf)
1157
		goto out_err;
1158

1159 1160 1161
	/*
	 * The architectural maximum amount of facilities is 16 kbit. To store
	 * this amount, 2 kbyte of memory is required. Thus we need a full
1162 1163
	 * page to hold the guest facility list (arch.model.fac->list) and the
	 * facility mask (arch.model.fac->mask). Its address size has to be
1164 1165 1166
	 * 31 bits and word aligned.
	 */
	kvm->arch.model.fac =
1167
		(struct kvm_s390_fac *) get_zeroed_page(GFP_KERNEL | GFP_DMA);
1168
	if (!kvm->arch.model.fac)
1169
		goto out_err;
1170

1171
	/* Populate the facility mask initially. */
1172
	memcpy(kvm->arch.model.fac->mask, S390_lowcore.stfle_fac_list,
1173
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
1174 1175
	for (i = 0; i < S390_ARCH_FAC_LIST_SIZE_U64; i++) {
		if (i < kvm_s390_fac_list_mask_size())
1176
			kvm->arch.model.fac->mask[i] &= kvm_s390_fac_list_mask[i];
1177
		else
1178
			kvm->arch.model.fac->mask[i] = 0UL;
1179 1180
	}

1181 1182 1183 1184
	/* Populate the facility list initially. */
	memcpy(kvm->arch.model.fac->list, kvm->arch.model.fac->mask,
	       S390_ARCH_FAC_LIST_SIZE_BYTE);

1185
	kvm_s390_get_cpu_id(&kvm->arch.model.cpu_id);
1186
	kvm->arch.model.ibc = sclp.ibc & 0x0fff;
1187

1188
	if (kvm_s390_crypto_init(kvm) < 0)
1189
		goto out_err;
1190

1191
	spin_lock_init(&kvm->arch.float_int.lock);
1192 1193
	for (i = 0; i < FIRQ_LIST_COUNT; i++)
		INIT_LIST_HEAD(&kvm->arch.float_int.lists[i]);
1194
	init_waitqueue_head(&kvm->arch.ipte_wq);
1195
	mutex_init(&kvm->arch.ipte_mutex);
1196

1197
	debug_register_view(kvm->arch.dbf, &debug_sprintf_view);
1198
	VM_EVENT(kvm, 3, "vm created with type %lu", type);
1199

1200 1201
	if (type & KVM_VM_S390_UCONTROL) {
		kvm->arch.gmap = NULL;
1202
		kvm->arch.mem_limit = KVM_S390_NO_MEM_LIMIT;
1203
	} else {
1204 1205 1206 1207 1208
		if (sclp.hamax == U64_MAX)
			kvm->arch.mem_limit = TASK_MAX_SIZE;
		else
			kvm->arch.mem_limit = min_t(unsigned long, TASK_MAX_SIZE,
						    sclp.hamax + 1);
1209
		kvm->arch.gmap = gmap_alloc(current->mm, kvm->arch.mem_limit - 1);
1210
		if (!kvm->arch.gmap)
1211
			goto out_err;
1212
		kvm->arch.gmap->private = kvm;
1213
		kvm->arch.gmap->pfault_enabled = 0;
1214
	}
1215 1216

	kvm->arch.css_support = 0;
1217
	kvm->arch.use_irqchip = 0;
1218
	kvm->arch.epoch = 0;
1219

1220
	spin_lock_init(&kvm->arch.start_stop_lock);
1221
	KVM_EVENT(3, "vm 0x%pK created by pid %u", kvm, current->pid);
1222

1223
	return 0;
1224
out_err:
1225
	kfree(kvm->arch.crypto.crycb);
1226
	free_page((unsigned long)kvm->arch.model.fac);
1227
	debug_unregister(kvm->arch.dbf);
1228
	sca_dispose(kvm);
1229
	KVM_EVENT(3, "creation of vm failed: %d", rc);
1230
	return rc;
1231 1232
}

1233 1234 1235
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	VCPU_EVENT(vcpu, 3, "%s", "free cpu");
1236
	trace_kvm_s390_destroy_vcpu(vcpu->vcpu_id);
1237
	kvm_s390_clear_local_irqs(vcpu);
1238
	kvm_clear_async_pf_completion_queue(vcpu);
1239
	if (!kvm_is_ucontrol(vcpu->kvm))
1240
		sca_del_vcpu(vcpu);
1241 1242 1243 1244

	if (kvm_is_ucontrol(vcpu->kvm))
		gmap_free(vcpu->arch.gmap);

1245
	if (vcpu->kvm->arch.use_cmma)
1246
		kvm_s390_vcpu_unsetup_cmma(vcpu);
1247
	free_page((unsigned long)(vcpu->arch.sie_block));
1248

1249
	kvm_vcpu_uninit(vcpu);
1250
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1251 1252 1253 1254 1255
}

static void kvm_free_vcpus(struct kvm *kvm)
{
	unsigned int i;
1256
	struct kvm_vcpu *vcpu;
1257

1258 1259 1260 1261 1262 1263 1264 1265 1266
	kvm_for_each_vcpu(i, vcpu, kvm)
		kvm_arch_vcpu_destroy(vcpu);

	mutex_lock(&kvm->lock);
	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
		kvm->vcpus[i] = NULL;

	atomic_set(&kvm->online_vcpus, 0);
	mutex_unlock(&kvm->lock);
1267 1268
}

1269 1270
void kvm_arch_destroy_vm(struct kvm *kvm)
{
1271
	kvm_free_vcpus(kvm);
1272
	free_page((unsigned long)kvm->arch.model.fac);
1273
	sca_dispose(kvm);
1274
	debug_unregister(kvm->arch.dbf);
1275
	kfree(kvm->arch.crypto.crycb);
1276 1277
	if (!kvm_is_ucontrol(kvm))
		gmap_free(kvm->arch.gmap);
1278
	kvm_s390_destroy_adapters(kvm);
1279
	kvm_s390_clear_float_irqs(kvm);
1280
	KVM_EVENT(3, "vm 0x%pK destroyed", kvm);
1281 1282 1283
}

/* Section: vcpu related */
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
static int __kvm_ucontrol_vcpu_init(struct kvm_vcpu *vcpu)
{
	vcpu->arch.gmap = gmap_alloc(current->mm, -1UL);
	if (!vcpu->arch.gmap)
		return -ENOMEM;
	vcpu->arch.gmap->private = vcpu->kvm;

	return 0;
}

1294 1295
static void sca_del_vcpu(struct kvm_vcpu *vcpu)
{
1296
	read_lock(&vcpu->kvm->arch.sca_lock);
1297 1298
	if (vcpu->kvm->arch.use_esca) {
		struct esca_block *sca = vcpu->kvm->arch.sca;
1299

1300
		clear_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn);
1301
		sca->cpu[vcpu->vcpu_id].sda = 0;
1302 1303 1304 1305
	} else {
		struct bsca_block *sca = vcpu->kvm->arch.sca;

		clear_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn);
1306
		sca->cpu[vcpu->vcpu_id].sda = 0;
1307
	}
1308
	read_unlock(&vcpu->kvm->arch.sca_lock);
1309 1310
}

1311
static void sca_add_vcpu(struct kvm_vcpu *vcpu)
1312
{
1313 1314 1315
	read_lock(&vcpu->kvm->arch.sca_lock);
	if (vcpu->kvm->arch.use_esca) {
		struct esca_block *sca = vcpu->kvm->arch.sca;
1316

1317
		sca->cpu[vcpu->vcpu_id].sda = (__u64) vcpu->arch.sie_block;
1318 1319
		vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32);
		vcpu->arch.sie_block->scaol = (__u32)(__u64)sca & ~0x3fU;
1320
		vcpu->arch.sie_block->ecb2 |= 0x04U;
1321
		set_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn);
1322
	} else {
1323
		struct bsca_block *sca = vcpu->kvm->arch.sca;
1324

1325
		sca->cpu[vcpu->vcpu_id].sda = (__u64) vcpu->arch.sie_block;
1326 1327
		vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32);
		vcpu->arch.sie_block->scaol = (__u32)(__u64)sca;
1328
		set_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn);
1329
	}
1330
	read_unlock(&vcpu->kvm->arch.sca_lock);
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
}

