core.c 95.8 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3 4 5 6 7
 * Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with
 * influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c
 *
 * Copyright (C) 2005, Intec Automation Inc.
 * Copyright (C) 2014, Freescale Semiconductor, Inc.
8 9 10 11 12 13 14 15
 */

#include <linux/err.h>
#include <linux/errno.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/mutex.h>
#include <linux/math64.h>
16
#include <linux/sizes.h>
17
#include <linux/slab.h>
18 19 20

#include <linux/mtd/mtd.h>
#include <linux/of_platform.h>
21
#include <linux/sched/task_stack.h>
22 23 24
#include <linux/spi/flash.h>
#include <linux/mtd/spi-nor.h>

25 26
#include "core.h"

27
/* Define max times to check status register before we give up. */
28 29 30 31 32 33 34 35 36 37 38 39

/*
 * For everything but full-chip erase; probably could be much smaller, but kept
 * around for safety for now
 */
#define DEFAULT_READY_WAIT_JIFFIES		(40UL * HZ)

/*
 * For full-chip erase, calibrated to a 2MB flash (M25P16); should be scaled up
 * for larger flash
 */
#define CHIP_ERASE_2MB_READY_WAIT_JIFFIES	(40UL * HZ)
40

41
#define SPI_NOR_MAX_ADDR_WIDTH	4
42

43
#define JEDEC_MFR(info)        ((info)->id[0])
44

45
/**
46 47
 * spi_nor_spimem_bounce() - check if a bounce buffer is needed for the data
 *                           transfer
48 49 50
 * @nor:        pointer to 'struct spi_nor'
 * @op:         pointer to 'struct spi_mem_op' template for transfer
 *
51 52 53
 * If we have to use the bounce buffer, the data field in @op will be updated.
 *
 * Return: true if the bounce buffer is needed, false if not
54
 */
55
static bool spi_nor_spimem_bounce(struct spi_nor *nor, struct spi_mem_op *op)
56
{
57 58 59
	/* op->data.buf.in occupies the same memory as op->data.buf.out */
	if (object_is_on_stack(op->data.buf.in) ||
	    !virt_addr_valid(op->data.buf.in)) {
60 61
		if (op->data.nbytes > nor->bouncebuf_size)
			op->data.nbytes = nor->bouncebuf_size;
62 63
		op->data.buf.in = nor->bouncebuf;
		return true;
64 65
	}

66 67
	return false;
}
68

69 70 71 72 73 74 75 76 77 78
/**
 * spi_nor_spimem_exec_op() - execute a memory operation
 * @nor:        pointer to 'struct spi_nor'
 * @op:         pointer to 'struct spi_mem_op' template for transfer
 *
 * Return: 0 on success, -error otherwise.
 */
static int spi_nor_spimem_exec_op(struct spi_nor *nor, struct spi_mem_op *op)
{
	int error;
79

80 81 82
	error = spi_mem_adjust_op_size(nor->spimem, op);
	if (error)
		return error;
83

84
	return spi_mem_exec_op(nor->spimem, op);
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
}

/**
 * spi_nor_spimem_read_data() - read data from flash's memory region via
 *                              spi-mem
 * @nor:        pointer to 'struct spi_nor'
 * @from:       offset to read from
 * @len:        number of bytes to read
 * @buf:        pointer to dst buffer
 *
 * Return: number of bytes read successfully, -errno otherwise
 */
static ssize_t spi_nor_spimem_read_data(struct spi_nor *nor, loff_t from,
					size_t len, u8 *buf)
{
	struct spi_mem_op op =
		SPI_MEM_OP(SPI_MEM_OP_CMD(nor->read_opcode, 1),
			   SPI_MEM_OP_ADDR(nor->addr_width, from, 1),
			   SPI_MEM_OP_DUMMY(nor->read_dummy, 1),
			   SPI_MEM_OP_DATA_IN(len, buf, 1));
105
	bool usebouncebuf;
106
	ssize_t nbytes;
107
	int error;
108 109 110 111 112 113 114 115 116 117

	/* get transfer protocols. */
	op.cmd.buswidth = spi_nor_get_protocol_inst_nbits(nor->read_proto);
	op.addr.buswidth = spi_nor_get_protocol_addr_nbits(nor->read_proto);
	op.dummy.buswidth = op.addr.buswidth;
	op.data.buswidth = spi_nor_get_protocol_data_nbits(nor->read_proto);

	/* convert the dummy cycles to the number of bytes */
	op.dummy.nbytes = (nor->read_dummy * op.dummy.buswidth) / 8;

118 119
	usebouncebuf = spi_nor_spimem_bounce(nor, &op);

120 121 122 123 124 125 126 127 128
	if (nor->dirmap.rdesc) {
		nbytes = spi_mem_dirmap_read(nor->dirmap.rdesc, op.addr.val,
					     op.data.nbytes, op.data.buf.in);
	} else {
		error = spi_nor_spimem_exec_op(nor, &op);
		if (error)
			return error;
		nbytes = op.data.nbytes;
	}
129

130 131
	if (usebouncebuf && nbytes > 0)
		memcpy(buf, op.data.buf.in, nbytes);
132

133
	return nbytes;
134 135 136 137 138 139 140 141 142 143 144
}

/**
 * spi_nor_read_data() - read data from flash memory
 * @nor:        pointer to 'struct spi_nor'
 * @from:       offset to read from
 * @len:        number of bytes to read
 * @buf:        pointer to dst buffer
 *
 * Return: number of bytes read successfully, -errno otherwise
 */
145
ssize_t spi_nor_read_data(struct spi_nor *nor, loff_t from, size_t len, u8 *buf)
146 147 148 149
{
	if (nor->spimem)
		return spi_nor_spimem_read_data(nor, from, len, buf);

150
	return nor->controller_ops->read(nor, from, len, buf);
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
}

/**
 * spi_nor_spimem_write_data() - write data to flash memory via
 *                               spi-mem
 * @nor:        pointer to 'struct spi_nor'
 * @to:         offset to write to
 * @len:        number of bytes to write
 * @buf:        pointer to src buffer
 *
 * Return: number of bytes written successfully, -errno otherwise
 */
static ssize_t spi_nor_spimem_write_data(struct spi_nor *nor, loff_t to,
					 size_t len, const u8 *buf)
{
	struct spi_mem_op op =
		SPI_MEM_OP(SPI_MEM_OP_CMD(nor->program_opcode, 1),
			   SPI_MEM_OP_ADDR(nor->addr_width, to, 1),
			   SPI_MEM_OP_NO_DUMMY,
			   SPI_MEM_OP_DATA_OUT(len, buf, 1));
171
	ssize_t nbytes;
172
	int error;
173 174 175 176 177 178 179 180

	op.cmd.buswidth = spi_nor_get_protocol_inst_nbits(nor->write_proto);
	op.addr.buswidth = spi_nor_get_protocol_addr_nbits(nor->write_proto);
	op.data.buswidth = spi_nor_get_protocol_data_nbits(nor->write_proto);

	if (nor->program_opcode == SPINOR_OP_AAI_WP && nor->sst_write_second)
		op.addr.nbytes = 0;

181 182 183
	if (spi_nor_spimem_bounce(nor, &op))
		memcpy(nor->bouncebuf, buf, op.data.nbytes);

184 185 186 187 188 189 190 191 192
	if (nor->dirmap.wdesc) {
		nbytes = spi_mem_dirmap_write(nor->dirmap.wdesc, op.addr.val,
					      op.data.nbytes, op.data.buf.out);
	} else {
		error = spi_nor_spimem_exec_op(nor, &op);
		if (error)
			return error;
		nbytes = op.data.nbytes;
	}
193

194
	return nbytes;
195 196 197 198 199 200 201 202 203 204 205
}

/**
 * spi_nor_write_data() - write data to flash memory
 * @nor:        pointer to 'struct spi_nor'
 * @to:         offset to write to
 * @len:        number of bytes to write
 * @buf:        pointer to src buffer
 *
 * Return: number of bytes written successfully, -errno otherwise
 */
206 207
ssize_t spi_nor_write_data(struct spi_nor *nor, loff_t to, size_t len,
			   const u8 *buf)
208 209 210 211
{
	if (nor->spimem)
		return spi_nor_spimem_write_data(nor, to, len, buf);

212
	return nor->controller_ops->write(nor, to, len, buf);
213 214
}

215 216 217 218 219
/**
 * spi_nor_write_enable() - Set write enable latch with Write Enable command.
 * @nor:	pointer to 'struct spi_nor'.
 *
 * Return: 0 on success, -errno otherwise.
220
 */
221
int spi_nor_write_enable(struct spi_nor *nor)
222
{
223 224
	int ret;

225 226 227 228 229 230 231
	if (nor->spimem) {
		struct spi_mem_op op =
			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WREN, 1),
				   SPI_MEM_OP_NO_ADDR,
				   SPI_MEM_OP_NO_DUMMY,
				   SPI_MEM_OP_NO_DATA);

232 233 234 235
		ret = spi_mem_exec_op(nor->spimem, &op);
	} else {
		ret = nor->controller_ops->write_reg(nor, SPINOR_OP_WREN,
						     NULL, 0);
236 237
	}

238 239 240 241
	if (ret)
		dev_dbg(nor->dev, "error %d on Write Enable\n", ret);

	return ret;
242 243
}

244 245 246 247 248
/**
 * spi_nor_write_disable() - Send Write Disable instruction to the chip.
 * @nor:	pointer to 'struct spi_nor'.
 *
 * Return: 0 on success, -errno otherwise.
249
 */
250
int spi_nor_write_disable(struct spi_nor *nor)
251
{
252 253
	int ret;

254 255 256 257 258 259 260
	if (nor->spimem) {
		struct spi_mem_op op =
			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRDI, 1),
				   SPI_MEM_OP_NO_ADDR,
				   SPI_MEM_OP_NO_DUMMY,
				   SPI_MEM_OP_NO_DATA);

261 262 263 264
		ret = spi_mem_exec_op(nor->spimem, &op);
	} else {
		ret = nor->controller_ops->write_reg(nor, SPINOR_OP_WRDI,
						     NULL, 0);
265 266
	}

267 268 269 270
	if (ret)
		dev_dbg(nor->dev, "error %d on Write Disable\n", ret);

	return ret;
271 272
}

273 274 275 276 277 278 279
/**
 * spi_nor_read_sr() - Read the Status Register.
 * @nor:	pointer to 'struct spi_nor'.
 * @sr:		pointer to a DMA-able buffer where the value of the
 *              Status Register will be written.
 *
 * Return: 0 on success, -errno otherwise.
280
 */
281
static int spi_nor_read_sr(struct spi_nor *nor, u8 *sr)
282 283 284
{
	int ret;

285 286 287 288 289
	if (nor->spimem) {
		struct spi_mem_op op =
			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDSR, 1),
				   SPI_MEM_OP_NO_ADDR,
				   SPI_MEM_OP_NO_DUMMY,
290
				   SPI_MEM_OP_DATA_IN(1, sr, 1));
291 292 293

		ret = spi_mem_exec_op(nor->spimem, &op);
	} else {
294
		ret = nor->controller_ops->read_reg(nor, SPINOR_OP_RDSR,
295
						    sr, 1);
296 297
	}

298
	if (ret)
299
		dev_dbg(nor->dev, "error %d reading SR\n", ret);
300

301
	return ret;
302 303
}

304 305 306 307 308 309 310
/**
 * spi_nor_read_fsr() - Read the Flag Status Register.
 * @nor:	pointer to 'struct spi_nor'
 * @fsr:	pointer to a DMA-able buffer where the value of the
 *              Flag Status Register will be written.
 *
 * Return: 0 on success, -errno otherwise.
311
 */
312
static int spi_nor_read_fsr(struct spi_nor *nor, u8 *fsr)
313 314 315
{
	int ret;

316 317 318 319 320
	if (nor->spimem) {
		struct spi_mem_op op =
			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDFSR, 1),
				   SPI_MEM_OP_NO_ADDR,
				   SPI_MEM_OP_NO_DUMMY,
321
				   SPI_MEM_OP_DATA_IN(1, fsr, 1));
322 323 324

		ret = spi_mem_exec_op(nor->spimem, &op);
	} else {
325
		ret = nor->controller_ops->read_reg(nor, SPINOR_OP_RDFSR,
326
						    fsr, 1);
327 328
	}

329
	if (ret)
330
		dev_dbg(nor->dev, "error %d reading FSR\n", ret);
331

332
	return ret;
333 334
}

335 336 337 338 339 340 341 342
/**
 * spi_nor_read_cr() - Read the Configuration Register using the
 * SPINOR_OP_RDCR (35h) command.
 * @nor:	pointer to 'struct spi_nor'
 * @cr:		pointer to a DMA-able buffer where the value of the
 *              Configuration Register will be written.
 *
 * Return: 0 on success, -errno otherwise.
343
 */
344
static int spi_nor_read_cr(struct spi_nor *nor, u8 *cr)
345 346 347
{
	int ret;

348 349 350 351 352
	if (nor->spimem) {
		struct spi_mem_op op =
			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDCR, 1),
				   SPI_MEM_OP_NO_ADDR,
				   SPI_MEM_OP_NO_DUMMY,
353
				   SPI_MEM_OP_DATA_IN(1, cr, 1));
354 355 356

		ret = spi_mem_exec_op(nor->spimem, &op);
	} else {
357
		ret = nor->controller_ops->read_reg(nor, SPINOR_OP_RDCR, cr, 1);
358 359
	}

360
	if (ret)
361
		dev_dbg(nor->dev, "error %d reading CR\n", ret);
362

363
	return ret;
364 365
}

366
/**
367
 * spi_nor_set_4byte_addr_mode() - Enter/Exit 4-byte address mode.
368 369 370 371 372 373
 * @nor:	pointer to 'struct spi_nor'.
 * @enable:	true to enter the 4-byte address mode, false to exit the 4-byte
 *		address mode.
 *
 * Return: 0 on success, -errno otherwise.
 */
374
int spi_nor_set_4byte_addr_mode(struct spi_nor *nor, bool enable)
375
{
376 377
	int ret;

378 379 380 381 382 383 384 385 386 387
	if (nor->spimem) {
		struct spi_mem_op op =
			SPI_MEM_OP(SPI_MEM_OP_CMD(enable ?
						  SPINOR_OP_EN4B :
						  SPINOR_OP_EX4B,
						  1),
				  SPI_MEM_OP_NO_ADDR,
				  SPI_MEM_OP_NO_DUMMY,
				  SPI_MEM_OP_NO_DATA);

388 389 390 391 392 393
		ret = spi_mem_exec_op(nor->spimem, &op);
	} else {
		ret = nor->controller_ops->write_reg(nor,
						     enable ? SPINOR_OP_EN4B :
							      SPINOR_OP_EX4B,
						     NULL, 0);
394 395
	}

396 397 398 399
	if (ret)
		dev_dbg(nor->dev, "error %d setting 4-byte mode\n", ret);

	return ret;
400 401
}

402
/**
403 404
 * spansion_set_4byte_addr_mode() - Set 4-byte address mode for Spansion
 * flashes.
405 406 407 408 409 410
 * @nor:	pointer to 'struct spi_nor'.
 * @enable:	true to enter the 4-byte address mode, false to exit the 4-byte
 *		address mode.
 *
 * Return: 0 on success, -errno otherwise.
 */
411
static int spansion_set_4byte_addr_mode(struct spi_nor *nor, bool enable)
412
{
413 414
	int ret;

415 416 417 418 419 420 421 422 423
	nor->bouncebuf[0] = enable << 7;

	if (nor->spimem) {
		struct spi_mem_op op =
			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_BRWR, 1),
				   SPI_MEM_OP_NO_ADDR,
				   SPI_MEM_OP_NO_DUMMY,
				   SPI_MEM_OP_DATA_OUT(1, nor->bouncebuf, 1));

424 425 426 427
		ret = spi_mem_exec_op(nor->spimem, &op);
	} else {
		ret = nor->controller_ops->write_reg(nor, SPINOR_OP_BRWR,
						     nor->bouncebuf, 1);
428 429
	}

430 431 432 433
	if (ret)
		dev_dbg(nor->dev, "error %d setting 4-byte mode\n", ret);

	return ret;
434 435
}

436 437 438 439 440 441 442
/**
 * spi_nor_write_ear() - Write Extended Address Register.
 * @nor:	pointer to 'struct spi_nor'.
 * @ear:	value to write to the Extended Address Register.
 *
 * Return: 0 on success, -errno otherwise.
 */
443
int spi_nor_write_ear(struct spi_nor *nor, u8 ear)
444
{
445 446
	int ret;

447 448 449 450 451 452 453 454 455
	nor->bouncebuf[0] = ear;

	if (nor->spimem) {
		struct spi_mem_op op =
			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WREAR, 1),
				   SPI_MEM_OP_NO_ADDR,
				   SPI_MEM_OP_NO_DUMMY,
				   SPI_MEM_OP_DATA_OUT(1, nor->bouncebuf, 1));

