core.c 158.0 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3 4 5 6 7
 * Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with
 * influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c
 *
 * Copyright (C) 2005, Intec Automation Inc.
 * Copyright (C) 2014, Freescale Semiconductor, Inc.
8 9 10 11 12 13 14 15
 */

#include <linux/err.h>
#include <linux/errno.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/mutex.h>
#include <linux/math64.h>
16
#include <linux/sizes.h>
17
#include <linux/slab.h>
18
#include <linux/sort.h>
19 20 21

#include <linux/mtd/mtd.h>
#include <linux/of_platform.h>
22
#include <linux/sched/task_stack.h>
23 24 25 26
#include <linux/spi/flash.h>
#include <linux/mtd/spi-nor.h>

/* Define max times to check status register before we give up. */
27 28 29 30 31 32 33 34 35 36 37 38

/*
 * For everything but full-chip erase; probably could be much smaller, but kept
 * around for safety for now
 */
#define DEFAULT_READY_WAIT_JIFFIES		(40UL * HZ)

/*
 * For full-chip erase, calibrated to a 2MB flash (M25P16); should be scaled up
 * for larger flash
 */
#define CHIP_ERASE_2MB_READY_WAIT_JIFFIES	(40UL * HZ)
39

40
#define SPI_NOR_MAX_ID_LEN	6
41
#define SPI_NOR_MAX_ADDR_WIDTH	4
42

43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
struct sfdp_parameter_header {
	u8		id_lsb;
	u8		minor;
	u8		major;
	u8		length; /* in double words */
	u8		parameter_table_pointer[3]; /* byte address */
	u8		id_msb;
};

#define SFDP_PARAM_HEADER_ID(p)	(((p)->id_msb << 8) | (p)->id_lsb)
#define SFDP_PARAM_HEADER_PTP(p) \
	(((p)->parameter_table_pointer[2] << 16) | \
	 ((p)->parameter_table_pointer[1] <<  8) | \
	 ((p)->parameter_table_pointer[0] <<  0))

#define SFDP_BFPT_ID		0xff00	/* Basic Flash Parameter Table */
#define SFDP_SECTOR_MAP_ID	0xff81	/* Sector Map Table */
60
#define SFDP_4BAIT_ID		0xff84  /* 4-byte Address Instruction Table */
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87

#define SFDP_SIGNATURE		0x50444653U
#define SFDP_JESD216_MAJOR	1
#define SFDP_JESD216_MINOR	0
#define SFDP_JESD216A_MINOR	5
#define SFDP_JESD216B_MINOR	6

struct sfdp_header {
	u32		signature; /* Ox50444653U <=> "SFDP" */
	u8		minor;
	u8		major;
	u8		nph; /* 0-base number of parameter headers */
	u8		unused;

	/* Basic Flash Parameter Table. */
	struct sfdp_parameter_header	bfpt_header;
};

/* Basic Flash Parameter Table */

/*
 * JESD216 rev B defines a Basic Flash Parameter Table of 16 DWORDs.
 * They are indexed from 1 but C arrays are indexed from 0.
 */
#define BFPT_DWORD(i)		((i) - 1)
#define BFPT_DWORD_MAX		16

88
/* The first version of JESD216 defined only 9 DWORDs. */
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
#define BFPT_DWORD_MAX_JESD216			9

/* 1st DWORD. */
#define BFPT_DWORD1_FAST_READ_1_1_2		BIT(16)
#define BFPT_DWORD1_ADDRESS_BYTES_MASK		GENMASK(18, 17)
#define BFPT_DWORD1_ADDRESS_BYTES_3_ONLY	(0x0UL << 17)
#define BFPT_DWORD1_ADDRESS_BYTES_3_OR_4	(0x1UL << 17)
#define BFPT_DWORD1_ADDRESS_BYTES_4_ONLY	(0x2UL << 17)
#define BFPT_DWORD1_DTR				BIT(19)
#define BFPT_DWORD1_FAST_READ_1_2_2		BIT(20)
#define BFPT_DWORD1_FAST_READ_1_4_4		BIT(21)
#define BFPT_DWORD1_FAST_READ_1_1_4		BIT(22)

/* 5th DWORD. */
#define BFPT_DWORD5_FAST_READ_2_2_2		BIT(0)
#define BFPT_DWORD5_FAST_READ_4_4_4		BIT(4)

/* 11th DWORD. */
#define BFPT_DWORD11_PAGE_SIZE_SHIFT		4
#define BFPT_DWORD11_PAGE_SIZE_MASK		GENMASK(7, 4)

/* 15th DWORD. */

/*
 * (from JESD216 rev B)
 * Quad Enable Requirements (QER):
 * - 000b: Device does not have a QE bit. Device detects 1-1-4 and 1-4-4
 *         reads based on instruction. DQ3/HOLD# functions are hold during
 *         instruction phase.
 * - 001b: QE is bit 1 of status register 2. It is set via Write Status with
 *         two data bytes where bit 1 of the second byte is one.
 *         [...]
 *         Writing only one byte to the status register has the side-effect of
 *         clearing status register 2, including the QE bit. The 100b code is
 *         used if writing one byte to the status register does not modify
 *         status register 2.
 * - 010b: QE is bit 6 of status register 1. It is set via Write Status with
 *         one data byte where bit 6 is one.
 *         [...]
 * - 011b: QE is bit 7 of status register 2. It is set via Write status
 *         register 2 instruction 3Eh with one data byte where bit 7 is one.
 *         [...]
 *         The status register 2 is read using instruction 3Fh.
 * - 100b: QE is bit 1 of status register 2. It is set via Write Status with
 *         two data bytes where bit 1 of the second byte is one.
 *         [...]
 *         In contrast to the 001b code, writing one byte to the status
 *         register does not modify status register 2.
 * - 101b: QE is bit 1 of status register 2. Status register 1 is read using
 *         Read Status instruction 05h. Status register2 is read using
139
 *         instruction 35h. QE is set via Write Status instruction 01h with
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
 *         two data bytes where bit 1 of the second byte is one.
 *         [...]
 */
#define BFPT_DWORD15_QER_MASK			GENMASK(22, 20)
#define BFPT_DWORD15_QER_NONE			(0x0UL << 20) /* Micron */
#define BFPT_DWORD15_QER_SR2_BIT1_BUGGY		(0x1UL << 20)
#define BFPT_DWORD15_QER_SR1_BIT6		(0x2UL << 20) /* Macronix */
#define BFPT_DWORD15_QER_SR2_BIT7		(0x3UL << 20)
#define BFPT_DWORD15_QER_SR2_BIT1_NO_RD		(0x4UL << 20)
#define BFPT_DWORD15_QER_SR2_BIT1		(0x5UL << 20) /* Spansion */

struct sfdp_bfpt {
	u32	dwords[BFPT_DWORD_MAX];
};

/**
 * struct spi_nor_fixups - SPI NOR fixup hooks
157 158 159
 * @default_init: called after default flash parameters init. Used to tweak
 *                flash parameters when information provided by the flash_info
 *                table is incomplete or wrong.
160
 * @post_bfpt: called after the BFPT table has been parsed
161 162 163 164 165
 * @post_sfdp: called after SFDP has been parsed (is also called for SPI NORs
 *             that do not support RDSFDP). Typically used to tweak various
 *             parameters that could not be extracted by other means (i.e.
 *             when information provided by the SFDP/flash_info tables are
 *             incomplete or wrong).
166 167 168 169 170
 *
 * Those hooks can be used to tweak the SPI NOR configuration when the SFDP
 * table is broken or not available.
 */
struct spi_nor_fixups {
171
	void (*default_init)(struct spi_nor *nor);
172 173 174 175
	int (*post_bfpt)(struct spi_nor *nor,
			 const struct sfdp_parameter_header *bfpt_header,
			 const struct sfdp_bfpt *bfpt,
			 struct spi_nor_flash_parameter *params);
176
	void (*post_sfdp)(struct spi_nor *nor);
177 178
};

179
struct flash_info {
180 181
	char		*name;

182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
	/*
	 * This array stores the ID bytes.
	 * The first three bytes are the JEDIC ID.
	 * JEDEC ID zero means "no ID" (mostly older chips).
	 */
	u8		id[SPI_NOR_MAX_ID_LEN];
	u8		id_len;

	/* The size listed here is what works with SPINOR_OP_SE, which isn't
	 * necessarily called a "sector" by the vendor.
	 */
	unsigned	sector_size;
	u16		n_sectors;

	u16		page_size;
	u16		addr_width;

199
	u32		flags;
200 201 202 203 204 205 206 207
#define SECT_4K			BIT(0)	/* SPINOR_OP_BE_4K works uniformly */
#define SPI_NOR_NO_ERASE	BIT(1)	/* No erase command needed */
#define SST_WRITE		BIT(2)	/* use SST byte programming */
#define SPI_NOR_NO_FR		BIT(3)	/* Can't do fastread */
#define SECT_4K_PMC		BIT(4)	/* SPINOR_OP_BE_4K_PMC works uniformly */
#define SPI_NOR_DUAL_READ	BIT(5)	/* Flash supports Dual Read */
#define SPI_NOR_QUAD_READ	BIT(6)	/* Flash supports Quad Read */
#define USE_FSR			BIT(7)	/* use flag status register */
208
#define SPI_NOR_HAS_LOCK	BIT(8)	/* Flash supports lock/unlock via SR */
209 210 211 212 213
#define SPI_NOR_HAS_TB		BIT(9)	/*
					 * Flash SR has Top/Bottom (TB) protect
					 * bit. Must be used with
					 * SPI_NOR_HAS_LOCK.
					 */
214 215 216 217 218 219 220 221
#define SPI_NOR_XSR_RDY		BIT(10)	/*
					 * S3AN flashes have specific opcode to
					 * read the status register.
					 * Flags SPI_NOR_XSR_RDY and SPI_S3AN
					 * use the same bit as one implies the
					 * other, but we will get rid of
					 * SPI_S3AN soon.
					 */
222 223 224 225 226 227
#define	SPI_S3AN		BIT(10)	/*
					 * Xilinx Spartan 3AN In-System Flash
					 * (MFR cannot be used for probing
					 * because it has the same value as
					 * ATMEL flashes)
					 */
228 229 230 231
#define SPI_NOR_4B_OPCODES	BIT(11)	/*
					 * Use dedicated 4byte address op codes
					 * to support memory size above 128Mib.
					 */
232
#define NO_CHIP_ERASE		BIT(12) /* Chip does not support chip erase */
233
#define SPI_NOR_SKIP_SFDP	BIT(13)	/* Skip parsing of SFDP tables */
234
#define USE_CLSR		BIT(14)	/* use CLSR command */
235
#define SPI_NOR_OCTAL_READ	BIT(15)	/* Flash supports Octal Read */
236 237 238 239 240
#define SPI_NOR_TB_SR_BIT6	BIT(16)	/*
					 * Top/Bottom (TB) is bit 6 of
					 * status register. Must be used with
					 * SPI_NOR_HAS_TB.
					 */
241

242 243
	/* Part specific fixup hooks. */
	const struct spi_nor_fixups *fixups;
244 245 246
};

#define JEDEC_MFR(info)	((info)->id[0])
247

248
/**
249 250
 * spi_nor_spimem_bounce() - check if a bounce buffer is needed for the data
 *                           transfer
251 252 253
 * @nor:        pointer to 'struct spi_nor'
 * @op:         pointer to 'struct spi_mem_op' template for transfer
 *
254 255 256
 * If we have to use the bounce buffer, the data field in @op will be updated.
 *
 * Return: true if the bounce buffer is needed, false if not
257
 */
258
static bool spi_nor_spimem_bounce(struct spi_nor *nor, struct spi_mem_op *op)
259
{
260 261 262
	/* op->data.buf.in occupies the same memory as op->data.buf.out */
	if (object_is_on_stack(op->data.buf.in) ||
	    !virt_addr_valid(op->data.buf.in)) {
263 264
		if (op->data.nbytes > nor->bouncebuf_size)
			op->data.nbytes = nor->bouncebuf_size;
265 266
		op->data.buf.in = nor->bouncebuf;
		return true;
267 268
	}

269 270
	return false;
}
271

272 273 274 275 276 277 278 279 280 281
/**
 * spi_nor_spimem_exec_op() - execute a memory operation
 * @nor:        pointer to 'struct spi_nor'
 * @op:         pointer to 'struct spi_mem_op' template for transfer
 *
 * Return: 0 on success, -error otherwise.
 */
static int spi_nor_spimem_exec_op(struct spi_nor *nor, struct spi_mem_op *op)
{
	int error;
282

283 284 285
	error = spi_mem_adjust_op_size(nor->spimem, op);
	if (error)
		return error;
286

287
	return spi_mem_exec_op(nor->spimem, op);
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
}

/**
 * spi_nor_spimem_read_data() - read data from flash's memory region via
 *                              spi-mem
 * @nor:        pointer to 'struct spi_nor'
 * @from:       offset to read from
 * @len:        number of bytes to read
 * @buf:        pointer to dst buffer
 *
 * Return: number of bytes read successfully, -errno otherwise
 */
static ssize_t spi_nor_spimem_read_data(struct spi_nor *nor, loff_t from,
					size_t len, u8 *buf)
{
	struct spi_mem_op op =
		SPI_MEM_OP(SPI_MEM_OP_CMD(nor->read_opcode, 1),
			   SPI_MEM_OP_ADDR(nor->addr_width, from, 1),
			   SPI_MEM_OP_DUMMY(nor->read_dummy, 1),
			   SPI_MEM_OP_DATA_IN(len, buf, 1));
308
	bool usebouncebuf;
309
	ssize_t nbytes;
310
	int error;
311 312 313 314 315 316 317 318 319 320

	/* get transfer protocols. */
	op.cmd.buswidth = spi_nor_get_protocol_inst_nbits(nor->read_proto);
	op.addr.buswidth = spi_nor_get_protocol_addr_nbits(nor->read_proto);
	op.dummy.buswidth = op.addr.buswidth;
	op.data.buswidth = spi_nor_get_protocol_data_nbits(nor->read_proto);

	/* convert the dummy cycles to the number of bytes */
	op.dummy.nbytes = (nor->read_dummy * op.dummy.buswidth) / 8;

321 322
	usebouncebuf = spi_nor_spimem_bounce(nor, &op);

323 324 325 326 327 328 329 330 331
	if (nor->dirmap.rdesc) {
		nbytes = spi_mem_dirmap_read(nor->dirmap.rdesc, op.addr.val,
					     op.data.nbytes, op.data.buf.in);
	} else {
		error = spi_nor_spimem_exec_op(nor, &op);
		if (error)
			return error;
		nbytes = op.data.nbytes;
	}
332

333 334
	if (usebouncebuf && nbytes > 0)
		memcpy(buf, op.data.buf.in, nbytes);
335

336
	return nbytes;
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
}

/**
 * spi_nor_read_data() - read data from flash memory
 * @nor:        pointer to 'struct spi_nor'
 * @from:       offset to read from
 * @len:        number of bytes to read
 * @buf:        pointer to dst buffer
 *
 * Return: number of bytes read successfully, -errno otherwise
 */
static ssize_t spi_nor_read_data(struct spi_nor *nor, loff_t from, size_t len,
				 u8 *buf)
{
	if (nor->spimem)
		return spi_nor_spimem_read_data(nor, from, len, buf);

354
	return nor->controller_ops->read(nor, from, len, buf);
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
}

/**
 * spi_nor_spimem_write_data() - write data to flash memory via
 *                               spi-mem
 * @nor:        pointer to 'struct spi_nor'
 * @to:         offset to write to
 * @len:        number of bytes to write
 * @buf:        pointer to src buffer
 *
 * Return: number of bytes written successfully, -errno otherwise
 */
static ssize_t spi_nor_spimem_write_data(struct spi_nor *nor, loff_t to,
					 size_t len, const u8 *buf)
{
	struct spi_mem_op op =
		SPI_MEM_OP(SPI_MEM_OP_CMD(nor->program_opcode, 1),
			   SPI_MEM_OP_ADDR(nor->addr_width, to, 1),
			   SPI_MEM_OP_NO_DUMMY,
			   SPI_MEM_OP_DATA_OUT(len, buf, 1));
375
	ssize_t nbytes;
376
	int error;
377 378 379 380 381 382 383 384

	op.cmd.buswidth = spi_nor_get_protocol_inst_nbits(nor->write_proto);
	op.addr.buswidth = spi_nor_get_protocol_addr_nbits(nor->write_proto);
	op.data.buswidth = spi_nor_get_protocol_data_nbits(nor->write_proto);

	if (nor->program_opcode == SPINOR_OP_AAI_WP && nor->sst_write_second)
		op.addr.nbytes = 0;

385 386 387
	if (spi_nor_spimem_bounce(nor, &op))
		memcpy(nor->bouncebuf, buf, op.data.nbytes);

388 389 390 391 392 393 394 395 396
	if (nor->dirmap.wdesc) {
		nbytes = spi_mem_dirmap_write(nor->dirmap.wdesc, op.addr.val,
					      op.data.nbytes, op.data.buf.out);
	} else {
		error = spi_nor_spimem_exec_op(nor, &op);
		if (error)
			return error;
		nbytes = op.data.nbytes;
	}
397

398
	return nbytes;
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
}

/**
 * spi_nor_write_data() - write data to flash memory
 * @nor:        pointer to 'struct spi_nor'
 * @to:         offset to write to
 * @len:        number of bytes to write
 * @buf:        pointer to src buffer
 *
 * Return: number of bytes written successfully, -errno otherwise
 */
static ssize_t spi_nor_write_data(struct spi_nor *nor, loff_t to, size_t len,
				  const u8 *buf)
{
	if (nor->spimem)
		return spi_nor_spimem_write_data(nor, to, len, buf);

416
	return nor->controller_ops->write(nor, to, len, buf);
417 418
}

419 420 421 422 423
/**
 * spi_nor_write_enable() - Set write enable latch with Write Enable command.
 * @nor:	pointer to 'struct spi_nor'.
 *
 * Return: 0 on success, -errno otherwise.
424 425 426
 */
static int spi_nor_write_enable(struct spi_nor *nor)
{
427 428
	int ret;

429 430 431 432 433 434 435
	if (nor->spimem) {
		struct spi_mem_op op =
			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WREN, 1),
				   SPI_MEM_OP_NO_ADDR,
				   SPI_MEM_OP_NO_DUMMY,
				   SPI_MEM_OP_NO_DATA);

436 437 438 439
		ret = spi_mem_exec_op(nor->spimem, &op);
	} else {
		ret = nor->controller_ops->write_reg(nor, SPINOR_OP_WREN,
						     NULL, 0);
440 441
	}

442 443 444 445
	if (ret)
		dev_dbg(nor->dev, "error %d on Write Enable\n", ret);

	return ret;
446 447
}

448 449 450 451 452
/**
 * spi_nor_write_disable() - Send Write Disable instruction to the chip.
 * @nor:	pointer to 'struct spi_nor'.
 *
 * Return: 0 on success, -errno otherwise.
453 454 455
 */
static int spi_nor_write_disable(struct spi_nor *nor)
{
456 457
	int ret;

458 459 460 461 462 463 464
	if (nor->spimem) {
		struct spi_mem_op op =
			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRDI, 1),
				   SPI_MEM_OP_NO_ADDR,
				   SPI_MEM_OP_NO_DUMMY,
				   SPI_MEM_OP_NO_DATA);

465 466 467 468
		ret = spi_mem_exec_op(nor->spimem, &op);
	} else {
		ret = nor->controller_ops->write_reg(nor, SPINOR_OP_WRDI,
						     NULL, 0);
469 470
	}

471 472 473 474
	if (ret)
		dev_dbg(nor->dev, "error %d on Write Disable\n", ret);

	return ret;
475 476
}

477 478 479 480 481 482 483
/**
 * spi_nor_read_sr() - Read the Status Register.
 * @nor:	pointer to 'struct spi_nor'.
 * @sr:		pointer to a DMA-able buffer where the value of the
 *              Status Register will be written.
 *
 * Return: 0 on success, -errno otherwise.
484
 */
485
static int spi_nor_read_sr(struct spi_nor *nor, u8 *sr)
486 487 488
{
	int ret;

489 490 491 492 493
	if (nor->spimem) {
		struct spi_mem_op op =
			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDSR, 1),
				   SPI_MEM_OP_NO_ADDR,
				   SPI_MEM_OP_NO_DUMMY,
494
				   SPI_MEM_OP_DATA_IN(1, sr, 1));
495 496 497

		ret = spi_mem_exec_op(nor->spimem, &op);
	} else {
498
		ret = nor->controller_ops->read_reg(nor, SPINOR_OP_RDSR,
499
						    sr, 1);
500 501
	}

502
	if (ret)
503
		dev_dbg(nor->dev, "error %d reading SR\n", ret);
504

505
	return ret;
506 507
}

508 509 510 511 512 513 514
/**
 * spi_nor_read_fsr() - Read the Flag Status Register.
 * @nor:	pointer to 'struct spi_nor'
 * @fsr:	pointer to a DMA-able buffer where the value of the
 *              Flag Status Register will be written.
 *
 * Return: 0 on success, -errno otherwise.
515
 */
516
static int spi_nor_read_fsr(struct spi_nor *nor, u8 *fsr)
517 518 519
{
	int ret;

520 521 522 523 524
	if (nor->spimem) {
		struct spi_mem_op op =
			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDFSR, 1),
				   SPI_MEM_OP_NO_ADDR,
				   SPI_MEM_OP_NO_DUMMY,
525
				   SPI_MEM_OP_DATA_IN(1, fsr, 1));
526 527 528

		ret = spi_mem_exec_op(nor->spimem, &op);
	} else {
529
		ret = nor->controller_ops->read_reg(nor, SPINOR_OP_RDFSR,
530
						    fsr, 1);
531 532
	}