/* Basic SCA to Extended SCA data copy routines */
static inline void sca_copy_entry(struct esca_entry *d, struct bsca_entry *s)
{
	d->sda = s->sda;
	d->sigp_ctrl.c = s->sigp_ctrl.c;
	d->sigp_ctrl.scn = s->sigp_ctrl.scn;
}

static void sca_copy_b_to_e(struct esca_block *d, struct bsca_block *s)
{
	int i;

	d->ipte_control = s->ipte_control;
	d->mcn[0] = s->mcn;
	for (i = 0; i < KVM_S390_BSCA_CPU_SLOTS; i++)
		sca_copy_entry(&d->cpu[i], &s->cpu[i]);
}

static int sca_switch_to_extended(struct kvm *kvm)
{
	struct bsca_block *old_sca = kvm->arch.sca;
	struct esca_block *new_sca;
	struct kvm_vcpu *vcpu;
	unsigned int vcpu_idx;
	u32 scaol, scaoh;

	new_sca = alloc_pages_exact(sizeof(*new_sca), GFP_KERNEL|__GFP_ZERO);
	if (!new_sca)
		return -ENOMEM;

	scaoh = (u32)((u64)(new_sca) >> 32);
	scaol = (u32)(u64)(new_sca) & ~0x3fU;

	kvm_s390_vcpu_block_all(kvm);
	write_lock(&kvm->arch.sca_lock);

	sca_copy_b_to_e(new_sca, old_sca);

	kvm_for_each_vcpu(vcpu_idx, vcpu, kvm) {
		vcpu->arch.sie_block->scaoh = scaoh;
		vcpu->arch.sie_block->scaol = scaol;
		vcpu->arch.sie_block->ecb2 |= 0x04U;
	}
	kvm->arch.sca = new_sca;
	kvm->arch.use_esca = 1;

	write_unlock(&kvm->arch.sca_lock);
	kvm_s390_vcpu_unblock_all(kvm);

	free_page((unsigned long)old_sca);

1384 1385
	VM_EVENT(kvm, 2, "Switched to ESCA (0x%pK -> 0x%pK)",
		 old_sca, kvm->arch.sca);
1386
	return 0;
1387 1388 1389 1390
}

static int sca_can_add_vcpu(struct kvm *kvm, unsigned int id)
{
1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
	int rc;

	if (id < KVM_S390_BSCA_CPU_SLOTS)
		return true;
	if (!sclp.has_esca)
		return false;

	mutex_lock(&kvm->lock);
	rc = kvm->arch.use_esca ? 0 : sca_switch_to_extended(kvm);
	mutex_unlock(&kvm->lock);

	return rc == 0 && id < KVM_S390_ESCA_CPU_SLOTS;
1403 1404
}

1405 1406
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
1407 1408
	vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
	kvm_clear_async_pf_completion_queue(vcpu);
1409 1410
	vcpu->run->kvm_valid_regs = KVM_SYNC_PREFIX |
				    KVM_SYNC_GPRS |
1411
				    KVM_SYNC_ACRS |
1412 1413 1414
				    KVM_SYNC_CRS |
				    KVM_SYNC_ARCH0 |
				    KVM_SYNC_PFAULT;
1415 1416
	if (test_kvm_facility(vcpu->kvm, 64))
		vcpu->run->kvm_valid_regs |= KVM_SYNC_RICCB;
1417 1418
	if (test_kvm_facility(vcpu->kvm, 129))
		vcpu->run->kvm_valid_regs |= KVM_SYNC_VRS;
1419 1420 1421 1422

	if (kvm_is_ucontrol(vcpu->kvm))
		return __kvm_ucontrol_vcpu_init(vcpu);

1423 1424 1425
	return 0;
}

1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
/*
 * Backs up the current FP/VX register save area on a particular
 * destination.  Used to switch between different register save
 * areas.
 */
static inline void save_fpu_to(struct fpu *dst)
{
	dst->fpc = current->thread.fpu.fpc;
	dst->regs = current->thread.fpu.regs;
}

/*
 * Switches the FP/VX register save area from which to lazy
 * restore register contents.
 */
static inline void load_fpu_from(struct fpu *from)
{
	current->thread.fpu.fpc = from->fpc;
	current->thread.fpu.regs = from->regs;
}

1447 1448
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
1449
	/* Save host register state */
1450
	save_fpu_regs();
1451
	save_fpu_to(&vcpu->arch.host_fpregs);
1452

1453
	if (test_kvm_facility(vcpu->kvm, 129)) {
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
		current->thread.fpu.fpc = vcpu->run->s.regs.fpc;
		/*
		 * Use the register save area in the SIE-control block
		 * for register restore and save in kvm_arch_vcpu_put()
		 */
		current->thread.fpu.vxrs =
			(__vector128 *)&vcpu->run->s.regs.vrs;
	} else
		load_fpu_from(&vcpu->arch.guest_fpregs);

	if (test_fp_ctl(current->thread.fpu.fpc))
1465
		/* User space provided an invalid FPC, let's clear it */
1466 1467 1468
		current->thread.fpu.fpc = 0;

	save_access_regs(vcpu->arch.host_acrs);
1469
	restore_access_regs(vcpu->run->s.regs.acrs);
1470
	gmap_enable(vcpu->arch.gmap);
1471
	atomic_or(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags);
1472 1473 1474 1475
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
1476
	atomic_andnot(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags);
1477
	gmap_disable(vcpu->arch.gmap);
1478

1479
	save_fpu_regs();
1480

1481
	if (test_kvm_facility(vcpu->kvm, 129))
1482 1483 1484 1485 1486 1487 1488
		/*
		 * kvm_arch_vcpu_load() set up the register save area to
		 * the &vcpu->run->s.regs.vrs and, thus, the vector registers
		 * are already saved.  Only the floating-point control must be
		 * copied.
		 */
		vcpu->run->s.regs.fpc = current->thread.fpu.fpc;
1489
	else
1490 1491 1492 1493
		save_fpu_to(&vcpu->arch.guest_fpregs);
	load_fpu_from(&vcpu->arch.host_fpregs);

	save_access_regs(vcpu->run->s.regs.acrs);
1494 1495 1496 1497 1498 1499 1500 1501
	restore_access_regs(vcpu->arch.host_acrs);
}

static void kvm_s390_vcpu_initial_reset(struct kvm_vcpu *vcpu)
{
	/* this equals initial cpu reset in pop, but we don't switch to ESA */
	vcpu->arch.sie_block->gpsw.mask = 0UL;
	vcpu->arch.sie_block->gpsw.addr = 0UL;
1502
	kvm_s390_set_prefix(vcpu, 0);
1503 1504 1505 1506 1507 1508 1509 1510 1511
	vcpu->arch.sie_block->cputm     = 0UL;
	vcpu->arch.sie_block->ckc       = 0UL;
	vcpu->arch.sie_block->todpr     = 0;
	memset(vcpu->arch.sie_block->gcr, 0, 16 * sizeof(__u64));
	vcpu->arch.sie_block->gcr[0]  = 0xE0UL;
	vcpu->arch.sie_block->gcr[14] = 0xC2000000UL;
	vcpu->arch.guest_fpregs.fpc = 0;
	asm volatile("lfpc %0" : : "Q" (vcpu->arch.guest_fpregs.fpc));
	vcpu->arch.sie_block->gbea = 1;
1512
	vcpu->arch.sie_block->pp = 0;
1513 1514
	vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
	kvm_clear_async_pf_completion_queue(vcpu);
1515 1516
	if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm))
		kvm_s390_vcpu_stop(vcpu);
1517
	kvm_s390_clear_local_irqs(vcpu);
1518 1519
}

1520
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1521
{
1522
	mutex_lock(&vcpu->kvm->lock);
1523
	preempt_disable();
1524
	vcpu->arch.sie_block->epoch = vcpu->kvm->arch.epoch;
1525
	preempt_enable();
1526
	mutex_unlock(&vcpu->kvm->lock);
1527
	if (!kvm_is_ucontrol(vcpu->kvm)) {
1528
		vcpu->arch.gmap = vcpu->kvm->arch.gmap;
1529
		sca_add_vcpu(vcpu);
1530 1531
	}

1532 1533
}

1534 1535
static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu)
{
1536
	if (!test_kvm_facility(vcpu->kvm, 76))
1537 1538
		return;

1539 1540 1541 1542 1543 1544 1545
	vcpu->arch.sie_block->ecb3 &= ~(ECB3_AES | ECB3_DEA);

	if (vcpu->kvm->arch.crypto.aes_kw)
		vcpu->arch.sie_block->ecb3 |= ECB3_AES;
	if (vcpu->kvm->arch.crypto.dea_kw)
		vcpu->arch.sie_block->ecb3 |= ECB3_DEA;

1546 1547 1548
	vcpu->arch.sie_block->crycbd = vcpu->kvm->arch.crypto.crycbd;
}

1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
void kvm_s390_vcpu_unsetup_cmma(struct kvm_vcpu *vcpu)
{
	free_page(vcpu->arch.sie_block->cbrlo);
	vcpu->arch.sie_block->cbrlo = 0;
}

int kvm_s390_vcpu_setup_cmma(struct kvm_vcpu *vcpu)
{
	vcpu->arch.sie_block->cbrlo = get_zeroed_page(GFP_KERNEL);
	if (!vcpu->arch.sie_block->cbrlo)
		return -ENOMEM;

	vcpu->arch.sie_block->ecb2 |= 0x80;
	vcpu->arch.sie_block->ecb2 &= ~0x08;
	return 0;
}