456 457 458 459
		ret = spi_mem_exec_op(nor->spimem, &op);
	} else {
		ret = nor->controller_ops->write_reg(nor, SPINOR_OP_WREAR,
						     nor->bouncebuf, 1);
460 461
	}

462 463 464 465
	if (ret)
		dev_dbg(nor->dev, "error %d writing EAR\n", ret);

	return ret;
466 467
}

468
/**
469
 * winbond_set_4byte_addr_mode() - Set 4-byte address mode for Winbond flashes.
470 471 472 473 474 475
 * @nor:	pointer to 'struct spi_nor'.
 * @enable:	true to enter the 4-byte address mode, false to exit the 4-byte
 *		address mode.
 *
 * Return: 0 on success, -errno otherwise.
 */
476
static int winbond_set_4byte_addr_mode(struct spi_nor *nor, bool enable)
477
{
478
	int ret;
479

480
	ret = spi_nor_set_4byte_addr_mode(nor, enable);
481 482
	if (ret || enable)
		return ret;
483

484 485 486 487 488
	/*
	 * On Winbond W25Q256FV, leaving 4byte mode causes the Extended Address
	 * Register to be set to 1, so all 3-byte-address reads come from the
	 * second 16M. We must clear the register to enable normal behavior.
	 */
489 490 491 492
	ret = spi_nor_write_enable(nor);
	if (ret)
		return ret;

493
	ret = spi_nor_write_ear(nor, 0);
494 495
	if (ret)
		return ret;
496

497
	return spi_nor_write_disable(nor);
498
}
499

500 501 502 503 504 505 506 507
/**
 * spi_nor_xread_sr() - Read the Status Register on S3AN flashes.
 * @nor:	pointer to 'struct spi_nor'.
 * @sr:		pointer to a DMA-able buffer where the value of the
 *              Status Register will be written.
 *
 * Return: 0 on success, -errno otherwise.
 */
508
int spi_nor_xread_sr(struct spi_nor *nor, u8 *sr)
509
{
510 511
	int ret;

512 513 514 515 516 517 518
	if (nor->spimem) {
		struct spi_mem_op op =
			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_XRDSR, 1),
				   SPI_MEM_OP_NO_ADDR,
				   SPI_MEM_OP_NO_DUMMY,
				   SPI_MEM_OP_DATA_IN(1, sr, 1));

519 520 521 522
		ret = spi_mem_exec_op(nor->spimem, &op);
	} else {
		ret = nor->controller_ops->read_reg(nor, SPINOR_OP_XRDSR,
						    sr, 1);
523 524
	}

525 526 527 528
	if (ret)
		dev_dbg(nor->dev, "error %d reading XRDSR\n", ret);

	return ret;
529 530
}

531
/**
532 533
 * spi_nor_xsr_ready() - Query the Status Register of the S3AN flash to see if
 * the flash is ready for new commands.
534 535 536 537
 * @nor:	pointer to 'struct spi_nor'.
 *
 * Return: 0 on success, -errno otherwise.
 */
538
static int spi_nor_xsr_ready(struct spi_nor *nor)
539 540 541
{
	int ret;

542
	ret = spi_nor_xread_sr(nor, nor->bouncebuf);
543
	if (ret)
544 545
		return ret;

546
	return !!(nor->bouncebuf[0] & XSR_RDY);
547 548
}

549 550 551 552
/**
 * spi_nor_clear_sr() - Clear the Status Register.
 * @nor:	pointer to 'struct spi_nor'.
 */
553
static void spi_nor_clear_sr(struct spi_nor *nor)
554
{
555 556
	int ret;

557 558 559 560 561 562 563
	if (nor->spimem) {
		struct spi_mem_op op =
			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_CLSR, 1),
				   SPI_MEM_OP_NO_ADDR,
				   SPI_MEM_OP_NO_DUMMY,
				   SPI_MEM_OP_NO_DATA);

564 565 566 567
		ret = spi_mem_exec_op(nor->spimem, &op);
	} else {
		ret = nor->controller_ops->write_reg(nor, SPINOR_OP_CLSR,
						     NULL, 0);
568 569
	}

570 571
	if (ret)
		dev_dbg(nor->dev, "error %d clearing SR\n", ret);
572 573
}

574 575 576 577 578 579 580
/**
 * spi_nor_sr_ready() - Query the Status Register to see if the flash is ready
 * for new commands.
 * @nor:	pointer to 'struct spi_nor'.
 *
 * Return: 0 on success, -errno otherwise.
 */
581
static int spi_nor_sr_ready(struct spi_nor *nor)
582
{
583
	int ret = spi_nor_read_sr(nor, nor->bouncebuf);
584

585 586 587 588 589 590
	if (ret)
		return ret;

	if (nor->flags & SNOR_F_USE_CLSR &&
	    nor->bouncebuf[0] & (SR_E_ERR | SR_P_ERR)) {
		if (nor->bouncebuf[0] & SR_E_ERR)
591 592 593 594
			dev_err(nor->dev, "Erase Error occurred\n");
		else
			dev_err(nor->dev, "Programming Error occurred\n");

595
		spi_nor_clear_sr(nor);
596 597 598
		return -EIO;
	}

599
	return !(nor->bouncebuf[0] & SR_WIP);
600
}
601

602 603 604 605
/**
 * spi_nor_clear_fsr() - Clear the Flag Status Register.
 * @nor:	pointer to 'struct spi_nor'.
 */
606
static void spi_nor_clear_fsr(struct spi_nor *nor)
607
{
608 609
	int ret;

610 611 612 613 614 615 616
	if (nor->spimem) {
		struct spi_mem_op op =
			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_CLFSR, 1),
				   SPI_MEM_OP_NO_ADDR,
				   SPI_MEM_OP_NO_DUMMY,
				   SPI_MEM_OP_NO_DATA);

617 618 619 620
		ret = spi_mem_exec_op(nor->spimem, &op);
	} else {
		ret = nor->controller_ops->write_reg(nor, SPINOR_OP_CLFSR,
						     NULL, 0);
621 622
	}

623 624
	if (ret)
		dev_dbg(nor->dev, "error %d clearing FSR\n", ret);
625 626
}

627 628 629 630 631 632 633
/**
 * spi_nor_fsr_ready() - Query the Flag Status Register to see if the flash is
 * ready for new commands.
 * @nor:	pointer to 'struct spi_nor'.
 *
 * Return: 0 on success, -errno otherwise.
 */
634
static int spi_nor_fsr_ready(struct spi_nor *nor)
635
{
636 637 638 639
	int ret = spi_nor_read_fsr(nor, nor->bouncebuf);

	if (ret)
		return ret;
640

641 642
	if (nor->bouncebuf[0] & (FSR_E_ERR | FSR_P_ERR)) {
		if (nor->bouncebuf[0] & FSR_E_ERR)
643 644 645 646
			dev_err(nor->dev, "Erase operation failed.\n");
		else
			dev_err(nor->dev, "Program operation failed.\n");

647
		if (nor->bouncebuf[0] & FSR_PT_ERR)
648 649 650
			dev_err(nor->dev,
			"Attempted to modify a protected sector.\n");

651
		spi_nor_clear_fsr(nor);
652 653 654
		return -EIO;
	}

655
	return nor->bouncebuf[0] & FSR_READY;
656
}
657

658 659 660 661 662 663
/**
 * spi_nor_ready() - Query the flash to see if it is ready for new commands.
 * @nor:	pointer to 'struct spi_nor'.
 *
 * Return: 0 on success, -errno otherwise.
 */
664 665 666
static int spi_nor_ready(struct spi_nor *nor)
{
	int sr, fsr;
667 668

	if (nor->flags & SNOR_F_READY_XSR_RDY)
669
		sr = spi_nor_xsr_ready(nor);
670 671
	else
		sr = spi_nor_sr_ready(nor);
672 673 674 675 676 677
	if (sr < 0)
		return sr;
	fsr = nor->flags & SNOR_F_USE_FSR ? spi_nor_fsr_ready(nor) : 1;
	if (fsr < 0)
		return fsr;
	return sr && fsr;
678 679
}

680 681 682 683 684 685 686
/**
 * spi_nor_wait_till_ready_with_timeout() - Service routine to read the
 * Status Register until ready, or timeout occurs.
 * @nor:		pointer to "struct spi_nor".
 * @timeout_jiffies:	jiffies to wait until timeout.
 *
 * Return: 0 on success, -errno otherwise.
687
 */
688 689
static int spi_nor_wait_till_ready_with_timeout(struct spi_nor *nor,
						unsigned long timeout_jiffies)
690 691
{
	unsigned long deadline;
692
	int timeout = 0, ret;
693

694
	deadline = jiffies + timeout_jiffies;
695

696 697 698
	while (!timeout) {
		if (time_after_eq(jiffies, deadline))
			timeout = 1;
699

700 701 702 703 704
		ret = spi_nor_ready(nor);
		if (ret < 0)
			return ret;
		if (ret)
			return 0;
705 706 707 708

		cond_resched();
	}

709
	dev_dbg(nor->dev, "flash operation timed out\n");
710 711 712 713

	return -ETIMEDOUT;
}

714 715 716 717 718 719 720
/**
 * spi_nor_wait_till_ready() - Wait for a predefined amount of time for the
 * flash to be ready, or timeout occurs.
 * @nor:	pointer to "struct spi_nor".
 *
 * Return: 0 on success, -errno otherwise.
 */
721
int spi_nor_wait_till_ready(struct spi_nor *nor)
722 723 724 725 726
{
	return spi_nor_wait_till_ready_with_timeout(nor,
						    DEFAULT_READY_WAIT_JIFFIES);
}

727 728 729 730 731 732 733
/**
 * spi_nor_write_sr() - Write the Status Register.
 * @nor:	pointer to 'struct spi_nor'.
 * @sr:		pointer to DMA-able buffer to write to the Status Register.
 * @len:	number of bytes to write to the Status Register.
 *
 * Return: 0 on success, -errno otherwise.
734
 */
735
static int spi_nor_write_sr(struct spi_nor *nor, const u8 *sr, size_t len)
736 737 738 739 740 741 742 743 744 745 746 747
{
	int ret;

	ret = spi_nor_write_enable(nor);
	if (ret)
		return ret;

	if (nor->spimem) {
		struct spi_mem_op op =
			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRSR, 1),
				   SPI_MEM_OP_NO_ADDR,
				   SPI_MEM_OP_NO_DUMMY,
748
				   SPI_MEM_OP_DATA_OUT(len, sr, 1));
749 750 751 752

		ret = spi_mem_exec_op(nor->spimem, &op);
	} else {
		ret = nor->controller_ops->write_reg(nor, SPINOR_OP_WRSR,
753
						     sr, len);
754 755 756 757 758 759 760 761 762 763
	}

	if (ret) {
		dev_dbg(nor->dev, "error %d writing SR\n", ret);
		return ret;
	}

	return spi_nor_wait_till_ready(nor);
}

764 765 766 767 768 769 770 771 772
/**
 * spi_nor_write_sr1_and_check() - Write one byte to the Status Register 1 and
 * ensure that the byte written match the received value.
 * @nor:	pointer to a 'struct spi_nor'.
 * @sr1:	byte value to be written to the Status Register.
 *
 * Return: 0 on success, -errno otherwise.
 */
static int spi_nor_write_sr1_and_check(struct spi_nor *nor, u8 sr1)
773 774 775
{
	int ret;

776
	nor->bouncebuf[0] = sr1;
777 778

	ret = spi_nor_write_sr(nor, nor->bouncebuf, 1);
779 780 781
	if (ret)
		return ret;

782 783
	ret = spi_nor_read_sr(nor, nor->bouncebuf);
	if (ret)
784 785
		return ret;

786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
	if (nor->bouncebuf[0] != sr1) {
		dev_dbg(nor->dev, "SR1: read back test failed\n");
		return -EIO;
	}

	return 0;
}

/**
 * spi_nor_write_16bit_sr_and_check() - Write the Status Register 1 and the
 * Status Register 2 in one shot. Ensure that the byte written in the Status
 * Register 1 match the received value, and that the 16-bit Write did not
 * affect what was already in the Status Register 2.
 * @nor:	pointer to a 'struct spi_nor'.
 * @sr1:	byte value to be written to the Status Register 1.
 *
 * Return: 0 on success, -errno otherwise.
 */
static int spi_nor_write_16bit_sr_and_check(struct spi_nor *nor, u8 sr1)
{
	int ret;
	u8 *sr_cr = nor->bouncebuf;
	u8 cr_written;

	/* Make sure we don't overwrite the contents of Status Register 2. */
	if (!(nor->flags & SNOR_F_NO_READ_CR)) {
		ret = spi_nor_read_cr(nor, &sr_cr[1]);
		if (ret)
			return ret;
	} else if (nor->params.quad_enable) {
		/*
		 * If the Status Register 2 Read command (35h) is not
		 * supported, we should at least be sure we don't
		 * change the value of the SR2 Quad Enable bit.
		 *
		 * We can safely assume that when the Quad Enable method is
		 * set, the value of the QE bit is one, as a consequence of the
		 * nor->params.quad_enable() call.
		 *
		 * We can safely assume that the Quad Enable bit is present in
		 * the Status Register 2 at BIT(1). According to the JESD216
		 * revB standard, BFPT DWORDS[15], bits 22:20, the 16-bit
		 * Write Status (01h) command is available just for the cases
		 * in which the QE bit is described in SR2 at BIT(1).
		 */
831
		sr_cr[1] = SR2_QUAD_EN_BIT1;
832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852
	} else {
		sr_cr[1] = 0;
	}

	sr_cr[0] = sr1;

	ret = spi_nor_write_sr(nor, sr_cr, 2);
	if (ret)
		return ret;

	if (nor->flags & SNOR_F_NO_READ_CR)
		return 0;

	cr_written = sr_cr[1];

	ret = spi_nor_read_cr(nor, &sr_cr[1]);
	if (ret)
		return ret;

	if (cr_written != sr_cr[1]) {
		dev_dbg(nor->dev, "CR: read back test failed\n");
853 854 855 856
		return -EIO;
	}

	return 0;
857 858
}

859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911
/**
 * spi_nor_write_16bit_cr_and_check() - Write the Status Register 1 and the
 * Configuration Register in one shot. Ensure that the byte written in the
 * Configuration Register match the received value, and that the 16-bit Write
 * did not affect what was already in the Status Register 1.
 * @nor:	pointer to a 'struct spi_nor'.
 * @cr:		byte value to be written to the Configuration Register.
 *
 * Return: 0 on success, -errno otherwise.
 */
static int spi_nor_write_16bit_cr_and_check(struct spi_nor *nor, u8 cr)
{
	int ret;
	u8 *sr_cr = nor->bouncebuf;
	u8 sr_written;

	/* Keep the current value of the Status Register 1. */
	ret = spi_nor_read_sr(nor, sr_cr);
	if (ret)
		return ret;

	sr_cr[1] = cr;

	ret = spi_nor_write_sr(nor, sr_cr, 2);
	if (ret)
		return ret;

	sr_written = sr_cr[0];

	ret = spi_nor_read_sr(nor, sr_cr);
	if (ret)
		return ret;

	if (sr_written != sr_cr[0]) {
		dev_dbg(nor->dev, "SR: Read back test failed\n");
		return -EIO;
	}

	if (nor->flags & SNOR_F_NO_READ_CR)
		return 0;

	ret = spi_nor_read_cr(nor, &sr_cr[1]);
	if (ret)
		return ret;

	if (cr != sr_cr[1]) {
		dev_dbg(nor->dev, "CR: read back test failed\n");
		return -EIO;
	}

	return 0;
}

912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
/**
 * spi_nor_write_sr_and_check() - Write the Status Register 1 and ensure that
 * the byte written match the received value without affecting other bits in the
 * Status Register 1 and 2.
 * @nor:	pointer to a 'struct spi_nor'.
 * @sr1:	byte value to be written to the Status Register.
 *
 * Return: 0 on success, -errno otherwise.
 */
static int spi_nor_write_sr_and_check(struct spi_nor *nor, u8 sr1)
{
	if (nor->flags & SNOR_F_HAS_16BIT_SR)
		return spi_nor_write_16bit_sr_and_check(nor, sr1);

	return spi_nor_write_sr1_and_check(nor, sr1);
}

929 930 931 932 933 934 935 936
/**
 * spi_nor_write_sr2() - Write the Status Register 2 using the
 * SPINOR_OP_WRSR2 (3eh) command.
 * @nor:	pointer to 'struct spi_nor'.
 * @sr2:	pointer to DMA-able buffer to write to the Status Register 2.
 *
 * Return: 0 on success, -errno otherwise.
 */
937
static int spi_nor_write_sr2(struct spi_nor *nor, const u8 *sr2)
938
{
939 940
	int ret;

941 942 943 944
	ret = spi_nor_write_enable(nor);
	if (ret)
		return ret;

945 946 947 948 949 950 951
	if (nor->spimem) {
		struct spi_mem_op op =
			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRSR2, 1),
				   SPI_MEM_OP_NO_ADDR,
				   SPI_MEM_OP_NO_DUMMY,
				   SPI_MEM_OP_DATA_OUT(1, sr2, 1));