533
	if (ret)
534
		dev_dbg(nor->dev, "error %d reading FSR\n", ret);
535

536
	return ret;
537 538
}

539 540 541 542 543 544 545 546
/**
 * spi_nor_read_cr() - Read the Configuration Register using the
 * SPINOR_OP_RDCR (35h) command.
 * @nor:	pointer to 'struct spi_nor'
 * @cr:		pointer to a DMA-able buffer where the value of the
 *              Configuration Register will be written.
 *
 * Return: 0 on success, -errno otherwise.
547
 */
548
static int spi_nor_read_cr(struct spi_nor *nor, u8 *cr)
549 550 551
{
	int ret;

552 553 554 555 556
	if (nor->spimem) {
		struct spi_mem_op op =
			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDCR, 1),
				   SPI_MEM_OP_NO_ADDR,
				   SPI_MEM_OP_NO_DUMMY,
557
				   SPI_MEM_OP_DATA_IN(1, cr, 1));
558 559 560

		ret = spi_mem_exec_op(nor->spimem, &op);
	} else {
561
		ret = nor->controller_ops->read_reg(nor, SPINOR_OP_RDCR, cr, 1);
562 563
	}

564
	if (ret)
565
		dev_dbg(nor->dev, "error %d reading CR\n", ret);
566

567
	return ret;
568 569
}

570
/**
571
 * spi_nor_set_4byte_addr_mode() - Enter/Exit 4-byte address mode.
572 573 574 575 576 577
 * @nor:	pointer to 'struct spi_nor'.
 * @enable:	true to enter the 4-byte address mode, false to exit the 4-byte
 *		address mode.
 *
 * Return: 0 on success, -errno otherwise.
 */
578
static int spi_nor_set_4byte_addr_mode(struct spi_nor *nor, bool enable)
579
{
580 581
	int ret;

582 583 584 585 586 587 588 589 590 591
	if (nor->spimem) {
		struct spi_mem_op op =
			SPI_MEM_OP(SPI_MEM_OP_CMD(enable ?
						  SPINOR_OP_EN4B :
						  SPINOR_OP_EX4B,
						  1),
				  SPI_MEM_OP_NO_ADDR,
				  SPI_MEM_OP_NO_DUMMY,
				  SPI_MEM_OP_NO_DATA);

592 593 594 595 596 597
		ret = spi_mem_exec_op(nor->spimem, &op);
	} else {
		ret = nor->controller_ops->write_reg(nor,
						     enable ? SPINOR_OP_EN4B :
							      SPINOR_OP_EX4B,
						     NULL, 0);
598 599
	}

600 601 602 603
	if (ret)
		dev_dbg(nor->dev, "error %d setting 4-byte mode\n", ret);

	return ret;
604 605
}

606
/**
607 608
 * st_micron_set_4byte_addr_mode() - Set 4-byte address mode for ST and Micron
 * flashes.
609 610 611 612 613 614
 * @nor:	pointer to 'struct spi_nor'.
 * @enable:	true to enter the 4-byte address mode, false to exit the 4-byte
 *		address mode.
 *
 * Return: 0 on success, -errno otherwise.
 */
615
static int st_micron_set_4byte_addr_mode(struct spi_nor *nor, bool enable)
616 617 618
{
	int ret;

619 620 621 622
	ret = spi_nor_write_enable(nor);
	if (ret)
		return ret;

623
	ret = spi_nor_set_4byte_addr_mode(nor, enable);
624 625
	if (ret)
		return ret;
626

627
	return spi_nor_write_disable(nor);
628 629
}

630
/**
631 632
 * spansion_set_4byte_addr_mode() - Set 4-byte address mode for Spansion
 * flashes.
633 634 635 636 637 638
 * @nor:	pointer to 'struct spi_nor'.
 * @enable:	true to enter the 4-byte address mode, false to exit the 4-byte
 *		address mode.
 *
 * Return: 0 on success, -errno otherwise.
 */
639
static int spansion_set_4byte_addr_mode(struct spi_nor *nor, bool enable)
640
{
641 642
	int ret;

643 644 645 646 647 648 649 650 651
	nor->bouncebuf[0] = enable << 7;

	if (nor->spimem) {
		struct spi_mem_op op =
			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_BRWR, 1),
				   SPI_MEM_OP_NO_ADDR,
				   SPI_MEM_OP_NO_DUMMY,
				   SPI_MEM_OP_DATA_OUT(1, nor->bouncebuf, 1));

652 653 654 655
		ret = spi_mem_exec_op(nor->spimem, &op);
	} else {
		ret = nor->controller_ops->write_reg(nor, SPINOR_OP_BRWR,
						     nor->bouncebuf, 1);
656 657
	}

658 659 660 661
	if (ret)
		dev_dbg(nor->dev, "error %d setting 4-byte mode\n", ret);

	return ret;
662 663
}

664 665 666 667 668 669 670
/**
 * spi_nor_write_ear() - Write Extended Address Register.
 * @nor:	pointer to 'struct spi_nor'.
 * @ear:	value to write to the Extended Address Register.
 *
 * Return: 0 on success, -errno otherwise.
 */
671 672
static int spi_nor_write_ear(struct spi_nor *nor, u8 ear)
{
673 674
	int ret;

675 676 677 678 679 680 681 682 683
	nor->bouncebuf[0] = ear;

	if (nor->spimem) {
		struct spi_mem_op op =
			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WREAR, 1),
				   SPI_MEM_OP_NO_ADDR,
				   SPI_MEM_OP_NO_DUMMY,
				   SPI_MEM_OP_DATA_OUT(1, nor->bouncebuf, 1));

684 685 686 687
		ret = spi_mem_exec_op(nor->spimem, &op);
	} else {
		ret = nor->controller_ops->write_reg(nor, SPINOR_OP_WREAR,
						     nor->bouncebuf, 1);
688 689
	}

690 691 692 693
	if (ret)
		dev_dbg(nor->dev, "error %d writing EAR\n", ret);

	return ret;
694 695
}

696
/**
697
 * winbond_set_4byte_addr_mode() - Set 4-byte address mode for Winbond flashes.
698 699 700 701 702 703
 * @nor:	pointer to 'struct spi_nor'.
 * @enable:	true to enter the 4-byte address mode, false to exit the 4-byte
 *		address mode.
 *
 * Return: 0 on success, -errno otherwise.
 */
704
static int winbond_set_4byte_addr_mode(struct spi_nor *nor, bool enable)
705
{
706
	int ret;
707

708
	ret = spi_nor_set_4byte_addr_mode(nor, enable);
709 710
	if (ret || enable)
		return ret;
711

712 713 714 715 716
	/*
	 * On Winbond W25Q256FV, leaving 4byte mode causes the Extended Address
	 * Register to be set to 1, so all 3-byte-address reads come from the
	 * second 16M. We must clear the register to enable normal behavior.
	 */
717 718 719 720
	ret = spi_nor_write_enable(nor);
	if (ret)
		return ret;

721
	ret = spi_nor_write_ear(nor, 0);
722 723
	if (ret)
		return ret;
724

725
	return spi_nor_write_disable(nor);
726
}
727

728 729 730 731 732 733 734 735
/**
 * spi_nor_xread_sr() - Read the Status Register on S3AN flashes.
 * @nor:	pointer to 'struct spi_nor'.
 * @sr:		pointer to a DMA-able buffer where the value of the
 *              Status Register will be written.
 *
 * Return: 0 on success, -errno otherwise.
 */
736 737
static int spi_nor_xread_sr(struct spi_nor *nor, u8 *sr)
{
738 739
	int ret;

740 741 742 743 744 745 746
	if (nor->spimem) {
		struct spi_mem_op op =
			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_XRDSR, 1),
				   SPI_MEM_OP_NO_ADDR,
				   SPI_MEM_OP_NO_DUMMY,
				   SPI_MEM_OP_DATA_IN(1, sr, 1));

747 748 749 750
		ret = spi_mem_exec_op(nor->spimem, &op);
	} else {
		ret = nor->controller_ops->read_reg(nor, SPINOR_OP_XRDSR,
						    sr, 1);
751 752
	}

753 754 755 756
	if (ret)
		dev_dbg(nor->dev, "error %d reading XRDSR\n", ret);

	return ret;
757 758
}

759
/**
760 761
 * spi_nor_xsr_ready() - Query the Status Register of the S3AN flash to see if
 * the flash is ready for new commands.
762 763 764 765
 * @nor:	pointer to 'struct spi_nor'.
 *
 * Return: 0 on success, -errno otherwise.
 */
766
static int spi_nor_xsr_ready(struct spi_nor *nor)
767 768 769
{
	int ret;

770
	ret = spi_nor_xread_sr(nor, nor->bouncebuf);
771
	if (ret)
772 773
		return ret;

774
	return !!(nor->bouncebuf[0] & XSR_RDY);
775 776
}

777 778 779 780
/**
 * spi_nor_clear_sr() - Clear the Status Register.
 * @nor:	pointer to 'struct spi_nor'.
 */
781
static void spi_nor_clear_sr(struct spi_nor *nor)
782
{
783 784
	int ret;

785 786 787 788 789 790 791
	if (nor->spimem) {
		struct spi_mem_op op =
			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_CLSR, 1),
				   SPI_MEM_OP_NO_ADDR,
				   SPI_MEM_OP_NO_DUMMY,
				   SPI_MEM_OP_NO_DATA);

792 793 794 795
		ret = spi_mem_exec_op(nor->spimem, &op);
	} else {
		ret = nor->controller_ops->write_reg(nor, SPINOR_OP_CLSR,
						     NULL, 0);
796 797
	}

798 799
	if (ret)
		dev_dbg(nor->dev, "error %d clearing SR\n", ret);
800 801
}

802 803 804 805 806 807 808
/**
 * spi_nor_sr_ready() - Query the Status Register to see if the flash is ready
 * for new commands.
 * @nor:	pointer to 'struct spi_nor'.
 *
 * Return: 0 on success, -errno otherwise.
 */
809
static int spi_nor_sr_ready(struct spi_nor *nor)
810
{
811
	int ret = spi_nor_read_sr(nor, nor->bouncebuf);
812

813 814 815 816 817 818
	if (ret)
		return ret;

	if (nor->flags & SNOR_F_USE_CLSR &&
	    nor->bouncebuf[0] & (SR_E_ERR | SR_P_ERR)) {
		if (nor->bouncebuf[0] & SR_E_ERR)
819 820 821 822
			dev_err(nor->dev, "Erase Error occurred\n");
		else
			dev_err(nor->dev, "Programming Error occurred\n");

823
		spi_nor_clear_sr(nor);
824 825 826
		return -EIO;
	}

827
	return !(nor->bouncebuf[0] & SR_WIP);
828
}
829

830 831 832 833
/**
 * spi_nor_clear_fsr() - Clear the Flag Status Register.
 * @nor:	pointer to 'struct spi_nor'.
 */
834
static void spi_nor_clear_fsr(struct spi_nor *nor)
835
{
836 837
	int ret;

838 839 840 841 842 843 844
	if (nor->spimem) {
		struct spi_mem_op op =
			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_CLFSR, 1),
				   SPI_MEM_OP_NO_ADDR,
				   SPI_MEM_OP_NO_DUMMY,
				   SPI_MEM_OP_NO_DATA);

845 846 847 848
		ret = spi_mem_exec_op(nor->spimem, &op);
	} else {
		ret = nor->controller_ops->write_reg(nor, SPINOR_OP_CLFSR,
						     NULL, 0);
849 850
	}

851 852
	if (ret)
		dev_dbg(nor->dev, "error %d clearing FSR\n", ret);
853 854
}

855 856 857 858 859 860 861
/**
 * spi_nor_fsr_ready() - Query the Flag Status Register to see if the flash is
 * ready for new commands.
 * @nor:	pointer to 'struct spi_nor'.
 *
 * Return: 0 on success, -errno otherwise.
 */
862
static int spi_nor_fsr_ready(struct spi_nor *nor)
863
{
864 865 866 867
	int ret = spi_nor_read_fsr(nor, nor->bouncebuf);

	if (ret)
		return ret;
868

869 870
	if (nor->bouncebuf[0] & (FSR_E_ERR | FSR_P_ERR)) {
		if (nor->bouncebuf[0] & FSR_E_ERR)
871 872 873 874
			dev_err(nor->dev, "Erase operation failed.\n");
		else
			dev_err(nor->dev, "Program operation failed.\n");

875
		if (nor->bouncebuf[0] & FSR_PT_ERR)
876 877 878
			dev_err(nor->dev,
			"Attempted to modify a protected sector.\n");

879
		spi_nor_clear_fsr(nor);
880 881 882
		return -EIO;
	}

883
	return nor->bouncebuf[0] & FSR_READY;
884
}
885

886 887 888 889 890 891
/**
 * spi_nor_ready() - Query the flash to see if it is ready for new commands.
 * @nor:	pointer to 'struct spi_nor'.
 *
 * Return: 0 on success, -errno otherwise.
 */
892 893 894
static int spi_nor_ready(struct spi_nor *nor)
{
	int sr, fsr;
895 896

	if (nor->flags & SNOR_F_READY_XSR_RDY)
897
		sr = spi_nor_xsr_ready(nor);
898 899
	else
		sr = spi_nor_sr_ready(nor);
900 901 902 903 904 905
	if (sr < 0)
		return sr;
	fsr = nor->flags & SNOR_F_USE_FSR ? spi_nor_fsr_ready(nor) : 1;
	if (fsr < 0)
		return fsr;
	return sr && fsr;
906 907
}

908 909 910 911 912 913 914
/**
 * spi_nor_wait_till_ready_with_timeout() - Service routine to read the
 * Status Register until ready, or timeout occurs.
 * @nor:		pointer to "struct spi_nor".
 * @timeout_jiffies:	jiffies to wait until timeout.
 *
 * Return: 0 on success, -errno otherwise.
915
 */
916 917
static int spi_nor_wait_till_ready_with_timeout(struct spi_nor *nor,
						unsigned long timeout_jiffies)
918 919
{
	unsigned long deadline;
920
	int timeout = 0, ret;
921

922
	deadline = jiffies + timeout_jiffies;
923

924 925 926
	while (!timeout) {
		if (time_after_eq(jiffies, deadline))
			timeout = 1;
927

928 929 930 931 932
		ret = spi_nor_ready(nor);
		if (ret < 0)
			return ret;
		if (ret)
			return 0;
933 934 935 936

		cond_resched();
	}

937
	dev_dbg(nor->dev, "flash operation timed out\n");
938 939 940 941

	return -ETIMEDOUT;
}

942 943 944 945 946 947 948
/**
 * spi_nor_wait_till_ready() - Wait for a predefined amount of time for the
 * flash to be ready, or timeout occurs.
 * @nor:	pointer to "struct spi_nor".
 *
 * Return: 0 on success, -errno otherwise.
 */
949 950 951 952 953 954
static int spi_nor_wait_till_ready(struct spi_nor *nor)
{
	return spi_nor_wait_till_ready_with_timeout(nor,
						    DEFAULT_READY_WAIT_JIFFIES);
}

955 956 957 958 959 960 961
/**
 * spi_nor_write_sr() - Write the Status Register.
 * @nor:	pointer to 'struct spi_nor'.
 * @sr:		pointer to DMA-able buffer to write to the Status Register.
 * @len:	number of bytes to write to the Status Register.
 *
 * Return: 0 on success, -errno otherwise.
962
 */
963
static int spi_nor_write_sr(struct spi_nor *nor, const u8 *sr, size_t len)
964 965 966 967 968 969 970 971 972 973 974 975
{
	int ret;

	ret = spi_nor_write_enable(nor);
	if (ret)
		return ret;

	if (nor->spimem) {
		struct spi_mem_op op =
			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRSR, 1),
				   SPI_MEM_OP_NO_ADDR,
				   SPI_MEM_OP_NO_DUMMY,
976
				   SPI_MEM_OP_DATA_OUT(len, sr, 1));
977 978 979 980

		ret = spi_mem_exec_op(nor->spimem, &op);
	} else {
		ret = nor->controller_ops->write_reg(nor, SPINOR_OP_WRSR,
981
						     sr, len);
982 983 984 985 986 987 988 989 990 991
	}

	if (ret) {
		dev_dbg(nor->dev, "error %d writing SR\n", ret);
		return ret;
	}

	return spi_nor_wait_till_ready(nor);
}

992 993 994 995 996 997 998 999 1000
/**
 * spi_nor_write_sr1_and_check() - Write one byte to the Status Register 1 and
 * ensure that the byte written match the received value.
 * @nor:	pointer to a 'struct spi_nor'.
 * @sr1:	byte value to be written to the Status Register.
 *
 * Return: 0 on success, -errno otherwise.
 */
static int spi_nor_write_sr1_and_check(struct spi_nor *nor, u8 sr1)
1001 1002 1003
{
	int ret;

1004
	nor->bouncebuf[0] = sr1;
1005 1006

	ret = spi_nor_write_sr(nor, nor->bouncebuf, 1);
1007 1008 1009
	if (ret)
		return ret;

1010 1011
	ret = spi_nor_read_sr(nor, nor->bouncebuf);
	if (ret)
1012 1013
		return ret;

1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
	if (nor->bouncebuf[0] != sr1) {
		dev_dbg(nor->dev, "SR1: read back test failed\n");
		return -EIO;
	}

	return 0;
}

/**
 * spi_nor_write_16bit_sr_and_check() - Write the Status Register 1 and the
 * Status Register 2 in one shot. Ensure that the byte written in the Status
 * Register 1 match the received value, and that the 16-bit Write did not
 * affect what was already in the Status Register 2.
 * @nor:	pointer to a 'struct spi_nor'.
 * @sr1:	byte value to be written to the Status Register 1.
 *
 * Return: 0 on success, -errno otherwise.
 */
static int spi_nor_write_16bit_sr_and_check(struct spi_nor *nor, u8 sr1)
{
	int ret;
	u8 *sr_cr = nor->bouncebuf;
	u8 cr_written;

	/* Make sure we don't overwrite the contents of Status Register 2. */
	if (!(nor->flags & SNOR_F_NO_READ_CR)) {
		ret = spi_nor_read_cr(nor, &sr_cr[1]);
		if (ret)
			return ret;
	} else if (nor->params.quad_enable) {
		/*
		 * If the Status Register 2 Read command (35h) is not
		 * supported, we should at least be sure we don't
		 * change the value of the SR2 Quad Enable bit.
		 *
		 * We can safely assume that when the Quad Enable method is
		 * set, the value of the QE bit is one, as a consequence of the
		 * nor->params.quad_enable() call.
		 *
		 * We can safely assume that the Quad Enable bit is present in
		 * the Status Register 2 at BIT(1). According to the JESD216
		 * revB standard, BFPT DWORDS[15], bits 22:20, the 16-bit
		 * Write Status (01h) command is available just for the cases
		 * in which the QE bit is described in SR2 at BIT(1).
		 */
1059
		sr_cr[1] = SR2_QUAD_EN_BIT1;
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
	} else {
		sr_cr[1] = 0;
	}

	sr_cr[0] = sr1;

	ret = spi_nor_write_sr(nor, sr_cr, 2);
	if (ret)
		return ret;

	if (nor->flags & SNOR_F_NO_READ_CR)
		return 0;

	cr_written = sr_cr[1];

	ret = spi_nor_read_cr(nor, &sr_cr[1]);
	if (ret)
		return ret;

	if (cr_written != sr_cr[1]) {
		dev_dbg(nor->dev, "CR: read back test failed\n");
1081 1082 1083 1084
		return -EIO;
	}

	return 0;
1085 1086
}

1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
/**
 * spi_nor_write_16bit_cr_and_check() - Write the Status Register 1 and the
 * Configuration Register in one shot. Ensure that the byte written in the
 * Configuration Register match the received value, and that the 16-bit Write
 * did not affect what was already in the Status Register 1.
 * @nor:	pointer to a 'struct spi_nor'.
 * @cr:		byte value to be written to the Configuration Register.
 *
 * Return: 0 on success, -errno otherwise.
 */
static int spi_nor_write_16bit_cr_and_check(struct spi_nor *nor, u8 cr)
{
	int ret;
	u8 *sr_cr = nor->bouncebuf;
	u8 sr_written;

	/* Keep the current value of the Status Register 1. */
	ret = spi_nor_read_sr(nor, sr_cr);
	if (ret)
		return ret;

	sr_cr[1] = cr;

	ret = spi_nor_write_sr(nor, sr_cr, 2);
	if (ret)
		return ret;

	sr_written = sr_cr[0];

	ret = spi_nor_read_sr(nor, sr_cr);
	if (ret)
		return ret;

	if (sr_written != sr_cr[0]) {
		dev_dbg(nor->dev, "SR: Read back test failed\n");
		return -EIO;
	}

	if (nor->flags & SNOR_F_NO_READ_CR)
		return 0;

	ret = spi_nor_read_cr(nor, &sr_cr[1]);
	if (ret)
		return ret;

	if (cr != sr_cr[1]) {
		dev_dbg(nor->dev, "CR: read back test failed\n");
		return -EIO;
	}

	return 0;
}

1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
/**
 * spi_nor_write_sr_and_check() - Write the Status Register 1 and ensure that
 * the byte written match the received value without affecting other bits in the
 * Status Register 1 and 2.
 * @nor:	pointer to a 'struct spi_nor'.
 * @sr1:	byte value to be written to the Status Register.
 *
 * Return: 0 on success, -errno otherwise.
 */
static int spi_nor_write_sr_and_check(struct spi_nor *nor, u8 sr1)
{
	if (nor->flags & SNOR_F_HAS_16BIT_SR)
		return spi_nor_write_16bit_sr_and_check(nor, sr1);

	return spi_nor_write_sr1_and_check(nor, sr1);
}

1157 1158 1159 1160 1161 1162 1163 1164
/**
 * spi_nor_write_sr2() - Write the Status Register 2 using the
 * SPINOR_OP_WRSR2 (3eh) command.
 * @nor:	pointer to 'struct spi_nor'.
 * @sr2:	pointer to DMA-able buffer to write to the Status Register 2.
 *
 * Return: 0 on success, -errno otherwise.
 */
1165
static int spi_nor_write_sr2(struct spi_nor *nor, const u8 *sr2)
1166
{
1167 1168
	int ret;