1566 1567 1568 1569 1570 1571 1572 1573 1574
static void kvm_s390_vcpu_setup_model(struct kvm_vcpu *vcpu)
{
	struct kvm_s390_cpu_model *model = &vcpu->kvm->arch.model;

	vcpu->arch.cpu_id = model->cpu_id;
	vcpu->arch.sie_block->ibc = model->ibc;
	vcpu->arch.sie_block->fac = (int) (long) model->fac->list;
}

1575 1576
int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
{
1577
	int rc = 0;
1578

1579 1580
	atomic_set(&vcpu->arch.sie_block->cpuflags, CPUSTAT_ZARCH |
						    CPUSTAT_SM |
1581 1582
						    CPUSTAT_STOPPED);

1583
	if (test_kvm_facility(vcpu->kvm, 78))
1584
		atomic_or(CPUSTAT_GED2, &vcpu->arch.sie_block->cpuflags);
1585
	else if (test_kvm_facility(vcpu->kvm, 8))
1586
		atomic_or(CPUSTAT_GED, &vcpu->arch.sie_block->cpuflags);
1587

1588 1589
	kvm_s390_vcpu_setup_model(vcpu);

1590
	vcpu->arch.sie_block->ecb   = 6;
1591
	if (test_kvm_facility(vcpu->kvm, 50) && test_kvm_facility(vcpu->kvm, 73))
1592 1593
		vcpu->arch.sie_block->ecb |= 0x10;

1594
	vcpu->arch.sie_block->ecb2  = 8;
1595
	vcpu->arch.sie_block->eca   = 0xC1002000U;
1596
	if (sclp.has_siif)
1597
		vcpu->arch.sie_block->eca |= 1;
1598
	if (sclp.has_sigpif)
1599
		vcpu->arch.sie_block->eca |= 0x10000000U;
1600 1601
	if (test_kvm_facility(vcpu->kvm, 64))
		vcpu->arch.sie_block->ecb3 |= 0x01;
1602
	if (test_kvm_facility(vcpu->kvm, 129)) {
1603 1604 1605
		vcpu->arch.sie_block->eca |= 0x00020000;
		vcpu->arch.sie_block->ecd |= 0x20000000;
	}
1606
	vcpu->arch.sie_block->riccbd = (unsigned long) &vcpu->run->s.regs.riccb;
1607
	vcpu->arch.sie_block->ictl |= ICTL_ISKE | ICTL_SSKE | ICTL_RRBE;
1608

1609
	if (vcpu->kvm->arch.use_cmma) {
1610 1611 1612
		rc = kvm_s390_vcpu_setup_cmma(vcpu);
		if (rc)
			return rc;
1613
	}
1614
	hrtimer_init(&vcpu->arch.ckc_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1615
	vcpu->arch.ckc_timer.function = kvm_s390_idle_wakeup;
1616

1617 1618
	kvm_s390_vcpu_crypto_setup(vcpu);

1619
	return rc;
1620 1621 1622 1623 1624
}

struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
				      unsigned int id)
{
1625
	struct kvm_vcpu *vcpu;
1626
	struct sie_page *sie_page;
1627 1628
	int rc = -EINVAL;

1629
	if (!kvm_is_ucontrol(kvm) && !sca_can_add_vcpu(kvm, id))
1630 1631 1632
		goto out;

	rc = -ENOMEM;
1633

1634
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1635
	if (!vcpu)
1636
		goto out;
1637

1638 1639
	sie_page = (struct sie_page *) get_zeroed_page(GFP_KERNEL);
	if (!sie_page)
1640 1641
		goto out_free_cpu;

1642 1643 1644
	vcpu->arch.sie_block = &sie_page->sie_block;
	vcpu->arch.sie_block->itdba = (unsigned long) &sie_page->itdb;

1645
	vcpu->arch.sie_block->icpua = id;
1646 1647
	spin_lock_init(&vcpu->arch.local_int.lock);
	vcpu->arch.local_int.float_int = &kvm->arch.float_int;
1648
	vcpu->arch.local_int.wq = &vcpu->wq;
1649
	vcpu->arch.local_int.cpuflags = &vcpu->arch.sie_block->cpuflags;
1650

1651 1652 1653 1654 1655 1656 1657 1658
	/*
	 * Allocate a save area for floating-point registers.  If the vector
	 * extension is available, register contents are saved in the SIE
	 * control block.  The allocated save area is still required in
	 * particular places, for example, in kvm_s390_vcpu_store_status().
	 */
	vcpu->arch.guest_fpregs.fprs = kzalloc(sizeof(freg_t) * __NUM_FPRS,
					       GFP_KERNEL);
1659
	if (!vcpu->arch.guest_fpregs.fprs)
1660 1661
		goto out_free_sie_block;

1662 1663
	rc = kvm_vcpu_init(vcpu, kvm, id);
	if (rc)
1664
		goto out_free_sie_block;
1665
	VM_EVENT(kvm, 3, "create cpu %d at 0x%pK, sie block at 0x%pK", id, vcpu,
1666
		 vcpu->arch.sie_block);
1667
	trace_kvm_s390_create_vcpu(id, vcpu, vcpu->arch.sie_block);
1668 1669

	return vcpu;
1670 1671
out_free_sie_block:
	free_page((unsigned long)(vcpu->arch.sie_block));
1672
out_free_cpu:
1673
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1674
out:
1675 1676 1677 1678 1679
	return ERR_PTR(rc);
}

int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
{
1680
	return kvm_s390_vcpu_has_irq(vcpu, 0);
1681 1682
}

1683
void kvm_s390_vcpu_block(struct kvm_vcpu *vcpu)
1684
{
1685
	atomic_or(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
1686
	exit_sie(vcpu);
1687 1688
}

1689
void kvm_s390_vcpu_unblock(struct kvm_vcpu *vcpu)
1690
{
1691
	atomic_andnot(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
1692 1693
}

1694 1695
static void kvm_s390_vcpu_request(struct kvm_vcpu *vcpu)
{
1696
	atomic_or(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
1697
	exit_sie(vcpu);
1698 1699 1700 1701
}

static void kvm_s390_vcpu_request_handled(struct kvm_vcpu *vcpu)
{
1702
	atomic_andnot(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
1703 1704
}

1705 1706 1707 1708 1709 1710
/*
 * Kick a guest cpu out of SIE and wait until SIE is not running.
 * If the CPU is not running (e.g. waiting as idle) the function will
 * return immediately. */
void exit_sie(struct kvm_vcpu *vcpu)
{
1711
	atomic_or(CPUSTAT_STOP_INT, &vcpu->arch.sie_block->cpuflags);
1712 1713 1714 1715
	while (vcpu->arch.sie_block->prog0c & PROG_IN_SIE)
		cpu_relax();
}

1716 1717
/* Kick a guest cpu out of SIE to process a request synchronously */
void kvm_s390_sync_request(int req, struct kvm_vcpu *vcpu)
1718
{
1719 1720
	kvm_make_request(req, vcpu);
	kvm_s390_vcpu_request(vcpu);
1721 1722
}

1723 1724 1725 1726 1727 1728 1729 1730
static void kvm_gmap_notifier(struct gmap *gmap, unsigned long address)
{
	int i;
	struct kvm *kvm = gmap->private;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm) {
		/* match against both prefix pages */
1731
		if (kvm_s390_get_prefix(vcpu) == (address & ~0x1000UL)) {
1732
			VCPU_EVENT(vcpu, 2, "gmap notifier for %lx", address);
1733
			kvm_s390_sync_request(KVM_REQ_MMU_RELOAD, vcpu);
1734 1735 1736 1737
		}
	}
}

1738 1739 1740 1741 1742 1743 1744
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	/* kvm common code refers to this, but never calls it */
	BUG();
	return 0;
}