952 953 954 955
		ret = spi_mem_exec_op(nor->spimem, &op);
	} else {
		ret = nor->controller_ops->write_reg(nor, SPINOR_OP_WRSR2,
						     sr2, 1);
956 957
	}

958
	if (ret) {
959
		dev_dbg(nor->dev, "error %d writing SR2\n", ret);
960 961
		return ret;
	}
962

963
	return spi_nor_wait_till_ready(nor);
964 965
}

966 967 968 969 970 971 972 973 974
/**
 * spi_nor_read_sr2() - Read the Status Register 2 using the
 * SPINOR_OP_RDSR2 (3fh) command.
 * @nor:	pointer to 'struct spi_nor'.
 * @sr2:	pointer to DMA-able buffer where the value of the
 *		Status Register 2 will be written.
 *
 * Return: 0 on success, -errno otherwise.
 */
975 976
static int spi_nor_read_sr2(struct spi_nor *nor, u8 *sr2)
{
977 978
	int ret;

979 980 981 982 983 984 985
	if (nor->spimem) {
		struct spi_mem_op op =
			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDSR2, 1),
				   SPI_MEM_OP_NO_ADDR,
				   SPI_MEM_OP_NO_DUMMY,
				   SPI_MEM_OP_DATA_IN(1, sr2, 1));

986 987 988 989
		ret = spi_mem_exec_op(nor->spimem, &op);
	} else {
		ret = nor->controller_ops->read_reg(nor, SPINOR_OP_RDSR2,
						    sr2, 1);
990 991
	}

992 993 994 995
	if (ret)
		dev_dbg(nor->dev, "error %d reading SR2\n", ret);

	return ret;
996 997
}

998 999 1000
/**
 * spi_nor_erase_chip() - Erase the entire flash memory.
 * @nor:	pointer to 'struct spi_nor'.
1001
 *
1002
 * Return: 0 on success, -errno otherwise.
1003
 */
1004
static int spi_nor_erase_chip(struct spi_nor *nor)
1005
{
1006 1007
	int ret;

1008
	dev_dbg(nor->dev, " %lldKiB\n", (long long)(nor->mtd.size >> 10));
1009

1010 1011 1012 1013 1014 1015 1016
	if (nor->spimem) {
		struct spi_mem_op op =
			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_CHIP_ERASE, 1),
				   SPI_MEM_OP_NO_ADDR,
				   SPI_MEM_OP_NO_DUMMY,
				   SPI_MEM_OP_NO_DATA);

1017 1018 1019 1020
		ret = spi_mem_exec_op(nor->spimem, &op);
	} else {
		ret = nor->controller_ops->write_reg(nor, SPINOR_OP_CHIP_ERASE,
						     NULL, 0);
1021 1022
	}

1023 1024 1025 1026
	if (ret)
		dev_dbg(nor->dev, "error %d erasing chip\n", ret);

	return ret;
1027 1028
}

1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
static u8 spi_nor_convert_opcode(u8 opcode, const u8 table[][2], size_t size)
{
	size_t i;

	for (i = 0; i < size; i++)
		if (table[i][0] == opcode)
			return table[i][1];

	/* No conversion found, keep input op code. */
	return opcode;
}

1041
u8 spi_nor_convert_3to4_read(u8 opcode)
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
{
	static const u8 spi_nor_3to4_read[][2] = {
		{ SPINOR_OP_READ,	SPINOR_OP_READ_4B },
		{ SPINOR_OP_READ_FAST,	SPINOR_OP_READ_FAST_4B },
		{ SPINOR_OP_READ_1_1_2,	SPINOR_OP_READ_1_1_2_4B },
		{ SPINOR_OP_READ_1_2_2,	SPINOR_OP_READ_1_2_2_4B },
		{ SPINOR_OP_READ_1_1_4,	SPINOR_OP_READ_1_1_4_4B },
		{ SPINOR_OP_READ_1_4_4,	SPINOR_OP_READ_1_4_4_4B },
		{ SPINOR_OP_READ_1_1_8,	SPINOR_OP_READ_1_1_8_4B },
		{ SPINOR_OP_READ_1_8_8,	SPINOR_OP_READ_1_8_8_4B },

		{ SPINOR_OP_READ_1_1_1_DTR,	SPINOR_OP_READ_1_1_1_DTR_4B },
		{ SPINOR_OP_READ_1_2_2_DTR,	SPINOR_OP_READ_1_2_2_DTR_4B },
		{ SPINOR_OP_READ_1_4_4_DTR,	SPINOR_OP_READ_1_4_4_DTR_4B },
	};

	return spi_nor_convert_opcode(opcode, spi_nor_3to4_read,
				      ARRAY_SIZE(spi_nor_3to4_read));
}

static u8 spi_nor_convert_3to4_program(u8 opcode)
{
	static const u8 spi_nor_3to4_program[][2] = {
		{ SPINOR_OP_PP,		SPINOR_OP_PP_4B },
		{ SPINOR_OP_PP_1_1_4,	SPINOR_OP_PP_1_1_4_4B },
		{ SPINOR_OP_PP_1_4_4,	SPINOR_OP_PP_1_4_4_4B },
		{ SPINOR_OP_PP_1_1_8,	SPINOR_OP_PP_1_1_8_4B },
		{ SPINOR_OP_PP_1_8_8,	SPINOR_OP_PP_1_8_8_4B },
	};

	return spi_nor_convert_opcode(opcode, spi_nor_3to4_program,
				      ARRAY_SIZE(spi_nor_3to4_program));
}

static u8 spi_nor_convert_3to4_erase(u8 opcode)
{
	static const u8 spi_nor_3to4_erase[][2] = {
		{ SPINOR_OP_BE_4K,	SPINOR_OP_BE_4K_4B },
		{ SPINOR_OP_BE_32K,	SPINOR_OP_BE_32K_4B },
		{ SPINOR_OP_SE,		SPINOR_OP_SE_4B },
	};

	return spi_nor_convert_opcode(opcode, spi_nor_3to4_erase,
				      ARRAY_SIZE(spi_nor_3to4_erase));
}

static void spi_nor_set_4byte_opcodes(struct spi_nor *nor)
{
	nor->read_opcode = spi_nor_convert_3to4_read(nor->read_opcode);
	nor->program_opcode = spi_nor_convert_3to4_program(nor->program_opcode);
	nor->erase_opcode = spi_nor_convert_3to4_erase(nor->erase_opcode);

	if (!spi_nor_has_uniform_erase(nor)) {
		struct spi_nor_erase_map *map = &nor->params.erase_map;
		struct spi_nor_erase_type *erase;
		int i;

		for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
			erase = &map->erase_type[i];
			erase->opcode =
				spi_nor_convert_3to4_erase(erase->opcode);
		}
	}
}

1107
int spi_nor_lock_and_prep(struct spi_nor *nor)
1108 1109 1110 1111 1112
{
	int ret = 0;

	mutex_lock(&nor->lock);

1113
	if (nor->controller_ops &&  nor->controller_ops->prepare) {
1114
		ret = nor->controller_ops->prepare(nor);
1115 1116 1117 1118 1119 1120 1121 1122
		if (ret) {
			mutex_unlock(&nor->lock);
			return ret;
		}
	}
	return ret;
}

1123
void spi_nor_unlock_and_unprep(struct spi_nor *nor)
1124
{
1125
	if (nor->controller_ops && nor->controller_ops->unprepare)
1126
		nor->controller_ops->unprepare(nor);
1127 1128 1129
	mutex_unlock(&nor->lock);
}

1130 1131 1132 1133 1134 1135 1136 1137 1138
/*
 * This code converts an address to the Default Address Mode, that has non
 * power of two page sizes. We must support this mode because it is the default
 * mode supported by Xilinx tools, it can access the whole flash area and
 * changing over to the Power-of-two mode is irreversible and corrupts the
 * original data.
 * Addr can safely be unsigned int, the biggest S3AN device is smaller than
 * 4 MiB.
 */
1139
static u32 s3an_convert_addr(struct spi_nor *nor, u32 addr)
1140
{
1141
	u32 offset, page;
1142

1143 1144 1145
	offset = addr % nor->page_size;
	page = addr / nor->page_size;
	page <<= (nor->page_size > 512) ? 10 : 9;
1146

1147
	return page | offset;
1148 1149
}

1150 1151 1152 1153 1154 1155 1156 1157
static u32 spi_nor_convert_addr(struct spi_nor *nor, loff_t addr)
{
	if (!nor->params.convert_addr)
		return addr;

	return nor->params.convert_addr(nor, addr);
}

1158 1159 1160 1161 1162 1163 1164
/*
 * Initiate the erasure of a single sector
 */
static int spi_nor_erase_sector(struct spi_nor *nor, u32 addr)
{
	int i;

1165
	addr = spi_nor_convert_addr(nor, addr);
1166

1167 1168 1169 1170 1171 1172 1173 1174
	if (nor->spimem) {
		struct spi_mem_op op =
			SPI_MEM_OP(SPI_MEM_OP_CMD(nor->erase_opcode, 1),
				   SPI_MEM_OP_ADDR(nor->addr_width, addr, 1),
				   SPI_MEM_OP_NO_DUMMY,
				   SPI_MEM_OP_NO_DATA);

		return spi_mem_exec_op(nor->spimem, &op);
1175 1176
	} else if (nor->controller_ops->erase) {
		return nor->controller_ops->erase(nor, addr);
1177 1178
	}

1179 1180 1181 1182 1183
	/*
	 * Default implementation, if driver doesn't have a specialized HW
	 * control
	 */
	for (i = nor->addr_width - 1; i >= 0; i--) {
1184
		nor->bouncebuf[i] = addr & 0xff;
1185 1186 1187
		addr >>= 8;
	}

1188 1189
	return nor->controller_ops->write_reg(nor, nor->erase_opcode,
					      nor->bouncebuf, nor->addr_width);
1190 1191
}

1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
/**
 * spi_nor_div_by_erase_size() - calculate remainder and update new dividend
 * @erase:	pointer to a structure that describes a SPI NOR erase type
 * @dividend:	dividend value
 * @remainder:	pointer to u32 remainder (will be updated)
 *
 * Return: the result of the division
 */
static u64 spi_nor_div_by_erase_size(const struct spi_nor_erase_type *erase,
				     u64 dividend, u32 *remainder)
{
	/* JEDEC JESD216B Standard imposes erase sizes to be power of 2. */
	*remainder = (u32)dividend & erase->size_mask;
	return dividend >> erase->size_shift;
}

/**
 * spi_nor_find_best_erase_type() - find the best erase type for the given
 *				    offset in the serial flash memory and the
 *				    number of bytes to erase. The region in
 *				    which the address fits is expected to be
 *				    provided.
 * @map:	the erase map of the SPI NOR
 * @region:	pointer to a structure that describes a SPI NOR erase region
 * @addr:	offset in the serial flash memory
 * @len:	number of bytes to erase
 *
 * Return: a pointer to the best fitted erase type, NULL otherwise.
 */
static const struct spi_nor_erase_type *
spi_nor_find_best_erase_type(const struct spi_nor_erase_map *map,
			     const struct spi_nor_erase_region *region,
			     u64 addr, u32 len)
{
	const struct spi_nor_erase_type *erase;
	u32 rem;
	int i;
	u8 erase_mask = region->offset & SNOR_ERASE_TYPE_MASK;

	/*
1232
	 * Erase types are ordered by size, with the smallest erase type at
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
	 * index 0.
	 */
	for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
		/* Does the erase region support the tested erase type? */
		if (!(erase_mask & BIT(i)))
			continue;

		erase = &map->erase_type[i];

		/* Don't erase more than what the user has asked for. */
		if (erase->size > len)
			continue;

		/* Alignment is not mandatory for overlaid regions */
		if (region->offset & SNOR_OVERLAID_REGION)
			return erase;

		spi_nor_div_by_erase_size(erase, addr, &rem);
		if (rem)
			continue;
		else
			return erase;
	}

	return NULL;
}

/**
 * spi_nor_region_next() - get the next spi nor region
 * @region:	pointer to a structure that describes a SPI NOR erase region
 *
 * Return: the next spi nor region or NULL if last region.
 */
1266
struct spi_nor_erase_region *
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
spi_nor_region_next(struct spi_nor_erase_region *region)
{
	if (spi_nor_region_is_last(region))
		return NULL;
	region++;
	return region;
}

/**
 * spi_nor_find_erase_region() - find the region of the serial flash memory in
 *				 which the offset fits
 * @map:	the erase map of the SPI NOR
 * @addr:	offset in the serial flash memory
 *
 * Return: a pointer to the spi_nor_erase_region struct, ERR_PTR(-errno)
 *	   otherwise.
 */
static struct spi_nor_erase_region *
spi_nor_find_erase_region(const struct spi_nor_erase_map *map, u64 addr)
{
	struct spi_nor_erase_region *region = map->regions;
	u64 region_start = region->offset & ~SNOR_ERASE_FLAGS_MASK;
	u64 region_end = region_start + region->size;

	while (addr < region_start || addr >= region_end) {
		region = spi_nor_region_next(region);
		if (!region)
			return ERR_PTR(-EINVAL);

		region_start = region->offset & ~SNOR_ERASE_FLAGS_MASK;
		region_end = region_start + region->size;
	}

	return region;
}

/**
 * spi_nor_init_erase_cmd() - initialize an erase command
 * @region:	pointer to a structure that describes a SPI NOR erase region
 * @erase:	pointer to a structure that describes a SPI NOR erase type
 *
 * Return: the pointer to the allocated erase command, ERR_PTR(-errno)
 *	   otherwise.
 */
static struct spi_nor_erase_command *
spi_nor_init_erase_cmd(const struct spi_nor_erase_region *region,
		       const struct spi_nor_erase_type *erase)
{
	struct spi_nor_erase_command *cmd;

	cmd = kmalloc(sizeof(*cmd), GFP_KERNEL);
	if (!cmd)
		return ERR_PTR(-ENOMEM);

	INIT_LIST_HEAD(&cmd->list);
	cmd->opcode = erase->opcode;
	cmd->count = 1;

	if (region->offset & SNOR_OVERLAID_REGION)
		cmd->size = region->size;
	else
		cmd->size = erase->size;

	return cmd;
}

/**
 * spi_nor_destroy_erase_cmd_list() - destroy erase command list
 * @erase_list:	list of erase commands
 */
static void spi_nor_destroy_erase_cmd_list(struct list_head *erase_list)
{
	struct spi_nor_erase_command *cmd, *next;

	list_for_each_entry_safe(cmd, next, erase_list, list) {
		list_del(&cmd->list);
		kfree(cmd);
	}
}

/**
 * spi_nor_init_erase_cmd_list() - initialize erase command list
 * @nor:	pointer to a 'struct spi_nor'
 * @erase_list:	list of erase commands to be executed once we validate that the
 *		erase can be performed
 * @addr:	offset in the serial flash memory
 * @len:	number of bytes to erase
 *
 * Builds the list of best fitted erase commands and verifies if the erase can
 * be performed.
 *
 * Return: 0 on success, -errno otherwise.
 */
static int spi_nor_init_erase_cmd_list(struct spi_nor *nor,
				       struct list_head *erase_list,
				       u64 addr, u32 len)
{
1364
	const struct spi_nor_erase_map *map = &nor->params.erase_map;
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
	const struct spi_nor_erase_type *erase, *prev_erase = NULL;
	struct spi_nor_erase_region *region;
	struct spi_nor_erase_command *cmd = NULL;
	u64 region_end;
	int ret = -EINVAL;

	region = spi_nor_find_erase_region(map, addr);
	if (IS_ERR(region))
		return PTR_ERR(region);

	region_end = spi_nor_region_end(region);

	while (len) {
		erase = spi_nor_find_best_erase_type(map, region, addr, len);
		if (!erase)
			goto destroy_erase_cmd_list;

		if (prev_erase != erase ||
		    region->offset & SNOR_OVERLAID_REGION) {
			cmd = spi_nor_init_erase_cmd(region, erase);
			if (IS_ERR(cmd)) {
				ret = PTR_ERR(cmd);
				goto destroy_erase_cmd_list;
			}

			list_add_tail(&cmd->list, erase_list);
		} else {
			cmd->count++;
		}

		addr += cmd->size;
		len -= cmd->size;

		if (len && addr >= region_end) {
			region = spi_nor_region_next(region);
			if (!region)
				goto destroy_erase_cmd_list;
			region_end = spi_nor_region_end(region);
		}

		prev_erase = erase;
	}

	return 0;

destroy_erase_cmd_list:
	spi_nor_destroy_erase_cmd_list(erase_list);
	return ret;
}