1169 1170 1171 1172
	ret = spi_nor_write_enable(nor);
	if (ret)
		return ret;

1173 1174 1175 1176 1177 1178 1179
	if (nor->spimem) {
		struct spi_mem_op op =
			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRSR2, 1),
				   SPI_MEM_OP_NO_ADDR,
				   SPI_MEM_OP_NO_DUMMY,
				   SPI_MEM_OP_DATA_OUT(1, sr2, 1));

1180 1181 1182 1183
		ret = spi_mem_exec_op(nor->spimem, &op);
	} else {
		ret = nor->controller_ops->write_reg(nor, SPINOR_OP_WRSR2,
						     sr2, 1);
1184 1185
	}

1186
	if (ret) {
1187
		dev_dbg(nor->dev, "error %d writing SR2\n", ret);
1188 1189
		return ret;
	}
1190

1191
	return spi_nor_wait_till_ready(nor);
1192 1193
}

1194 1195 1196 1197 1198 1199 1200 1201 1202
/**
 * spi_nor_read_sr2() - Read the Status Register 2 using the
 * SPINOR_OP_RDSR2 (3fh) command.
 * @nor:	pointer to 'struct spi_nor'.
 * @sr2:	pointer to DMA-able buffer where the value of the
 *		Status Register 2 will be written.
 *
 * Return: 0 on success, -errno otherwise.
 */
1203 1204
static int spi_nor_read_sr2(struct spi_nor *nor, u8 *sr2)
{
1205 1206
	int ret;

1207 1208 1209 1210 1211 1212 1213
	if (nor->spimem) {
		struct spi_mem_op op =
			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDSR2, 1),
				   SPI_MEM_OP_NO_ADDR,
				   SPI_MEM_OP_NO_DUMMY,
				   SPI_MEM_OP_DATA_IN(1, sr2, 1));

1214 1215 1216 1217
		ret = spi_mem_exec_op(nor->spimem, &op);
	} else {
		ret = nor->controller_ops->read_reg(nor, SPINOR_OP_RDSR2,
						    sr2, 1);
1218 1219
	}

1220 1221 1222 1223
	if (ret)
		dev_dbg(nor->dev, "error %d reading SR2\n", ret);

	return ret;
1224 1225
}

1226 1227 1228
/**
 * spi_nor_erase_chip() - Erase the entire flash memory.
 * @nor:	pointer to 'struct spi_nor'.
1229
 *
1230
 * Return: 0 on success, -errno otherwise.
1231
 */
1232
static int spi_nor_erase_chip(struct spi_nor *nor)
1233
{
1234 1235
	int ret;

1236
	dev_dbg(nor->dev, " %lldKiB\n", (long long)(nor->mtd.size >> 10));
1237

1238 1239 1240 1241 1242 1243 1244
	if (nor->spimem) {
		struct spi_mem_op op =
			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_CHIP_ERASE, 1),
				   SPI_MEM_OP_NO_ADDR,
				   SPI_MEM_OP_NO_DUMMY,
				   SPI_MEM_OP_NO_DATA);

1245 1246 1247 1248
		ret = spi_mem_exec_op(nor->spimem, &op);
	} else {
		ret = nor->controller_ops->write_reg(nor, SPINOR_OP_CHIP_ERASE,
						     NULL, 0);
1249 1250
	}

1251 1252 1253 1254
	if (ret)
		dev_dbg(nor->dev, "error %d erasing chip\n", ret);

	return ret;
1255 1256
}

1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
static struct spi_nor *mtd_to_spi_nor(struct mtd_info *mtd)
{
	return mtd->priv;
}

static u8 spi_nor_convert_opcode(u8 opcode, const u8 table[][2], size_t size)
{
	size_t i;

	for (i = 0; i < size; i++)
		if (table[i][0] == opcode)
			return table[i][1];

	/* No conversion found, keep input op code. */
	return opcode;
}

static u8 spi_nor_convert_3to4_read(u8 opcode)
{
	static const u8 spi_nor_3to4_read[][2] = {
		{ SPINOR_OP_READ,	SPINOR_OP_READ_4B },
		{ SPINOR_OP_READ_FAST,	SPINOR_OP_READ_FAST_4B },
		{ SPINOR_OP_READ_1_1_2,	SPINOR_OP_READ_1_1_2_4B },
		{ SPINOR_OP_READ_1_2_2,	SPINOR_OP_READ_1_2_2_4B },
		{ SPINOR_OP_READ_1_1_4,	SPINOR_OP_READ_1_1_4_4B },
		{ SPINOR_OP_READ_1_4_4,	SPINOR_OP_READ_1_4_4_4B },
		{ SPINOR_OP_READ_1_1_8,	SPINOR_OP_READ_1_1_8_4B },
		{ SPINOR_OP_READ_1_8_8,	SPINOR_OP_READ_1_8_8_4B },

		{ SPINOR_OP_READ_1_1_1_DTR,	SPINOR_OP_READ_1_1_1_DTR_4B },
		{ SPINOR_OP_READ_1_2_2_DTR,	SPINOR_OP_READ_1_2_2_DTR_4B },
		{ SPINOR_OP_READ_1_4_4_DTR,	SPINOR_OP_READ_1_4_4_DTR_4B },
	};

	return spi_nor_convert_opcode(opcode, spi_nor_3to4_read,
				      ARRAY_SIZE(spi_nor_3to4_read));
}

static u8 spi_nor_convert_3to4_program(u8 opcode)
{
	static const u8 spi_nor_3to4_program[][2] = {
		{ SPINOR_OP_PP,		SPINOR_OP_PP_4B },
		{ SPINOR_OP_PP_1_1_4,	SPINOR_OP_PP_1_1_4_4B },
		{ SPINOR_OP_PP_1_4_4,	SPINOR_OP_PP_1_4_4_4B },
		{ SPINOR_OP_PP_1_1_8,	SPINOR_OP_PP_1_1_8_4B },
		{ SPINOR_OP_PP_1_8_8,	SPINOR_OP_PP_1_8_8_4B },
	};

	return spi_nor_convert_opcode(opcode, spi_nor_3to4_program,
				      ARRAY_SIZE(spi_nor_3to4_program));
}

static u8 spi_nor_convert_3to4_erase(u8 opcode)
{
	static const u8 spi_nor_3to4_erase[][2] = {
		{ SPINOR_OP_BE_4K,	SPINOR_OP_BE_4K_4B },
		{ SPINOR_OP_BE_32K,	SPINOR_OP_BE_32K_4B },
		{ SPINOR_OP_SE,		SPINOR_OP_SE_4B },
	};

	return spi_nor_convert_opcode(opcode, spi_nor_3to4_erase,
				      ARRAY_SIZE(spi_nor_3to4_erase));
}

static void spi_nor_set_4byte_opcodes(struct spi_nor *nor)
{
	nor->read_opcode = spi_nor_convert_3to4_read(nor->read_opcode);
	nor->program_opcode = spi_nor_convert_3to4_program(nor->program_opcode);
	nor->erase_opcode = spi_nor_convert_3to4_erase(nor->erase_opcode);

	if (!spi_nor_has_uniform_erase(nor)) {
		struct spi_nor_erase_map *map = &nor->params.erase_map;
		struct spi_nor_erase_type *erase;
		int i;

		for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
			erase = &map->erase_type[i];
			erase->opcode =
				spi_nor_convert_3to4_erase(erase->opcode);
		}
	}
}

1340
static int spi_nor_lock_and_prep(struct spi_nor *nor)
1341 1342 1343 1344 1345
{
	int ret = 0;

	mutex_lock(&nor->lock);

1346
	if (nor->controller_ops &&  nor->controller_ops->prepare) {
1347
		ret = nor->controller_ops->prepare(nor);
1348 1349 1350 1351 1352 1353 1354 1355
		if (ret) {
			mutex_unlock(&nor->lock);
			return ret;
		}
	}
	return ret;
}

1356
static void spi_nor_unlock_and_unprep(struct spi_nor *nor)
1357
{
1358
	if (nor->controller_ops && nor->controller_ops->unprepare)
1359
		nor->controller_ops->unprepare(nor);
1360 1361 1362
	mutex_unlock(&nor->lock);
}

1363 1364 1365 1366 1367 1368 1369 1370 1371
/*
 * This code converts an address to the Default Address Mode, that has non
 * power of two page sizes. We must support this mode because it is the default
 * mode supported by Xilinx tools, it can access the whole flash area and
 * changing over to the Power-of-two mode is irreversible and corrupts the
 * original data.
 * Addr can safely be unsigned int, the biggest S3AN device is smaller than
 * 4 MiB.
 */
1372
static u32 s3an_convert_addr(struct spi_nor *nor, u32 addr)
1373
{
1374
	u32 offset, page;
1375

1376 1377 1378
	offset = addr % nor->page_size;
	page = addr / nor->page_size;
	page <<= (nor->page_size > 512) ? 10 : 9;
1379

1380
	return page | offset;
1381 1382
}

1383 1384 1385 1386 1387 1388 1389 1390
static u32 spi_nor_convert_addr(struct spi_nor *nor, loff_t addr)
{
	if (!nor->params.convert_addr)
		return addr;

	return nor->params.convert_addr(nor, addr);
}

1391 1392 1393 1394 1395 1396 1397
/*
 * Initiate the erasure of a single sector
 */
static int spi_nor_erase_sector(struct spi_nor *nor, u32 addr)
{
	int i;

1398
	addr = spi_nor_convert_addr(nor, addr);
1399

1400 1401 1402 1403 1404 1405 1406 1407
	if (nor->spimem) {
		struct spi_mem_op op =
			SPI_MEM_OP(SPI_MEM_OP_CMD(nor->erase_opcode, 1),
				   SPI_MEM_OP_ADDR(nor->addr_width, addr, 1),
				   SPI_MEM_OP_NO_DUMMY,
				   SPI_MEM_OP_NO_DATA);

		return spi_mem_exec_op(nor->spimem, &op);
1408 1409
	} else if (nor->controller_ops->erase) {
		return nor->controller_ops->erase(nor, addr);
1410 1411
	}

1412 1413 1414 1415 1416
	/*
	 * Default implementation, if driver doesn't have a specialized HW
	 * control
	 */
	for (i = nor->addr_width - 1; i >= 0; i--) {
1417
		nor->bouncebuf[i] = addr & 0xff;
1418 1419 1420
		addr >>= 8;
	}

1421 1422
	return nor->controller_ops->write_reg(nor, nor->erase_opcode,
					      nor->bouncebuf, nor->addr_width);
1423 1424
}

1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
/**
 * spi_nor_div_by_erase_size() - calculate remainder and update new dividend
 * @erase:	pointer to a structure that describes a SPI NOR erase type
 * @dividend:	dividend value
 * @remainder:	pointer to u32 remainder (will be updated)
 *
 * Return: the result of the division
 */
static u64 spi_nor_div_by_erase_size(const struct spi_nor_erase_type *erase,
				     u64 dividend, u32 *remainder)
{
	/* JEDEC JESD216B Standard imposes erase sizes to be power of 2. */
	*remainder = (u32)dividend & erase->size_mask;
	return dividend >> erase->size_shift;
}

/**
 * spi_nor_find_best_erase_type() - find the best erase type for the given
 *				    offset in the serial flash memory and the
 *				    number of bytes to erase. The region in
 *				    which the address fits is expected to be
 *				    provided.
 * @map:	the erase map of the SPI NOR
 * @region:	pointer to a structure that describes a SPI NOR erase region
 * @addr:	offset in the serial flash memory
 * @len:	number of bytes to erase
 *
 * Return: a pointer to the best fitted erase type, NULL otherwise.
 */
static const struct spi_nor_erase_type *
spi_nor_find_best_erase_type(const struct spi_nor_erase_map *map,
			     const struct spi_nor_erase_region *region,
			     u64 addr, u32 len)
{
	const struct spi_nor_erase_type *erase;
	u32 rem;
	int i;
	u8 erase_mask = region->offset & SNOR_ERASE_TYPE_MASK;

	/*
1465
	 * Erase types are ordered by size, with the smallest erase type at
1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
	 * index 0.
	 */
	for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
		/* Does the erase region support the tested erase type? */
		if (!(erase_mask & BIT(i)))
			continue;

		erase = &map->erase_type[i];

		/* Don't erase more than what the user has asked for. */
		if (erase->size > len)
			continue;

		/* Alignment is not mandatory for overlaid regions */
		if (region->offset & SNOR_OVERLAID_REGION)
			return erase;

		spi_nor_div_by_erase_size(erase, addr, &rem);
		if (rem)
			continue;
		else
			return erase;
	}

	return NULL;
}

/**
 * spi_nor_region_next() - get the next spi nor region
 * @region:	pointer to a structure that describes a SPI NOR erase region
 *
 * Return: the next spi nor region or NULL if last region.
 */
static struct spi_nor_erase_region *
spi_nor_region_next(struct spi_nor_erase_region *region)
{
	if (spi_nor_region_is_last(region))
		return NULL;
	region++;
	return region;
}

/**
 * spi_nor_find_erase_region() - find the region of the serial flash memory in
 *				 which the offset fits
 * @map:	the erase map of the SPI NOR
 * @addr:	offset in the serial flash memory
 *
 * Return: a pointer to the spi_nor_erase_region struct, ERR_PTR(-errno)
 *	   otherwise.
 */
static struct spi_nor_erase_region *
spi_nor_find_erase_region(const struct spi_nor_erase_map *map, u64 addr)
{
	struct spi_nor_erase_region *region = map->regions;
	u64 region_start = region->offset & ~SNOR_ERASE_FLAGS_MASK;
	u64 region_end = region_start + region->size;

	while (addr < region_start || addr >= region_end) {
		region = spi_nor_region_next(region);
		if (!region)
			return ERR_PTR(-EINVAL);

		region_start = region->offset & ~SNOR_ERASE_FLAGS_MASK;
		region_end = region_start + region->size;
	}

	return region;
}

/**
 * spi_nor_init_erase_cmd() - initialize an erase command
 * @region:	pointer to a structure that describes a SPI NOR erase region
 * @erase:	pointer to a structure that describes a SPI NOR erase type
 *
 * Return: the pointer to the allocated erase command, ERR_PTR(-errno)
 *	   otherwise.
 */
static struct spi_nor_erase_command *
spi_nor_init_erase_cmd(const struct spi_nor_erase_region *region,
		       const struct spi_nor_erase_type *erase)
{
	struct spi_nor_erase_command *cmd;

	cmd = kmalloc(sizeof(*cmd), GFP_KERNEL);
	if (!cmd)
		return ERR_PTR(-ENOMEM);

	INIT_LIST_HEAD(&cmd->list);
	cmd->opcode = erase->opcode;
	cmd->count = 1;

	if (region->offset & SNOR_OVERLAID_REGION)
		cmd->size = region->size;
	else
		cmd->size = erase->size;

	return cmd;
}

/**
 * spi_nor_destroy_erase_cmd_list() - destroy erase command list
 * @erase_list:	list of erase commands
 */
static void spi_nor_destroy_erase_cmd_list(struct list_head *erase_list)
{
	struct spi_nor_erase_command *cmd, *next;

	list_for_each_entry_safe(cmd, next, erase_list, list) {
		list_del(&cmd->list);
		kfree(cmd);
	}
}

/**
 * spi_nor_init_erase_cmd_list() - initialize erase command list
 * @nor:	pointer to a 'struct spi_nor'
 * @erase_list:	list of erase commands to be executed once we validate that the
 *		erase can be performed
 * @addr:	offset in the serial flash memory
 * @len:	number of bytes to erase
 *
 * Builds the list of best fitted erase commands and verifies if the erase can
 * be performed.
 *
 * Return: 0 on success, -errno otherwise.
 */
static int spi_nor_init_erase_cmd_list(struct spi_nor *nor,
				       struct list_head *erase_list,
				       u64 addr, u32 len)
{
1597
	const struct spi_nor_erase_map *map = &nor->params.erase_map;
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671
	const struct spi_nor_erase_type *erase, *prev_erase = NULL;
	struct spi_nor_erase_region *region;
	struct spi_nor_erase_command *cmd = NULL;
	u64 region_end;
	int ret = -EINVAL;

	region = spi_nor_find_erase_region(map, addr);
	if (IS_ERR(region))
		return PTR_ERR(region);

	region_end = spi_nor_region_end(region);

	while (len) {
		erase = spi_nor_find_best_erase_type(map, region, addr, len);
		if (!erase)
			goto destroy_erase_cmd_list;

		if (prev_erase != erase ||
		    region->offset & SNOR_OVERLAID_REGION) {
			cmd = spi_nor_init_erase_cmd(region, erase);
			if (IS_ERR(cmd)) {
				ret = PTR_ERR(cmd);
				goto destroy_erase_cmd_list;
			}

			list_add_tail(&cmd->list, erase_list);
		} else {
			cmd->count++;
		}

		addr += cmd->size;
		len -= cmd->size;

		if (len && addr >= region_end) {
			region = spi_nor_region_next(region);
			if (!region)
				goto destroy_erase_cmd_list;
			region_end = spi_nor_region_end(region);
		}

		prev_erase = erase;
	}

	return 0;

destroy_erase_cmd_list:
	spi_nor_destroy_erase_cmd_list(erase_list);
	return ret;
}

/**
 * spi_nor_erase_multi_sectors() - perform a non-uniform erase
 * @nor:	pointer to a 'struct spi_nor'
 * @addr:	offset in the serial flash memory
 * @len:	number of bytes to erase
 *
 * Build a list of best fitted erase commands and execute it once we validate
 * that the erase can be performed.
 *
 * Return: 0 on success, -errno otherwise.
 */
static int spi_nor_erase_multi_sectors(struct spi_nor *nor, u64 addr, u32 len)
{
	LIST_HEAD(erase_list);
	struct spi_nor_erase_command *cmd, *next;
	int ret;

	ret = spi_nor_init_erase_cmd_list(nor, &erase_list, addr, len);
	if (ret)
		return ret;

	list_for_each_entry_safe(cmd, next, &erase_list, list) {
		nor->erase_opcode = cmd->opcode;
		while (cmd->count) {
1672 1673 1674
			ret = spi_nor_write_enable(nor);
			if (ret)
				goto destroy_erase_cmd_list;
1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697

			ret = spi_nor_erase_sector(nor, addr);
			if (ret)
				goto destroy_erase_cmd_list;

			addr += cmd->size;
			cmd->count--;

			ret = spi_nor_wait_till_ready(nor);
			if (ret)
				goto destroy_erase_cmd_list;
		}
		list_del(&cmd->list);
		kfree(cmd);
	}

	return 0;

destroy_erase_cmd_list:
	spi_nor_destroy_erase_cmd_list(&erase_list);
	return ret;
}

1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
/*
 * Erase an address range on the nor chip.  The address range may extend
 * one or more erase sectors.  Return an error is there is a problem erasing.
 */
static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	u32 addr, len;
	uint32_t rem;
	int ret;

	dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr,
			(long long)instr->len);

1712 1713 1714 1715 1716
	if (spi_nor_has_uniform_erase(nor)) {
		div_u64_rem(instr->len, mtd->erasesize, &rem);
		if (rem)
			return -EINVAL;
	}
1717 1718 1719 1720

	addr = instr->addr;
	len = instr->len;

1721
	ret = spi_nor_lock_and_prep(nor);
1722 1723 1724 1725
	if (ret)
		return ret;

	/* whole-chip erase? */
1726
	if (len == mtd->size && !(nor->flags & SNOR_F_NO_OP_CHIP_ERASE)) {
1727 1728
		unsigned long timeout;

1729 1730 1731
		ret = spi_nor_write_enable(nor);
		if (ret)
			goto erase_err;
1732

1733 1734
		ret = spi_nor_erase_chip(nor);
		if (ret)
1735 1736
			goto erase_err;

1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
		/*
		 * Scale the timeout linearly with the size of the flash, with
		 * a minimum calibrated to an old 2MB flash. We could try to
		 * pull these from CFI/SFDP, but these values should be good
		 * enough for now.
		 */
		timeout = max(CHIP_ERASE_2MB_READY_WAIT_JIFFIES,
			      CHIP_ERASE_2MB_READY_WAIT_JIFFIES *
			      (unsigned long)(mtd->size / SZ_2M));
		ret = spi_nor_wait_till_ready_with_timeout(nor, timeout);
1747 1748 1749
		if (ret)
			goto erase_err;

1750
	/* REVISIT in some cases we could speed up erasing large regions
1751
	 * by using SPINOR_OP_SE instead of SPINOR_OP_BE_4K.  We may have set up
1752 1753 1754 1755
	 * to use "small sector erase", but that's not always optimal.
	 */

	/* "sector"-at-a-time erase */
1756
	} else if (spi_nor_has_uniform_erase(nor)) {
1757
		while (len) {
1758 1759 1760
			ret = spi_nor_write_enable(nor);
			if (ret)
				goto erase_err;
1761

1762 1763
			ret = spi_nor_erase_sector(nor, addr);
			if (ret)
1764 1765 1766 1767
				goto erase_err;

			addr += mtd->erasesize;
			len -= mtd->erasesize;
1768 1769 1770 1771

			ret = spi_nor_wait_till_ready(nor);
			if (ret)
				goto erase_err;
1772
		}
1773 1774 1775 1776 1777 1778

	/* erase multiple sectors */
	} else {
		ret = spi_nor_erase_multi_sectors(nor, addr, len);
		if (ret)
			goto erase_err;
1779 1780
	}

1781
	ret = spi_nor_write_disable(nor);
1782

1783
erase_err:
1784
	spi_nor_unlock_and_unprep(nor);
1785 1786 1787 1788

	return ret;
}

1789 1790
static void spi_nor_get_locked_range_sr(struct spi_nor *nor, u8 sr, loff_t *ofs,
					uint64_t *len)
1791 1792 1793
{
	struct mtd_info *mtd = &nor->mtd;
	u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
1794
	u8 tb_mask = SR_TB_BIT5;
1795 1796
	int pow;