1745 1746 1747 1748 1749 1750
static int kvm_arch_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu,
					   struct kvm_one_reg *reg)
{
	int r = -EINVAL;

	switch (reg->id) {
1751 1752 1753 1754 1755 1756 1757 1758
	case KVM_REG_S390_TODPR:
		r = put_user(vcpu->arch.sie_block->todpr,
			     (u32 __user *)reg->addr);
		break;
	case KVM_REG_S390_EPOCHDIFF:
		r = put_user(vcpu->arch.sie_block->epoch,
			     (u64 __user *)reg->addr);
		break;
1759 1760 1761 1762 1763 1764 1765 1766
	case KVM_REG_S390_CPU_TIMER:
		r = put_user(vcpu->arch.sie_block->cputm,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_CLOCK_COMP:
		r = put_user(vcpu->arch.sie_block->ckc,
			     (u64 __user *)reg->addr);
		break;
1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778
	case KVM_REG_S390_PFTOKEN:
		r = put_user(vcpu->arch.pfault_token,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFCOMPARE:
		r = put_user(vcpu->arch.pfault_compare,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFSELECT:
		r = put_user(vcpu->arch.pfault_select,
			     (u64 __user *)reg->addr);
		break;
1779 1780 1781 1782
	case KVM_REG_S390_PP:
		r = put_user(vcpu->arch.sie_block->pp,
			     (u64 __user *)reg->addr);
		break;
1783 1784 1785 1786
	case KVM_REG_S390_GBEA:
		r = put_user(vcpu->arch.sie_block->gbea,
			     (u64 __user *)reg->addr);
		break;
1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799
	default:
		break;
	}

	return r;
}

static int kvm_arch_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu,
					   struct kvm_one_reg *reg)
{
	int r = -EINVAL;

	switch (reg->id) {
1800 1801 1802 1803 1804 1805 1806 1807
	case KVM_REG_S390_TODPR:
		r = get_user(vcpu->arch.sie_block->todpr,
			     (u32 __user *)reg->addr);
		break;
	case KVM_REG_S390_EPOCHDIFF:
		r = get_user(vcpu->arch.sie_block->epoch,
			     (u64 __user *)reg->addr);
		break;
1808 1809 1810 1811 1812 1813 1814 1815
	case KVM_REG_S390_CPU_TIMER:
		r = get_user(vcpu->arch.sie_block->cputm,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_CLOCK_COMP:
		r = get_user(vcpu->arch.sie_block->ckc,
			     (u64 __user *)reg->addr);
		break;
1816 1817 1818
	case KVM_REG_S390_PFTOKEN:
		r = get_user(vcpu->arch.pfault_token,
			     (u64 __user *)reg->addr);
1819 1820
		if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
			kvm_clear_async_pf_completion_queue(vcpu);
1821 1822 1823 1824 1825 1826 1827 1828 1829
		break;
	case KVM_REG_S390_PFCOMPARE:
		r = get_user(vcpu->arch.pfault_compare,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFSELECT:
		r = get_user(vcpu->arch.pfault_select,
			     (u64 __user *)reg->addr);
		break;
1830 1831 1832 1833
	case KVM_REG_S390_PP:
		r = get_user(vcpu->arch.sie_block->pp,
			     (u64 __user *)reg->addr);
		break;
1834 1835 1836 1837
	case KVM_REG_S390_GBEA:
		r = get_user(vcpu->arch.sie_block->gbea,
			     (u64 __user *)reg->addr);
		break;
1838 1839 1840 1841 1842 1843
	default:
		break;
	}

	return r;
}
1844

1845 1846 1847 1848 1849 1850 1851 1852
static int kvm_arch_vcpu_ioctl_initial_reset(struct kvm_vcpu *vcpu)
{
	kvm_s390_vcpu_initial_reset(vcpu);
	return 0;
}

int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
1853
	memcpy(&vcpu->run->s.regs.gprs, &regs->gprs, sizeof(regs->gprs));
1854 1855 1856 1857 1858
	return 0;
}

int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
1859
	memcpy(&regs->gprs, &vcpu->run->s.regs.gprs, sizeof(regs->gprs));
1860 1861 1862 1863 1864 1865
	return 0;
}

int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
1866
	memcpy(&vcpu->run->s.regs.acrs, &sregs->acrs, sizeof(sregs->acrs));
1867
	memcpy(&vcpu->arch.sie_block->gcr, &sregs->crs, sizeof(sregs->crs));
1868
	restore_access_regs(vcpu->run->s.regs.acrs);
1869 1870 1871 1872 1873 1874
	return 0;
}

int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
1875
	memcpy(&sregs->acrs, &vcpu->run->s.regs.acrs, sizeof(sregs->acrs));
1876 1877 1878 1879 1880 1881
	memcpy(&sregs->crs, &vcpu->arch.sie_block->gcr, sizeof(sregs->crs));
	return 0;
}

int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
1882 1883
	if (test_fp_ctl(fpu->fpc))
		return -EINVAL;
1884
	memcpy(vcpu->arch.guest_fpregs.fprs, &fpu->fprs, sizeof(fpu->fprs));
1885
	vcpu->arch.guest_fpregs.fpc = fpu->fpc;
1886
	save_fpu_regs();
1887
	load_fpu_from(&vcpu->arch.guest_fpregs);
1888 1889 1890 1891 1892
	return 0;
}

int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
1893
	memcpy(&fpu->fprs, vcpu->arch.guest_fpregs.fprs, sizeof(fpu->fprs));
1894 1895 1896 1897 1898 1899 1900 1901
	fpu->fpc = vcpu->arch.guest_fpregs.fpc;
	return 0;
}

static int kvm_arch_vcpu_ioctl_set_initial_psw(struct kvm_vcpu *vcpu, psw_t psw)
{
	int rc = 0;

1902
	if (!is_vcpu_stopped(vcpu))
1903
		rc = -EBUSY;
1904 1905 1906 1907
	else {
		vcpu->run->psw_mask = psw.mask;
		vcpu->run->psw_addr = psw.addr;
	}
1908 1909 1910 1911 1912 1913 1914 1915 1916
	return rc;
}

int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
				  struct kvm_translation *tr)
{
	return -EINVAL; /* not implemented yet */
}

1917 1918 1919 1920
#define VALID_GUESTDBG_FLAGS (KVM_GUESTDBG_SINGLESTEP | \
			      KVM_GUESTDBG_USE_HW_BP | \
			      KVM_GUESTDBG_ENABLE)

J
Jan Kiszka 已提交
1921 1922
int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
					struct kvm_guest_debug *dbg)
1923
{
1924 1925 1926 1927 1928
	int rc = 0;

	vcpu->guest_debug = 0;
	kvm_s390_clear_bp_data(vcpu);

1929
	if (dbg->control & ~VALID_GUESTDBG_FLAGS)
1930 1931 1932 1933 1934
		return -EINVAL;

	if (dbg->control & KVM_GUESTDBG_ENABLE) {
		vcpu->guest_debug = dbg->control;
		/* enforce guest PER */
1935
		atomic_or(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
1936 1937 1938 1939

		if (dbg->control & KVM_GUESTDBG_USE_HW_BP)
			rc = kvm_s390_import_bp_data(vcpu, dbg);
	} else {
1940
		atomic_andnot(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
1941 1942 1943 1944 1945 1946
		vcpu->arch.guestdbg.last_bp = 0;
	}

	if (rc) {
		vcpu->guest_debug = 0;
		kvm_s390_clear_bp_data(vcpu);
1947
		atomic_andnot(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
1948 1949 1950
	}

	return rc;
1951 1952
}

1953 1954 1955
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
1956 1957 1958
	/* CHECK_STOP and LOAD are not supported yet */
	return is_vcpu_stopped(vcpu) ? KVM_MP_STATE_STOPPED :
				       KVM_MP_STATE_OPERATING;
1959 1960 1961 1962 1963
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
	int rc = 0;

	/* user space knows about this interface - let it control the state */
	vcpu->kvm->arch.user_cpu_state_ctrl = 1;

	switch (mp_state->mp_state) {
	case KVM_MP_STATE_STOPPED:
		kvm_s390_vcpu_stop(vcpu);
		break;
	case KVM_MP_STATE_OPERATING:
		kvm_s390_vcpu_start(vcpu);
		break;
	case KVM_MP_STATE_LOAD:
	case KVM_MP_STATE_CHECK_STOP:
		/* fall through - CHECK_STOP and LOAD are not supported yet */
	default:
		rc = -ENXIO;
	}

	return rc;
1984 1985
}

1986 1987 1988 1989 1990
static bool ibs_enabled(struct kvm_vcpu *vcpu)
{
	return atomic_read(&vcpu->arch.sie_block->cpuflags) & CPUSTAT_IBS;
}

1991 1992
static int kvm_s390_handle_requests(struct kvm_vcpu *vcpu)
{
1993
retry:
1994
	kvm_s390_vcpu_request_handled(vcpu);
1995 1996
	if (!vcpu->requests)
		return 0;
1997 1998 1999 2000 2001 2002 2003
	/*
	 * We use MMU_RELOAD just to re-arm the ipte notifier for the
	 * guest prefix page. gmap_ipte_notify will wait on the ptl lock.
	 * This ensures that the ipte instruction for this request has
	 * already finished. We might race against a second unmapper that
	 * wants to set the blocking bit. Lets just retry the request loop.
	 */
2004
	if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) {
2005 2006
		int rc;
		rc = gmap_ipte_notify(vcpu->arch.gmap,
2007
				      kvm_s390_get_prefix(vcpu),
2008 2009 2010
				      PAGE_SIZE * 2);
		if (rc)
			return rc;
2011
		goto retry;
2012
	}
2013