/**
 * spi_nor_erase_multi_sectors() - perform a non-uniform erase
 * @nor:	pointer to a 'struct spi_nor'
 * @addr:	offset in the serial flash memory
 * @len:	number of bytes to erase
 *
 * Build a list of best fitted erase commands and execute it once we validate
 * that the erase can be performed.
 *
 * Return: 0 on success, -errno otherwise.
 */
static int spi_nor_erase_multi_sectors(struct spi_nor *nor, u64 addr, u32 len)
{
	LIST_HEAD(erase_list);
	struct spi_nor_erase_command *cmd, *next;
	int ret;

	ret = spi_nor_init_erase_cmd_list(nor, &erase_list, addr, len);
	if (ret)
		return ret;

	list_for_each_entry_safe(cmd, next, &erase_list, list) {
		nor->erase_opcode = cmd->opcode;
		while (cmd->count) {
1439 1440 1441
			ret = spi_nor_write_enable(nor);
			if (ret)
				goto destroy_erase_cmd_list;
1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464

			ret = spi_nor_erase_sector(nor, addr);
			if (ret)
				goto destroy_erase_cmd_list;

			addr += cmd->size;
			cmd->count--;

			ret = spi_nor_wait_till_ready(nor);
			if (ret)
				goto destroy_erase_cmd_list;
		}
		list_del(&cmd->list);
		kfree(cmd);
	}

	return 0;

destroy_erase_cmd_list:
	spi_nor_destroy_erase_cmd_list(&erase_list);
	return ret;
}

1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
/*
 * Erase an address range on the nor chip.  The address range may extend
 * one or more erase sectors.  Return an error is there is a problem erasing.
 */
static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	u32 addr, len;
	uint32_t rem;
	int ret;

	dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr,
			(long long)instr->len);

1479 1480 1481 1482 1483
	if (spi_nor_has_uniform_erase(nor)) {
		div_u64_rem(instr->len, mtd->erasesize, &rem);
		if (rem)
			return -EINVAL;
	}
1484 1485 1486 1487

	addr = instr->addr;
	len = instr->len;

1488
	ret = spi_nor_lock_and_prep(nor);
1489 1490 1491 1492
	if (ret)
		return ret;

	/* whole-chip erase? */
1493
	if (len == mtd->size && !(nor->flags & SNOR_F_NO_OP_CHIP_ERASE)) {
1494 1495
		unsigned long timeout;

1496 1497 1498
		ret = spi_nor_write_enable(nor);
		if (ret)
			goto erase_err;
1499

1500 1501
		ret = spi_nor_erase_chip(nor);
		if (ret)
1502 1503
			goto erase_err;

1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
		/*
		 * Scale the timeout linearly with the size of the flash, with
		 * a minimum calibrated to an old 2MB flash. We could try to
		 * pull these from CFI/SFDP, but these values should be good
		 * enough for now.
		 */
		timeout = max(CHIP_ERASE_2MB_READY_WAIT_JIFFIES,
			      CHIP_ERASE_2MB_READY_WAIT_JIFFIES *
			      (unsigned long)(mtd->size / SZ_2M));
		ret = spi_nor_wait_till_ready_with_timeout(nor, timeout);
1514 1515 1516
		if (ret)
			goto erase_err;

1517
	/* REVISIT in some cases we could speed up erasing large regions
1518
	 * by using SPINOR_OP_SE instead of SPINOR_OP_BE_4K.  We may have set up
1519 1520 1521 1522
	 * to use "small sector erase", but that's not always optimal.
	 */

	/* "sector"-at-a-time erase */
1523
	} else if (spi_nor_has_uniform_erase(nor)) {
1524
		while (len) {
1525 1526 1527
			ret = spi_nor_write_enable(nor);
			if (ret)
				goto erase_err;
1528

1529 1530
			ret = spi_nor_erase_sector(nor, addr);
			if (ret)
1531 1532 1533 1534
				goto erase_err;

			addr += mtd->erasesize;
			len -= mtd->erasesize;
1535 1536 1537 1538

			ret = spi_nor_wait_till_ready(nor);
			if (ret)
				goto erase_err;
1539
		}
1540 1541 1542 1543 1544 1545

	/* erase multiple sectors */
	} else {
		ret = spi_nor_erase_multi_sectors(nor, addr, len);
		if (ret)
			goto erase_err;
1546 1547
	}

1548
	ret = spi_nor_write_disable(nor);
1549

1550
erase_err:
1551
	spi_nor_unlock_and_unprep(nor);
1552 1553 1554 1555

	return ret;
}

1556 1557
static void spi_nor_get_locked_range_sr(struct spi_nor *nor, u8 sr, loff_t *ofs,
					uint64_t *len)
1558 1559 1560
{
	struct mtd_info *mtd = &nor->mtd;
	u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
1561
	u8 tb_mask = SR_TB_BIT5;
1562 1563
	int pow;

1564 1565 1566
	if (nor->flags & SNOR_F_HAS_SR_TB_BIT6)
		tb_mask = SR_TB_BIT6;

1567 1568 1569 1570 1571
	if (!(sr & mask)) {
		/* No protection */
		*ofs = 0;
		*len = 0;
	} else {
1572
		pow = ((sr & mask) ^ mask) >> SR_BP_SHIFT;
1573
		*len = mtd->size >> pow;
1574
		if (nor->flags & SNOR_F_HAS_SR_TB && sr & tb_mask)
1575 1576 1577
			*ofs = 0;
		else
			*ofs = mtd->size - *len;
1578 1579 1580 1581
	}
}

/*
1582 1583
 * Return 1 if the entire region is locked (if @locked is true) or unlocked (if
 * @locked is false); 0 otherwise
1584
 */
1585 1586
static int spi_nor_check_lock_status_sr(struct spi_nor *nor, loff_t ofs,
					uint64_t len, u8 sr, bool locked)
1587 1588 1589 1590
{
	loff_t lock_offs;
	uint64_t lock_len;

1591 1592 1593
	if (!len)
		return 1;

1594
	spi_nor_get_locked_range_sr(nor, sr, &lock_offs, &lock_len);
1595

1596 1597 1598 1599 1600 1601 1602 1603
	if (locked)
		/* Requested range is a sub-range of locked range */
		return (ofs + len <= lock_offs + lock_len) && (ofs >= lock_offs);
	else
		/* Requested range does not overlap with locked range */
		return (ofs >= lock_offs + lock_len) || (ofs + len <= lock_offs);
}

1604 1605
static int spi_nor_is_locked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
				u8 sr)
1606
{
1607
	return spi_nor_check_lock_status_sr(nor, ofs, len, sr, true);
1608 1609
}

1610 1611
static int spi_nor_is_unlocked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
				  u8 sr)
1612
{
1613
	return spi_nor_check_lock_status_sr(nor, ofs, len, sr, false);
1614 1615 1616 1617
}

/*
 * Lock a region of the flash. Compatible with ST Micro and similar flash.
1618
 * Supports the block protection bits BP{0,1,2} in the status register
1619 1620 1621 1622
 * (SR). Does not support these features found in newer SR bitfields:
 *   - SEC: sector/block protect - only handle SEC=0 (block protect)
 *   - CMP: complement protect - only support CMP=0 (range is not complemented)
 *
1623 1624 1625
 * Support for the following is provided conditionally for some flash:
 *   - TB: top/bottom protect
 *
1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
 * Sample table portion for 8MB flash (Winbond w25q64fw):
 *
 *   SEC  |  TB   |  BP2  |  BP1  |  BP0  |  Prot Length  | Protected Portion
 *  --------------------------------------------------------------------------
 *    X   |   X   |   0   |   0   |   0   |  NONE         | NONE
 *    0   |   0   |   0   |   0   |   1   |  128 KB       | Upper 1/64
 *    0   |   0   |   0   |   1   |   0   |  256 KB       | Upper 1/32
 *    0   |   0   |   0   |   1   |   1   |  512 KB       | Upper 1/16
 *    0   |   0   |   1   |   0   |   0   |  1 MB         | Upper 1/8
 *    0   |   0   |   1   |   0   |   1   |  2 MB         | Upper 1/4
 *    0   |   0   |   1   |   1   |   0   |  4 MB         | Upper 1/2
 *    X   |   X   |   1   |   1   |   1   |  8 MB         | ALL
1638 1639 1640 1641 1642 1643 1644
 *  ------|-------|-------|-------|-------|---------------|-------------------
 *    0   |   1   |   0   |   0   |   1   |  128 KB       | Lower 1/64
 *    0   |   1   |   0   |   1   |   0   |  256 KB       | Lower 1/32
 *    0   |   1   |   0   |   1   |   1   |  512 KB       | Lower 1/16
 *    0   |   1   |   1   |   0   |   0   |  1 MB         | Lower 1/8
 *    0   |   1   |   1   |   0   |   1   |  2 MB         | Lower 1/4
 *    0   |   1   |   1   |   1   |   0   |  4 MB         | Lower 1/2
1645 1646 1647
 *
 * Returns negative on errors, 0 on success.
 */
1648
static int spi_nor_sr_lock(struct spi_nor *nor, loff_t ofs, uint64_t len)
1649
{
1650
	struct mtd_info *mtd = &nor->mtd;
1651
	int ret, status_old, status_new;
1652
	u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
1653
	u8 tb_mask = SR_TB_BIT5;
1654
	u8 pow, val;
1655
	loff_t lock_len;
1656 1657
	bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB;
	bool use_top;
1658

1659 1660 1661 1662 1663
	ret = spi_nor_read_sr(nor, nor->bouncebuf);
	if (ret)
		return ret;

	status_old = nor->bouncebuf[0];
1664

1665
	/* If nothing in our range is unlocked, we don't need to do anything */
1666
	if (spi_nor_is_locked_sr(nor, ofs, len, status_old))
1667 1668
		return 0;

1669
	/* If anything below us is unlocked, we can't use 'bottom' protection */
1670
	if (!spi_nor_is_locked_sr(nor, 0, ofs, status_old))
1671 1672
		can_be_bottom = false;

1673
	/* If anything above us is unlocked, we can't use 'top' protection */
1674 1675
	if (!spi_nor_is_locked_sr(nor, ofs + len, mtd->size - (ofs + len),
				  status_old))
1676 1677 1678
		can_be_top = false;

	if (!can_be_bottom && !can_be_top)
1679 1680
		return -EINVAL;

1681 1682 1683
	/* Prefer top, if both are valid */
	use_top = can_be_top;

1684
	/* lock_len: length of region that should end up locked */
1685 1686 1687 1688
	if (use_top)
		lock_len = mtd->size - ofs;
	else
		lock_len = ofs + len;
1689

1690 1691 1692
	if (nor->flags & SNOR_F_HAS_SR_TB_BIT6)
		tb_mask = SR_TB_BIT6;

1693 1694 1695 1696 1697 1698 1699 1700 1701
	/*
	 * Need smallest pow such that:
	 *
	 *   1 / (2^pow) <= (len / size)
	 *
	 * so (assuming power-of-2 size) we do:
	 *
	 *   pow = ceil(log2(size / len)) = log2(size) - floor(log2(len))
	 */
1702
	pow = ilog2(mtd->size) - ilog2(lock_len);
1703
	val = mask - (pow << SR_BP_SHIFT);
1704 1705 1706 1707 1708 1709
	if (val & ~mask)
		return -EINVAL;
	/* Don't "lock" with no region! */
	if (!(val & mask))
		return -EINVAL;

1710
	status_new = (status_old & ~mask & ~tb_mask) | val;
1711

1712 1713 1714
	/* Disallow further writes if WP pin is asserted */
	status_new |= SR_SRWD;

1715
	if (!use_top)
1716
		status_new |= tb_mask;
1717

1718 1719 1720 1721
	/* Don't bother if they're the same */
	if (status_new == status_old)
		return 0;

1722
	/* Only modify protection if it will not unlock other areas */
1723
	if ((status_new & mask) < (status_old & mask))
1724
		return -EINVAL;
1725

1726
	return spi_nor_write_sr_and_check(nor, status_new);
1727 1728
}

1729
/*
1730
 * Unlock a region of the flash. See spi_nor_sr_lock() for more info
1731 1732 1733
 *
 * Returns negative on errors, 0 on success.
 */
1734
static int spi_nor_sr_unlock(struct spi_nor *nor, loff_t ofs, uint64_t len)
1735
{
1736
	struct mtd_info *mtd = &nor->mtd;
1737
	int ret, status_old, status_new;
1738
	u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
1739
	u8 tb_mask = SR_TB_BIT5;
1740
	u8 pow, val;
1741
	loff_t lock_len;
1742 1743
	bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB;
	bool use_top;
1744

1745 1746 1747 1748 1749
	ret = spi_nor_read_sr(nor, nor->bouncebuf);
	if (ret)
		return ret;

	status_old = nor->bouncebuf[0];
1750

1751
	/* If nothing in our range is locked, we don't need to do anything */
1752
	if (spi_nor_is_unlocked_sr(nor, ofs, len, status_old))
1753 1754 1755
		return 0;

	/* If anything below us is locked, we can't use 'top' protection */
1756
	if (!spi_nor_is_unlocked_sr(nor, 0, ofs, status_old))
1757 1758 1759
		can_be_top = false;

	/* If anything above us is locked, we can't use 'bottom' protection */
1760 1761
	if (!spi_nor_is_unlocked_sr(nor, ofs + len, mtd->size - (ofs + len),
				    status_old))
1762 1763 1764
		can_be_bottom = false;

	if (!can_be_bottom && !can_be_top)
1765
		return -EINVAL;
1766

1767 1768 1769
	/* Prefer top, if both are valid */
	use_top = can_be_top;

1770
	/* lock_len: length of region that should remain locked */
1771 1772 1773 1774
	if (use_top)
		lock_len = mtd->size - (ofs + len);
	else
		lock_len = ofs;
1775

1776 1777
	if (nor->flags & SNOR_F_HAS_SR_TB_BIT6)
		tb_mask = SR_TB_BIT6;
1778 1779 1780 1781 1782 1783 1784 1785 1786
	/*
	 * Need largest pow such that:
	 *
	 *   1 / (2^pow) >= (len / size)
	 *
	 * so (assuming power-of-2 size) we do:
	 *
	 *   pow = floor(log2(size / len)) = log2(size) - ceil(log2(len))
	 */
1787 1788
	pow = ilog2(mtd->size) - order_base_2(lock_len);
	if (lock_len == 0) {
1789 1790
		val = 0; /* fully unlocked */
	} else {
1791
		val = mask - (pow << SR_BP_SHIFT);
1792 1793 1794
		/* Some power-of-two sizes are not supported */
		if (val & ~mask)
			return -EINVAL;
1795 1796
	}

1797
	status_new = (status_old & ~mask & ~tb_mask) | val;
1798

1799
	/* Don't protect status register if we're fully unlocked */
1800
	if (lock_len == 0)
1801 1802
		status_new &= ~SR_SRWD;

1803
	if (!use_top)
1804
		status_new |= tb_mask;
1805

1806 1807 1808 1809
	/* Don't bother if they're the same */
	if (status_new == status_old)
		return 0;

1810
	/* Only modify protection if it will not lock other areas */
1811
	if ((status_new & mask) > (status_old & mask))
1812 1813
		return -EINVAL;

1814
	return spi_nor_write_sr_and_check(nor, status_new);
1815 1816
}

1817
/*
1818 1819
 * Check if a region of the flash is (completely) locked. See spi_nor_sr_lock()
 * for more info.
1820 1821 1822 1823
 *
 * Returns 1 if entire region is locked, 0 if any portion is unlocked, and
 * negative on errors.
 */
1824
static int spi_nor_sr_is_locked(struct spi_nor *nor, loff_t ofs, uint64_t len)
1825
{
1826
	int ret;
1827

1828 1829 1830
	ret = spi_nor_read_sr(nor, nor->bouncebuf);
	if (ret)
		return ret;
1831

1832
	return spi_nor_is_locked_sr(nor, ofs, len, nor->bouncebuf[0]);
1833 1834
}

1835 1836 1837 1838
static const struct spi_nor_locking_ops spi_nor_sr_locking_ops = {
	.lock = spi_nor_sr_lock,
	.unlock = spi_nor_sr_unlock,
	.is_locked = spi_nor_sr_is_locked,
1839 1840
};

1841 1842 1843 1844 1845
static int spi_nor_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	int ret;

1846
	ret = spi_nor_lock_and_prep(nor);
1847 1848 1849
	if (ret)
		return ret;

1850
	ret = nor->params.locking_ops->lock(nor, ofs, len);
1851

1852
	spi_nor_unlock_and_unprep(nor);
1853 1854 1855
	return ret;
}

1856 1857 1858 1859 1860
static int spi_nor_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	int ret;

1861
	ret = spi_nor_lock_and_prep(nor);
1862 1863 1864
	if (ret)
		return ret;

1865
	ret = nor->params.locking_ops->unlock(nor, ofs, len);
1866

1867
	spi_nor_unlock_and_unprep(nor);
1868 1869 1870
	return ret;
}

1871 1872 1873 1874 1875
static int spi_nor_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	int ret;

1876
	ret = spi_nor_lock_and_prep(nor);
1877 1878 1879
	if (ret)
		return ret;