1797 1798 1799
	if (nor->flags & SNOR_F_HAS_SR_TB_BIT6)
		tb_mask = SR_TB_BIT6;

1800 1801 1802 1803 1804
	if (!(sr & mask)) {
		/* No protection */
		*ofs = 0;
		*len = 0;
	} else {
1805
		pow = ((sr & mask) ^ mask) >> SR_BP_SHIFT;
1806
		*len = mtd->size >> pow;
1807
		if (nor->flags & SNOR_F_HAS_SR_TB && sr & tb_mask)
1808 1809 1810
			*ofs = 0;
		else
			*ofs = mtd->size - *len;
1811 1812 1813 1814
	}
}

/*
1815 1816
 * Return 1 if the entire region is locked (if @locked is true) or unlocked (if
 * @locked is false); 0 otherwise
1817
 */
1818 1819
static int spi_nor_check_lock_status_sr(struct spi_nor *nor, loff_t ofs,
					uint64_t len, u8 sr, bool locked)
1820 1821 1822 1823
{
	loff_t lock_offs;
	uint64_t lock_len;

1824 1825 1826
	if (!len)
		return 1;

1827
	spi_nor_get_locked_range_sr(nor, sr, &lock_offs, &lock_len);
1828

1829 1830 1831 1832 1833 1834 1835 1836
	if (locked)
		/* Requested range is a sub-range of locked range */
		return (ofs + len <= lock_offs + lock_len) && (ofs >= lock_offs);
	else
		/* Requested range does not overlap with locked range */
		return (ofs >= lock_offs + lock_len) || (ofs + len <= lock_offs);
}

1837 1838
static int spi_nor_is_locked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
				u8 sr)
1839
{
1840
	return spi_nor_check_lock_status_sr(nor, ofs, len, sr, true);
1841 1842
}

1843 1844
static int spi_nor_is_unlocked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
				  u8 sr)
1845
{
1846
	return spi_nor_check_lock_status_sr(nor, ofs, len, sr, false);
1847 1848 1849 1850
}

/*
 * Lock a region of the flash. Compatible with ST Micro and similar flash.
1851
 * Supports the block protection bits BP{0,1,2} in the status register
1852 1853 1854 1855
 * (SR). Does not support these features found in newer SR bitfields:
 *   - SEC: sector/block protect - only handle SEC=0 (block protect)
 *   - CMP: complement protect - only support CMP=0 (range is not complemented)
 *
1856 1857 1858
 * Support for the following is provided conditionally for some flash:
 *   - TB: top/bottom protect
 *
1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
 * Sample table portion for 8MB flash (Winbond w25q64fw):
 *
 *   SEC  |  TB   |  BP2  |  BP1  |  BP0  |  Prot Length  | Protected Portion
 *  --------------------------------------------------------------------------
 *    X   |   X   |   0   |   0   |   0   |  NONE         | NONE
 *    0   |   0   |   0   |   0   |   1   |  128 KB       | Upper 1/64
 *    0   |   0   |   0   |   1   |   0   |  256 KB       | Upper 1/32
 *    0   |   0   |   0   |   1   |   1   |  512 KB       | Upper 1/16
 *    0   |   0   |   1   |   0   |   0   |  1 MB         | Upper 1/8
 *    0   |   0   |   1   |   0   |   1   |  2 MB         | Upper 1/4
 *    0   |   0   |   1   |   1   |   0   |  4 MB         | Upper 1/2
 *    X   |   X   |   1   |   1   |   1   |  8 MB         | ALL
1871 1872 1873 1874 1875 1876 1877
 *  ------|-------|-------|-------|-------|---------------|-------------------
 *    0   |   1   |   0   |   0   |   1   |  128 KB       | Lower 1/64
 *    0   |   1   |   0   |   1   |   0   |  256 KB       | Lower 1/32
 *    0   |   1   |   0   |   1   |   1   |  512 KB       | Lower 1/16
 *    0   |   1   |   1   |   0   |   0   |  1 MB         | Lower 1/8
 *    0   |   1   |   1   |   0   |   1   |  2 MB         | Lower 1/4
 *    0   |   1   |   1   |   1   |   0   |  4 MB         | Lower 1/2
1878 1879 1880
 *
 * Returns negative on errors, 0 on success.
 */
1881
static int spi_nor_sr_lock(struct spi_nor *nor, loff_t ofs, uint64_t len)
1882
{
1883
	struct mtd_info *mtd = &nor->mtd;
1884
	int ret, status_old, status_new;
1885
	u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
1886
	u8 tb_mask = SR_TB_BIT5;
1887
	u8 pow, val;
1888
	loff_t lock_len;
1889 1890
	bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB;
	bool use_top;
1891

1892 1893 1894 1895 1896
	ret = spi_nor_read_sr(nor, nor->bouncebuf);
	if (ret)
		return ret;

	status_old = nor->bouncebuf[0];
1897

1898
	/* If nothing in our range is unlocked, we don't need to do anything */
1899
	if (spi_nor_is_locked_sr(nor, ofs, len, status_old))
1900 1901
		return 0;

1902
	/* If anything below us is unlocked, we can't use 'bottom' protection */
1903
	if (!spi_nor_is_locked_sr(nor, 0, ofs, status_old))
1904 1905
		can_be_bottom = false;

1906
	/* If anything above us is unlocked, we can't use 'top' protection */
1907 1908
	if (!spi_nor_is_locked_sr(nor, ofs + len, mtd->size - (ofs + len),
				  status_old))
1909 1910 1911
		can_be_top = false;

	if (!can_be_bottom && !can_be_top)
1912 1913
		return -EINVAL;

1914 1915 1916
	/* Prefer top, if both are valid */
	use_top = can_be_top;

1917
	/* lock_len: length of region that should end up locked */
1918 1919 1920 1921
	if (use_top)
		lock_len = mtd->size - ofs;
	else
		lock_len = ofs + len;
1922

1923 1924 1925
	if (nor->flags & SNOR_F_HAS_SR_TB_BIT6)
		tb_mask = SR_TB_BIT6;

1926 1927 1928 1929 1930 1931 1932 1933 1934
	/*
	 * Need smallest pow such that:
	 *
	 *   1 / (2^pow) <= (len / size)
	 *
	 * so (assuming power-of-2 size) we do:
	 *
	 *   pow = ceil(log2(size / len)) = log2(size) - floor(log2(len))
	 */
1935
	pow = ilog2(mtd->size) - ilog2(lock_len);
1936
	val = mask - (pow << SR_BP_SHIFT);
1937 1938 1939 1940 1941 1942
	if (val & ~mask)
		return -EINVAL;
	/* Don't "lock" with no region! */
	if (!(val & mask))
		return -EINVAL;

1943
	status_new = (status_old & ~mask & ~tb_mask) | val;
1944

1945 1946 1947
	/* Disallow further writes if WP pin is asserted */
	status_new |= SR_SRWD;

1948
	if (!use_top)
1949
		status_new |= tb_mask;
1950

1951 1952 1953 1954
	/* Don't bother if they're the same */
	if (status_new == status_old)
		return 0;

1955
	/* Only modify protection if it will not unlock other areas */
1956
	if ((status_new & mask) < (status_old & mask))
1957
		return -EINVAL;
1958

1959
	return spi_nor_write_sr_and_check(nor, status_new);
1960 1961
}

1962
/*
1963
 * Unlock a region of the flash. See spi_nor_sr_lock() for more info
1964 1965 1966
 *
 * Returns negative on errors, 0 on success.
 */
1967
static int spi_nor_sr_unlock(struct spi_nor *nor, loff_t ofs, uint64_t len)
1968
{
1969
	struct mtd_info *mtd = &nor->mtd;
1970
	int ret, status_old, status_new;
1971
	u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
1972
	u8 tb_mask = SR_TB_BIT5;
1973
	u8 pow, val;
1974
	loff_t lock_len;
1975 1976
	bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB;
	bool use_top;
1977

1978 1979 1980 1981 1982
	ret = spi_nor_read_sr(nor, nor->bouncebuf);
	if (ret)
		return ret;

	status_old = nor->bouncebuf[0];
1983

1984
	/* If nothing in our range is locked, we don't need to do anything */
1985
	if (spi_nor_is_unlocked_sr(nor, ofs, len, status_old))
1986 1987 1988
		return 0;

	/* If anything below us is locked, we can't use 'top' protection */
1989
	if (!spi_nor_is_unlocked_sr(nor, 0, ofs, status_old))
1990 1991 1992
		can_be_top = false;

	/* If anything above us is locked, we can't use 'bottom' protection */
1993 1994
	if (!spi_nor_is_unlocked_sr(nor, ofs + len, mtd->size - (ofs + len),
				    status_old))
1995 1996 1997
		can_be_bottom = false;

	if (!can_be_bottom && !can_be_top)
1998
		return -EINVAL;
1999

2000 2001 2002
	/* Prefer top, if both are valid */
	use_top = can_be_top;

2003
	/* lock_len: length of region that should remain locked */
2004 2005 2006 2007
	if (use_top)
		lock_len = mtd->size - (ofs + len);
	else
		lock_len = ofs;
2008

2009 2010
	if (nor->flags & SNOR_F_HAS_SR_TB_BIT6)
		tb_mask = SR_TB_BIT6;
2011 2012 2013 2014 2015 2016 2017 2018 2019
	/*
	 * Need largest pow such that:
	 *
	 *   1 / (2^pow) >= (len / size)
	 *
	 * so (assuming power-of-2 size) we do:
	 *
	 *   pow = floor(log2(size / len)) = log2(size) - ceil(log2(len))
	 */
2020 2021
	pow = ilog2(mtd->size) - order_base_2(lock_len);
	if (lock_len == 0) {
2022 2023
		val = 0; /* fully unlocked */
	} else {
2024
		val = mask - (pow << SR_BP_SHIFT);
2025 2026 2027
		/* Some power-of-two sizes are not supported */
		if (val & ~mask)
			return -EINVAL;
2028 2029
	}

2030
	status_new = (status_old & ~mask & ~tb_mask) | val;
2031

2032
	/* Don't protect status register if we're fully unlocked */
2033
	if (lock_len == 0)
2034 2035
		status_new &= ~SR_SRWD;

2036
	if (!use_top)
2037
		status_new |= tb_mask;
2038

2039 2040 2041 2042
	/* Don't bother if they're the same */
	if (status_new == status_old)
		return 0;

2043
	/* Only modify protection if it will not lock other areas */
2044
	if ((status_new & mask) > (status_old & mask))
2045 2046
		return -EINVAL;

2047
	return spi_nor_write_sr_and_check(nor, status_new);
2048 2049
}

2050
/*
2051 2052
 * Check if a region of the flash is (completely) locked. See spi_nor_sr_lock()
 * for more info.
2053 2054 2055 2056
 *
 * Returns 1 if entire region is locked, 0 if any portion is unlocked, and
 * negative on errors.
 */
2057
static int spi_nor_sr_is_locked(struct spi_nor *nor, loff_t ofs, uint64_t len)
2058
{
2059
	int ret;
2060

2061 2062 2063
	ret = spi_nor_read_sr(nor, nor->bouncebuf);
	if (ret)
		return ret;
2064

2065
	return spi_nor_is_locked_sr(nor, ofs, len, nor->bouncebuf[0]);
2066 2067
}

2068 2069 2070 2071
static const struct spi_nor_locking_ops spi_nor_sr_locking_ops = {
	.lock = spi_nor_sr_lock,
	.unlock = spi_nor_sr_unlock,
	.is_locked = spi_nor_sr_is_locked,
2072 2073
};

2074 2075 2076 2077 2078
static int spi_nor_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	int ret;

2079
	ret = spi_nor_lock_and_prep(nor);
2080 2081 2082
	if (ret)
		return ret;

2083
	ret = nor->params.locking_ops->lock(nor, ofs, len);
2084

2085
	spi_nor_unlock_and_unprep(nor);
2086 2087 2088
	return ret;
}

2089 2090 2091 2092 2093
static int spi_nor_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	int ret;

2094
	ret = spi_nor_lock_and_prep(nor);
2095 2096 2097
	if (ret)
		return ret;

2098
	ret = nor->params.locking_ops->unlock(nor, ofs, len);
2099

2100
	spi_nor_unlock_and_unprep(nor);
2101 2102 2103
	return ret;
}

2104 2105 2106 2107 2108
static int spi_nor_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	int ret;

2109
	ret = spi_nor_lock_and_prep(nor);
2110 2111 2112
	if (ret)
		return ret;

2113
	ret = nor->params.locking_ops->is_locked(nor, ofs, len);
2114

2115
	spi_nor_unlock_and_unprep(nor);
2116 2117 2118
	return ret;
}

2119
/**
2120 2121
 * spi_nor_sr1_bit6_quad_enable() - Set the Quad Enable BIT(6) in the Status
 * Register 1.
2122 2123
 * @nor:	pointer to a 'struct spi_nor'
 *
2124
 * Bit 6 of the Status Register 1 is the QE bit for Macronix like QSPI memories.
2125 2126 2127
 *
 * Return: 0 on success, -errno otherwise.
 */
2128
static int spi_nor_sr1_bit6_quad_enable(struct spi_nor *nor)
2129
{
2130 2131 2132 2133 2134
	int ret;

	ret = spi_nor_read_sr(nor, nor->bouncebuf);
	if (ret)
		return ret;
2135

2136
	if (nor->bouncebuf[0] & SR1_QUAD_EN_BIT6)
2137 2138
		return 0;

2139
	nor->bouncebuf[0] |= SR1_QUAD_EN_BIT6;
2140

2141
	return spi_nor_write_sr1_and_check(nor, nor->bouncebuf[0]);
2142 2143 2144
}

/**
2145 2146 2147
 * spi_nor_sr2_bit1_quad_enable() - set the Quad Enable BIT(1) in the Status
 * Register 2.
 * @nor:       pointer to a 'struct spi_nor'.
2148
 *
2149
 * Bit 1 of the Status Register 2 is the QE bit for Spansion like QSPI memories.
2150 2151 2152
 *
 * Return: 0 on success, -errno otherwise.
 */
2153
static int spi_nor_sr2_bit1_quad_enable(struct spi_nor *nor)
2154 2155
{
	int ret;
2156

2157 2158
	if (nor->flags & SNOR_F_NO_READ_CR)
		return spi_nor_write_16bit_cr_and_check(nor, SR2_QUAD_EN_BIT1);
2159

2160
	ret = spi_nor_read_cr(nor, nor->bouncebuf);
2161
	if (ret)
2162
		return ret;
2163

2164
	if (nor->bouncebuf[0] & SR2_QUAD_EN_BIT1)
2165 2166
		return 0;

2167 2168
	nor->bouncebuf[0] |= SR2_QUAD_EN_BIT1;

2169
	return spi_nor_write_16bit_cr_and_check(nor, nor->bouncebuf[0]);
2170 2171 2172
}

/**
2173
 * spi_nor_sr2_bit7_quad_enable() - set QE bit in Status Register 2.
2174 2175 2176 2177 2178 2179 2180 2181 2182 2183
 * @nor:	pointer to a 'struct spi_nor'
 *
 * Set the Quad Enable (QE) bit in the Status Register 2.
 *
 * This is one of the procedures to set the QE bit described in the SFDP
 * (JESD216 rev B) specification but no manufacturer using this procedure has
 * been identified yet, hence the name of the function.
 *
 * Return: 0 on success, -errno otherwise.
 */
2184
static int spi_nor_sr2_bit7_quad_enable(struct spi_nor *nor)
2185
{
2186
	u8 *sr2 = nor->bouncebuf;
2187
	int ret;
2188
	u8 sr2_written;
2189 2190

	/* Check current Quad Enable bit value. */
2191
	ret = spi_nor_read_sr2(nor, sr2);
2192 2193
	if (ret)
		return ret;
2194
	if (*sr2 & SR2_QUAD_EN_BIT7)
2195 2196 2197
		return 0;

	/* Update the Quad Enable bit. */
2198
	*sr2 |= SR2_QUAD_EN_BIT7;
2199

2200
	ret = spi_nor_write_sr2(nor, sr2);
2201
	if (ret)
2202
		return ret;
2203

2204 2205
	sr2_written = *sr2;

2206
	/* Read back and check it. */
2207
	ret = spi_nor_read_sr2(nor, sr2);
2208 2209 2210
	if (ret)
		return ret;

2211 2212
	if (*sr2 != sr2_written) {
		dev_dbg(nor->dev, "SR2: Read back test failed\n");
2213
		return -EIO;
2214 2215 2216 2217
	}

	return 0;
}
A
Andy Yan 已提交
2218

2219
/* Used when the "_ext_id" is two bytes at most */
2220
#define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags)	\
2221 2222 2223 2224 2225 2226 2227 2228
		.id = {							\
			((_jedec_id) >> 16) & 0xff,			\
			((_jedec_id) >> 8) & 0xff,			\
			(_jedec_id) & 0xff,				\
			((_ext_id) >> 8) & 0xff,			\
			(_ext_id) & 0xff,				\
			},						\
		.id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),	\
2229 2230 2231
		.sector_size = (_sector_size),				\
		.n_sectors = (_n_sectors),				\
		.page_size = 256,					\
2232
		.flags = (_flags),
2233

2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246
#define INFO6(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags)	\
		.id = {							\
			((_jedec_id) >> 16) & 0xff,			\
			((_jedec_id) >> 8) & 0xff,			\
			(_jedec_id) & 0xff,				\
			((_ext_id) >> 16) & 0xff,			\
			((_ext_id) >> 8) & 0xff,			\
			(_ext_id) & 0xff,				\
			},						\
		.id_len = 6,						\
		.sector_size = (_sector_size),				\
		.n_sectors = (_n_sectors),				\
		.page_size = 256,					\
2247
		.flags = (_flags),
2248

2249 2250 2251 2252 2253
#define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width, _flags)	\
		.sector_size = (_sector_size),				\
		.n_sectors = (_n_sectors),				\
		.page_size = (_page_size),				\
		.addr_width = (_addr_width),				\
2254
		.flags = (_flags),
2255

2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268
#define S3AN_INFO(_jedec_id, _n_sectors, _page_size)			\
		.id = {							\
			((_jedec_id) >> 16) & 0xff,			\
			((_jedec_id) >> 8) & 0xff,			\
			(_jedec_id) & 0xff				\
			},						\
		.id_len = 3,						\
		.sector_size = (8*_page_size),				\
		.n_sectors = (_n_sectors),				\
		.page_size = _page_size,				\
		.addr_width = 3,					\
		.flags = SPI_NOR_NO_FR | SPI_S3AN,

2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290
static int
is25lp256_post_bfpt_fixups(struct spi_nor *nor,
			   const struct sfdp_parameter_header *bfpt_header,
			   const struct sfdp_bfpt *bfpt,
			   struct spi_nor_flash_parameter *params)
{
	/*
	 * IS25LP256 supports 4B opcodes, but the BFPT advertises a
	 * BFPT_DWORD1_ADDRESS_BYTES_3_ONLY address width.
	 * Overwrite the address width advertised by the BFPT.
	 */
	if ((bfpt->dwords[BFPT_DWORD(1)] & BFPT_DWORD1_ADDRESS_BYTES_MASK) ==
		BFPT_DWORD1_ADDRESS_BYTES_3_ONLY)
		nor->addr_width = 4;

	return 0;
}

static struct spi_nor_fixups is25lp256_fixups = {
	.post_bfpt = is25lp256_post_bfpt_fixups,
};

2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315
static int
mx25l25635_post_bfpt_fixups(struct spi_nor *nor,
			    const struct sfdp_parameter_header *bfpt_header,
			    const struct sfdp_bfpt *bfpt,
			    struct spi_nor_flash_parameter *params)
{
	/*
	 * MX25L25635F supports 4B opcodes but MX25L25635E does not.
	 * Unfortunately, Macronix has re-used the same JEDEC ID for both
	 * variants which prevents us from defining a new entry in the parts
	 * table.
	 * We need a way to differentiate MX25L25635E and MX25L25635F, and it
	 * seems that the F version advertises support for Fast Read 4-4-4 in
	 * its BFPT table.
	 */
	if (bfpt->dwords[BFPT_DWORD(5)] & BFPT_DWORD5_FAST_READ_4_4_4)
		nor->flags |= SNOR_F_4B_OPCODES;

	return 0;
}

static struct spi_nor_fixups mx25l25635_fixups = {
	.post_bfpt = mx25l25635_post_bfpt_fixups,
};

2316 2317 2318 2319 2320 2321 2322 2323
static void gd25q256_default_init(struct spi_nor *nor)
{
	/*
	 * Some manufacturer like GigaDevice may use different
	 * bit to set QE on different memories, so the MFR can't
	 * indicate the quad_enable method for this case, we need
	 * to set it in the default_init fixup hook.
	 */
2324
	nor->params.quad_enable = spi_nor_sr1_bit6_quad_enable;
2325 2326 2327 2328 2329 2330
}

static struct spi_nor_fixups gd25q256_fixups = {
	.default_init = gd25q256_default_init,
};

2331 2332 2333
/* NOTE: double check command sets and memory organization when you add
 * more nor chips.  This current list focusses on newer chips, which
 * have been converging on command sets which including JEDEC ID.
2334 2335 2336 2337 2338 2339 2340
 *
 * All newly added entries should describe *hardware* and should use SECT_4K
 * (or SECT_4K_PMC) if hardware supports erasing 4 KiB sectors. For usage
 * scenarios excluding small sectors there is config option that can be
 * disabled: CONFIG_MTD_SPI_NOR_USE_4K_SECTORS.
 * For historical (and compatibility) reasons (before we got above config) some
 * old entries may be missing 4K flag.
2341
 */
2342
static const struct flash_info spi_nor_ids[] = {
2343 2344 2345 2346 2347
	/* Atmel -- some are (confusingly) marketed as "DataFlash" */
	{ "at25fs010",  INFO(0x1f6601, 0, 32 * 1024,   4, SECT_4K) },
	{ "at25fs040",  INFO(0x1f6604, 0, 64 * 1024,   8, SECT_4K) },