2014 2015 2016 2017 2018
	if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
		vcpu->arch.sie_block->ihcpu = 0xffff;
		goto retry;
	}

2019 2020 2021
	if (kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu)) {
		if (!ibs_enabled(vcpu)) {
			trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 1);
2022
			atomic_or(CPUSTAT_IBS,
2023 2024 2025
					&vcpu->arch.sie_block->cpuflags);
		}
		goto retry;
2026
	}
2027 2028 2029 2030

	if (kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu)) {
		if (ibs_enabled(vcpu)) {
			trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 0);
2031
			atomic_andnot(CPUSTAT_IBS,
2032 2033 2034 2035 2036
					  &vcpu->arch.sie_block->cpuflags);
		}
		goto retry;
	}

2037 2038 2039
	/* nothing to do, just clear the request */
	clear_bit(KVM_REQ_UNHALT, &vcpu->requests);

2040 2041 2042
	return 0;
}

2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
void kvm_s390_set_tod_clock(struct kvm *kvm, u64 tod)
{
	struct kvm_vcpu *vcpu;
	int i;

	mutex_lock(&kvm->lock);
	preempt_disable();
	kvm->arch.epoch = tod - get_tod_clock();
	kvm_s390_vcpu_block_all(kvm);
	kvm_for_each_vcpu(i, vcpu, kvm)
		vcpu->arch.sie_block->epoch = kvm->arch.epoch;
	kvm_s390_vcpu_unblock_all(kvm);
	preempt_enable();
	mutex_unlock(&kvm->lock);
}

2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069
/**
 * kvm_arch_fault_in_page - fault-in guest page if necessary
 * @vcpu: The corresponding virtual cpu
 * @gpa: Guest physical address
 * @writable: Whether the page should be writable or not
 *
 * Make sure that a guest page has been faulted-in on the host.
 *
 * Return: Zero on success, negative error code otherwise.
 */
long kvm_arch_fault_in_page(struct kvm_vcpu *vcpu, gpa_t gpa, int writable)
2070
{
2071 2072
	return gmap_fault(vcpu->arch.gmap, gpa,
			  writable ? FAULT_FLAG_WRITE : 0);
2073 2074
}

2075 2076 2077 2078
static void __kvm_inject_pfault_token(struct kvm_vcpu *vcpu, bool start_token,
				      unsigned long token)
{
	struct kvm_s390_interrupt inti;
2079
	struct kvm_s390_irq irq;
2080 2081

	if (start_token) {
2082 2083 2084
		irq.u.ext.ext_params2 = token;
		irq.type = KVM_S390_INT_PFAULT_INIT;
		WARN_ON_ONCE(kvm_s390_inject_vcpu(vcpu, &irq));
2085 2086
	} else {
		inti.type = KVM_S390_INT_PFAULT_DONE;
2087
		inti.parm64 = token;
2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133
		WARN_ON_ONCE(kvm_s390_inject_vm(vcpu->kvm, &inti));
	}
}

void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
				     struct kvm_async_pf *work)
{
	trace_kvm_s390_pfault_init(vcpu, work->arch.pfault_token);
	__kvm_inject_pfault_token(vcpu, true, work->arch.pfault_token);
}

void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
				 struct kvm_async_pf *work)
{
	trace_kvm_s390_pfault_done(vcpu, work->arch.pfault_token);
	__kvm_inject_pfault_token(vcpu, false, work->arch.pfault_token);
}

void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
			       struct kvm_async_pf *work)
{
	/* s390 will always inject the page directly */
}

bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
{
	/*
	 * s390 will always inject the page directly,
	 * but we still want check_async_completion to cleanup
	 */
	return true;
}

static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu)
{
	hva_t hva;
	struct kvm_arch_async_pf arch;
	int rc;

	if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
		return 0;
	if ((vcpu->arch.sie_block->gpsw.mask & vcpu->arch.pfault_select) !=
	    vcpu->arch.pfault_compare)
		return 0;
	if (psw_extint_disabled(vcpu))
		return 0;
2134
	if (kvm_s390_vcpu_has_irq(vcpu, 0))
2135 2136 2137 2138 2139 2140
		return 0;
	if (!(vcpu->arch.sie_block->gcr[0] & 0x200ul))
		return 0;
	if (!vcpu->arch.gmap->pfault_enabled)
		return 0;

H
Heiko Carstens 已提交
2141 2142 2143
	hva = gfn_to_hva(vcpu->kvm, gpa_to_gfn(current->thread.gmap_addr));
	hva += current->thread.gmap_addr & ~PAGE_MASK;
	if (read_guest_real(vcpu, vcpu->arch.pfault_token, &arch.pfault_token, 8))
2144 2145 2146 2147 2148 2149
		return 0;

	rc = kvm_setup_async_pf(vcpu, current->thread.gmap_addr, hva, &arch);
	return rc;
}

2150
static int vcpu_pre_run(struct kvm_vcpu *vcpu)
2151
{
2152
	int rc, cpuflags;
2153

2154 2155 2156 2157 2158 2159 2160
	/*
	 * On s390 notifications for arriving pages will be delivered directly
	 * to the guest but the house keeping for completed pfaults is
	 * handled outside the worker.
	 */
	kvm_check_async_pf_completion(vcpu);

2161 2162
	vcpu->arch.sie_block->gg14 = vcpu->run->s.regs.gprs[14];
	vcpu->arch.sie_block->gg15 = vcpu->run->s.regs.gprs[15];
2163 2164 2165 2166

	if (need_resched())
		schedule();

2167
	if (test_cpu_flag(CIF_MCCK_PENDING))
2168 2169
		s390_handle_mcck();

2170 2171 2172 2173 2174
	if (!kvm_is_ucontrol(vcpu->kvm)) {
		rc = kvm_s390_deliver_pending_interrupts(vcpu);
		if (rc)
			return rc;
	}
C
Carsten Otte 已提交
2175

2176 2177 2178 2179
	rc = kvm_s390_handle_requests(vcpu);
	if (rc)
		return rc;

2180 2181 2182 2183 2184
	if (guestdbg_enabled(vcpu)) {
		kvm_s390_backup_guest_per_regs(vcpu);
		kvm_s390_patch_guest_per_regs(vcpu);
	}

2185
	vcpu->arch.sie_block->icptcode = 0;
2186 2187 2188
	cpuflags = atomic_read(&vcpu->arch.sie_block->cpuflags);
	VCPU_EVENT(vcpu, 6, "entering sie flags %x", cpuflags);
	trace_kvm_s390_sie_enter(vcpu, cpuflags);
2189

2190 2191 2192
	return 0;
}

2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209
static int vcpu_post_run_fault_in_sie(struct kvm_vcpu *vcpu)
{
	psw_t *psw = &vcpu->arch.sie_block->gpsw;
	u8 opcode;
	int rc;

	VCPU_EVENT(vcpu, 3, "%s", "fault in sie instruction");
	trace_kvm_s390_sie_fault(vcpu);

	/*
	 * We want to inject an addressing exception, which is defined as a
	 * suppressing or terminating exception. However, since we came here
	 * by a DAT access exception, the PSW still points to the faulting
	 * instruction since DAT exceptions are nullifying. So we've got
	 * to look up the current opcode to get the length of the instruction
	 * to be able to forward the PSW.
	 */
2210
	rc = read_guest(vcpu, psw->addr, 0, &opcode, 1);
2211 2212 2213 2214 2215 2216 2217
	if (rc)
		return kvm_s390_inject_prog_cond(vcpu, rc);
	psw->addr = __rewind_psw(*psw, -insn_length(opcode));

	return kvm_s390_inject_program_int(vcpu, PGM_ADDRESSING);
}

2218 2219
static int vcpu_post_run(struct kvm_vcpu *vcpu, int exit_reason)
{
2220 2221 2222 2223
	VCPU_EVENT(vcpu, 6, "exit sie icptcode %d",
		   vcpu->arch.sie_block->icptcode);
	trace_kvm_s390_sie_exit(vcpu, vcpu->arch.sie_block->icptcode);

2224 2225 2226
	if (guestdbg_enabled(vcpu))
		kvm_s390_restore_guest_per_regs(vcpu);