1880
	ret = nor->params.locking_ops->is_locked(nor, ofs, len);
1881

1882
	spi_nor_unlock_and_unprep(nor);
1883 1884 1885
	return ret;
}

1886
/**
1887 1888
 * spi_nor_sr1_bit6_quad_enable() - Set the Quad Enable BIT(6) in the Status
 * Register 1.
1889 1890
 * @nor:	pointer to a 'struct spi_nor'
 *
1891
 * Bit 6 of the Status Register 1 is the QE bit for Macronix like QSPI memories.
1892 1893 1894
 *
 * Return: 0 on success, -errno otherwise.
 */
1895
int spi_nor_sr1_bit6_quad_enable(struct spi_nor *nor)
1896
{
1897 1898 1899 1900 1901
	int ret;

	ret = spi_nor_read_sr(nor, nor->bouncebuf);
	if (ret)
		return ret;
1902

1903
	if (nor->bouncebuf[0] & SR1_QUAD_EN_BIT6)
1904 1905
		return 0;

1906
	nor->bouncebuf[0] |= SR1_QUAD_EN_BIT6;
1907

1908
	return spi_nor_write_sr1_and_check(nor, nor->bouncebuf[0]);
1909 1910 1911
}

/**
1912 1913 1914
 * spi_nor_sr2_bit1_quad_enable() - set the Quad Enable BIT(1) in the Status
 * Register 2.
 * @nor:       pointer to a 'struct spi_nor'.
1915
 *
1916
 * Bit 1 of the Status Register 2 is the QE bit for Spansion like QSPI memories.
1917 1918 1919
 *
 * Return: 0 on success, -errno otherwise.
 */
1920
int spi_nor_sr2_bit1_quad_enable(struct spi_nor *nor)
1921 1922
{
	int ret;
1923

1924 1925
	if (nor->flags & SNOR_F_NO_READ_CR)
		return spi_nor_write_16bit_cr_and_check(nor, SR2_QUAD_EN_BIT1);
1926

1927
	ret = spi_nor_read_cr(nor, nor->bouncebuf);
1928
	if (ret)
1929
		return ret;
1930

1931
	if (nor->bouncebuf[0] & SR2_QUAD_EN_BIT1)
1932 1933
		return 0;

1934 1935
	nor->bouncebuf[0] |= SR2_QUAD_EN_BIT1;

1936
	return spi_nor_write_16bit_cr_and_check(nor, nor->bouncebuf[0]);
1937 1938 1939
}

/**
1940
 * spi_nor_sr2_bit7_quad_enable() - set QE bit in Status Register 2.
1941 1942 1943 1944 1945 1946 1947 1948 1949 1950
 * @nor:	pointer to a 'struct spi_nor'
 *
 * Set the Quad Enable (QE) bit in the Status Register 2.
 *
 * This is one of the procedures to set the QE bit described in the SFDP
 * (JESD216 rev B) specification but no manufacturer using this procedure has
 * been identified yet, hence the name of the function.
 *
 * Return: 0 on success, -errno otherwise.
 */
1951
int spi_nor_sr2_bit7_quad_enable(struct spi_nor *nor)
1952
{
1953
	u8 *sr2 = nor->bouncebuf;
1954
	int ret;
1955
	u8 sr2_written;
1956 1957

	/* Check current Quad Enable bit value. */
1958
	ret = spi_nor_read_sr2(nor, sr2);
1959 1960
	if (ret)
		return ret;
1961
	if (*sr2 & SR2_QUAD_EN_BIT7)
1962 1963 1964
		return 0;

	/* Update the Quad Enable bit. */
1965
	*sr2 |= SR2_QUAD_EN_BIT7;
1966

1967
	ret = spi_nor_write_sr2(nor, sr2);
1968
	if (ret)
1969
		return ret;
1970

1971 1972
	sr2_written = *sr2;

1973
	/* Read back and check it. */
1974
	ret = spi_nor_read_sr2(nor, sr2);
1975 1976 1977
	if (ret)
		return ret;

1978 1979
	if (*sr2 != sr2_written) {
		dev_dbg(nor->dev, "SR2: Read back test failed\n");
1980
		return -EIO;
1981 1982 1983 1984
	}

	return 0;
}
A
Andy Yan 已提交
1985

1986 1987 1988
/* NOTE: double check command sets and memory organization when you add
 * more nor chips.  This current list focusses on newer chips, which
 * have been converging on command sets which including JEDEC ID.
1989 1990 1991 1992 1993 1994 1995
 *
 * All newly added entries should describe *hardware* and should use SECT_4K
 * (or SECT_4K_PMC) if hardware supports erasing 4 KiB sectors. For usage
 * scenarios excluding small sectors there is config option that can be
 * disabled: CONFIG_MTD_SPI_NOR_USE_4K_SECTORS.
 * For historical (and compatibility) reasons (before we got above config) some
 * old entries may be missing 4K flag.
1996
 */
1997
static const struct flash_info spi_nor_ids[] = {
1998
	/* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
1999
	{ "w25x05", INFO(0xef3010, 0, 64 * 1024,  1,  SECT_4K) },
2000 2001 2002 2003 2004
	{ "w25x10", INFO(0xef3011, 0, 64 * 1024,  2,  SECT_4K) },
	{ "w25x20", INFO(0xef3012, 0, 64 * 1024,  4,  SECT_4K) },
	{ "w25x40", INFO(0xef3013, 0, 64 * 1024,  8,  SECT_4K) },
	{ "w25x80", INFO(0xef3014, 0, 64 * 1024,  16, SECT_4K) },
	{ "w25x16", INFO(0xef3015, 0, 64 * 1024,  32, SECT_4K) },
2005 2006 2007 2008 2009
	{
		"w25q16dw", INFO(0xef6015, 0, 64 * 1024,  32,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
2010
	{ "w25x32", INFO(0xef3016, 0, 64 * 1024,  64, SECT_4K) },
2011 2012 2013 2014 2015
	{
		"w25q16jv-im/jm", INFO(0xef7015, 0, 64 * 1024,  32,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
2016 2017 2018
	{ "w25q20cl", INFO(0xef4012, 0, 64 * 1024,  4, SECT_4K) },
	{ "w25q20bw", INFO(0xef5012, 0, 64 * 1024,  4, SECT_4K) },
	{ "w25q20ew", INFO(0xef6012, 0, 64 * 1024,  4, SECT_4K) },
2019
	{ "w25q32", INFO(0xef4016, 0, 64 * 1024,  64, SECT_4K) },
2020 2021 2022 2023 2024
	{
		"w25q32dw", INFO(0xef6016, 0, 64 * 1024,  64,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
2025 2026 2027 2028 2029
	{
		"w25q32jv", INFO(0xef7016, 0, 64 * 1024,  64,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
2030 2031 2032 2033 2034
	{
		"w25q32jwm", INFO(0xef8016, 0, 64 * 1024,  64,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
2035 2036
	{ "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) },
	{ "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
2037 2038 2039 2040 2041 2042 2043 2044 2045 2046
	{
		"w25q64dw", INFO(0xef6017, 0, 64 * 1024, 128,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
	{
		"w25q128fw", INFO(0xef6018, 0, 64 * 1024, 256,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
2047 2048 2049 2050 2051
	{
		"w25q128jv", INFO(0xef7018, 0, 64 * 1024, 256,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
2052 2053 2054
	{ "w25q80", INFO(0xef5014, 0, 64 * 1024,  16, SECT_4K) },
	{ "w25q80bl", INFO(0xef4014, 0, 64 * 1024,  16, SECT_4K) },
	{ "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K) },
2055 2056 2057
	{ "w25q256", INFO(0xef4019, 0, 64 * 1024, 512,
			  SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			  SPI_NOR_4B_OPCODES) },
2058 2059
	{ "w25q256jvm", INFO(0xef7019, 0, 64 * 1024, 512,
			     SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2060 2061
	{ "w25q256jw", INFO(0xef6019, 0, 64 * 1024, 512,
			     SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2062 2063
	{ "w25m512jv", INFO(0xef7119, 0, 64 * 1024, 1024,
			SECT_4K | SPI_NOR_QUAD_READ | SPI_NOR_DUAL_READ) },
2064 2065 2066 2067 2068 2069 2070

	/* Catalyst / On Semiconductor -- non-JEDEC */
	{ "cat25c11", CAT25_INFO(  16, 8, 16, 1, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
	{ "cat25c03", CAT25_INFO(  32, 8, 16, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
	{ "cat25c09", CAT25_INFO( 128, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
	{ "cat25c17", CAT25_INFO( 256, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
	{ "cat25128", CAT25_INFO(2048, 8, 64, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
2071 2072 2073 2074 2075 2076 2077

	/* Xilinx S3AN Internal Flash */
	{ "3S50AN", S3AN_INFO(0x1f2200, 64, 264) },
	{ "3S200AN", S3AN_INFO(0x1f2400, 256, 264) },
	{ "3S400AN", S3AN_INFO(0x1f2400, 256, 264) },
	{ "3S700AN", S3AN_INFO(0x1f2500, 512, 264) },
	{ "3S1400AN", S3AN_INFO(0x1f2600, 512, 528) },
2078 2079 2080 2081

	/* XMC (Wuhan Xinxin Semiconductor Manufacturing Corp.) */
	{ "XM25QH64A", INFO(0x207017, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
	{ "XM25QH128A", INFO(0x207018, 0, 64 * 1024, 256, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2082 2083 2084
	{ },
};

2085 2086
static const struct spi_nor_manufacturer *manufacturers[] = {
	&spi_nor_atmel,
2087
	&spi_nor_eon,
2088
	&spi_nor_esmt,
2089
	&spi_nor_everspin,
2090
	&spi_nor_fujitsu,
2091
	&spi_nor_gigadevice,
2092
	&spi_nor_intel,
2093
	&spi_nor_issi,
2094
	&spi_nor_macronix,
2095 2096
	&spi_nor_micron,
	&spi_nor_st,
2097
	&spi_nor_spansion,
2098
	&spi_nor_sst,
2099
};
2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115

static const struct flash_info *
spi_nor_search_part_by_id(const struct flash_info *parts, unsigned int nparts,
			  const u8 *id)
{
	unsigned int i;

	for (i = 0; i < nparts; i++) {
		if (parts[i].id_len &&
		    !memcmp(parts[i].id, id, parts[i].id_len))
			return &parts[i];
	}

	return NULL;
}

2116
static const struct flash_info *spi_nor_read_id(struct spi_nor *nor)
2117
{
2118
	const struct flash_info *info;
2119 2120 2121
	u8 *id = nor->bouncebuf;
	unsigned int i;
	int ret;
2122

2123 2124 2125 2126 2127 2128 2129
	if (nor->spimem) {
		struct spi_mem_op op =
			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDID, 1),
				   SPI_MEM_OP_NO_ADDR,
				   SPI_MEM_OP_NO_DUMMY,
				   SPI_MEM_OP_DATA_IN(SPI_NOR_MAX_ID_LEN, id, 1));

2130
		ret = spi_mem_exec_op(nor->spimem, &op);
2131
	} else {
2132
		ret = nor->controller_ops->read_reg(nor, SPINOR_OP_RDID, id,
2133
						    SPI_NOR_MAX_ID_LEN);
2134
	}
2135 2136 2137
	if (ret) {
		dev_dbg(nor->dev, "error %d reading JEDEC ID\n", ret);
		return ERR_PTR(ret);
2138 2139
	}

2140 2141 2142 2143 2144 2145 2146 2147
	for (i = 0; i < ARRAY_SIZE(manufacturers); i++) {
		info = spi_nor_search_part_by_id(manufacturers[i]->parts,
						 manufacturers[i]->nparts,
						 id);
		if (info) {
			nor->manufacturer = manufacturers[i];
			return info;
		}
2148
	}
2149 2150 2151 2152 2153 2154

	info = spi_nor_search_part_by_id(spi_nor_ids,
					 ARRAY_SIZE(spi_nor_ids) - 1, id);
	if (info)
		return info;

2155 2156
	dev_err(nor->dev, "unrecognized JEDEC id bytes: %*ph\n",
		SPI_NOR_MAX_ID_LEN, id);
2157 2158 2159 2160 2161 2162 2163
	return ERR_PTR(-ENODEV);
}

static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len,
			size_t *retlen, u_char *buf)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
2164
	ssize_t ret;
2165 2166 2167

	dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len);

2168
	ret = spi_nor_lock_and_prep(nor);
2169 2170 2171
	if (ret)
		return ret;

M
Michal Suchanek 已提交
2172
	while (len) {
2173 2174
		loff_t addr = from;

2175
		addr = spi_nor_convert_addr(nor, addr);
2176

2177
		ret = spi_nor_read_data(nor, addr, len, buf);
M
Michal Suchanek 已提交
2178 2179 2180 2181 2182 2183 2184
		if (ret == 0) {
			/* We shouldn't see 0-length reads */
			ret = -EIO;
			goto read_err;
		}
		if (ret < 0)
			goto read_err;
2185

M
Michal Suchanek 已提交
2186 2187 2188 2189 2190 2191 2192
		WARN_ON(ret > len);
		*retlen += ret;
		buf += ret;
		from += ret;
		len -= ret;
	}
	ret = 0;
2193

M
Michal Suchanek 已提交
2194
read_err:
2195
	spi_nor_unlock_and_unprep(nor);
M
Michal Suchanek 已提交
2196
	return ret;
2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
}

/*
 * Write an address range to the nor chip.  Data must be written in
 * FLASH_PAGESIZE chunks.  The address range may be any size provided
 * it is within the physical boundaries.
 */
static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len,
	size_t *retlen, const u_char *buf)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
2208 2209
	size_t page_offset, page_remain, i;
	ssize_t ret;
2210 2211 2212

	dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);

2213
	ret = spi_nor_lock_and_prep(nor);
2214 2215 2216
	if (ret)
		return ret;

2217 2218
	for (i = 0; i < len; ) {
		ssize_t written;
2219
		loff_t addr = to + i;
2220

2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232
		/*
		 * If page_size is a power of two, the offset can be quickly
		 * calculated with an AND operation. On the other cases we
		 * need to do a modulus operation (more expensive).
		 * Power of two numbers have only one bit set and we can use
		 * the instruction hweight32 to detect if we need to do a
		 * modulus (do_div()) or not.
		 */
		if (hweight32(nor->page_size) == 1) {
			page_offset = addr & (nor->page_size - 1);
		} else {
			uint64_t aux = addr;
2233

2234 2235
			page_offset = do_div(aux, nor->page_size);
		}
2236
		/* the size of data remaining on the first page */
2237 2238 2239
		page_remain = min_t(size_t,
				    nor->page_size - page_offset, len - i);

2240
		addr = spi_nor_convert_addr(nor, addr);
2241

2242 2243 2244 2245
		ret = spi_nor_write_enable(nor);
		if (ret)
			goto write_err;

2246
		ret = spi_nor_write_data(nor, addr, page_remain, buf + i);
2247 2248
		if (ret < 0)
			goto write_err;
2249
		written = ret;
2250

2251 2252 2253 2254 2255
		ret = spi_nor_wait_till_ready(nor);
		if (ret)
			goto write_err;
		*retlen += written;
		i += written;
2256 2257 2258
	}

write_err:
2259
	spi_nor_unlock_and_unprep(nor);
2260
	return ret;
2261 2262
}

2263
static int spi_nor_check(struct spi_nor *nor)
2264
{
2265
	if (!nor->dev ||
2266
	    (!nor->spimem && !nor->controller_ops) ||
2267 2268 2269 2270 2271
	    (!nor->spimem && nor->controller_ops &&
	    (!nor->controller_ops->read ||
	     !nor->controller_ops->write ||
	     !nor->controller_ops->read_reg ||
	     !nor->controller_ops->write_reg))) {
2272 2273 2274 2275
		pr_err("spi-nor: please fill all the necessary fields!\n");
		return -EINVAL;
	}

2276 2277 2278 2279 2280
	if (nor->spimem && nor->controller_ops) {
		dev_err(nor->dev, "nor->spimem and nor->controller_ops are mutually exclusive, please set just one of them.\n");
		return -EINVAL;
	}

2281 2282 2283
	return 0;
}

2284 2285
static int s3an_nor_setup(struct spi_nor *nor,
			  const struct spi_nor_hwcaps *hwcaps)
2286 2287 2288
{
	int ret;

2289
	ret = spi_nor_xread_sr(nor, nor->bouncebuf);
2290
	if (ret)
2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308
		return ret;

	nor->erase_opcode = SPINOR_OP_XSE;
	nor->program_opcode = SPINOR_OP_XPP;
	nor->read_opcode = SPINOR_OP_READ;
	nor->flags |= SNOR_F_NO_OP_CHIP_ERASE;