	{ "at25df041a", INFO(0x1f4401, 0, 64 * 1024,   8, SECT_4K) },
2348
	{ "at25df321",  INFO(0x1f4700, 0, 64 * 1024,  64, SECT_4K) },
2349 2350 2351
	{ "at25df321a", INFO(0x1f4701, 0, 64 * 1024,  64, SECT_4K) },
	{ "at25df641",  INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K) },

2352 2353 2354
	{ "at25sl321",	INFO(0x1f4216, 0, 64 * 1024, 64,
			     SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },

2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367
	{ "at26f004",   INFO(0x1f0400, 0, 64 * 1024,  8, SECT_4K) },
	{ "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K) },
	{ "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K) },
	{ "at26df321",  INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) },

	{ "at45db081d", INFO(0x1f2500, 0, 64 * 1024, 16, SECT_4K) },

	/* EON -- en25xxx */
	{ "en25f32",    INFO(0x1c3116, 0, 64 * 1024,   64, SECT_4K) },
	{ "en25p32",    INFO(0x1c2016, 0, 64 * 1024,   64, 0) },
	{ "en25q32b",   INFO(0x1c3016, 0, 64 * 1024,   64, 0) },
	{ "en25p64",    INFO(0x1c2017, 0, 64 * 1024,  128, 0) },
	{ "en25q64",    INFO(0x1c3017, 0, 64 * 1024,  128, SECT_4K) },
2368 2369
	{ "en25q80a",   INFO(0x1c3014, 0, 64 * 1024,   16,
			SECT_4K | SPI_NOR_DUAL_READ) },
2370 2371
	{ "en25qh16",   INFO(0x1c7015, 0, 64 * 1024,   32,
			SECT_4K | SPI_NOR_DUAL_READ) },
2372
	{ "en25qh32",   INFO(0x1c7016, 0, 64 * 1024,   64, 0) },
2373 2374
	{ "en25qh64",   INFO(0x1c7017, 0, 64 * 1024,  128,
			SECT_4K | SPI_NOR_DUAL_READ) },
2375
	{ "en25qh128",  INFO(0x1c7018, 0, 64 * 1024,  256, 0) },
2376
	{ "en25qh256",  INFO(0x1c7019, 0, 64 * 1024,  512, 0) },
2377
	{ "en25s64",	INFO(0x1c3817, 0, 64 * 1024,  128, SECT_4K) },
2378 2379

	/* ESMT */
2380
	{ "f25l32pa", INFO(0x8c2016, 0, 64 * 1024, 64, SECT_4K | SPI_NOR_HAS_LOCK) },
2381 2382
	{ "f25l32qa", INFO(0x8c4116, 0, 64 * 1024, 64, SECT_4K | SPI_NOR_HAS_LOCK) },
	{ "f25l64qa", INFO(0x8c4117, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_HAS_LOCK) },
2383 2384

	/* Everspin */
2385
	{ "mr25h128", CAT25_INFO( 16 * 1024, 1, 256, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
2386 2387
	{ "mr25h256", CAT25_INFO( 32 * 1024, 1, 256, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
	{ "mr25h10",  CAT25_INFO(128 * 1024, 1, 256, 3, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
2388
	{ "mr25h40",  CAT25_INFO(512 * 1024, 1, 256, 3, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
2389

2390 2391 2392
	/* Fujitsu */
	{ "mb85rs1mt", INFO(0x047f27, 0, 128 * 1024, 1, SPI_NOR_NO_ERASE) },

2393
	/* GigaDevice */
2394 2395 2396 2397 2398
	{
		"gd25q16", INFO(0xc84015, 0, 64 * 1024,  32,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
2399 2400 2401 2402 2403
	{
		"gd25q32", INFO(0xc84016, 0, 64 * 1024,  64,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
2404 2405 2406 2407 2408
	{
		"gd25lq32", INFO(0xc86016, 0, 64 * 1024, 64,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
2409 2410 2411 2412 2413 2414 2415 2416 2417 2418
	{
		"gd25q64", INFO(0xc84017, 0, 64 * 1024, 128,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
	{
		"gd25lq64c", INFO(0xc86017, 0, 64 * 1024, 128,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
2419 2420 2421 2422 2423
	{
		"gd25lq128d", INFO(0xc86018, 0, 64 * 1024, 256,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
2424 2425 2426 2427 2428
	{
		"gd25q128", INFO(0xc84018, 0, 64 * 1024, 256,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
A
Andy Yan 已提交
2429 2430 2431
	{
		"gd25q256", INFO(0xc84019, 0, 64 * 1024, 512,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
2432 2433
			SPI_NOR_4B_OPCODES | SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB |
			SPI_NOR_TB_SR_BIT6)
2434
			.fixups = &gd25q256_fixups,
A
Andy Yan 已提交
2435
	},
2436 2437 2438 2439 2440 2441

	/* Intel/Numonyx -- xxxs33b */
	{ "160s33b",  INFO(0x898911, 0, 64 * 1024,  32, 0) },
	{ "320s33b",  INFO(0x898912, 0, 64 * 1024,  64, 0) },
	{ "640s33b",  INFO(0x898913, 0, 64 * 1024, 128, 0) },

2442
	/* ISSI */
S
Sean Nyekjaer 已提交
2443 2444
	{ "is25cd512",  INFO(0x7f9d20, 0, 32 * 1024,   2, SECT_4K) },
	{ "is25lq040b", INFO(0x9d4013, 0, 64 * 1024,   8,
2445
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2446 2447
	{ "is25lp016d", INFO(0x9d6015, 0, 64 * 1024,  32,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2448 2449
	{ "is25lp080d", INFO(0x9d6014, 0, 64 * 1024,  16,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2450 2451 2452 2453
	{ "is25lp032",  INFO(0x9d6016, 0, 64 * 1024,  64,
			SECT_4K | SPI_NOR_DUAL_READ) },
	{ "is25lp064",  INFO(0x9d6017, 0, 64 * 1024, 128,
			SECT_4K | SPI_NOR_DUAL_READ) },
S
Sean Nyekjaer 已提交
2454
	{ "is25lp128",  INFO(0x9d6018, 0, 64 * 1024, 256,
2455
			SECT_4K | SPI_NOR_DUAL_READ) },
2456
	{ "is25lp256",  INFO(0x9d6019, 0, 64 * 1024, 512,
2457
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
2458 2459
			SPI_NOR_4B_OPCODES)
			.fixups = &is25lp256_fixups },
2460 2461 2462 2463 2464 2465
	{ "is25wp032",  INFO(0x9d7016, 0, 64 * 1024,  64,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
	{ "is25wp064",  INFO(0x9d7017, 0, 64 * 1024, 128,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
	{ "is25wp128",  INFO(0x9d7018, 0, 64 * 1024, 256,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2466 2467 2468 2469
	{ "is25wp256", INFO(0x9d7019, 0, 64 * 1024, 512,
			    SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			    SPI_NOR_4B_OPCODES)
		       .fixups = &is25lp256_fixups },
2470

2471
	/* Macronix */
2472
	{ "mx25l512e",   INFO(0xc22010, 0, 64 * 1024,   1, SECT_4K) },
2473 2474 2475 2476
	{ "mx25l2005a",  INFO(0xc22012, 0, 64 * 1024,   4, SECT_4K) },
	{ "mx25l4005a",  INFO(0xc22013, 0, 64 * 1024,   8, SECT_4K) },
	{ "mx25l8005",   INFO(0xc22014, 0, 64 * 1024,  16, 0) },
	{ "mx25l1606e",  INFO(0xc22015, 0, 64 * 1024,  32, SECT_4K) },
2477
	{ "mx25l3205d",  INFO(0xc22016, 0, 64 * 1024,  64, SECT_4K) },
2478
	{ "mx25l3255e",  INFO(0xc29e16, 0, 64 * 1024,  64, SECT_4K) },
2479
	{ "mx25l6405d",  INFO(0xc22017, 0, 64 * 1024, 128, SECT_4K) },
2480
	{ "mx25u2033e",  INFO(0xc22532, 0, 64 * 1024,   4, SECT_4K) },
2481 2482
	{ "mx25u3235f",	 INFO(0xc22536, 0, 64 * 1024,  64,
			 SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2483 2484
	{ "mx25u4035",   INFO(0xc22533, 0, 64 * 1024,   8, SECT_4K) },
	{ "mx25u8035",   INFO(0xc22534, 0, 64 * 1024,  16, SECT_4K) },
2485
	{ "mx25u6435f",  INFO(0xc22537, 0, 64 * 1024, 128, SECT_4K) },
2486 2487
	{ "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) },
	{ "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) },
2488 2489
	{ "mx25r3235f",  INFO(0xc22816, 0, 64 * 1024,  64,
			 SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2490 2491
	{ "mx25u12835f", INFO(0xc22538, 0, 64 * 1024, 256,
			 SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2492 2493 2494
	{ "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512,
			 SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
			 .fixups = &mx25l25635_fixups },
2495
	{ "mx25u25635f", INFO(0xc22539, 0, 64 * 1024, 512, SECT_4K | SPI_NOR_4B_OPCODES) },
2496 2497
	{ "mx25v8035f",  INFO(0xc22314, 0, 64 * 1024,  16,
			 SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2498
	{ "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) },
2499
	{ "mx66l51235l", INFO(0xc2201a, 0, 64 * 1024, 1024, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | SPI_NOR_4B_OPCODES) },
2500
	{ "mx66u51235f", INFO(0xc2253a, 0, 64 * 1024, 1024, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | SPI_NOR_4B_OPCODES) },
2501
	{ "mx66l1g45g",  INFO(0xc2201b, 0, 64 * 1024, 2048, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2502 2503
	{ "mx66l1g55g",  INFO(0xc2261b, 0, 64 * 1024, 2048, SPI_NOR_QUAD_READ) },

2504
	/* Micron <--> ST Micro */
2505
	{ "n25q016a",	 INFO(0x20bb15, 0, 64 * 1024,   32, SECT_4K | SPI_NOR_QUAD_READ) },
2506
	{ "n25q032",	 INFO(0x20ba16, 0, 64 * 1024,   64, SPI_NOR_QUAD_READ) },
2507
	{ "n25q032a",	 INFO(0x20bb16, 0, 64 * 1024,   64, SPI_NOR_QUAD_READ) },
2508
	{ "n25q064",     INFO(0x20ba17, 0, 64 * 1024,  128, SECT_4K | SPI_NOR_QUAD_READ) },
2509
	{ "n25q064a",    INFO(0x20bb17, 0, 64 * 1024,  128, SECT_4K | SPI_NOR_QUAD_READ) },
2510 2511 2512 2513
	{ "n25q128a11",  INFO(0x20bb18, 0, 64 * 1024,  256, SECT_4K |
			      USE_FSR | SPI_NOR_QUAD_READ) },
	{ "n25q128a13",  INFO(0x20ba18, 0, 64 * 1024,  256, SECT_4K |
			      USE_FSR | SPI_NOR_QUAD_READ) },
2514 2515 2516
	{ "mt25ql256a",  INFO6(0x20ba19, 0x104400, 64 * 1024,  512,
			       SECT_4K | USE_FSR | SPI_NOR_DUAL_READ |
			       SPI_NOR_QUAD_READ | SPI_NOR_4B_OPCODES) },
2517 2518 2519
	{ "n25q256a",    INFO(0x20ba19, 0, 64 * 1024,  512, SECT_4K |
			      USE_FSR | SPI_NOR_DUAL_READ |
			      SPI_NOR_QUAD_READ) },
2520 2521 2522
	{ "mt25qu256a",  INFO6(0x20bb19, 0x104400, 64 * 1024,  512,
			       SECT_4K | USE_FSR | SPI_NOR_DUAL_READ |
			       SPI_NOR_QUAD_READ | SPI_NOR_4B_OPCODES) },
2523 2524
	{ "n25q256ax1",  INFO(0x20bb19, 0, 64 * 1024,  512, SECT_4K |
			      USE_FSR | SPI_NOR_QUAD_READ) },
2525 2526 2527
	{ "mt25ql512a",  INFO6(0x20ba20, 0x104400, 64 * 1024, 1024,
			       SECT_4K | USE_FSR | SPI_NOR_DUAL_READ |
			       SPI_NOR_QUAD_READ | SPI_NOR_4B_OPCODES) },
2528
	{ "n25q512ax3",  INFO(0x20ba20, 0, 64 * 1024, 1024, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) },
2529 2530 2531 2532
	{ "mt25qu512a",  INFO6(0x20bb20, 0x104400, 64 * 1024, 1024,
			       SECT_4K | USE_FSR | SPI_NOR_DUAL_READ |
			       SPI_NOR_QUAD_READ | SPI_NOR_4B_OPCODES) },
	{ "n25q512a",    INFO(0x20bb20, 0, 64 * 1024, 1024, SECT_4K |
2533
			      USE_FSR | SPI_NOR_QUAD_READ) },
2534 2535
	{ "n25q00",      INFO(0x20ba21, 0, 64 * 1024, 2048, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ | NO_CHIP_ERASE) },
	{ "n25q00a",     INFO(0x20bb21, 0, 64 * 1024, 2048, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ | NO_CHIP_ERASE) },
2536 2537 2538
	{ "mt25ql02g",   INFO(0x20ba22, 0, 64 * 1024, 4096,
			      SECT_4K | USE_FSR | SPI_NOR_QUAD_READ |
			      NO_CHIP_ERASE) },
2539
	{ "mt25qu02g",   INFO(0x20bb22, 0, 64 * 1024, 4096, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ | NO_CHIP_ERASE) },
2540

2541 2542 2543
	/* Micron */
	{
		"mt35xu512aba", INFO(0x2c5b1a, 0, 128 * 1024, 512,
2544 2545
			SECT_4K | USE_FSR | SPI_NOR_OCTAL_READ |
			SPI_NOR_4B_OPCODES)
2546
	},
2547 2548 2549
	{ "mt35xu02g",  INFO(0x2c5b1c, 0, 128 * 1024, 2048,
			     SECT_4K | USE_FSR | SPI_NOR_OCTAL_READ |
			     SPI_NOR_4B_OPCODES) },
2550

2551 2552 2553 2554 2555
	/* PMC */
	{ "pm25lv512",   INFO(0,        0, 32 * 1024,    2, SECT_4K_PMC) },
	{ "pm25lv010",   INFO(0,        0, 32 * 1024,    4, SECT_4K_PMC) },
	{ "pm25lq032",   INFO(0x7f9d46, 0, 64 * 1024,   64, SECT_4K) },

2556
	/* Spansion/Cypress -- single (large) sector size only, at least
2557 2558
	 * for the chips listed here (without boot sectors).
	 */
2559
	{ "s25sl032p",  INFO(0x010215, 0x4d00,  64 * 1024,  64, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2560
	{ "s25sl064p",  INFO(0x010216, 0x4d00,  64 * 1024, 128, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2561 2562 2563 2564
	{ "s25fl128s0", INFO6(0x012018, 0x4d0080, 256 * 1024, 64,
			SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | USE_CLSR) },
	{ "s25fl128s1", INFO6(0x012018, 0x4d0180, 64 * 1024, 256,
			SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | USE_CLSR) },
2565 2566
	{ "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, USE_CLSR) },
	{ "s25fl256s1", INFO(0x010219, 0x4d01,  64 * 1024, 512, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | USE_CLSR) },
2567 2568
	{ "s25fl512s",  INFO6(0x010220, 0x4d0080, 256 * 1024, 256,
			SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
2569
			SPI_NOR_HAS_LOCK | USE_CLSR) },
2570
	{ "s25fs512s",  INFO6(0x010220, 0x4d0081, 256 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | USE_CLSR) },
2571 2572 2573
	{ "s70fl01gs",  INFO(0x010221, 0x4d00, 256 * 1024, 256, 0) },
	{ "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024,  64, 0) },
	{ "s25sl12801", INFO(0x012018, 0x0301,  64 * 1024, 256, 0) },
2574 2575
	{ "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024,  64, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | USE_CLSR) },
	{ "s25fl129p1", INFO(0x012018, 0x4d01,  64 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | USE_CLSR) },
2576 2577 2578 2579 2580
	{ "s25sl004a",  INFO(0x010212,      0,  64 * 1024,   8, 0) },
	{ "s25sl008a",  INFO(0x010213,      0,  64 * 1024,  16, 0) },
	{ "s25sl016a",  INFO(0x010214,      0,  64 * 1024,  32, 0) },
	{ "s25sl032a",  INFO(0x010215,      0,  64 * 1024,  64, 0) },
	{ "s25sl064a",  INFO(0x010216,      0,  64 * 1024, 128, 0) },
2581
	{ "s25fl004k",  INFO(0xef4013,      0,  64 * 1024,   8, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2582 2583
	{ "s25fl008k",  INFO(0xef4014,      0,  64 * 1024,  16, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
	{ "s25fl016k",  INFO(0xef4015,      0,  64 * 1024,  32, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2584
	{ "s25fl064k",  INFO(0xef4017,      0,  64 * 1024, 128, SECT_4K) },
2585
	{ "s25fl116k",  INFO(0x014015,      0,  64 * 1024,  32, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2586
	{ "s25fl132k",  INFO(0x014016,      0,  64 * 1024,  64, SECT_4K) },
2587
	{ "s25fl164k",  INFO(0x014017,      0,  64 * 1024, 128, SECT_4K) },
2588
	{ "s25fl204k",  INFO(0x014013,      0,  64 * 1024,   8, SECT_4K | SPI_NOR_DUAL_READ) },
2589
	{ "s25fl208k",  INFO(0x014014,      0,  64 * 1024,  16, SECT_4K | SPI_NOR_DUAL_READ) },
2590
	{ "s25fl064l",  INFO(0x016017,      0,  64 * 1024, 128, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | SPI_NOR_4B_OPCODES) },
2591 2592
	{ "s25fl128l",  INFO(0x016018,      0,  64 * 1024, 256, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | SPI_NOR_4B_OPCODES) },
	{ "s25fl256l",  INFO(0x016019,      0,  64 * 1024, 512, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | SPI_NOR_4B_OPCODES) },
2593 2594 2595 2596 2597 2598 2599 2600 2601 2602

	/* SST -- large erase sizes are "overlays", "sectors" are 4K */
	{ "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024,  8, SECT_4K | SST_WRITE) },
	{ "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) },
	{ "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K | SST_WRITE) },
	{ "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K | SST_WRITE) },
	{ "sst25vf064c", INFO(0xbf254b, 0, 64 * 1024, 128, SECT_4K) },
	{ "sst25wf512",  INFO(0xbf2501, 0, 64 * 1024,  1, SECT_4K | SST_WRITE) },
	{ "sst25wf010",  INFO(0xbf2502, 0, 64 * 1024,  2, SECT_4K | SST_WRITE) },
	{ "sst25wf020",  INFO(0xbf2503, 0, 64 * 1024,  4, SECT_4K | SST_WRITE) },
2603
	{ "sst25wf020a", INFO(0x621612, 0, 64 * 1024,  4, SECT_4K) },
2604
	{ "sst25wf040b", INFO(0x621613, 0, 64 * 1024,  8, SECT_4K) },
2605
	{ "sst25wf040",  INFO(0xbf2504, 0, 64 * 1024,  8, SECT_4K | SST_WRITE) },
2606
	{ "sst25wf080",  INFO(0xbf2505, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) },
2607 2608
	{ "sst26wf016b", INFO(0xbf2651, 0, 64 * 1024, 32, SECT_4K |
			      SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2609 2610
	{ "sst26vf016b", INFO(0xbf2641, 0, 64 * 1024, 32, SECT_4K |
			      SPI_NOR_DUAL_READ) },
2611
	{ "sst26vf064b", INFO(0xbf2643, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646

	/* ST Microelectronics -- newer production may have feature updates */
	{ "m25p05",  INFO(0x202010,  0,  32 * 1024,   2, 0) },
	{ "m25p10",  INFO(0x202011,  0,  32 * 1024,   4, 0) },
	{ "m25p20",  INFO(0x202012,  0,  64 * 1024,   4, 0) },
	{ "m25p40",  INFO(0x202013,  0,  64 * 1024,   8, 0) },
	{ "m25p80",  INFO(0x202014,  0,  64 * 1024,  16, 0) },
	{ "m25p16",  INFO(0x202015,  0,  64 * 1024,  32, 0) },
	{ "m25p32",  INFO(0x202016,  0,  64 * 1024,  64, 0) },
	{ "m25p64",  INFO(0x202017,  0,  64 * 1024, 128, 0) },
	{ "m25p128", INFO(0x202018,  0, 256 * 1024,  64, 0) },

	{ "m25p05-nonjedec",  INFO(0, 0,  32 * 1024,   2, 0) },
	{ "m25p10-nonjedec",  INFO(0, 0,  32 * 1024,   4, 0) },
	{ "m25p20-nonjedec",  INFO(0, 0,  64 * 1024,   4, 0) },
	{ "m25p40-nonjedec",  INFO(0, 0,  64 * 1024,   8, 0) },
	{ "m25p80-nonjedec",  INFO(0, 0,  64 * 1024,  16, 0) },
	{ "m25p16-nonjedec",  INFO(0, 0,  64 * 1024,  32, 0) },
	{ "m25p32-nonjedec",  INFO(0, 0,  64 * 1024,  64, 0) },
	{ "m25p64-nonjedec",  INFO(0, 0,  64 * 1024, 128, 0) },
	{ "m25p128-nonjedec", INFO(0, 0, 256 * 1024,  64, 0) },