2227 2228
	vcpu->run->s.regs.gprs[14] = vcpu->arch.sie_block->gg14;
	vcpu->run->s.regs.gprs[15] = vcpu->arch.sie_block->gg15;
2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242

	if (vcpu->arch.sie_block->icptcode > 0) {
		int rc = kvm_handle_sie_intercept(vcpu);

		if (rc != -EOPNOTSUPP)
			return rc;
		vcpu->run->exit_reason = KVM_EXIT_S390_SIEIC;
		vcpu->run->s390_sieic.icptcode = vcpu->arch.sie_block->icptcode;
		vcpu->run->s390_sieic.ipa = vcpu->arch.sie_block->ipa;
		vcpu->run->s390_sieic.ipb = vcpu->arch.sie_block->ipb;
		return -EREMOTE;
	} else if (exit_reason != -EFAULT) {
		vcpu->stat.exit_null++;
		return 0;
2243 2244 2245 2246 2247
	} else if (kvm_is_ucontrol(vcpu->kvm)) {
		vcpu->run->exit_reason = KVM_EXIT_S390_UCONTROL;
		vcpu->run->s390_ucontrol.trans_exc_code =
						current->thread.gmap_addr;
		vcpu->run->s390_ucontrol.pgm_code = 0x10;
2248
		return -EREMOTE;
2249
	} else if (current->thread.gmap_pfault) {
2250
		trace_kvm_s390_major_guest_pfault(vcpu);
2251
		current->thread.gmap_pfault = 0;
2252 2253 2254
		if (kvm_arch_setup_async_pf(vcpu))
			return 0;
		return kvm_arch_fault_in_page(vcpu, current->thread.gmap_addr, 1);
2255
	}
2256
	return vcpu_post_run_fault_in_sie(vcpu);
2257 2258 2259 2260 2261 2262
}

static int __vcpu_run(struct kvm_vcpu *vcpu)
{
	int rc, exit_reason;

2263 2264 2265 2266 2267 2268
	/*
	 * We try to hold kvm->srcu during most of vcpu_run (except when run-
	 * ning the guest), so that memslots (and other stuff) are protected
	 */
	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);

2269 2270 2271 2272
	do {
		rc = vcpu_pre_run(vcpu);
		if (rc)
			break;
2273

2274
		srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2275 2276 2277 2278
		/*
		 * As PF_VCPU will be used in fault handler, between
		 * guest_enter and guest_exit should be no uaccess.
		 */
2279 2280 2281
		local_irq_disable();
		__kvm_guest_enter();
		local_irq_enable();
2282 2283
		exit_reason = sie64a(vcpu->arch.sie_block,
				     vcpu->run->s.regs.gprs);
2284 2285 2286
		local_irq_disable();
		__kvm_guest_exit();
		local_irq_enable();
2287
		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2288 2289

		rc = vcpu_post_run(vcpu, exit_reason);
2290
	} while (!signal_pending(current) && !guestdbg_exit_pending(vcpu) && !rc);
2291

2292
	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2293
	return rc;
2294 2295
}

2296 2297 2298 2299 2300 2301 2302 2303
static void sync_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	vcpu->arch.sie_block->gpsw.mask = kvm_run->psw_mask;
	vcpu->arch.sie_block->gpsw.addr = kvm_run->psw_addr;
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_PREFIX)
		kvm_s390_set_prefix(vcpu, kvm_run->s.regs.prefix);
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_CRS) {
		memcpy(&vcpu->arch.sie_block->gcr, &kvm_run->s.regs.crs, 128);
2304 2305
		/* some control register changes require a tlb flush */
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317
	}
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_ARCH0) {
		vcpu->arch.sie_block->cputm = kvm_run->s.regs.cputm;
		vcpu->arch.sie_block->ckc = kvm_run->s.regs.ckc;
		vcpu->arch.sie_block->todpr = kvm_run->s.regs.todpr;
		vcpu->arch.sie_block->pp = kvm_run->s.regs.pp;
		vcpu->arch.sie_block->gbea = kvm_run->s.regs.gbea;
	}
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_PFAULT) {
		vcpu->arch.pfault_token = kvm_run->s.regs.pft;
		vcpu->arch.pfault_select = kvm_run->s.regs.pfs;
		vcpu->arch.pfault_compare = kvm_run->s.regs.pfc;
2318 2319
		if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
			kvm_clear_async_pf_completion_queue(vcpu);
2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339
	}
	kvm_run->kvm_dirty_regs = 0;
}

static void store_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	kvm_run->psw_mask = vcpu->arch.sie_block->gpsw.mask;
	kvm_run->psw_addr = vcpu->arch.sie_block->gpsw.addr;
	kvm_run->s.regs.prefix = kvm_s390_get_prefix(vcpu);
	memcpy(&kvm_run->s.regs.crs, &vcpu->arch.sie_block->gcr, 128);
	kvm_run->s.regs.cputm = vcpu->arch.sie_block->cputm;
	kvm_run->s.regs.ckc = vcpu->arch.sie_block->ckc;
	kvm_run->s.regs.todpr = vcpu->arch.sie_block->todpr;
	kvm_run->s.regs.pp = vcpu->arch.sie_block->pp;
	kvm_run->s.regs.gbea = vcpu->arch.sie_block->gbea;
	kvm_run->s.regs.pft = vcpu->arch.pfault_token;
	kvm_run->s.regs.pfs = vcpu->arch.pfault_select;
	kvm_run->s.regs.pfc = vcpu->arch.pfault_compare;
}

2340 2341
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
2342
	int rc;
2343 2344
	sigset_t sigsaved;

2345 2346 2347 2348 2349
	if (guestdbg_exit_pending(vcpu)) {
		kvm_s390_prepare_debug_exit(vcpu);
		return 0;
	}

2350 2351 2352
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);

2353 2354 2355
	if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm)) {
		kvm_s390_vcpu_start(vcpu);
	} else if (is_vcpu_stopped(vcpu)) {
2356
		pr_err_ratelimited("can't run stopped vcpu %d\n",
2357 2358 2359
				   vcpu->vcpu_id);
		return -EINVAL;
	}
2360

2361
	sync_regs(vcpu, kvm_run);
2362

2363
	might_fault();
2364
	rc = __vcpu_run(vcpu);
2365

2366 2367
	if (signal_pending(current) && !rc) {
		kvm_run->exit_reason = KVM_EXIT_INTR;
2368
		rc = -EINTR;
2369
	}
2370

2371 2372 2373 2374 2375
	if (guestdbg_exit_pending(vcpu) && !rc)  {
		kvm_s390_prepare_debug_exit(vcpu);
		rc = 0;
	}

2376
	if (rc == -EREMOTE) {
2377
		/* userspace support is needed, kvm_run has been prepared */
2378 2379
		rc = 0;
	}
2380

2381
	store_regs(vcpu, kvm_run);
2382

2383 2384 2385 2386
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &sigsaved, NULL);

	vcpu->stat.exit_userspace++;
2387
	return rc;
2388 2389 2390 2391 2392 2393 2394 2395
}

/*
 * store status at address
 * we use have two special cases:
 * KVM_S390_STORE_STATUS_NOADDR: -> 0x1200 on 64 bit
 * KVM_S390_STORE_STATUS_PREFIXED: -> prefix
 */
2396
int kvm_s390_store_status_unloaded(struct kvm_vcpu *vcpu, unsigned long gpa)
2397
{
2398
	unsigned char archmode = 1;
2399
	unsigned int px;
2400
	u64 clkcomp;
2401
	int rc;
2402

2403 2404
	if (gpa == KVM_S390_STORE_STATUS_NOADDR) {
		if (write_guest_abs(vcpu, 163, &archmode, 1))
2405
			return -EFAULT;
2406 2407 2408
		gpa = SAVE_AREA_BASE;
	} else if (gpa == KVM_S390_STORE_STATUS_PREFIXED) {
		if (write_guest_real(vcpu, 163, &archmode, 1))
2409
			return -EFAULT;
2410 2411 2412 2413 2414 2415 2416 2417
		gpa = kvm_s390_real_to_abs(vcpu, SAVE_AREA_BASE);
	}
	rc = write_guest_abs(vcpu, gpa + offsetof(struct save_area, fp_regs),
			     vcpu->arch.guest_fpregs.fprs, 128);
	rc |= write_guest_abs(vcpu, gpa + offsetof(struct save_area, gp_regs),
			      vcpu->run->s.regs.gprs, 128);
	rc |= write_guest_abs(vcpu, gpa + offsetof(struct save_area, psw),
			      &vcpu->arch.sie_block->gpsw, 16);
2418
	px = kvm_s390_get_prefix(vcpu);
2419
	rc |= write_guest_abs(vcpu, gpa + offsetof(struct save_area, pref_reg),
2420
			      &px, 4);
2421 2422 2423 2424 2425 2426 2427
	rc |= write_guest_abs(vcpu,
			      gpa + offsetof(struct save_area, fp_ctrl_reg),
			      &vcpu->arch.guest_fpregs.fpc, 4);
	rc |= write_guest_abs(vcpu, gpa + offsetof(struct save_area, tod_reg),
			      &vcpu->arch.sie_block->todpr, 4);
	rc |= write_guest_abs(vcpu, gpa + offsetof(struct save_area, timer),
			      &vcpu->arch.sie_block->cputm, 8);
2428
	clkcomp = vcpu->arch.sie_block->ckc >> 8;
2429 2430 2431 2432 2433 2434 2435
	rc |= write_guest_abs(vcpu, gpa + offsetof(struct save_area, clk_cmp),
			      &clkcomp, 8);
	rc |= write_guest_abs(vcpu, gpa + offsetof(struct save_area, acc_regs),
			      &vcpu->run->s.regs.acrs, 64);
	rc |= write_guest_abs(vcpu, gpa + offsetof(struct save_area, ctrl_regs),
			      &vcpu->arch.sie_block->gcr, 128);
	return rc ? -EFAULT : 0;
2436 2437
}