	/*
	 * This flashes have a page size of 264 or 528 bytes (known as
	 * Default addressing mode). It can be changed to a more standard
	 * Power of two mode where the page size is 256/512. This comes
	 * with a price: there is 3% less of space, the data is corrupted
	 * and the page size cannot be changed back to default addressing
	 * mode.
	 *
	 * The current addressing mode can be read from the XRDSR register
	 * and should not be changed, because is a destructive operation.
	 */
2309
	if (nor->bouncebuf[0] & XSR_PAGESIZE) {
2310 2311 2312
		/* Flash in Power of 2 mode */
		nor->page_size = (nor->page_size == 264) ? 256 : 512;
		nor->mtd.writebufsize = nor->page_size;
2313
		nor->mtd.size = 8 * nor->page_size * nor->info->n_sectors;
2314 2315 2316
		nor->mtd.erasesize = 8 * nor->page_size;
	} else {
		/* Flash in Default addressing mode */
2317
		nor->params.convert_addr = s3an_convert_addr;
2318
		nor->mtd.erasesize = nor->info->sector_size;
2319 2320 2321 2322 2323
	}

	return 0;
}

2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336
static void
spi_nor_set_read_settings(struct spi_nor_read_command *read,
			  u8 num_mode_clocks,
			  u8 num_wait_states,
			  u8 opcode,
			  enum spi_nor_protocol proto)
{
	read->num_mode_clocks = num_mode_clocks;
	read->num_wait_states = num_wait_states;
	read->opcode = opcode;
	read->proto = proto;
}

2337 2338
void spi_nor_set_pp_settings(struct spi_nor_pp_command *pp, u8 opcode,
			     enum spi_nor_protocol proto)
2339 2340 2341 2342 2343
{
	pp->opcode = opcode;
	pp->proto = proto;
}

2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354
static int spi_nor_hwcaps2cmd(u32 hwcaps, const int table[][2], size_t size)
{
	size_t i;

	for (i = 0; i < size; i++)
		if (table[i][0] == (int)hwcaps)
			return table[i][1];

	return -EINVAL;
}

2355
int spi_nor_hwcaps_read2cmd(u32 hwcaps)
2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394
{
	static const int hwcaps_read2cmd[][2] = {
		{ SNOR_HWCAPS_READ,		SNOR_CMD_READ },
		{ SNOR_HWCAPS_READ_FAST,	SNOR_CMD_READ_FAST },
		{ SNOR_HWCAPS_READ_1_1_1_DTR,	SNOR_CMD_READ_1_1_1_DTR },
		{ SNOR_HWCAPS_READ_1_1_2,	SNOR_CMD_READ_1_1_2 },
		{ SNOR_HWCAPS_READ_1_2_2,	SNOR_CMD_READ_1_2_2 },
		{ SNOR_HWCAPS_READ_2_2_2,	SNOR_CMD_READ_2_2_2 },
		{ SNOR_HWCAPS_READ_1_2_2_DTR,	SNOR_CMD_READ_1_2_2_DTR },
		{ SNOR_HWCAPS_READ_1_1_4,	SNOR_CMD_READ_1_1_4 },
		{ SNOR_HWCAPS_READ_1_4_4,	SNOR_CMD_READ_1_4_4 },
		{ SNOR_HWCAPS_READ_4_4_4,	SNOR_CMD_READ_4_4_4 },
		{ SNOR_HWCAPS_READ_1_4_4_DTR,	SNOR_CMD_READ_1_4_4_DTR },
		{ SNOR_HWCAPS_READ_1_1_8,	SNOR_CMD_READ_1_1_8 },
		{ SNOR_HWCAPS_READ_1_8_8,	SNOR_CMD_READ_1_8_8 },
		{ SNOR_HWCAPS_READ_8_8_8,	SNOR_CMD_READ_8_8_8 },
		{ SNOR_HWCAPS_READ_1_8_8_DTR,	SNOR_CMD_READ_1_8_8_DTR },
	};

	return spi_nor_hwcaps2cmd(hwcaps, hwcaps_read2cmd,
				  ARRAY_SIZE(hwcaps_read2cmd));
}

static int spi_nor_hwcaps_pp2cmd(u32 hwcaps)
{
	static const int hwcaps_pp2cmd[][2] = {
		{ SNOR_HWCAPS_PP,		SNOR_CMD_PP },
		{ SNOR_HWCAPS_PP_1_1_4,		SNOR_CMD_PP_1_1_4 },
		{ SNOR_HWCAPS_PP_1_4_4,		SNOR_CMD_PP_1_4_4 },
		{ SNOR_HWCAPS_PP_4_4_4,		SNOR_CMD_PP_4_4_4 },
		{ SNOR_HWCAPS_PP_1_1_8,		SNOR_CMD_PP_1_1_8 },
		{ SNOR_HWCAPS_PP_1_8_8,		SNOR_CMD_PP_1_8_8 },
		{ SNOR_HWCAPS_PP_8_8_8,		SNOR_CMD_PP_8_8_8 },
	};

	return spi_nor_hwcaps2cmd(hwcaps, hwcaps_pp2cmd,
				  ARRAY_SIZE(hwcaps_pp2cmd));
}

2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482
/**
 * spi_nor_spimem_check_op - check if the operation is supported
 *                           by controller
 *@nor:        pointer to a 'struct spi_nor'
 *@op:         pointer to op template to be checked
 *
 * Returns 0 if operation is supported, -ENOTSUPP otherwise.
 */
static int spi_nor_spimem_check_op(struct spi_nor *nor,
				   struct spi_mem_op *op)
{
	/*
	 * First test with 4 address bytes. The opcode itself might
	 * be a 3B addressing opcode but we don't care, because
	 * SPI controller implementation should not check the opcode,
	 * but just the sequence.
	 */
	op->addr.nbytes = 4;
	if (!spi_mem_supports_op(nor->spimem, op)) {
		if (nor->mtd.size > SZ_16M)
			return -ENOTSUPP;

		/* If flash size <= 16MB, 3 address bytes are sufficient */
		op->addr.nbytes = 3;
		if (!spi_mem_supports_op(nor->spimem, op))
			return -ENOTSUPP;
	}

	return 0;
}

/**
 * spi_nor_spimem_check_readop - check if the read op is supported
 *                               by controller
 *@nor:         pointer to a 'struct spi_nor'
 *@read:        pointer to op template to be checked
 *
 * Returns 0 if operation is supported, -ENOTSUPP otherwise.
 */
static int spi_nor_spimem_check_readop(struct spi_nor *nor,
				       const struct spi_nor_read_command *read)
{
	struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(read->opcode, 1),
					  SPI_MEM_OP_ADDR(3, 0, 1),
					  SPI_MEM_OP_DUMMY(0, 1),
					  SPI_MEM_OP_DATA_IN(0, NULL, 1));

	op.cmd.buswidth = spi_nor_get_protocol_inst_nbits(read->proto);
	op.addr.buswidth = spi_nor_get_protocol_addr_nbits(read->proto);
	op.data.buswidth = spi_nor_get_protocol_data_nbits(read->proto);
	op.dummy.buswidth = op.addr.buswidth;
	op.dummy.nbytes = (read->num_mode_clocks + read->num_wait_states) *
			  op.dummy.buswidth / 8;

	return spi_nor_spimem_check_op(nor, &op);
}

/**
 * spi_nor_spimem_check_pp - check if the page program op is supported
 *                           by controller
 *@nor:         pointer to a 'struct spi_nor'
 *@pp:          pointer to op template to be checked
 *
 * Returns 0 if operation is supported, -ENOTSUPP otherwise.
 */
static int spi_nor_spimem_check_pp(struct spi_nor *nor,
				   const struct spi_nor_pp_command *pp)
{
	struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(pp->opcode, 1),
					  SPI_MEM_OP_ADDR(3, 0, 1),
					  SPI_MEM_OP_NO_DUMMY,
					  SPI_MEM_OP_DATA_OUT(0, NULL, 1));

	op.cmd.buswidth = spi_nor_get_protocol_inst_nbits(pp->proto);
	op.addr.buswidth = spi_nor_get_protocol_addr_nbits(pp->proto);
	op.data.buswidth = spi_nor_get_protocol_data_nbits(pp->proto);

	return spi_nor_spimem_check_op(nor, &op);
}

/**
 * spi_nor_spimem_adjust_hwcaps - Find optimal Read/Write protocol
 *                                based on SPI controller capabilities
 * @nor:        pointer to a 'struct spi_nor'
 * @hwcaps:     pointer to resulting capabilities after adjusting
 *              according to controller and flash's capability
 */
static void
T
Tudor Ambarus 已提交
2483
spi_nor_spimem_adjust_hwcaps(struct spi_nor *nor, u32 *hwcaps)
2484
{
T
Tudor Ambarus 已提交
2485
	struct spi_nor_flash_parameter *params =  &nor->params;
2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514
	unsigned int cap;

	/* DTR modes are not supported yet, mask them all. */
	*hwcaps &= ~SNOR_HWCAPS_DTR;

	/* X-X-X modes are not supported yet, mask them all. */
	*hwcaps &= ~SNOR_HWCAPS_X_X_X;

	for (cap = 0; cap < sizeof(*hwcaps) * BITS_PER_BYTE; cap++) {
		int rdidx, ppidx;

		if (!(*hwcaps & BIT(cap)))
			continue;

		rdidx = spi_nor_hwcaps_read2cmd(BIT(cap));
		if (rdidx >= 0 &&
		    spi_nor_spimem_check_readop(nor, &params->reads[rdidx]))
			*hwcaps &= ~BIT(cap);

		ppidx = spi_nor_hwcaps_pp2cmd(BIT(cap));
		if (ppidx < 0)
			continue;

		if (spi_nor_spimem_check_pp(nor,
					    &params->page_programs[ppidx]))
			*hwcaps &= ~BIT(cap);
	}
}

2515 2516 2517 2518 2519 2520
/**
 * spi_nor_set_erase_type() - set a SPI NOR erase type
 * @erase:	pointer to a structure that describes a SPI NOR erase type
 * @size:	the size of the sector/block erased by the erase type
 * @opcode:	the SPI command op code to erase the sector/block
 */
2521 2522
void spi_nor_set_erase_type(struct spi_nor_erase_type *erase, u32 size,
			    u8 opcode)
2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537
{
	erase->size = size;
	erase->opcode = opcode;
	/* JEDEC JESD216B Standard imposes erase sizes to be power of 2. */
	erase->size_shift = ffs(erase->size) - 1;
	erase->size_mask = (1 << erase->size_shift) - 1;
}

/**
 * spi_nor_init_uniform_erase_map() - Initialize uniform erase map
 * @map:		the erase map of the SPI NOR
 * @erase_mask:		bitmask encoding erase types that can erase the entire
 *			flash memory
 * @flash_size:		the spi nor flash memory size
 */
2538 2539
void spi_nor_init_uniform_erase_map(struct spi_nor_erase_map *map,
				    u8 erase_mask, u64 flash_size)
2540 2541 2542 2543 2544 2545 2546 2547 2548
{
	/* Offset 0 with erase_mask and SNOR_LAST_REGION bit set */
	map->uniform_region.offset = (erase_mask & SNOR_ERASE_TYPE_MASK) |
				     SNOR_LAST_REGION;
	map->uniform_region.size = flash_size;
	map->regions = &map->uniform_region;
	map->uniform_erase_type = erase_mask;
}

2549 2550 2551 2552
int spi_nor_post_bfpt_fixups(struct spi_nor *nor,
			     const struct sfdp_parameter_header *bfpt_header,
			     const struct sfdp_bfpt *bfpt,
			     struct spi_nor_flash_parameter *params)
2553
{
2554 2555 2556 2557 2558 2559 2560 2561 2562 2563
	int ret;

	if (nor->manufacturer && nor->manufacturer->fixups &&
	    nor->manufacturer->fixups->post_bfpt) {
		ret = nor->manufacturer->fixups->post_bfpt(nor, bfpt_header,
							   bfpt, params);
		if (ret)
			return ret;
	}

2564 2565 2566 2567 2568 2569 2570
	if (nor->info->fixups && nor->info->fixups->post_bfpt)
		return nor->info->fixups->post_bfpt(nor, bfpt_header, bfpt,
						    params);

	return 0;
}

2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673
static int spi_nor_select_read(struct spi_nor *nor,
			       u32 shared_hwcaps)
{
	int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_READ_MASK) - 1;
	const struct spi_nor_read_command *read;

	if (best_match < 0)
		return -EINVAL;

	cmd = spi_nor_hwcaps_read2cmd(BIT(best_match));
	if (cmd < 0)
		return -EINVAL;

	read = &nor->params.reads[cmd];
	nor->read_opcode = read->opcode;
	nor->read_proto = read->proto;

	/*
	 * In the spi-nor framework, we don't need to make the difference
	 * between mode clock cycles and wait state clock cycles.
	 * Indeed, the value of the mode clock cycles is used by a QSPI
	 * flash memory to know whether it should enter or leave its 0-4-4
	 * (Continuous Read / XIP) mode.
	 * eXecution In Place is out of the scope of the mtd sub-system.
	 * Hence we choose to merge both mode and wait state clock cycles
	 * into the so called dummy clock cycles.
	 */
	nor->read_dummy = read->num_mode_clocks + read->num_wait_states;
	return 0;
}

static int spi_nor_select_pp(struct spi_nor *nor,
			     u32 shared_hwcaps)
{
	int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_PP_MASK) - 1;
	const struct spi_nor_pp_command *pp;

	if (best_match < 0)
		return -EINVAL;

	cmd = spi_nor_hwcaps_pp2cmd(BIT(best_match));
	if (cmd < 0)
		return -EINVAL;

	pp = &nor->params.page_programs[cmd];
	nor->program_opcode = pp->opcode;
	nor->write_proto = pp->proto;
	return 0;
}

/**
 * spi_nor_select_uniform_erase() - select optimum uniform erase type
 * @map:		the erase map of the SPI NOR
 * @wanted_size:	the erase type size to search for. Contains the value of
 *			info->sector_size or of the "small sector" size in case
 *			CONFIG_MTD_SPI_NOR_USE_4K_SECTORS is defined.
 *
 * Once the optimum uniform sector erase command is found, disable all the
 * other.
 *
 * Return: pointer to erase type on success, NULL otherwise.
 */
static const struct spi_nor_erase_type *
spi_nor_select_uniform_erase(struct spi_nor_erase_map *map,
			     const u32 wanted_size)
{
	const struct spi_nor_erase_type *tested_erase, *erase = NULL;
	int i;
	u8 uniform_erase_type = map->uniform_erase_type;

	for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
		if (!(uniform_erase_type & BIT(i)))
			continue;

		tested_erase = &map->erase_type[i];

		/*
		 * If the current erase size is the one, stop here:
		 * we have found the right uniform Sector Erase command.
		 */
		if (tested_erase->size == wanted_size) {
			erase = tested_erase;
			break;
		}

		/*
		 * Otherwise, the current erase size is still a valid canditate.
		 * Select the biggest valid candidate.
		 */
		if (!erase && tested_erase->size)
			erase = tested_erase;
			/* keep iterating to find the wanted_size */
	}

	if (!erase)
		return NULL;

	/* Disable all other Sector Erase commands. */
	map->uniform_erase_type &= ~SNOR_ERASE_TYPE_MASK;
	map->uniform_erase_type |= BIT(erase - map->erase_type);
	return erase;
}

2674
static int spi_nor_select_erase(struct spi_nor *nor)
2675 2676 2677 2678
{
	struct spi_nor_erase_map *map = &nor->params.erase_map;
	const struct spi_nor_erase_type *erase = NULL;
	struct mtd_info *mtd = &nor->mtd;
2679
	u32 wanted_size = nor->info->sector_size;
2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758
	int i;

	/*
	 * The previous implementation handling Sector Erase commands assumed
	 * that the SPI flash memory has an uniform layout then used only one
	 * of the supported erase sizes for all Sector Erase commands.
	 * So to be backward compatible, the new implementation also tries to
	 * manage the SPI flash memory as uniform with a single erase sector
	 * size, when possible.
	 */
#ifdef CONFIG_MTD_SPI_NOR_USE_4K_SECTORS
	/* prefer "small sector" erase if possible */
	wanted_size = 4096u;
#endif

	if (spi_nor_has_uniform_erase(nor)) {
		erase = spi_nor_select_uniform_erase(map, wanted_size);
		if (!erase)
			return -EINVAL;
		nor->erase_opcode = erase->opcode;
		mtd->erasesize = erase->size;
		return 0;
	}

	/*
	 * For non-uniform SPI flash memory, set mtd->erasesize to the
	 * maximum erase sector size. No need to set nor->erase_opcode.
	 */
	for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
		if (map->erase_type[i].size) {
			erase = &map->erase_type[i];
			break;
		}
	}

	if (!erase)
		return -EINVAL;

	mtd->erasesize = erase->size;
	return 0;
}

static int spi_nor_default_setup(struct spi_nor *nor,
				 const struct spi_nor_hwcaps *hwcaps)
{
	struct spi_nor_flash_parameter *params = &nor->params;
	u32 ignored_mask, shared_mask;
	int err;

	/*
	 * Keep only the hardware capabilities supported by both the SPI
	 * controller and the SPI flash memory.
	 */
	shared_mask = hwcaps->mask & params->hwcaps.mask;

	if (nor->spimem) {
		/*
		 * When called from spi_nor_probe(), all caps are set and we
		 * need to discard some of them based on what the SPI
		 * controller actually supports (using spi_mem_supports_op()).
		 */
		spi_nor_spimem_adjust_hwcaps(nor, &shared_mask);
	} else {
		/*
		 * SPI n-n-n protocols are not supported when the SPI
		 * controller directly implements the spi_nor interface.
		 * Yet another reason to switch to spi-mem.
		 */
		ignored_mask = SNOR_HWCAPS_X_X_X;
		if (shared_mask & ignored_mask) {
			dev_dbg(nor->dev,
				"SPI n-n-n protocols are not supported.\n");
			shared_mask &= ~ignored_mask;
		}
	}