	{ "m45pe10", INFO(0x204011,  0, 64 * 1024,    2, 0) },
	{ "m45pe80", INFO(0x204014,  0, 64 * 1024,   16, 0) },
	{ "m45pe16", INFO(0x204015,  0, 64 * 1024,   32, 0) },

	{ "m25pe20", INFO(0x208012,  0, 64 * 1024,  4,       0) },
	{ "m25pe80", INFO(0x208014,  0, 64 * 1024, 16,       0) },
	{ "m25pe16", INFO(0x208015,  0, 64 * 1024, 32, SECT_4K) },

	{ "m25px16",    INFO(0x207115,  0, 64 * 1024, 32, SECT_4K) },
	{ "m25px32",    INFO(0x207116,  0, 64 * 1024, 64, SECT_4K) },
	{ "m25px32-s0", INFO(0x207316,  0, 64 * 1024, 64, SECT_4K) },
	{ "m25px32-s1", INFO(0x206316,  0, 64 * 1024, 64, SECT_4K) },
	{ "m25px64",    INFO(0x207117,  0, 64 * 1024, 128, 0) },
2647
	{ "m25px80",    INFO(0x207114,  0, 64 * 1024, 16, 0) },
2648 2649

	/* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
2650
	{ "w25x05", INFO(0xef3010, 0, 64 * 1024,  1,  SECT_4K) },
2651 2652 2653 2654 2655
	{ "w25x10", INFO(0xef3011, 0, 64 * 1024,  2,  SECT_4K) },
	{ "w25x20", INFO(0xef3012, 0, 64 * 1024,  4,  SECT_4K) },
	{ "w25x40", INFO(0xef3013, 0, 64 * 1024,  8,  SECT_4K) },
	{ "w25x80", INFO(0xef3014, 0, 64 * 1024,  16, SECT_4K) },
	{ "w25x16", INFO(0xef3015, 0, 64 * 1024,  32, SECT_4K) },
2656 2657 2658 2659 2660
	{
		"w25q16dw", INFO(0xef6015, 0, 64 * 1024,  32,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
2661
	{ "w25x32", INFO(0xef3016, 0, 64 * 1024,  64, SECT_4K) },
2662 2663 2664 2665 2666
	{
		"w25q16jv-im/jm", INFO(0xef7015, 0, 64 * 1024,  32,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
2667 2668 2669
	{ "w25q20cl", INFO(0xef4012, 0, 64 * 1024,  4, SECT_4K) },
	{ "w25q20bw", INFO(0xef5012, 0, 64 * 1024,  4, SECT_4K) },
	{ "w25q20ew", INFO(0xef6012, 0, 64 * 1024,  4, SECT_4K) },
2670
	{ "w25q32", INFO(0xef4016, 0, 64 * 1024,  64, SECT_4K) },
2671 2672 2673 2674 2675
	{
		"w25q32dw", INFO(0xef6016, 0, 64 * 1024,  64,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
2676 2677 2678 2679 2680
	{
		"w25q32jv", INFO(0xef7016, 0, 64 * 1024,  64,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
2681 2682 2683 2684 2685
	{
		"w25q32jwm", INFO(0xef8016, 0, 64 * 1024,  64,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
2686 2687
	{ "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) },
	{ "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
2688 2689 2690 2691 2692 2693 2694 2695 2696 2697
	{
		"w25q64dw", INFO(0xef6017, 0, 64 * 1024, 128,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
	{
		"w25q128fw", INFO(0xef6018, 0, 64 * 1024, 256,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
2698 2699 2700 2701 2702
	{
		"w25q128jv", INFO(0xef7018, 0, 64 * 1024, 256,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
2703 2704 2705
	{ "w25q80", INFO(0xef5014, 0, 64 * 1024,  16, SECT_4K) },
	{ "w25q80bl", INFO(0xef4014, 0, 64 * 1024,  16, SECT_4K) },
	{ "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K) },
2706 2707 2708
	{ "w25q256", INFO(0xef4019, 0, 64 * 1024, 512,
			  SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			  SPI_NOR_4B_OPCODES) },
2709 2710
	{ "w25q256jvm", INFO(0xef7019, 0, 64 * 1024, 512,
			     SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2711 2712
	{ "w25q256jw", INFO(0xef6019, 0, 64 * 1024, 512,
			     SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2713 2714
	{ "w25m512jv", INFO(0xef7119, 0, 64 * 1024, 1024,
			SECT_4K | SPI_NOR_QUAD_READ | SPI_NOR_DUAL_READ) },
2715 2716 2717 2718 2719 2720 2721

	/* Catalyst / On Semiconductor -- non-JEDEC */
	{ "cat25c11", CAT25_INFO(  16, 8, 16, 1, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
	{ "cat25c03", CAT25_INFO(  32, 8, 16, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
	{ "cat25c09", CAT25_INFO( 128, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
	{ "cat25c17", CAT25_INFO( 256, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
	{ "cat25128", CAT25_INFO(2048, 8, 64, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
2722 2723 2724 2725 2726 2727 2728

	/* Xilinx S3AN Internal Flash */
	{ "3S50AN", S3AN_INFO(0x1f2200, 64, 264) },
	{ "3S200AN", S3AN_INFO(0x1f2400, 256, 264) },
	{ "3S400AN", S3AN_INFO(0x1f2400, 256, 264) },
	{ "3S700AN", S3AN_INFO(0x1f2500, 512, 264) },
	{ "3S1400AN", S3AN_INFO(0x1f2600, 512, 528) },
2729 2730 2731 2732

	/* XMC (Wuhan Xinxin Semiconductor Manufacturing Corp.) */
	{ "XM25QH64A", INFO(0x207017, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
	{ "XM25QH128A", INFO(0x207018, 0, 64 * 1024, 256, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2733 2734 2735
	{ },
};

2736
static const struct flash_info *spi_nor_read_id(struct spi_nor *nor)
2737
{
2738 2739 2740
	u8 *id = nor->bouncebuf;
	unsigned int i;
	int ret;
2741

2742 2743 2744 2745 2746 2747 2748
	if (nor->spimem) {
		struct spi_mem_op op =
			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDID, 1),
				   SPI_MEM_OP_NO_ADDR,
				   SPI_MEM_OP_NO_DUMMY,
				   SPI_MEM_OP_DATA_IN(SPI_NOR_MAX_ID_LEN, id, 1));

2749
		ret = spi_mem_exec_op(nor->spimem, &op);
2750
	} else {
2751
		ret = nor->controller_ops->read_reg(nor, SPINOR_OP_RDID, id,
2752
						    SPI_NOR_MAX_ID_LEN);
2753
	}
2754 2755 2756
	if (ret) {
		dev_dbg(nor->dev, "error %d reading JEDEC ID\n", ret);
		return ERR_PTR(ret);
2757 2758
	}

2759 2760 2761 2762
	for (i = 0; i < ARRAY_SIZE(spi_nor_ids) - 1; i++) {
		if (spi_nor_ids[i].id_len &&
		    !memcmp(spi_nor_ids[i].id, id, spi_nor_ids[i].id_len))
			return &spi_nor_ids[i];
2763
	}
2764 2765
	dev_err(nor->dev, "unrecognized JEDEC id bytes: %*ph\n",
		SPI_NOR_MAX_ID_LEN, id);
2766 2767 2768 2769 2770 2771 2772
	return ERR_PTR(-ENODEV);
}

static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len,
			size_t *retlen, u_char *buf)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
2773
	ssize_t ret;
2774 2775 2776

	dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len);

2777
	ret = spi_nor_lock_and_prep(nor);
2778 2779 2780
	if (ret)
		return ret;

M
Michal Suchanek 已提交
2781
	while (len) {
2782 2783
		loff_t addr = from;

2784
		addr = spi_nor_convert_addr(nor, addr);
2785

2786
		ret = spi_nor_read_data(nor, addr, len, buf);
M
Michal Suchanek 已提交
2787 2788 2789 2790 2791 2792 2793
		if (ret == 0) {
			/* We shouldn't see 0-length reads */
			ret = -EIO;
			goto read_err;
		}
		if (ret < 0)
			goto read_err;
2794

M
Michal Suchanek 已提交
2795 2796 2797 2798 2799 2800 2801
		WARN_ON(ret > len);
		*retlen += ret;
		buf += ret;
		from += ret;
		len -= ret;
	}
	ret = 0;
2802

M
Michal Suchanek 已提交
2803
read_err:
2804
	spi_nor_unlock_and_unprep(nor);
M
Michal Suchanek 已提交
2805
	return ret;
2806 2807 2808 2809 2810 2811
}

static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
		size_t *retlen, const u_char *buf)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
2812
	size_t actual = 0;
2813 2814 2815 2816
	int ret;

	dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);

2817
	ret = spi_nor_lock_and_prep(nor);
2818 2819 2820
	if (ret)
		return ret;

2821 2822
	ret = spi_nor_write_enable(nor);
	if (ret)
2823
		goto out;
2824 2825 2826 2827

	nor->sst_write_second = false;

	/* Start write from odd address. */
2828
	if (to % 2) {
2829
		nor->program_opcode = SPINOR_OP_BP;
2830 2831

		/* write one byte. */
2832
		ret = spi_nor_write_data(nor, to, 1, buf);
2833
		if (ret < 0)
2834
			goto out;
2835
		WARN(ret != 1, "While writing 1 byte written %i bytes\n", ret);
2836
		ret = spi_nor_wait_till_ready(nor);
2837
		if (ret)
2838
			goto out;
2839 2840 2841

		to++;
		actual++;
2842 2843 2844 2845
	}

	/* Write out most of the data here. */
	for (; actual < len - 1; actual += 2) {
2846
		nor->program_opcode = SPINOR_OP_AAI_WP;
2847 2848

		/* write two bytes. */
2849
		ret = spi_nor_write_data(nor, to, 2, buf + actual);
2850
		if (ret < 0)
2851
			goto out;
2852
		WARN(ret != 2, "While writing 2 bytes written %i bytes\n", ret);
2853
		ret = spi_nor_wait_till_ready(nor);
2854
		if (ret)
2855
			goto out;
2856 2857 2858 2859 2860
		to += 2;
		nor->sst_write_second = true;
	}
	nor->sst_write_second = false;

2861 2862
	ret = spi_nor_write_disable(nor);
	if (ret)
2863
		goto out;
2864

2865
	ret = spi_nor_wait_till_ready(nor);
2866
	if (ret)
2867
		goto out;
2868 2869 2870

	/* Write out trailing byte if it exists. */
	if (actual != len) {
2871 2872
		ret = spi_nor_write_enable(nor);
		if (ret)
2873
			goto out;
2874

2875
		nor->program_opcode = SPINOR_OP_BP;
2876
		ret = spi_nor_write_data(nor, to, 1, buf + actual);
2877
		if (ret < 0)
2878
			goto out;
2879
		WARN(ret != 1, "While writing 1 byte written %i bytes\n", ret);
2880
		ret = spi_nor_wait_till_ready(nor);
2881
		if (ret)
2882
			goto out;
2883

2884
		actual += 1;
2885 2886

		ret = spi_nor_write_disable(nor);
2887
	}
2888
out:
2889
	*retlen += actual;
2890
	spi_nor_unlock_and_unprep(nor);
2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902
	return ret;
}

/*
 * Write an address range to the nor chip.  Data must be written in
 * FLASH_PAGESIZE chunks.  The address range may be any size provided
 * it is within the physical boundaries.
 */
static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len,
	size_t *retlen, const u_char *buf)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
2903 2904
	size_t page_offset, page_remain, i;
	ssize_t ret;
2905 2906 2907

	dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);

2908
	ret = spi_nor_lock_and_prep(nor);
2909 2910 2911
	if (ret)
		return ret;

2912 2913
	for (i = 0; i < len; ) {
		ssize_t written;
2914
		loff_t addr = to + i;
2915

2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
		/*
		 * If page_size is a power of two, the offset can be quickly
		 * calculated with an AND operation. On the other cases we
		 * need to do a modulus operation (more expensive).
		 * Power of two numbers have only one bit set and we can use
		 * the instruction hweight32 to detect if we need to do a
		 * modulus (do_div()) or not.
		 */
		if (hweight32(nor->page_size) == 1) {
			page_offset = addr & (nor->page_size - 1);
		} else {
			uint64_t aux = addr;
2928

2929 2930
			page_offset = do_div(aux, nor->page_size);
		}
2931
		/* the size of data remaining on the first page */
2932 2933 2934
		page_remain = min_t(size_t,
				    nor->page_size - page_offset, len - i);

2935
		addr = spi_nor_convert_addr(nor, addr);
2936

2937 2938 2939 2940
		ret = spi_nor_write_enable(nor);
		if (ret)
			goto write_err;

2941
		ret = spi_nor_write_data(nor, addr, page_remain, buf + i);
2942 2943
		if (ret < 0)
			goto write_err;
2944
		written = ret;
2945

2946 2947 2948 2949 2950
		ret = spi_nor_wait_till_ready(nor);
		if (ret)
			goto write_err;
		*retlen += written;
		i += written;
2951 2952 2953
	}

write_err:
2954
	spi_nor_unlock_and_unprep(nor);
2955
	return ret;
2956 2957
}

2958
static int spi_nor_check(struct spi_nor *nor)
2959
{
2960
	if (!nor->dev ||
2961
	    (!nor->spimem && !nor->controller_ops) ||
2962 2963 2964 2965 2966
	    (!nor->spimem && nor->controller_ops &&
	    (!nor->controller_ops->read ||
	     !nor->controller_ops->write ||
	     !nor->controller_ops->read_reg ||
	     !nor->controller_ops->write_reg))) {
2967 2968 2969 2970
		pr_err("spi-nor: please fill all the necessary fields!\n");
		return -EINVAL;
	}

2971 2972 2973 2974 2975
	if (nor->spimem && nor->controller_ops) {
		dev_err(nor->dev, "nor->spimem and nor->controller_ops are mutually exclusive, please set just one of them.\n");
		return -EINVAL;
	}

2976 2977 2978
	return 0;
}

2979 2980
static int s3an_nor_setup(struct spi_nor *nor,
			  const struct spi_nor_hwcaps *hwcaps)
2981 2982 2983
{
	int ret;

2984
	ret = spi_nor_xread_sr(nor, nor->bouncebuf);
2985
	if (ret)
2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003
		return ret;

	nor->erase_opcode = SPINOR_OP_XSE;
	nor->program_opcode = SPINOR_OP_XPP;
	nor->read_opcode = SPINOR_OP_READ;
	nor->flags |= SNOR_F_NO_OP_CHIP_ERASE;

	/*
	 * This flashes have a page size of 264 or 528 bytes (known as
	 * Default addressing mode). It can be changed to a more standard
	 * Power of two mode where the page size is 256/512. This comes
	 * with a price: there is 3% less of space, the data is corrupted
	 * and the page size cannot be changed back to default addressing
	 * mode.
	 *
	 * The current addressing mode can be read from the XRDSR register
	 * and should not be changed, because is a destructive operation.
	 */
3004
	if (nor->bouncebuf[0] & XSR_PAGESIZE) {
3005 3006 3007
		/* Flash in Power of 2 mode */
		nor->page_size = (nor->page_size == 264) ? 256 : 512;
		nor->mtd.writebufsize = nor->page_size;
3008
		nor->mtd.size = 8 * nor->page_size * nor->info->n_sectors;
3009 3010 3011
		nor->mtd.erasesize = 8 * nor->page_size;
	} else {
		/* Flash in Default addressing mode */
3012
		nor->params.convert_addr = s3an_convert_addr;
3013
		nor->mtd.erasesize = nor->info->sector_size;
3014 3015 3016 3017 3018
	}

	return 0;
}

3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040
static void
spi_nor_set_read_settings(struct spi_nor_read_command *read,
			  u8 num_mode_clocks,
			  u8 num_wait_states,
			  u8 opcode,
			  enum spi_nor_protocol proto)
{
	read->num_mode_clocks = num_mode_clocks;
	read->num_wait_states = num_wait_states;
	read->opcode = opcode;
	read->proto = proto;
}

static void
spi_nor_set_pp_settings(struct spi_nor_pp_command *pp,
			u8 opcode,
			enum spi_nor_protocol proto)
{
	pp->opcode = opcode;
	pp->proto = proto;
}

3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091
static int spi_nor_hwcaps2cmd(u32 hwcaps, const int table[][2], size_t size)
{
	size_t i;

	for (i = 0; i < size; i++)
		if (table[i][0] == (int)hwcaps)
			return table[i][1];

	return -EINVAL;
}

static int spi_nor_hwcaps_read2cmd(u32 hwcaps)
{
	static const int hwcaps_read2cmd[][2] = {
		{ SNOR_HWCAPS_READ,		SNOR_CMD_READ },
		{ SNOR_HWCAPS_READ_FAST,	SNOR_CMD_READ_FAST },
		{ SNOR_HWCAPS_READ_1_1_1_DTR,	SNOR_CMD_READ_1_1_1_DTR },
		{ SNOR_HWCAPS_READ_1_1_2,	SNOR_CMD_READ_1_1_2 },
		{ SNOR_HWCAPS_READ_1_2_2,	SNOR_CMD_READ_1_2_2 },
		{ SNOR_HWCAPS_READ_2_2_2,	SNOR_CMD_READ_2_2_2 },
		{ SNOR_HWCAPS_READ_1_2_2_DTR,	SNOR_CMD_READ_1_2_2_DTR },
		{ SNOR_HWCAPS_READ_1_1_4,	SNOR_CMD_READ_1_1_4 },
		{ SNOR_HWCAPS_READ_1_4_4,	SNOR_CMD_READ_1_4_4 },
		{ SNOR_HWCAPS_READ_4_4_4,	SNOR_CMD_READ_4_4_4 },
		{ SNOR_HWCAPS_READ_1_4_4_DTR,	SNOR_CMD_READ_1_4_4_DTR },
		{ SNOR_HWCAPS_READ_1_1_8,	SNOR_CMD_READ_1_1_8 },
		{ SNOR_HWCAPS_READ_1_8_8,	SNOR_CMD_READ_1_8_8 },
		{ SNOR_HWCAPS_READ_8_8_8,	SNOR_CMD_READ_8_8_8 },
		{ SNOR_HWCAPS_READ_1_8_8_DTR,	SNOR_CMD_READ_1_8_8_DTR },
	};

	return spi_nor_hwcaps2cmd(hwcaps, hwcaps_read2cmd,
				  ARRAY_SIZE(hwcaps_read2cmd));
}

static int spi_nor_hwcaps_pp2cmd(u32 hwcaps)
{
	static const int hwcaps_pp2cmd[][2] = {
		{ SNOR_HWCAPS_PP,		SNOR_CMD_PP },
		{ SNOR_HWCAPS_PP_1_1_4,		SNOR_CMD_PP_1_1_4 },
		{ SNOR_HWCAPS_PP_1_4_4,		SNOR_CMD_PP_1_4_4 },
		{ SNOR_HWCAPS_PP_4_4_4,		SNOR_CMD_PP_4_4_4 },
		{ SNOR_HWCAPS_PP_1_1_8,		SNOR_CMD_PP_1_1_8 },
		{ SNOR_HWCAPS_PP_1_8_8,		SNOR_CMD_PP_1_8_8 },
		{ SNOR_HWCAPS_PP_8_8_8,		SNOR_CMD_PP_8_8_8 },
	};

	return spi_nor_hwcaps2cmd(hwcaps, hwcaps_pp2cmd,
				  ARRAY_SIZE(hwcaps_pp2cmd));
}

3092 3093 3094 3095
/*
 * Serial Flash Discoverable Parameters (SFDP) parsing.
 */

3096 3097 3098 3099 3100 3101 3102 3103
/**
 * spi_nor_read_raw() - raw read of serial flash memory. read_opcode,
 *			addr_width and read_dummy members of the struct spi_nor
 *			should be previously
 * set.
 * @nor:	pointer to a 'struct spi_nor'
 * @addr:	offset in the serial flash memory
 * @len:	number of bytes to read
3104
 * @buf:	buffer where the data is copied into (dma-safe memory)
3105 3106 3107 3108 3109
 *
 * Return: 0 on success, -errno otherwise.
 */
static int spi_nor_read_raw(struct spi_nor *nor, u32 addr, size_t len, u8 *buf)
{
3110
	ssize_t ret;
3111 3112

	while (len) {
3113
		ret = spi_nor_read_data(nor, addr, len, buf);
3114 3115
		if (ret < 0)
			return ret;
3116 3117
		if (!ret || ret > len)
			return -EIO;
3118 3119 3120 3121 3122 3123 3124 3125

		buf += ret;
		addr += ret;
		len -= ret;
	}
	return 0;
}

3126 3127 3128 3129 3130
/**
 * spi_nor_read_sfdp() - read Serial Flash Discoverable Parameters.
 * @nor:	pointer to a 'struct spi_nor'
 * @addr:	offset in the SFDP area to start reading data from
 * @len:	number of bytes to read
3131
 * @buf:	buffer where the SFDP data are copied into (dma-safe memory)
3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152
 *
 * Whatever the actual numbers of bytes for address and dummy cycles are
 * for (Fast) Read commands, the Read SFDP (5Ah) instruction is always
 * followed by a 3-byte address and 8 dummy clock cycles.
 *
 * Return: 0 on success, -errno otherwise.
 */
static int spi_nor_read_sfdp(struct spi_nor *nor, u32 addr,
			     size_t len, void *buf)
{
	u8 addr_width, read_opcode, read_dummy;
	int ret;

	read_opcode = nor->read_opcode;
	addr_width = nor->addr_width;
	read_dummy = nor->read_dummy;

	nor->read_opcode = SPINOR_OP_RDSFDP;
	nor->addr_width = 3;
	nor->read_dummy = 8;