2438 2439 2440 2441 2442 2443 2444
int kvm_s390_vcpu_store_status(struct kvm_vcpu *vcpu, unsigned long addr)
{
	/*
	 * The guest FPRS and ACRS are in the host FPRS/ACRS due to the lazy
	 * copying in vcpu load/put. Lets update our copies before we save
	 * it into the save area
	 */
2445
	save_fpu_regs();
2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458
	if (test_kvm_facility(vcpu->kvm, 129)) {
		/*
		 * If the vector extension is available, the vector registers
		 * which overlaps with floating-point registers are saved in
		 * the SIE-control block.  Hence, extract the floating-point
		 * registers and the FPC value and store them in the
		 * guest_fpregs structure.
		 */
		vcpu->arch.guest_fpregs.fpc = current->thread.fpu.fpc;
		convert_vx_to_fp(vcpu->arch.guest_fpregs.fprs,
				 current->thread.fpu.vxrs);
	} else
		save_fpu_to(&vcpu->arch.guest_fpregs);
2459 2460 2461 2462 2463
	save_access_regs(vcpu->run->s.regs.acrs);

	return kvm_s390_store_status_unloaded(vcpu, addr);
}

E
Eric Farman 已提交
2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484
/*
 * store additional status at address
 */
int kvm_s390_store_adtl_status_unloaded(struct kvm_vcpu *vcpu,
					unsigned long gpa)
{
	/* Only bits 0-53 are used for address formation */
	if (!(gpa & ~0x3ff))
		return 0;

	return write_guest_abs(vcpu, gpa & ~0x3ff,
			       (void *)&vcpu->run->s.regs.vrs, 512);
}

int kvm_s390_vcpu_store_adtl_status(struct kvm_vcpu *vcpu, unsigned long addr)
{
	if (!test_kvm_facility(vcpu->kvm, 129))
		return 0;

	/*
	 * The guest VXRS are in the host VXRs due to the lazy
2485 2486 2487 2488 2489
	 * copying in vcpu load/put. We can simply call save_fpu_regs()
	 * to save the current register state because we are in the
	 * middle of a load/put cycle.
	 *
	 * Let's update our copies before we save it into the save area.
E
Eric Farman 已提交
2490
	 */
2491
	save_fpu_regs();
E
Eric Farman 已提交
2492 2493 2494 2495

	return kvm_s390_store_adtl_status_unloaded(vcpu, addr);
}

2496 2497 2498
static void __disable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
{
	kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu);
2499
	kvm_s390_sync_request(KVM_REQ_DISABLE_IBS, vcpu);
2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514
}

static void __disable_ibs_on_all_vcpus(struct kvm *kvm)
{
	unsigned int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm) {
		__disable_ibs_on_vcpu(vcpu);
	}
}

static void __enable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
{
	kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu);
2515
	kvm_s390_sync_request(KVM_REQ_ENABLE_IBS, vcpu);
2516 2517
}

2518 2519
void kvm_s390_vcpu_start(struct kvm_vcpu *vcpu)
{
2520 2521 2522 2523 2524
	int i, online_vcpus, started_vcpus = 0;

	if (!is_vcpu_stopped(vcpu))
		return;

2525
	trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 1);
2526
	/* Only one cpu at a time may enter/leave the STOPPED state. */
2527
	spin_lock(&vcpu->kvm->arch.start_stop_lock);
2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546
	online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);

	for (i = 0; i < online_vcpus; i++) {
		if (!is_vcpu_stopped(vcpu->kvm->vcpus[i]))
			started_vcpus++;
	}

	if (started_vcpus == 0) {
		/* we're the only active VCPU -> speed it up */
		__enable_ibs_on_vcpu(vcpu);
	} else if (started_vcpus == 1) {
		/*
		 * As we are starting a second VCPU, we have to disable
		 * the IBS facility on all VCPUs to remove potentially
		 * oustanding ENABLE requests.
		 */
		__disable_ibs_on_all_vcpus(vcpu->kvm);
	}

2547
	atomic_andnot(CPUSTAT_STOPPED, &vcpu->arch.sie_block->cpuflags);
2548 2549 2550 2551
	/*
	 * Another VCPU might have used IBS while we were offline.
	 * Let's play safe and flush the VCPU at startup.
	 */
2552
	kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2553
	spin_unlock(&vcpu->kvm->arch.start_stop_lock);
2554
	return;
2555 2556 2557 2558
}

void kvm_s390_vcpu_stop(struct kvm_vcpu *vcpu)
{
2559 2560 2561 2562 2563 2564
	int i, online_vcpus, started_vcpus = 0;
	struct kvm_vcpu *started_vcpu = NULL;

	if (is_vcpu_stopped(vcpu))
		return;

2565
	trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 0);
2566
	/* Only one cpu at a time may enter/leave the STOPPED state. */
2567
	spin_lock(&vcpu->kvm->arch.start_stop_lock);
2568 2569
	online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);

2570
	/* SIGP STOP and SIGP STOP AND STORE STATUS has been fully processed */
2571
	kvm_s390_clear_stop_irq(vcpu);
2572

2573
	atomic_or(CPUSTAT_STOPPED, &vcpu->arch.sie_block->cpuflags);
2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590
	__disable_ibs_on_vcpu(vcpu);

	for (i = 0; i < online_vcpus; i++) {
		if (!is_vcpu_stopped(vcpu->kvm->vcpus[i])) {
			started_vcpus++;
			started_vcpu = vcpu->kvm->vcpus[i];
		}
	}

	if (started_vcpus == 1) {
		/*
		 * As we only have one VCPU left, we want to enable the
		 * IBS facility for that VCPU to speed it up.
		 */
		__enable_ibs_on_vcpu(started_vcpu);
	}

2591
	spin_unlock(&vcpu->kvm->arch.start_stop_lock);
2592
	return;
2593 2594
}

2595 2596 2597 2598 2599 2600 2601 2602 2603
static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
				     struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
2604 2605 2606
	case KVM_CAP_S390_CSS_SUPPORT:
		if (!vcpu->kvm->arch.css_support) {
			vcpu->kvm->arch.css_support = 1;
2607
			VM_EVENT(vcpu->kvm, 3, "%s", "ENABLE: CSS support");
2608 2609 2610 2611
			trace_kvm_s390_enable_css(vcpu->kvm);
		}
		r = 0;
		break;
2612 2613 2614 2615 2616 2617 2618
	default:
		r = -EINVAL;
		break;
	}
	return r;
}

2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677
static long kvm_s390_guest_mem_op(struct kvm_vcpu *vcpu,
				  struct kvm_s390_mem_op *mop)
{
	void __user *uaddr = (void __user *)mop->buf;
	void *tmpbuf = NULL;
	int r, srcu_idx;
	const u64 supported_flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION
				    | KVM_S390_MEMOP_F_CHECK_ONLY;

	if (mop->flags & ~supported_flags)
		return -EINVAL;

	if (mop->size > MEM_OP_MAX_SIZE)
		return -E2BIG;

	if (!(mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY)) {
		tmpbuf = vmalloc(mop->size);
		if (!tmpbuf)
			return -ENOMEM;
	}

	srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);

	switch (mop->op) {
	case KVM_S390_MEMOP_LOGICAL_READ:
		if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
			r = check_gva_range(vcpu, mop->gaddr, mop->ar, mop->size, false);
			break;
		}
		r = read_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size);
		if (r == 0) {
			if (copy_to_user(uaddr, tmpbuf, mop->size))
				r = -EFAULT;
		}
		break;
	case KVM_S390_MEMOP_LOGICAL_WRITE:
		if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
			r = check_gva_range(vcpu, mop->gaddr, mop->ar, mop->size, true);
			break;
		}
		if (copy_from_user(tmpbuf, uaddr, mop->size)) {
			r = -EFAULT;
			break;
		}
		r = write_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size);
		break;
	default:
		r = -EINVAL;
	}

	srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);

	if (r > 0 && (mop->flags & KVM_S390_MEMOP_F_INJECT_EXCEPTION) != 0)
		kvm_s390_inject_prog_irq(vcpu, &vcpu->arch.pgm);

	vfree(tmpbuf);
	return r;
}

2678 2679 2680 2681 2682
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
2683
	int idx;
2684
	long r;
2685