	/* Select the (Fast) Read command. */
	err = spi_nor_select_read(nor, shared_mask);
	if (err) {
2759
		dev_dbg(nor->dev,
2760 2761 2762 2763 2764 2765 2766
			"can't select read settings supported by both the SPI controller and memory.\n");
		return err;
	}

	/* Select the Page Program command. */
	err = spi_nor_select_pp(nor, shared_mask);
	if (err) {
2767
		dev_dbg(nor->dev,
2768 2769 2770 2771 2772
			"can't select write settings supported by both the SPI controller and memory.\n");
		return err;
	}

	/* Select the Sector Erase command. */
2773
	err = spi_nor_select_erase(nor);
2774
	if (err) {
2775
		dev_dbg(nor->dev,
2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791
			"can't select erase settings supported by both the SPI controller and memory.\n");
		return err;
	}

	return 0;
}

static int spi_nor_setup(struct spi_nor *nor,
			 const struct spi_nor_hwcaps *hwcaps)
{
	if (!nor->params.setup)
		return 0;

	return nor->params.setup(nor, hwcaps);
}

2792 2793
static void winbond_set_default_init(struct spi_nor *nor)
{
2794
	nor->params.set_4byte_addr_mode = winbond_set_4byte_addr_mode;
2795 2796
}

2797 2798
/**
 * spi_nor_manufacturer_init_params() - Initialize the flash's parameters and
2799
 * settings based on MFR register and ->default_init() hook.
2800 2801 2802 2803
 * @nor:	pointer to a 'struct spi-nor'.
 */
static void spi_nor_manufacturer_init_params(struct spi_nor *nor)
{
2804 2805
	/* Init flash parameters based on MFR */
	switch (JEDEC_MFR(nor->info)) {
2806 2807 2808 2809
	case SNOR_MFR_WINBOND:
		winbond_set_default_init(nor);
		break;

2810 2811 2812 2813
	default:
		break;
	}

2814 2815 2816 2817
	if (nor->manufacturer && nor->manufacturer->fixups &&
	    nor->manufacturer->fixups->default_init)
		nor->manufacturer->fixups->default_init(nor);

2818 2819 2820 2821
	if (nor->info->fixups && nor->info->fixups->default_init)
		nor->info->fixups->default_init(nor);
}

2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849
/**
 * spi_nor_sfdp_init_params() - Initialize the flash's parameters and settings
 * based on JESD216 SFDP standard.
 * @nor:	pointer to a 'struct spi-nor'.
 *
 * The method has a roll-back mechanism: in case the SFDP parsing fails, the
 * legacy flash parameters and settings will be restored.
 */
static void spi_nor_sfdp_init_params(struct spi_nor *nor)
{
	struct spi_nor_flash_parameter sfdp_params;

	memcpy(&sfdp_params, &nor->params, sizeof(sfdp_params));

	if (spi_nor_parse_sfdp(nor, &sfdp_params)) {
		nor->addr_width = 0;
		nor->flags &= ~SNOR_F_4B_OPCODES;
	} else {
		memcpy(&nor->params, &sfdp_params, sizeof(nor->params));
	}
}

/**
 * spi_nor_info_init_params() - Initialize the flash's parameters and settings
 * based on nor->info data.
 * @nor:	pointer to a 'struct spi-nor'.
 */
static void spi_nor_info_init_params(struct spi_nor *nor)
2850
{
T
Tudor Ambarus 已提交
2851
	struct spi_nor_flash_parameter *params = &nor->params;
2852
	struct spi_nor_erase_map *map = &params->erase_map;
2853
	const struct flash_info *info = nor->info;
2854
	struct device_node *np = spi_nor_get_flash_node(nor);
2855 2856
	u8 i, erase_mask;

2857
	/* Initialize legacy flash parameters and settings. */
2858
	params->quad_enable = spi_nor_sr2_bit1_quad_enable;
2859
	params->set_4byte_addr_mode = spansion_set_4byte_addr_mode;
2860
	params->setup = spi_nor_default_setup;
2861 2862
	/* Default to 16-bit Write Status (01h) Command */
	nor->flags |= SNOR_F_HAS_16BIT_SR;
2863

2864
	/* Set SPI NOR sizes. */
2865
	params->size = (u64)info->sector_size * info->n_sectors;
2866 2867
	params->page_size = info->page_size;

2868 2869 2870 2871 2872 2873 2874 2875 2876
	if (!(info->flags & SPI_NOR_NO_FR)) {
		/* Default to Fast Read for DT and non-DT platform devices. */
		params->hwcaps.mask |= SNOR_HWCAPS_READ_FAST;

		/* Mask out Fast Read if not requested at DT instantiation. */
		if (np && !of_property_read_bool(np, "m25p,fast-read"))
			params->hwcaps.mask &= ~SNOR_HWCAPS_READ_FAST;
	}

2877 2878 2879 2880 2881 2882
	/* (Fast) Read settings. */
	params->hwcaps.mask |= SNOR_HWCAPS_READ;
	spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ],
				  0, 0, SPINOR_OP_READ,
				  SNOR_PROTO_1_1_1);

2883
	if (params->hwcaps.mask & SNOR_HWCAPS_READ_FAST)
2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901
		spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_FAST],
					  0, 8, SPINOR_OP_READ_FAST,
					  SNOR_PROTO_1_1_1);

	if (info->flags & SPI_NOR_DUAL_READ) {
		params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_2;
		spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_2],
					  0, 8, SPINOR_OP_READ_1_1_2,
					  SNOR_PROTO_1_1_2);
	}

	if (info->flags & SPI_NOR_QUAD_READ) {
		params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_4;
		spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_4],
					  0, 8, SPINOR_OP_READ_1_1_4,
					  SNOR_PROTO_1_1_4);
	}

2902 2903 2904 2905 2906 2907 2908
	if (info->flags & SPI_NOR_OCTAL_READ) {
		params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_8;
		spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_8],
					  0, 8, SPINOR_OP_READ_1_1_8,
					  SNOR_PROTO_1_1_8);
	}

2909 2910 2911 2912 2913
	/* Page Program settings. */
	params->hwcaps.mask |= SNOR_HWCAPS_PP;
	spi_nor_set_pp_settings(&params->page_programs[SNOR_CMD_PP],
				SPINOR_OP_PP, SNOR_PROTO_1_1_1);

2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934
	/*
	 * Sector Erase settings. Sort Erase Types in ascending order, with the
	 * smallest erase size starting at BIT(0).
	 */
	erase_mask = 0;
	i = 0;
	if (info->flags & SECT_4K_PMC) {
		erase_mask |= BIT(i);
		spi_nor_set_erase_type(&map->erase_type[i], 4096u,
				       SPINOR_OP_BE_4K_PMC);
		i++;
	} else if (info->flags & SECT_4K) {
		erase_mask |= BIT(i);
		spi_nor_set_erase_type(&map->erase_type[i], 4096u,
				       SPINOR_OP_BE_4K);
		i++;
	}
	erase_mask |= BIT(i);
	spi_nor_set_erase_type(&map->erase_type[i], info->sector_size,
			       SPINOR_OP_SE);
	spi_nor_init_uniform_erase_map(map, erase_mask, params->size);
2935
}
2936

2937 2938 2939 2940 2941
static void s3an_post_sfdp_fixups(struct spi_nor *nor)
{
	nor->params.setup = s3an_nor_setup;
}

2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953
/**
 * spi_nor_post_sfdp_fixups() - Updates the flash's parameters and settings
 * after SFDP has been parsed (is also called for SPI NORs that do not
 * support RDSFDP).
 * @nor:	pointer to a 'struct spi_nor'
 *
 * Typically used to tweak various parameters that could not be extracted by
 * other means (i.e. when information provided by the SFDP/flash_info tables
 * are incomplete or wrong).
 */
static void spi_nor_post_sfdp_fixups(struct spi_nor *nor)
{
2954 2955 2956
	if (nor->info->flags & SPI_S3AN)
		s3an_post_sfdp_fixups(nor);

2957 2958 2959 2960
	if (nor->manufacturer && nor->manufacturer->fixups &&
	    nor->manufacturer->fixups->post_sfdp)
		nor->manufacturer->fixups->post_sfdp(nor);

2961 2962 2963 2964
	if (nor->info->fixups && nor->info->fixups->post_sfdp)
		nor->info->fixups->post_sfdp(nor);
}

2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978
/**
 * spi_nor_late_init_params() - Late initialization of default flash parameters.
 * @nor:	pointer to a 'struct spi_nor'
 *
 * Used to set default flash parameters and settings when the ->default_init()
 * hook or the SFDP parser let voids.
 */
static void spi_nor_late_init_params(struct spi_nor *nor)
{
	/*
	 * NOR protection support. When locking_ops are not provided, we pick
	 * the default ones.
	 */
	if (nor->flags & SNOR_F_HAS_LOCK && !nor->params.locking_ops)
2979
		nor->params.locking_ops = &spi_nor_sr_locking_ops;
2980 2981
}

2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006
/**
 * spi_nor_init_params() - Initialize the flash's parameters and settings.
 * @nor:	pointer to a 'struct spi-nor'.
 *
 * The flash parameters and settings are initialized based on a sequence of
 * calls that are ordered by priority:
 *
 * 1/ Default flash parameters initialization. The initializations are done
 *    based on nor->info data:
 *		spi_nor_info_init_params()
 *
 * which can be overwritten by:
 * 2/ Manufacturer flash parameters initialization. The initializations are
 *    done based on MFR register, or when the decisions can not be done solely
 *    based on MFR, by using specific flash_info tweeks, ->default_init():
 *		spi_nor_manufacturer_init_params()
 *
 * which can be overwritten by:
 * 3/ SFDP flash parameters initialization. JESD216 SFDP is a standard and
 *    should be more accurate that the above.
 *		spi_nor_sfdp_init_params()
 *
 *    Please note that there is a ->post_bfpt() fixup hook that can overwrite
 *    the flash parameters and settings immediately after parsing the Basic
 *    Flash Parameter Table.
3007
 *
3008 3009 3010 3011 3012 3013 3014 3015
 * which can be overwritten by:
 * 4/ Post SFDP flash parameters initialization. Used to tweak various
 *    parameters that could not be extracted by other means (i.e. when
 *    information provided by the SFDP/flash_info tables are incomplete or
 *    wrong).
 *		spi_nor_post_sfdp_fixups()
 *
 * 5/ Late default flash parameters initialization, used when the
3016 3017
 * ->default_init() hook or the SFDP parser do not set specific params.
 *		spi_nor_late_init_params()
3018 3019 3020 3021
 */
static void spi_nor_init_params(struct spi_nor *nor)
{
	spi_nor_info_init_params(nor);
3022

3023 3024
	spi_nor_manufacturer_init_params(nor);

3025 3026 3027
	if ((nor->info->flags & (SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)) &&
	    !(nor->info->flags & SPI_NOR_SKIP_SFDP))
		spi_nor_sfdp_init_params(nor);
3028

3029 3030
	spi_nor_post_sfdp_fixups(nor);

3031
	spi_nor_late_init_params(nor);
3032 3033
}

3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051
/**
 * spi_nor_quad_enable() - enable Quad I/O if needed.
 * @nor:                pointer to a 'struct spi_nor'
 *
 * Return: 0 on success, -errno otherwise.
 */
static int spi_nor_quad_enable(struct spi_nor *nor)
{
	if (!nor->params.quad_enable)
		return 0;

	if (!(spi_nor_get_protocol_width(nor->read_proto) == 4 ||
	      spi_nor_get_protocol_width(nor->write_proto) == 4))
		return 0;

	return nor->params.quad_enable(nor);
}

3052 3053 3054 3055 3056 3057 3058 3059 3060 3061
/**
 * spi_nor_unlock_all() - Unlocks the entire flash memory array.
 * @nor:	pointer to a 'struct spi_nor'.
 *
 * Some SPI NOR flashes are write protected by default after a power-on reset
 * cycle, in order to avoid inadvertent writes during power-up. Backward
 * compatibility imposes to unlock the entire flash memory array at power-up
 * by default.
 */
static int spi_nor_unlock_all(struct spi_nor *nor)
3062
{
3063 3064
	if (nor->flags & SNOR_F_HAS_LOCK)
		return spi_nor_unlock(&nor->mtd, 0, nor->params.size);
3065

3066 3067
	return 0;
}
3068

3069 3070 3071
static int spi_nor_init(struct spi_nor *nor)
{
	int err;
3072

3073 3074
	err = spi_nor_quad_enable(nor);
	if (err) {
3075
		dev_dbg(nor->dev, "quad mode not supported\n");
3076
		return err;
3077 3078
	}

3079 3080 3081 3082 3083 3084
	err = spi_nor_unlock_all(nor);
	if (err) {
		dev_dbg(nor->dev, "Failed to unlock the entire flash memory array\n");
		return err;
	}

3085
	if (nor->addr_width == 4 && !(nor->flags & SNOR_F_4B_OPCODES)) {
3086 3087 3088 3089 3090 3091 3092 3093 3094
		/*
		 * If the RESET# pin isn't hooked up properly, or the system
		 * otherwise doesn't perform a reset command in the boot
		 * sequence, it's impossible to 100% protect against unexpected
		 * reboots (e.g., crashes). Warn the user (or hopefully, system
		 * designer) that this is bad.
		 */
		WARN_ONCE(nor->flags & SNOR_F_BROKEN_RESET,
			  "enabling reset hack; may not recover from unexpected reboots\n");
3095
		nor->params.set_4byte_addr_mode(nor, true);
3096
	}
3097

3098 3099 3100
	return 0;
}

3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113
/* mtd resume handler */
static void spi_nor_resume(struct mtd_info *mtd)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	struct device *dev = nor->dev;
	int ret;

	/* re-initialize the nor chip */
	ret = spi_nor_init(nor);
	if (ret)
		dev_err(dev, "resume() failed\n");
}

3114 3115 3116
void spi_nor_restore(struct spi_nor *nor)
{
	/* restore the addressing mode */
3117 3118
	if (nor->addr_width == 4 && !(nor->flags & SNOR_F_4B_OPCODES) &&
	    nor->flags & SNOR_F_BROKEN_RESET)
3119
		nor->params.set_4byte_addr_mode(nor, false);
3120 3121 3122
}
EXPORT_SYMBOL_GPL(spi_nor_restore);

3123 3124
static const struct flash_info *spi_nor_match_id(struct spi_nor *nor,
						 const char *name)
3125
{
3126
	unsigned int i, j;
3127

3128 3129 3130
	for (i = 0; i < ARRAY_SIZE(spi_nor_ids) - 1; i++) {
		if (!strcmp(name, spi_nor_ids[i].name))
			return &spi_nor_ids[i];
3131
	}
3132 3133 3134 3135 3136 3137 3138 3139 3140 3141

	for (i = 0; i < ARRAY_SIZE(manufacturers); i++) {
		for (j = 0; j < manufacturers[i]->nparts; j++) {
			if (!strcmp(name, manufacturers[i]->parts[j].name)) {
				nor->manufacturer = manufacturers[i];
				return &manufacturers[i]->parts[j];
			}
		}
	}

3142 3143 3144
	return NULL;
}

3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158
static int spi_nor_set_addr_width(struct spi_nor *nor)
{
	if (nor->addr_width) {
		/* already configured from SFDP */
	} else if (nor->info->addr_width) {
		nor->addr_width = nor->info->addr_width;
	} else if (nor->mtd.size > 0x1000000) {
		/* enable 4-byte addressing if the device exceeds 16MiB */
		nor->addr_width = 4;
	} else {
		nor->addr_width = 3;
	}

	if (nor->addr_width > SPI_NOR_MAX_ADDR_WIDTH) {
3159
		dev_dbg(nor->dev, "address width is too large: %u\n",
3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171
			nor->addr_width);
		return -EINVAL;
	}

	/* Set 4byte opcodes when possible. */
	if (nor->addr_width == 4 && nor->flags & SNOR_F_4B_OPCODES &&
	    !(nor->flags & SNOR_F_HAS_4BAIT))
		spi_nor_set_4byte_opcodes(nor);

	return 0;
}

3172 3173 3174 3175 3176 3177 3178 3179 3180 3181
static void spi_nor_debugfs_init(struct spi_nor *nor,
				 const struct flash_info *info)
{
	struct mtd_info *mtd = &nor->mtd;

	mtd->dbg.partname = info->name;
	mtd->dbg.partid = devm_kasprintf(nor->dev, GFP_KERNEL, "spi-nor:%*phN",
					 info->id_len, info->id);
}