3153
	ret = spi_nor_read_raw(nor, addr, len, buf);
3154 3155 3156 3157 3158 3159 3160 3161

	nor->read_opcode = read_opcode;
	nor->addr_width = addr_width;
	nor->read_dummy = read_dummy;

	return ret;
}

3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249
/**
 * spi_nor_spimem_check_op - check if the operation is supported
 *                           by controller
 *@nor:        pointer to a 'struct spi_nor'
 *@op:         pointer to op template to be checked
 *
 * Returns 0 if operation is supported, -ENOTSUPP otherwise.
 */
static int spi_nor_spimem_check_op(struct spi_nor *nor,
				   struct spi_mem_op *op)
{
	/*
	 * First test with 4 address bytes. The opcode itself might
	 * be a 3B addressing opcode but we don't care, because
	 * SPI controller implementation should not check the opcode,
	 * but just the sequence.
	 */
	op->addr.nbytes = 4;
	if (!spi_mem_supports_op(nor->spimem, op)) {
		if (nor->mtd.size > SZ_16M)
			return -ENOTSUPP;

		/* If flash size <= 16MB, 3 address bytes are sufficient */
		op->addr.nbytes = 3;
		if (!spi_mem_supports_op(nor->spimem, op))
			return -ENOTSUPP;
	}

	return 0;
}

/**
 * spi_nor_spimem_check_readop - check if the read op is supported
 *                               by controller
 *@nor:         pointer to a 'struct spi_nor'
 *@read:        pointer to op template to be checked
 *
 * Returns 0 if operation is supported, -ENOTSUPP otherwise.
 */
static int spi_nor_spimem_check_readop(struct spi_nor *nor,
				       const struct spi_nor_read_command *read)
{
	struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(read->opcode, 1),
					  SPI_MEM_OP_ADDR(3, 0, 1),
					  SPI_MEM_OP_DUMMY(0, 1),
					  SPI_MEM_OP_DATA_IN(0, NULL, 1));

	op.cmd.buswidth = spi_nor_get_protocol_inst_nbits(read->proto);
	op.addr.buswidth = spi_nor_get_protocol_addr_nbits(read->proto);
	op.data.buswidth = spi_nor_get_protocol_data_nbits(read->proto);
	op.dummy.buswidth = op.addr.buswidth;
	op.dummy.nbytes = (read->num_mode_clocks + read->num_wait_states) *
			  op.dummy.buswidth / 8;

	return spi_nor_spimem_check_op(nor, &op);
}

/**
 * spi_nor_spimem_check_pp - check if the page program op is supported
 *                           by controller
 *@nor:         pointer to a 'struct spi_nor'
 *@pp:          pointer to op template to be checked
 *
 * Returns 0 if operation is supported, -ENOTSUPP otherwise.
 */
static int spi_nor_spimem_check_pp(struct spi_nor *nor,
				   const struct spi_nor_pp_command *pp)
{
	struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(pp->opcode, 1),
					  SPI_MEM_OP_ADDR(3, 0, 1),
					  SPI_MEM_OP_NO_DUMMY,
					  SPI_MEM_OP_DATA_OUT(0, NULL, 1));

	op.cmd.buswidth = spi_nor_get_protocol_inst_nbits(pp->proto);
	op.addr.buswidth = spi_nor_get_protocol_addr_nbits(pp->proto);
	op.data.buswidth = spi_nor_get_protocol_data_nbits(pp->proto);

	return spi_nor_spimem_check_op(nor, &op);
}

/**
 * spi_nor_spimem_adjust_hwcaps - Find optimal Read/Write protocol
 *                                based on SPI controller capabilities
 * @nor:        pointer to a 'struct spi_nor'
 * @hwcaps:     pointer to resulting capabilities after adjusting
 *              according to controller and flash's capability
 */
static void
T
Tudor Ambarus 已提交
3250
spi_nor_spimem_adjust_hwcaps(struct spi_nor *nor, u32 *hwcaps)
3251
{
T
Tudor Ambarus 已提交
3252
	struct spi_nor_flash_parameter *params =  &nor->params;
3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281
	unsigned int cap;

	/* DTR modes are not supported yet, mask them all. */
	*hwcaps &= ~SNOR_HWCAPS_DTR;

	/* X-X-X modes are not supported yet, mask them all. */
	*hwcaps &= ~SNOR_HWCAPS_X_X_X;

	for (cap = 0; cap < sizeof(*hwcaps) * BITS_PER_BYTE; cap++) {
		int rdidx, ppidx;

		if (!(*hwcaps & BIT(cap)))
			continue;

		rdidx = spi_nor_hwcaps_read2cmd(BIT(cap));
		if (rdidx >= 0 &&
		    spi_nor_spimem_check_readop(nor, &params->reads[rdidx]))
			*hwcaps &= ~BIT(cap);

		ppidx = spi_nor_hwcaps_pp2cmd(BIT(cap));
		if (ppidx < 0)
			continue;

		if (spi_nor_spimem_check_pp(nor,
					    &params->page_programs[ppidx]))
			*hwcaps &= ~BIT(cap);
	}
}

3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311
/**
 * spi_nor_read_sfdp_dma_unsafe() - read Serial Flash Discoverable Parameters.
 * @nor:	pointer to a 'struct spi_nor'
 * @addr:	offset in the SFDP area to start reading data from
 * @len:	number of bytes to read
 * @buf:	buffer where the SFDP data are copied into
 *
 * Wrap spi_nor_read_sfdp() using a kmalloc'ed bounce buffer as @buf is now not
 * guaranteed to be dma-safe.
 *
 * Return: -ENOMEM if kmalloc() fails, the return code of spi_nor_read_sfdp()
 *          otherwise.
 */
static int spi_nor_read_sfdp_dma_unsafe(struct spi_nor *nor, u32 addr,
					size_t len, void *buf)
{
	void *dma_safe_buf;
	int ret;

	dma_safe_buf = kmalloc(len, GFP_KERNEL);
	if (!dma_safe_buf)
		return -ENOMEM;

	ret = spi_nor_read_sfdp(nor, addr, len, dma_safe_buf);
	memcpy(buf, dma_safe_buf, len);
	kfree(dma_safe_buf);

	return ret;
}

3312 3313
/* Fast Read settings. */

3314
static void
3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420
spi_nor_set_read_settings_from_bfpt(struct spi_nor_read_command *read,
				    u16 half,
				    enum spi_nor_protocol proto)
{
	read->num_mode_clocks = (half >> 5) & 0x07;
	read->num_wait_states = (half >> 0) & 0x1f;
	read->opcode = (half >> 8) & 0xff;
	read->proto = proto;
}

struct sfdp_bfpt_read {
	/* The Fast Read x-y-z hardware capability in params->hwcaps.mask. */
	u32			hwcaps;

	/*
	 * The <supported_bit> bit in <supported_dword> BFPT DWORD tells us
	 * whether the Fast Read x-y-z command is supported.
	 */
	u32			supported_dword;
	u32			supported_bit;

	/*
	 * The half-word at offset <setting_shift> in <setting_dword> BFPT DWORD
	 * encodes the op code, the number of mode clocks and the number of wait
	 * states to be used by Fast Read x-y-z command.
	 */
	u32			settings_dword;
	u32			settings_shift;

	/* The SPI protocol for this Fast Read x-y-z command. */
	enum spi_nor_protocol	proto;
};

static const struct sfdp_bfpt_read sfdp_bfpt_reads[] = {
	/* Fast Read 1-1-2 */
	{
		SNOR_HWCAPS_READ_1_1_2,
		BFPT_DWORD(1), BIT(16),	/* Supported bit */
		BFPT_DWORD(4), 0,	/* Settings */
		SNOR_PROTO_1_1_2,
	},

	/* Fast Read 1-2-2 */
	{
		SNOR_HWCAPS_READ_1_2_2,
		BFPT_DWORD(1), BIT(20),	/* Supported bit */
		BFPT_DWORD(4), 16,	/* Settings */
		SNOR_PROTO_1_2_2,
	},

	/* Fast Read 2-2-2 */
	{
		SNOR_HWCAPS_READ_2_2_2,
		BFPT_DWORD(5),  BIT(0),	/* Supported bit */
		BFPT_DWORD(6), 16,	/* Settings */
		SNOR_PROTO_2_2_2,
	},

	/* Fast Read 1-1-4 */
	{
		SNOR_HWCAPS_READ_1_1_4,
		BFPT_DWORD(1), BIT(22),	/* Supported bit */
		BFPT_DWORD(3), 16,	/* Settings */
		SNOR_PROTO_1_1_4,
	},

	/* Fast Read 1-4-4 */
	{
		SNOR_HWCAPS_READ_1_4_4,
		BFPT_DWORD(1), BIT(21),	/* Supported bit */
		BFPT_DWORD(3), 0,	/* Settings */
		SNOR_PROTO_1_4_4,
	},

	/* Fast Read 4-4-4 */
	{
		SNOR_HWCAPS_READ_4_4_4,
		BFPT_DWORD(5), BIT(4),	/* Supported bit */
		BFPT_DWORD(7), 16,	/* Settings */
		SNOR_PROTO_4_4_4,
	},
};

struct sfdp_bfpt_erase {
	/*
	 * The half-word at offset <shift> in DWORD <dwoard> encodes the
	 * op code and erase sector size to be used by Sector Erase commands.
	 */
	u32			dword;
	u32			shift;
};

static const struct sfdp_bfpt_erase sfdp_bfpt_erases[] = {
	/* Erase Type 1 in DWORD8 bits[15:0] */
	{BFPT_DWORD(8), 0},

	/* Erase Type 2 in DWORD8 bits[31:16] */
	{BFPT_DWORD(8), 16},

	/* Erase Type 3 in DWORD9 bits[15:0] */
	{BFPT_DWORD(9), 0},

	/* Erase Type 4 in DWORD9 bits[31:16] */
	{BFPT_DWORD(9), 16},
};

3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475
/**
 * spi_nor_set_erase_type() - set a SPI NOR erase type
 * @erase:	pointer to a structure that describes a SPI NOR erase type
 * @size:	the size of the sector/block erased by the erase type
 * @opcode:	the SPI command op code to erase the sector/block
 */
static void spi_nor_set_erase_type(struct spi_nor_erase_type *erase,
				   u32 size, u8 opcode)
{
	erase->size = size;
	erase->opcode = opcode;
	/* JEDEC JESD216B Standard imposes erase sizes to be power of 2. */
	erase->size_shift = ffs(erase->size) - 1;
	erase->size_mask = (1 << erase->size_shift) - 1;
}

/**
 * spi_nor_set_erase_settings_from_bfpt() - set erase type settings from BFPT
 * @erase:	pointer to a structure that describes a SPI NOR erase type
 * @size:	the size of the sector/block erased by the erase type
 * @opcode:	the SPI command op code to erase the sector/block
 * @i:		erase type index as sorted in the Basic Flash Parameter Table
 *
 * The supported Erase Types will be sorted at init in ascending order, with
 * the smallest Erase Type size being the first member in the erase_type array
 * of the spi_nor_erase_map structure. Save the Erase Type index as sorted in
 * the Basic Flash Parameter Table since it will be used later on to
 * synchronize with the supported Erase Types defined in SFDP optional tables.
 */
static void
spi_nor_set_erase_settings_from_bfpt(struct spi_nor_erase_type *erase,
				     u32 size, u8 opcode, u8 i)
{
	erase->idx = i;
	spi_nor_set_erase_type(erase, size, opcode);
}

/**
 * spi_nor_map_cmp_erase_type() - compare the map's erase types by size
 * @l:	member in the left half of the map's erase_type array
 * @r:	member in the right half of the map's erase_type array
 *
 * Comparison function used in the sort() call to sort in ascending order the
 * map's erase types, the smallest erase type size being the first member in the
 * sorted erase_type array.
 *
 * Return: the result of @l->size - @r->size
 */
static int spi_nor_map_cmp_erase_type(const void *l, const void *r)
{
	const struct spi_nor_erase_type *left = l, *right = r;

	return left->size - right->size;
}

3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503
/**
 * spi_nor_sort_erase_mask() - sort erase mask
 * @map:	the erase map of the SPI NOR
 * @erase_mask:	the erase type mask to be sorted
 *
 * Replicate the sort done for the map's erase types in BFPT: sort the erase
 * mask in ascending order with the smallest erase type size starting from
 * BIT(0) in the sorted erase mask.
 *
 * Return: sorted erase mask.
 */
static u8 spi_nor_sort_erase_mask(struct spi_nor_erase_map *map, u8 erase_mask)
{
	struct spi_nor_erase_type *erase_type = map->erase_type;
	int i;
	u8 sorted_erase_mask = 0;

	if (!erase_mask)
		return 0;

	/* Replicate the sort done for the map's erase types. */
	for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++)
		if (erase_type[i].size && erase_mask & BIT(erase_type[i].idx))
			sorted_erase_mask |= BIT(i);

	return sorted_erase_mask;
}

3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523
/**
 * spi_nor_regions_sort_erase_types() - sort erase types in each region
 * @map:	the erase map of the SPI NOR
 *
 * Function assumes that the erase types defined in the erase map are already
 * sorted in ascending order, with the smallest erase type size being the first
 * member in the erase_type array. It replicates the sort done for the map's
 * erase types. Each region's erase bitmask will indicate which erase types are
 * supported from the sorted erase types defined in the erase map.
 * Sort the all region's erase type at init in order to speed up the process of
 * finding the best erase command at runtime.
 */
static void spi_nor_regions_sort_erase_types(struct spi_nor_erase_map *map)
{
	struct spi_nor_erase_region *region = map->regions;
	u8 region_erase_mask, sorted_erase_mask;

	while (region) {
		region_erase_mask = region->offset & SNOR_ERASE_TYPE_MASK;

3524 3525
		sorted_erase_mask = spi_nor_sort_erase_mask(map,
							    region_erase_mask);
3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552

		/* Overwrite erase mask. */
		region->offset = (region->offset & ~SNOR_ERASE_TYPE_MASK) |
				 sorted_erase_mask;

		region = spi_nor_region_next(region);
	}
}

/**
 * spi_nor_init_uniform_erase_map() - Initialize uniform erase map
 * @map:		the erase map of the SPI NOR
 * @erase_mask:		bitmask encoding erase types that can erase the entire
 *			flash memory
 * @flash_size:		the spi nor flash memory size
 */
static void spi_nor_init_uniform_erase_map(struct spi_nor_erase_map *map,
					   u8 erase_mask, u64 flash_size)
{
	/* Offset 0 with erase_mask and SNOR_LAST_REGION bit set */
	map->uniform_region.offset = (erase_mask & SNOR_ERASE_TYPE_MASK) |
				     SNOR_LAST_REGION;
	map->uniform_region.size = flash_size;
	map->regions = &map->uniform_region;
	map->uniform_erase_type = erase_mask;
}

3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565
static int
spi_nor_post_bfpt_fixups(struct spi_nor *nor,
			 const struct sfdp_parameter_header *bfpt_header,
			 const struct sfdp_bfpt *bfpt,
			 struct spi_nor_flash_parameter *params)
{
	if (nor->info->fixups && nor->info->fixups->post_bfpt)
		return nor->info->fixups->post_bfpt(nor, bfpt_header, bfpt,
						    params);

	return 0;
}

3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599
/**
 * spi_nor_parse_bfpt() - read and parse the Basic Flash Parameter Table.
 * @nor:		pointer to a 'struct spi_nor'
 * @bfpt_header:	pointer to the 'struct sfdp_parameter_header' describing
 *			the Basic Flash Parameter Table length and version
 * @params:		pointer to the 'struct spi_nor_flash_parameter' to be
 *			filled
 *
 * The Basic Flash Parameter Table is the main and only mandatory table as
 * defined by the SFDP (JESD216) specification.
 * It provides us with the total size (memory density) of the data array and
 * the number of address bytes for Fast Read, Page Program and Sector Erase
 * commands.
 * For Fast READ commands, it also gives the number of mode clock cycles and
 * wait states (regrouped in the number of dummy clock cycles) for each
 * supported instruction op code.
 * For Page Program, the page size is now available since JESD216 rev A, however
 * the supported instruction op codes are still not provided.
 * For Sector Erase commands, this table stores the supported instruction op
 * codes and the associated sector sizes.
 * Finally, the Quad Enable Requirements (QER) are also available since JESD216
 * rev A. The QER bits encode the manufacturer dependent procedure to be
 * executed to set the Quad Enable (QE) bit in some internal register of the
 * Quad SPI memory. Indeed the QE bit, when it exists, must be set before
 * sending any Quad SPI command to the memory. Actually, setting the QE bit
 * tells the memory to reassign its WP# and HOLD#/RESET# pins to functions IO2
 * and IO3 hence enabling 4 (Quad) I/O lines.
 *
 * Return: 0 on success, -errno otherwise.
 */
static int spi_nor_parse_bfpt(struct spi_nor *nor,
			      const struct sfdp_parameter_header *bfpt_header,
			      struct spi_nor_flash_parameter *params)
{
3600
	struct spi_nor_erase_map *map = &params->erase_map;
3601
	struct spi_nor_erase_type *erase_type = map->erase_type;
3602 3603 3604 3605 3606
	struct sfdp_bfpt bfpt;
	size_t len;
	int i, cmd, err;
	u32 addr;
	u16 half;
3607
	u8 erase_mask;
3608 3609 3610 3611 3612 3613 3614 3615 3616 3617

	/* JESD216 Basic Flash Parameter Table length is at least 9 DWORDs. */
	if (bfpt_header->length < BFPT_DWORD_MAX_JESD216)
		return -EINVAL;

	/* Read the Basic Flash Parameter Table. */
	len = min_t(size_t, sizeof(bfpt),
		    bfpt_header->length * sizeof(u32));
	addr = SFDP_PARAM_HEADER_PTP(bfpt_header);
	memset(&bfpt, 0, sizeof(bfpt));
3618
	err = spi_nor_read_sfdp_dma_unsafe(nor,  addr, len, &bfpt);
3619 3620 3621 3622
	if (err < 0)
		return err;

	/* Fix endianness of the BFPT DWORDs. */
3623
	le32_to_cpu_array(bfpt.dwords, BFPT_DWORD_MAX);
3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642

	/* Number of address bytes. */
	switch (bfpt.dwords[BFPT_DWORD(1)] & BFPT_DWORD1_ADDRESS_BYTES_MASK) {
	case BFPT_DWORD1_ADDRESS_BYTES_3_ONLY:
		nor->addr_width = 3;
		break;

	case BFPT_DWORD1_ADDRESS_BYTES_4_ONLY:
		nor->addr_width = 4;
		break;

	default:
		break;
	}

	/* Flash Memory Density (in bits). */
	params->size = bfpt.dwords[BFPT_DWORD(2)];
	if (params->size & BIT(31)) {
		params->size &= ~BIT(31);
3643 3644 3645 3646 3647 3648 3649 3650 3651

		/*
		 * Prevent overflows on params->size. Anyway, a NOR of 2^64
		 * bits is unlikely to exist so this error probably means
		 * the BFPT we are reading is corrupted/wrong.
		 */
		if (params->size > 63)
			return -EINVAL;

3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674
		params->size = 1ULL << params->size;
	} else {
		params->size++;
	}
	params->size >>= 3; /* Convert to bytes. */

	/* Fast Read settings. */
	for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_reads); i++) {
		const struct sfdp_bfpt_read *rd = &sfdp_bfpt_reads[i];
		struct spi_nor_read_command *read;

		if (!(bfpt.dwords[rd->supported_dword] & rd->supported_bit)) {
			params->hwcaps.mask &= ~rd->hwcaps;
			continue;
		}

		params->hwcaps.mask |= rd->hwcaps;
		cmd = spi_nor_hwcaps_read2cmd(rd->hwcaps);
		read = &params->reads[cmd];
		half = bfpt.dwords[rd->settings_dword] >> rd->settings_shift;
		spi_nor_set_read_settings_from_bfpt(read, half, rd->proto);
	}

3675 3676 3677 3678 3679
	/*
	 * Sector Erase settings. Reinitialize the uniform erase map using the
	 * Erase Types defined in the bfpt table.
	 */
	erase_mask = 0;
3680
	memset(&params->erase_map, 0, sizeof(params->erase_map));
3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694
	for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_erases); i++) {
		const struct sfdp_bfpt_erase *er = &sfdp_bfpt_erases[i];
		u32 erasesize;
		u8 opcode;

		half = bfpt.dwords[er->dword] >> er->shift;
		erasesize = half & 0xff;

		/* erasesize == 0 means this Erase Type is not supported. */
		if (!erasesize)
			continue;

		erasesize = 1U << erasesize;
		opcode = (half >> 8) & 0xff;
3695 3696 3697
		erase_mask |= BIT(i);
		spi_nor_set_erase_settings_from_bfpt(&erase_type[i], erasesize,
						     opcode, i);
3698
	}
3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713
	spi_nor_init_uniform_erase_map(map, erase_mask, params->size);
	/*
	 * Sort all the map's Erase Types in ascending order with the smallest
	 * erase size being the first member in the erase_type array.
	 */
	sort(erase_type, SNOR_ERASE_TYPE_MAX, sizeof(erase_type[0]),
	     spi_nor_map_cmp_erase_type, NULL);
	/*
	 * Sort the erase types in the uniform region in order to update the
	 * uniform_erase_type bitmask. The bitmask will be used later on when
	 * selecting the uniform erase.
	 */
	spi_nor_regions_sort_erase_types(map);
	map->uniform_erase_type = map->uniform_region.offset &
				  SNOR_ERASE_TYPE_MASK;
3714 3715 3716

	/* Stop here if not JESD216 rev A or later. */
	if (bfpt_header->length < BFPT_DWORD_MAX)
3717 3718
		return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt,
						params);
3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732

	/* Page size: this field specifies 'N' so the page size = 2^N bytes. */
	params->page_size = bfpt.dwords[BFPT_DWORD(11)];
	params->page_size &= BFPT_DWORD11_PAGE_SIZE_MASK;
	params->page_size >>= BFPT_DWORD11_PAGE_SIZE_SHIFT;
	params->page_size = 1U << params->page_size;