2686
	switch (ioctl) {
2687 2688 2689 2690 2691 2692 2693 2694 2695
	case KVM_S390_IRQ: {
		struct kvm_s390_irq s390irq;

		r = -EFAULT;
		if (copy_from_user(&s390irq, argp, sizeof(s390irq)))
			break;
		r = kvm_s390_inject_vcpu(vcpu, &s390irq);
		break;
	}
2696
	case KVM_S390_INTERRUPT: {
2697
		struct kvm_s390_interrupt s390int;
2698
		struct kvm_s390_irq s390irq;
2699

2700
		r = -EFAULT;
2701
		if (copy_from_user(&s390int, argp, sizeof(s390int)))
2702
			break;
2703 2704 2705
		if (s390int_to_s390irq(&s390int, &s390irq))
			return -EINVAL;
		r = kvm_s390_inject_vcpu(vcpu, &s390irq);
2706
		break;
2707
	}
2708
	case KVM_S390_STORE_STATUS:
2709
		idx = srcu_read_lock(&vcpu->kvm->srcu);
2710
		r = kvm_s390_vcpu_store_status(vcpu, arg);
2711
		srcu_read_unlock(&vcpu->kvm->srcu, idx);
2712
		break;
2713 2714 2715
	case KVM_S390_SET_INITIAL_PSW: {
		psw_t psw;

2716
		r = -EFAULT;
2717
		if (copy_from_user(&psw, argp, sizeof(psw)))
2718 2719 2720
			break;
		r = kvm_arch_vcpu_ioctl_set_initial_psw(vcpu, psw);
		break;
2721 2722
	}
	case KVM_S390_INITIAL_RESET:
2723 2724
		r = kvm_arch_vcpu_ioctl_initial_reset(vcpu);
		break;
2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
		r = -EFAULT;
		if (copy_from_user(&reg, argp, sizeof(reg)))
			break;
		if (ioctl == KVM_SET_ONE_REG)
			r = kvm_arch_vcpu_ioctl_set_one_reg(vcpu, &reg);
		else
			r = kvm_arch_vcpu_ioctl_get_one_reg(vcpu, &reg);
		break;
	}
2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772
#ifdef CONFIG_KVM_S390_UCONTROL
	case KVM_S390_UCAS_MAP: {
		struct kvm_s390_ucas_mapping ucasmap;

		if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
			r = -EFAULT;
			break;
		}

		if (!kvm_is_ucontrol(vcpu->kvm)) {
			r = -EINVAL;
			break;
		}

		r = gmap_map_segment(vcpu->arch.gmap, ucasmap.user_addr,
				     ucasmap.vcpu_addr, ucasmap.length);
		break;
	}
	case KVM_S390_UCAS_UNMAP: {
		struct kvm_s390_ucas_mapping ucasmap;

		if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
			r = -EFAULT;
			break;
		}

		if (!kvm_is_ucontrol(vcpu->kvm)) {
			r = -EINVAL;
			break;
		}

		r = gmap_unmap_segment(vcpu->arch.gmap, ucasmap.vcpu_addr,
			ucasmap.length);
		break;
	}
#endif
2773
	case KVM_S390_VCPU_FAULT: {
2774
		r = gmap_fault(vcpu->arch.gmap, arg, 0);
2775 2776
		break;
	}
2777 2778 2779 2780 2781 2782 2783 2784 2785
	case KVM_ENABLE_CAP:
	{
		struct kvm_enable_cap cap;
		r = -EFAULT;
		if (copy_from_user(&cap, argp, sizeof(cap)))
			break;
		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
		break;
	}
2786 2787 2788 2789 2790 2791 2792 2793 2794
	case KVM_S390_MEM_OP: {
		struct kvm_s390_mem_op mem_op;

		if (copy_from_user(&mem_op, argp, sizeof(mem_op)) == 0)
			r = kvm_s390_guest_mem_op(vcpu, &mem_op);
		else
			r = -EFAULT;
		break;
	}
2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826
	case KVM_S390_SET_IRQ_STATE: {
		struct kvm_s390_irq_state irq_state;

		r = -EFAULT;
		if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
			break;
		if (irq_state.len > VCPU_IRQS_MAX_BUF ||
		    irq_state.len == 0 ||
		    irq_state.len % sizeof(struct kvm_s390_irq) > 0) {
			r = -EINVAL;
			break;
		}
		r = kvm_s390_set_irq_state(vcpu,
					   (void __user *) irq_state.buf,
					   irq_state.len);
		break;
	}
	case KVM_S390_GET_IRQ_STATE: {
		struct kvm_s390_irq_state irq_state;

		r = -EFAULT;
		if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
			break;
		if (irq_state.len == 0) {
			r = -EINVAL;
			break;
		}
		r = kvm_s390_get_irq_state(vcpu,
					   (__u8 __user *)  irq_state.buf,
					   irq_state.len);
		break;
	}
2827
	default:
2828
		r = -ENOTTY;
2829
	}
2830
	return r;
2831 2832
}

2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845
int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
{
#ifdef CONFIG_KVM_S390_UCONTROL
	if ((vmf->pgoff == KVM_S390_SIE_PAGE_OFFSET)
		 && (kvm_is_ucontrol(vcpu->kvm))) {
		vmf->page = virt_to_page(vcpu->arch.sie_block);
		get_page(vmf->page);
		return 0;
	}
#endif
	return VM_FAULT_SIGBUS;
}

2846 2847
int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
			    unsigned long npages)
2848 2849 2850 2851
{
	return 0;
}

2852
/* Section: memory related */
2853 2854
int kvm_arch_prepare_memory_region(struct kvm *kvm,
				   struct kvm_memory_slot *memslot,
2855
				   const struct kvm_userspace_memory_region *mem,
2856
				   enum kvm_mr_change change)
2857
{
2858 2859 2860 2861
	/* A few sanity checks. We can have memory slots which have to be
	   located/ended at a segment boundary (1MB). The memory in userland is
	   ok to be fragmented into various different vmas. It is okay to mmap()
	   and munmap() stuff in this slot after doing this call at any time */
2862

2863
	if (mem->userspace_addr & 0xffffful)
2864 2865
		return -EINVAL;

2866
	if (mem->memory_size & 0xffffful)
2867 2868
		return -EINVAL;

2869 2870 2871
	if (mem->guest_phys_addr + mem->memory_size > kvm->arch.mem_limit)
		return -EINVAL;

2872 2873 2874 2875
	return 0;
}

void kvm_arch_commit_memory_region(struct kvm *kvm,
2876
				const struct kvm_userspace_memory_region *mem,
2877
				const struct kvm_memory_slot *old,
2878
				const struct kvm_memory_slot *new,
2879
				enum kvm_mr_change change)
2880
{
2881
	int rc;
2882

2883 2884 2885 2886 2887 2888 2889 2890 2891 2892
	/* If the basics of the memslot do not change, we do not want
	 * to update the gmap. Every update causes several unnecessary
	 * segment translation exceptions. This is usually handled just
	 * fine by the normal fault handler + gmap, but it will also
	 * cause faults on the prefix page of running guest CPUs.
	 */
	if (old->userspace_addr == mem->userspace_addr &&
	    old->base_gfn * PAGE_SIZE == mem->guest_phys_addr &&
	    old->npages * PAGE_SIZE == mem->memory_size)
		return;
2893 2894 2895 2896

	rc = gmap_map_segment(kvm->arch.gmap, mem->userspace_addr,
		mem->guest_phys_addr, mem->memory_size);
	if (rc)
2897
		pr_warn("failed to commit memory region\n");
2898
	return;
2899 2900 2901 2902
}

static int __init kvm_s390_init(void)
{
2903 2904 2905 2906 2907
	if (!sclp.has_sief2) {
		pr_info("SIE not available\n");
		return -ENODEV;
	}

2908
	return kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
2909 2910 2911 2912 2913 2914 2915 2916 2917
}

static void __exit kvm_s390_exit(void)
{
	kvm_exit();
}

module_init(kvm_s390_init);
module_exit(kvm_s390_exit);
2918 2919 2920 2921 2922 2923 2924 2925 2926

/*
 * Enable autoloading of the kvm module.
 * Note that we add the module alias here instead of virt/kvm/kvm_main.c
 * since x86 takes a different approach.
 */
#include <linux/miscdevice.h>
MODULE_ALIAS_MISCDEV(KVM_MINOR);
MODULE_ALIAS("devname:kvm");