3182 3183 3184 3185 3186 3187
static const struct flash_info *spi_nor_get_flash_info(struct spi_nor *nor,
						       const char *name)
{
	const struct flash_info *info = NULL;

	if (name)
3188
		info = spi_nor_match_id(nor, name);
3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221
	/* Try to auto-detect if chip name wasn't specified or not found */
	if (!info)
		info = spi_nor_read_id(nor);
	if (IS_ERR_OR_NULL(info))
		return ERR_PTR(-ENOENT);

	/*
	 * If caller has specified name of flash model that can normally be
	 * detected using JEDEC, let's verify it.
	 */
	if (name && info->id_len) {
		const struct flash_info *jinfo;

		jinfo = spi_nor_read_id(nor);
		if (IS_ERR(jinfo)) {
			return jinfo;
		} else if (jinfo != info) {
			/*
			 * JEDEC knows better, so overwrite platform ID. We
			 * can't trust partitions any longer, but we'll let
			 * mtd apply them anyway, since some partitions may be
			 * marked read-only, and we don't want to lose that
			 * information, even if it's not 100% accurate.
			 */
			dev_warn(nor->dev, "found %s, expected %s\n",
				 jinfo->name, info->name);
			info = jinfo;
		}
	}

	return info;
}

3222 3223
int spi_nor_scan(struct spi_nor *nor, const char *name,
		 const struct spi_nor_hwcaps *hwcaps)
3224
{
3225
	const struct flash_info *info;
3226
	struct device *dev = nor->dev;
3227
	struct mtd_info *mtd = &nor->mtd;
3228
	struct device_node *np = spi_nor_get_flash_node(nor);
T
Tudor Ambarus 已提交
3229
	struct spi_nor_flash_parameter *params = &nor->params;
3230 3231 3232 3233 3234 3235 3236
	int ret;
	int i;

	ret = spi_nor_check(nor);
	if (ret)
		return ret;

3237 3238 3239 3240 3241
	/* Reset SPI protocol for all commands. */
	nor->reg_proto = SNOR_PROTO_1_1_1;
	nor->read_proto = SNOR_PROTO_1_1_1;
	nor->write_proto = SNOR_PROTO_1_1_1;

3242 3243 3244
	/*
	 * We need the bounce buffer early to read/write registers when going
	 * through the spi-mem layer (buffers have to be DMA-able).
3245 3246 3247 3248
	 * For spi-mem drivers, we'll reallocate a new buffer if
	 * nor->page_size turns out to be greater than PAGE_SIZE (which
	 * shouldn't happen before long since NOR pages are usually less
	 * than 1KB) after spi_nor_scan() returns.
3249 3250 3251 3252 3253 3254 3255
	 */
	nor->bouncebuf_size = PAGE_SIZE;
	nor->bouncebuf = devm_kmalloc(dev, nor->bouncebuf_size,
				      GFP_KERNEL);
	if (!nor->bouncebuf)
		return -ENOMEM;

3256 3257 3258
	info = spi_nor_get_flash_info(nor, name);
	if (IS_ERR(info))
		return PTR_ERR(info);
3259

3260 3261
	nor->info = info;

3262 3263
	spi_nor_debugfs_init(nor, info);

3264 3265
	mutex_init(&nor->lock);

3266 3267 3268 3269 3270
	/*
	 * Make sure the XSR_RDY flag is set before calling
	 * spi_nor_wait_till_ready(). Xilinx S3AN share MFR
	 * with Atmel spi-nor
	 */
3271
	if (info->flags & SPI_NOR_XSR_RDY)
3272 3273
		nor->flags |=  SNOR_F_READY_XSR_RDY;

3274 3275 3276
	if (info->flags & SPI_NOR_HAS_LOCK)
		nor->flags |= SNOR_F_HAS_LOCK;

3277 3278
	mtd->_write = spi_nor_write;

3279 3280
	/* Init flash parameters based on flash_info struct and SFDP */
	spi_nor_init_params(nor);
3281

3282
	if (!mtd->name)
3283
		mtd->name = dev_name(dev);
3284
	mtd->priv = nor;
3285 3286 3287
	mtd->type = MTD_NORFLASH;
	mtd->writesize = 1;
	mtd->flags = MTD_CAP_NORFLASH;
T
Tudor Ambarus 已提交
3288
	mtd->size = params->size;
3289 3290
	mtd->_erase = spi_nor_erase;
	mtd->_read = spi_nor_read;
3291
	mtd->_resume = spi_nor_resume;
3292

3293
	if (nor->params.locking_ops) {
3294 3295
		mtd->_lock = spi_nor_lock;
		mtd->_unlock = spi_nor_unlock;
3296
		mtd->_is_locked = spi_nor_is_locked;
3297 3298
	}

3299 3300
	if (info->flags & USE_FSR)
		nor->flags |= SNOR_F_USE_FSR;
3301
	if (info->flags & SPI_NOR_HAS_TB) {
3302
		nor->flags |= SNOR_F_HAS_SR_TB;
3303 3304 3305 3306
		if (info->flags & SPI_NOR_TB_SR_BIT6)
			nor->flags |= SNOR_F_HAS_SR_TB_BIT6;
	}

3307 3308
	if (info->flags & NO_CHIP_ERASE)
		nor->flags |= SNOR_F_NO_OP_CHIP_ERASE;
3309 3310
	if (info->flags & USE_CLSR)
		nor->flags |= SNOR_F_USE_CLSR;
3311

3312 3313 3314 3315
	if (info->flags & SPI_NOR_NO_ERASE)
		mtd->flags |= MTD_NO_ERASE;

	mtd->dev.parent = dev;
T
Tudor Ambarus 已提交
3316
	nor->page_size = params->page_size;
3317 3318
	mtd->writebufsize = nor->page_size;

3319 3320 3321
	if (of_property_read_bool(np, "broken-flash-reset"))
		nor->flags |= SNOR_F_BROKEN_RESET;

3322 3323 3324 3325 3326 3327
	/*
	 * Configure the SPI memory:
	 * - select op codes for (Fast) Read, Page Program and Sector Erase.
	 * - set the number of dummy cycles (mode cycles + wait states).
	 * - set the SPI protocols for register and memory accesses.
	 */
T
Tudor Ambarus 已提交
3328
	ret = spi_nor_setup(nor, hwcaps);
3329 3330
	if (ret)
		return ret;
3331

3332
	if (info->flags & SPI_NOR_4B_OPCODES)
3333 3334
		nor->flags |= SNOR_F_4B_OPCODES;

3335 3336 3337
	ret = spi_nor_set_addr_width(nor);
	if (ret)
		return ret;
3338

3339 3340 3341 3342 3343
	/* Send all the required SPI flash commands to initialize device */
	ret = spi_nor_init(nor);
	if (ret)
		return ret;

3344
	dev_info(dev, "%s (%lld Kbytes)\n", info->name,
3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364
			(long long)mtd->size >> 10);

	dev_dbg(dev,
		"mtd .name = %s, .size = 0x%llx (%lldMiB), "
		".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
		mtd->name, (long long)mtd->size, (long long)(mtd->size >> 20),
		mtd->erasesize, mtd->erasesize / 1024, mtd->numeraseregions);

	if (mtd->numeraseregions)
		for (i = 0; i < mtd->numeraseregions; i++)
			dev_dbg(dev,
				"mtd.eraseregions[%d] = { .offset = 0x%llx, "
				".erasesize = 0x%.8x (%uKiB), "
				".numblocks = %d }\n",
				i, (long long)mtd->eraseregions[i].offset,
				mtd->eraseregions[i].erasesize,
				mtd->eraseregions[i].erasesize / 1024,
				mtd->eraseregions[i].numblocks);
	return 0;
}
3365
EXPORT_SYMBOL_GPL(spi_nor_scan);
3366

3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418
static int spi_nor_create_read_dirmap(struct spi_nor *nor)
{
	struct spi_mem_dirmap_info info = {
		.op_tmpl = SPI_MEM_OP(SPI_MEM_OP_CMD(nor->read_opcode, 1),
				      SPI_MEM_OP_ADDR(nor->addr_width, 0, 1),
				      SPI_MEM_OP_DUMMY(nor->read_dummy, 1),
				      SPI_MEM_OP_DATA_IN(0, NULL, 1)),
		.offset = 0,
		.length = nor->mtd.size,
	};
	struct spi_mem_op *op = &info.op_tmpl;

	/* get transfer protocols. */
	op->cmd.buswidth = spi_nor_get_protocol_inst_nbits(nor->read_proto);
	op->addr.buswidth = spi_nor_get_protocol_addr_nbits(nor->read_proto);
	op->dummy.buswidth = op->addr.buswidth;
	op->data.buswidth = spi_nor_get_protocol_data_nbits(nor->read_proto);

	/* convert the dummy cycles to the number of bytes */
	op->dummy.nbytes = (nor->read_dummy * op->dummy.buswidth) / 8;

	nor->dirmap.rdesc = devm_spi_mem_dirmap_create(nor->dev, nor->spimem,
						       &info);
	return PTR_ERR_OR_ZERO(nor->dirmap.rdesc);
}

static int spi_nor_create_write_dirmap(struct spi_nor *nor)
{
	struct spi_mem_dirmap_info info = {
		.op_tmpl = SPI_MEM_OP(SPI_MEM_OP_CMD(nor->program_opcode, 1),
				      SPI_MEM_OP_ADDR(nor->addr_width, 0, 1),
				      SPI_MEM_OP_NO_DUMMY,
				      SPI_MEM_OP_DATA_OUT(0, NULL, 1)),
		.offset = 0,
		.length = nor->mtd.size,
	};
	struct spi_mem_op *op = &info.op_tmpl;

	/* get transfer protocols. */
	op->cmd.buswidth = spi_nor_get_protocol_inst_nbits(nor->write_proto);
	op->addr.buswidth = spi_nor_get_protocol_addr_nbits(nor->write_proto);
	op->dummy.buswidth = op->addr.buswidth;
	op->data.buswidth = spi_nor_get_protocol_data_nbits(nor->write_proto);

	if (nor->program_opcode == SPINOR_OP_AAI_WP && nor->sst_write_second)
		op->addr.nbytes = 0;

	nor->dirmap.wdesc = devm_spi_mem_dirmap_create(nor->dev, nor->spimem,
						       &info);
	return PTR_ERR_OR_ZERO(nor->dirmap.wdesc);
}

3419 3420 3421 3422 3423
static int spi_nor_probe(struct spi_mem *spimem)
{
	struct spi_device *spi = spimem->spi;
	struct flash_platform_data *data = dev_get_platdata(&spi->dev);
	struct spi_nor *nor;
3424 3425 3426 3427 3428
	/*
	 * Enable all caps by default. The core will mask them after
	 * checking what's really supported using spi_mem_supports_op().
	 */
	const struct spi_nor_hwcaps hwcaps = { .mask = SNOR_HWCAPS_ALL };
3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479
	char *flash_name;
	int ret;

	nor = devm_kzalloc(&spi->dev, sizeof(*nor), GFP_KERNEL);
	if (!nor)
		return -ENOMEM;

	nor->spimem = spimem;
	nor->dev = &spi->dev;
	spi_nor_set_flash_node(nor, spi->dev.of_node);

	spi_mem_set_drvdata(spimem, nor);

	if (data && data->name)
		nor->mtd.name = data->name;

	if (!nor->mtd.name)
		nor->mtd.name = spi_mem_get_name(spimem);

	/*
	 * For some (historical?) reason many platforms provide two different
	 * names in flash_platform_data: "name" and "type". Quite often name is
	 * set to "m25p80" and then "type" provides a real chip name.
	 * If that's the case, respect "type" and ignore a "name".
	 */
	if (data && data->type)
		flash_name = data->type;
	else if (!strcmp(spi->modalias, "spi-nor"))
		flash_name = NULL; /* auto-detect */
	else
		flash_name = spi->modalias;

	ret = spi_nor_scan(nor, flash_name, &hwcaps);
	if (ret)
		return ret;

	/*
	 * None of the existing parts have > 512B pages, but let's play safe
	 * and add this logic so that if anyone ever adds support for such
	 * a NOR we don't end up with buffer overflows.
	 */
	if (nor->page_size > PAGE_SIZE) {
		nor->bouncebuf_size = nor->page_size;
		devm_kfree(nor->dev, nor->bouncebuf);
		nor->bouncebuf = devm_kmalloc(nor->dev,
					      nor->bouncebuf_size,
					      GFP_KERNEL);
		if (!nor->bouncebuf)
			return -ENOMEM;
	}

3480 3481 3482 3483 3484 3485 3486 3487
	ret = spi_nor_create_read_dirmap(nor);
	if (ret)
		return ret;

	ret = spi_nor_create_write_dirmap(nor);
	if (ret)
		return ret;

3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594
	return mtd_device_register(&nor->mtd, data ? data->parts : NULL,
				   data ? data->nr_parts : 0);
}

static int spi_nor_remove(struct spi_mem *spimem)
{
	struct spi_nor *nor = spi_mem_get_drvdata(spimem);

	spi_nor_restore(nor);

	/* Clean up MTD stuff. */
	return mtd_device_unregister(&nor->mtd);
}

static void spi_nor_shutdown(struct spi_mem *spimem)
{
	struct spi_nor *nor = spi_mem_get_drvdata(spimem);

	spi_nor_restore(nor);
}

/*
 * Do NOT add to this array without reading the following:
 *
 * Historically, many flash devices are bound to this driver by their name. But
 * since most of these flash are compatible to some extent, and their
 * differences can often be differentiated by the JEDEC read-ID command, we
 * encourage new users to add support to the spi-nor library, and simply bind
 * against a generic string here (e.g., "jedec,spi-nor").
 *
 * Many flash names are kept here in this list (as well as in spi-nor.c) to
 * keep them available as module aliases for existing platforms.
 */
static const struct spi_device_id spi_nor_dev_ids[] = {
	/*
	 * Allow non-DT platform devices to bind to the "spi-nor" modalias, and
	 * hack around the fact that the SPI core does not provide uevent
	 * matching for .of_match_table
	 */
	{"spi-nor"},

	/*
	 * Entries not used in DTs that should be safe to drop after replacing
	 * them with "spi-nor" in platform data.
	 */
	{"s25sl064a"},	{"w25x16"},	{"m25p10"},	{"m25px64"},

	/*
	 * Entries that were used in DTs without "jedec,spi-nor" fallback and
	 * should be kept for backward compatibility.
	 */
	{"at25df321a"},	{"at25df641"},	{"at26df081a"},
	{"mx25l4005a"},	{"mx25l1606e"},	{"mx25l6405d"},	{"mx25l12805d"},
	{"mx25l25635e"},{"mx66l51235l"},
	{"n25q064"},	{"n25q128a11"},	{"n25q128a13"},	{"n25q512a"},
	{"s25fl256s1"},	{"s25fl512s"},	{"s25sl12801"},	{"s25fl008k"},
	{"s25fl064k"},
	{"sst25vf040b"},{"sst25vf016b"},{"sst25vf032b"},{"sst25wf040"},
	{"m25p40"},	{"m25p80"},	{"m25p16"},	{"m25p32"},
	{"m25p64"},	{"m25p128"},
	{"w25x80"},	{"w25x32"},	{"w25q32"},	{"w25q32dw"},
	{"w25q80bl"},	{"w25q128"},	{"w25q256"},

	/* Flashes that can't be detected using JEDEC */
	{"m25p05-nonjedec"},	{"m25p10-nonjedec"},	{"m25p20-nonjedec"},
	{"m25p40-nonjedec"},	{"m25p80-nonjedec"},	{"m25p16-nonjedec"},
	{"m25p32-nonjedec"},	{"m25p64-nonjedec"},	{"m25p128-nonjedec"},

	/* Everspin MRAMs (non-JEDEC) */
	{ "mr25h128" }, /* 128 Kib, 40 MHz */
	{ "mr25h256" }, /* 256 Kib, 40 MHz */
	{ "mr25h10" },  /*   1 Mib, 40 MHz */
	{ "mr25h40" },  /*   4 Mib, 40 MHz */

	{ },
};
MODULE_DEVICE_TABLE(spi, spi_nor_dev_ids);

static const struct of_device_id spi_nor_of_table[] = {
	/*
	 * Generic compatibility for SPI NOR that can be identified by the
	 * JEDEC READ ID opcode (0x9F). Use this, if possible.
	 */
	{ .compatible = "jedec,spi-nor" },
	{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, spi_nor_of_table);

/*
 * REVISIT: many of these chips have deep power-down modes, which
 * should clearly be entered on suspend() to minimize power use.
 * And also when they're otherwise idle...
 */
static struct spi_mem_driver spi_nor_driver = {
	.spidrv = {
		.driver = {
			.name = "spi-nor",
			.of_match_table = spi_nor_of_table,
		},
		.id_table = spi_nor_dev_ids,
	},
	.probe = spi_nor_probe,
	.remove = spi_nor_remove,
	.shutdown = spi_nor_shutdown,
};
module_spi_mem_driver(spi_nor_driver);

3595
MODULE_LICENSE("GPL v2");
3596 3597 3598
MODULE_AUTHOR("Huang Shijie <shijie8@gmail.com>");
MODULE_AUTHOR("Mike Lavender");
MODULE_DESCRIPTION("framework for SPI NOR");