	/* Quad Enable Requirements. */
	switch (bfpt.dwords[BFPT_DWORD(15)] & BFPT_DWORD15_QER_MASK) {
	case BFPT_DWORD15_QER_NONE:
		params->quad_enable = NULL;
		break;

	case BFPT_DWORD15_QER_SR2_BIT1_BUGGY:
3733 3734 3735 3736
		/*
		 * Writing only one byte to the Status Register has the
		 * side-effect of clearing Status Register 2.
		 */
3737
	case BFPT_DWORD15_QER_SR2_BIT1_NO_RD:
3738 3739 3740 3741 3742
		/*
		 * Read Configuration Register (35h) instruction is not
		 * supported.
		 */
		nor->flags |= SNOR_F_HAS_16BIT_SR | SNOR_F_NO_READ_CR;
3743
		params->quad_enable = spi_nor_sr2_bit1_quad_enable;
3744 3745 3746
		break;

	case BFPT_DWORD15_QER_SR1_BIT6:
3747
		nor->flags &= ~SNOR_F_HAS_16BIT_SR;
3748
		params->quad_enable = spi_nor_sr1_bit6_quad_enable;
3749 3750 3751
		break;

	case BFPT_DWORD15_QER_SR2_BIT7:
3752
		nor->flags &= ~SNOR_F_HAS_16BIT_SR;
3753
		params->quad_enable = spi_nor_sr2_bit7_quad_enable;
3754 3755 3756
		break;

	case BFPT_DWORD15_QER_SR2_BIT1:
3757 3758 3759 3760 3761 3762 3763 3764
		/*
		 * JESD216 rev B or later does not specify if writing only one
		 * byte to the Status Register clears or not the Status
		 * Register 2, so let's be cautious and keep the default
		 * assumption of a 16-bit Write Status (01h) command.
		 */
		nor->flags |= SNOR_F_HAS_16BIT_SR;

3765
		params->quad_enable = spi_nor_sr2_bit1_quad_enable;
3766 3767 3768 3769 3770 3771
		break;

	default:
		return -EINVAL;
	}

3772
	return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt, params);
3773 3774
}

3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863
#define SMPT_CMD_ADDRESS_LEN_MASK		GENMASK(23, 22)
#define SMPT_CMD_ADDRESS_LEN_0			(0x0UL << 22)
#define SMPT_CMD_ADDRESS_LEN_3			(0x1UL << 22)
#define SMPT_CMD_ADDRESS_LEN_4			(0x2UL << 22)
#define SMPT_CMD_ADDRESS_LEN_USE_CURRENT	(0x3UL << 22)

#define SMPT_CMD_READ_DUMMY_MASK		GENMASK(19, 16)
#define SMPT_CMD_READ_DUMMY_SHIFT		16
#define SMPT_CMD_READ_DUMMY(_cmd) \
	(((_cmd) & SMPT_CMD_READ_DUMMY_MASK) >> SMPT_CMD_READ_DUMMY_SHIFT)
#define SMPT_CMD_READ_DUMMY_IS_VARIABLE		0xfUL

#define SMPT_CMD_READ_DATA_MASK			GENMASK(31, 24)
#define SMPT_CMD_READ_DATA_SHIFT		24
#define SMPT_CMD_READ_DATA(_cmd) \
	(((_cmd) & SMPT_CMD_READ_DATA_MASK) >> SMPT_CMD_READ_DATA_SHIFT)

#define SMPT_CMD_OPCODE_MASK			GENMASK(15, 8)
#define SMPT_CMD_OPCODE_SHIFT			8
#define SMPT_CMD_OPCODE(_cmd) \
	(((_cmd) & SMPT_CMD_OPCODE_MASK) >> SMPT_CMD_OPCODE_SHIFT)

#define SMPT_MAP_REGION_COUNT_MASK		GENMASK(23, 16)
#define SMPT_MAP_REGION_COUNT_SHIFT		16
#define SMPT_MAP_REGION_COUNT(_header) \
	((((_header) & SMPT_MAP_REGION_COUNT_MASK) >> \
	  SMPT_MAP_REGION_COUNT_SHIFT) + 1)

#define SMPT_MAP_ID_MASK			GENMASK(15, 8)
#define SMPT_MAP_ID_SHIFT			8
#define SMPT_MAP_ID(_header) \
	(((_header) & SMPT_MAP_ID_MASK) >> SMPT_MAP_ID_SHIFT)

#define SMPT_MAP_REGION_SIZE_MASK		GENMASK(31, 8)
#define SMPT_MAP_REGION_SIZE_SHIFT		8
#define SMPT_MAP_REGION_SIZE(_region) \
	(((((_region) & SMPT_MAP_REGION_SIZE_MASK) >> \
	   SMPT_MAP_REGION_SIZE_SHIFT) + 1) * 256)

#define SMPT_MAP_REGION_ERASE_TYPE_MASK		GENMASK(3, 0)
#define SMPT_MAP_REGION_ERASE_TYPE(_region) \
	((_region) & SMPT_MAP_REGION_ERASE_TYPE_MASK)

#define SMPT_DESC_TYPE_MAP			BIT(1)
#define SMPT_DESC_END				BIT(0)

/**
 * spi_nor_smpt_addr_width() - return the address width used in the
 *			       configuration detection command.
 * @nor:	pointer to a 'struct spi_nor'
 * @settings:	configuration detection command descriptor, dword1
 */
static u8 spi_nor_smpt_addr_width(const struct spi_nor *nor, const u32 settings)
{
	switch (settings & SMPT_CMD_ADDRESS_LEN_MASK) {
	case SMPT_CMD_ADDRESS_LEN_0:
		return 0;
	case SMPT_CMD_ADDRESS_LEN_3:
		return 3;
	case SMPT_CMD_ADDRESS_LEN_4:
		return 4;
	case SMPT_CMD_ADDRESS_LEN_USE_CURRENT:
		/* fall through */
	default:
		return nor->addr_width;
	}
}

/**
 * spi_nor_smpt_read_dummy() - return the configuration detection command read
 *			       latency, in clock cycles.
 * @nor:	pointer to a 'struct spi_nor'
 * @settings:	configuration detection command descriptor, dword1
 *
 * Return: the number of dummy cycles for an SMPT read
 */
static u8 spi_nor_smpt_read_dummy(const struct spi_nor *nor, const u32 settings)
{
	u8 read_dummy = SMPT_CMD_READ_DUMMY(settings);

	if (read_dummy == SMPT_CMD_READ_DUMMY_IS_VARIABLE)
		return nor->read_dummy;
	return read_dummy;
}

/**
 * spi_nor_get_map_in_use() - get the configuration map in use
 * @nor:	pointer to a 'struct spi_nor'
 * @smpt:	pointer to the sector map parameter table
3864
 * @smpt_len:	sector map parameter table length
3865 3866
 *
 * Return: pointer to the map in use, ERR_PTR(-errno) otherwise.
3867
 */
3868 3869
static const u32 *spi_nor_get_map_in_use(struct spi_nor *nor, const u32 *smpt,
					 u8 smpt_len)
3870
{
3871
	const u32 *ret;
3872
	u8 *buf;
3873
	u32 addr;
3874
	int err;
3875
	u8 i;
3876
	u8 addr_width, read_opcode, read_dummy;
3877 3878 3879 3880 3881 3882
	u8 read_data_mask, map_id;

	/* Use a kmalloc'ed bounce buffer to guarantee it is DMA-able. */
	buf = kmalloc(sizeof(*buf), GFP_KERNEL);
	if (!buf)
		return ERR_PTR(-ENOMEM);
3883 3884 3885 3886 3887 3888 3889

	addr_width = nor->addr_width;
	read_dummy = nor->read_dummy;
	read_opcode = nor->read_opcode;

	map_id = 0;
	/* Determine if there are any optional Detection Command Descriptors */
3890 3891 3892 3893
	for (i = 0; i < smpt_len; i += 2) {
		if (smpt[i] & SMPT_DESC_TYPE_MAP)
			break;

3894 3895 3896 3897 3898 3899
		read_data_mask = SMPT_CMD_READ_DATA(smpt[i]);
		nor->addr_width = spi_nor_smpt_addr_width(nor, smpt[i]);
		nor->read_dummy = spi_nor_smpt_read_dummy(nor, smpt[i]);
		nor->read_opcode = SMPT_CMD_OPCODE(smpt[i]);
		addr = smpt[i + 1];

3900
		err = spi_nor_read_raw(nor, addr, 1, buf);
3901 3902
		if (err) {
			ret = ERR_PTR(err);
3903
			goto out;
3904
		}
3905 3906 3907 3908 3909

		/*
		 * Build an index value that is used to select the Sector Map
		 * Configuration that is currently in use.
		 */
3910
		map_id = map_id << 1 | !!(*buf & read_data_mask);
3911 3912
	}

3913 3914 3915 3916 3917 3918 3919
	/*
	 * If command descriptors are provided, they always precede map
	 * descriptors in the table. There is no need to start the iteration
	 * over smpt array all over again.
	 *
	 * Find the matching configuration map.
	 */
3920
	ret = ERR_PTR(-EINVAL);
3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931
	while (i < smpt_len) {
		if (SMPT_MAP_ID(smpt[i]) == map_id) {
			ret = smpt + i;
			break;
		}

		/*
		 * If there are no more configuration map descriptors and no
		 * configuration ID matched the configuration identifier, the
		 * sector address map is unknown.
		 */
3932
		if (smpt[i] & SMPT_DESC_END)
3933 3934
			break;

3935 3936 3937 3938 3939 3940
		/* increment the table index to the next map */
		i += SMPT_MAP_REGION_COUNT(smpt[i]) + 1;
	}

	/* fall through */
out:
3941
	kfree(buf);
3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973
	nor->addr_width = addr_width;
	nor->read_dummy = read_dummy;
	nor->read_opcode = read_opcode;
	return ret;
}

/**
 * spi_nor_region_check_overlay() - set overlay bit when the region is overlaid
 * @region:	pointer to a structure that describes a SPI NOR erase region
 * @erase:	pointer to a structure that describes a SPI NOR erase type
 * @erase_type:	erase type bitmask
 */
static void
spi_nor_region_check_overlay(struct spi_nor_erase_region *region,
			     const struct spi_nor_erase_type *erase,
			     const u8 erase_type)
{
	int i;

	for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
		if (!(erase_type & BIT(i)))
			continue;
		if (region->size & erase[i].size_mask) {
			spi_nor_region_mark_overlay(region);
			return;
		}
	}
}

/**
 * spi_nor_init_non_uniform_erase_map() - initialize the non-uniform erase map
 * @nor:	pointer to a 'struct spi_nor'
3974 3975
 * @params:     pointer to a duplicate 'struct spi_nor_flash_parameter' that is
 *              used for storing SFDP parsed data
3976 3977 3978 3979
 * @smpt:	pointer to the sector map parameter table
 *
 * Return: 0 on success, -errno otherwise.
 */
3980 3981 3982 3983
static int
spi_nor_init_non_uniform_erase_map(struct spi_nor *nor,
				   struct spi_nor_flash_parameter *params,
				   const u32 *smpt)
3984
{
3985
	struct spi_nor_erase_map *map = &params->erase_map;
3986
	struct spi_nor_erase_type *erase = map->erase_type;
3987 3988 3989 3990
	struct spi_nor_erase_region *region;
	u64 offset;
	u32 region_count;
	int i, j;
3991 3992
	u8 uniform_erase_type, save_uniform_erase_type;
	u8 erase_type, regions_erase_type;
3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004

	region_count = SMPT_MAP_REGION_COUNT(*smpt);
	/*
	 * The regions will be freed when the driver detaches from the
	 * device.
	 */
	region = devm_kcalloc(nor->dev, region_count, sizeof(*region),
			      GFP_KERNEL);
	if (!region)
		return -ENOMEM;
	map->regions = region;

4005
	uniform_erase_type = 0xff;
4006
	regions_erase_type = 0;
4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020
	offset = 0;
	/* Populate regions. */
	for (i = 0; i < region_count; i++) {
		j = i + 1; /* index for the region dword */
		region[i].size = SMPT_MAP_REGION_SIZE(smpt[j]);
		erase_type = SMPT_MAP_REGION_ERASE_TYPE(smpt[j]);
		region[i].offset = offset | erase_type;

		spi_nor_region_check_overlay(&region[i], erase, erase_type);

		/*
		 * Save the erase types that are supported in all regions and
		 * can erase the entire flash memory.
		 */
4021
		uniform_erase_type &= erase_type;
4022

4023 4024 4025 4026 4027 4028
		/*
		 * regions_erase_type mask will indicate all the erase types
		 * supported in this configuration map.
		 */
		regions_erase_type |= erase_type;

4029 4030 4031 4032
		offset = (region[i].offset & ~SNOR_ERASE_FLAGS_MASK) +
			 region[i].size;
	}

4033
	save_uniform_erase_type = map->uniform_erase_type;
4034 4035 4036
	map->uniform_erase_type = spi_nor_sort_erase_mask(map,
							  uniform_erase_type);

4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054
	if (!regions_erase_type) {
		/*
		 * Roll back to the previous uniform_erase_type mask, SMPT is
		 * broken.
		 */
		map->uniform_erase_type = save_uniform_erase_type;
		return -EINVAL;
	}

	/*
	 * BFPT advertises all the erase types supported by all the possible
	 * map configurations. Mask out the erase types that are not supported
	 * by the current map configuration.
	 */
	for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++)
		if (!(regions_erase_type & BIT(erase[i].idx)))
			spi_nor_set_erase_type(&erase[i], 0, 0xFF);

4055 4056 4057 4058 4059 4060 4061 4062 4063
	spi_nor_region_mark_end(&region[i - 1]);

	return 0;
}

/**
 * spi_nor_parse_smpt() - parse Sector Map Parameter Table
 * @nor:		pointer to a 'struct spi_nor'
 * @smpt_header:	sector map parameter table header
4064 4065
 * @params:		pointer to a duplicate 'struct spi_nor_flash_parameter'
 *                      that is used for storing SFDP parsed data
4066 4067 4068 4069 4070 4071 4072 4073
 *
 * This table is optional, but when available, we parse it to identify the
 * location and size of sectors within the main data array of the flash memory
 * device and to identify which Erase Types are supported by each sector.
 *
 * Return: 0 on success, -errno otherwise.
 */
static int spi_nor_parse_smpt(struct spi_nor *nor,
4074 4075
			      const struct sfdp_parameter_header *smpt_header,
			      struct spi_nor_flash_parameter *params)
4076 4077 4078 4079 4080
{
	const u32 *sector_map;
	u32 *smpt;
	size_t len;
	u32 addr;
4081
	int ret;
4082 4083 4084

	/* Read the Sector Map Parameter Table. */
	len = smpt_header->length * sizeof(*smpt);
4085
	smpt = kmalloc(len, GFP_KERNEL);
4086 4087 4088 4089 4090 4091 4092 4093 4094
	if (!smpt)
		return -ENOMEM;

	addr = SFDP_PARAM_HEADER_PTP(smpt_header);
	ret = spi_nor_read_sfdp(nor, addr, len, smpt);
	if (ret)
		goto out;

	/* Fix endianness of the SMPT DWORDs. */
4095
	le32_to_cpu_array(smpt, smpt_header->length);
4096

4097
	sector_map = spi_nor_get_map_in_use(nor, smpt, smpt_header->length);
4098 4099
	if (IS_ERR(sector_map)) {
		ret = PTR_ERR(sector_map);
4100 4101 4102
		goto out;
	}

4103
	ret = spi_nor_init_non_uniform_erase_map(nor, params, sector_map);
4104 4105 4106
	if (ret)
		goto out;

4107
	spi_nor_regions_sort_erase_types(&params->erase_map);
4108 4109 4110 4111 4112 4113
	/* fall through */
out:
	kfree(smpt);
	return ret;
}

4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162
#define SFDP_4BAIT_DWORD_MAX	2

struct sfdp_4bait {
	/* The hardware capability. */
	u32		hwcaps;

	/*
	 * The <supported_bit> bit in DWORD1 of the 4BAIT tells us whether
	 * the associated 4-byte address op code is supported.
	 */
	u32		supported_bit;
};

/**
 * spi_nor_parse_4bait() - parse the 4-Byte Address Instruction Table
 * @nor:		pointer to a 'struct spi_nor'.
 * @param_header:	pointer to the 'struct sfdp_parameter_header' describing
 *			the 4-Byte Address Instruction Table length and version.
 * @params:		pointer to the 'struct spi_nor_flash_parameter' to be.
 *
 * Return: 0 on success, -errno otherwise.
 */
static int spi_nor_parse_4bait(struct spi_nor *nor,
			       const struct sfdp_parameter_header *param_header,
			       struct spi_nor_flash_parameter *params)
{
	static const struct sfdp_4bait reads[] = {
		{ SNOR_HWCAPS_READ,		BIT(0) },
		{ SNOR_HWCAPS_READ_FAST,	BIT(1) },
		{ SNOR_HWCAPS_READ_1_1_2,	BIT(2) },
		{ SNOR_HWCAPS_READ_1_2_2,	BIT(3) },
		{ SNOR_HWCAPS_READ_1_1_4,	BIT(4) },
		{ SNOR_HWCAPS_READ_1_4_4,	BIT(5) },
		{ SNOR_HWCAPS_READ_1_1_1_DTR,	BIT(13) },
		{ SNOR_HWCAPS_READ_1_2_2_DTR,	BIT(14) },
		{ SNOR_HWCAPS_READ_1_4_4_DTR,	BIT(15) },
	};
	static const struct sfdp_4bait programs[] = {
		{ SNOR_HWCAPS_PP,		BIT(6) },
		{ SNOR_HWCAPS_PP_1_1_4,		BIT(7) },
		{ SNOR_HWCAPS_PP_1_4_4,		BIT(8) },
	};
	static const struct sfdp_4bait erases[SNOR_ERASE_TYPE_MAX] = {
		{ 0u /* not used */,		BIT(9) },
		{ 0u /* not used */,		BIT(10) },
		{ 0u /* not used */,		BIT(11) },
		{ 0u /* not used */,		BIT(12) },
	};
	struct spi_nor_pp_command *params_pp = params->page_programs;
4163
	struct spi_nor_erase_map *map = &params->erase_map;
4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184
	struct spi_nor_erase_type *erase_type = map->erase_type;
	u32 *dwords;
	size_t len;
	u32 addr, discard_hwcaps, read_hwcaps, pp_hwcaps, erase_mask;
	int i, ret;

	if (param_header->major != SFDP_JESD216_MAJOR ||
	    param_header->length < SFDP_4BAIT_DWORD_MAX)
		return -EINVAL;

	/* Read the 4-byte Address Instruction Table. */
	len = sizeof(*dwords) * SFDP_4BAIT_DWORD_MAX;

	/* Use a kmalloc'ed bounce buffer to guarantee it is DMA-able. */
	dwords = kmalloc(len, GFP_KERNEL);
	if (!dwords)
		return -ENOMEM;

	addr = SFDP_PARAM_HEADER_PTP(param_header);
	ret = spi_nor_read_sfdp(nor, addr, len, dwords);
	if (ret)
4185
		goto out;
4186 4187

	/* Fix endianness of the 4BAIT DWORDs. */
4188
	le32_to_cpu_array(dwords, SFDP_4BAIT_DWORD_MAX);
4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297

	/*
	 * Compute the subset of (Fast) Read commands for which the 4-byte
	 * version is supported.
	 */
	discard_hwcaps = 0;
	read_hwcaps = 0;
	for (i = 0; i < ARRAY_SIZE(reads); i++) {
		const struct sfdp_4bait *read = &reads[i];

		discard_hwcaps |= read->hwcaps;
		if ((params->hwcaps.mask & read->hwcaps) &&
		    (dwords[0] & read->supported_bit))
			read_hwcaps |= read->hwcaps;
	}

	/*
	 * Compute the subset of Page Program commands for which the 4-byte
	 * version is supported.
	 */
	pp_hwcaps = 0;
	for (i = 0; i < ARRAY_SIZE(programs); i++) {
		const struct sfdp_4bait *program = &programs[i];

		/*
		 * The 4 Byte Address Instruction (Optional) Table is the only
		 * SFDP table that indicates support for Page Program Commands.
		 * Bypass the params->hwcaps.mask and consider 4BAIT the biggest
		 * authority for specifying Page Program support.
		 */
		discard_hwcaps |= program->hwcaps;
		if (dwords[0] & program->supported_bit)
			pp_hwcaps |= program->hwcaps;
	}

	/*
	 * Compute the subset of Sector Erase commands for which the 4-byte
	 * version is supported.
	 */
	erase_mask = 0;
	for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
		const struct sfdp_4bait *erase = &erases[i];

		if (dwords[0] & erase->supported_bit)
			erase_mask |= BIT(i);
	}

	/* Replicate the sort done for the map's erase types in BFPT. */
	erase_mask = spi_nor_sort_erase_mask(map, erase_mask);

	/*
	 * We need at least one 4-byte op code per read, program and erase
	 * operation; the .read(), .write() and .erase() hooks share the
	 * nor->addr_width value.
	 */
	if (!read_hwcaps || !pp_hwcaps || !erase_mask)
		goto out;

	/*
	 * Discard all operations from the 4-byte instruction set which are
	 * not supported by this memory.
	 */
	params->hwcaps.mask &= ~discard_hwcaps;
	params->hwcaps.mask |= (read_hwcaps | pp_hwcaps);

	/* Use the 4-byte address instruction set. */
	for (i = 0; i < SNOR_CMD_READ_MAX; i++) {
		struct spi_nor_read_command *read_cmd = &params->reads[i];

		read_cmd->opcode = spi_nor_convert_3to4_read(read_cmd->opcode);
	}

	/* 4BAIT is the only SFDP table that indicates page program support. */
	if (pp_hwcaps & SNOR_HWCAPS_PP)
		spi_nor_set_pp_settings(&params_pp[SNOR_CMD_PP],
					SPINOR_OP_PP_4B, SNOR_PROTO_1_1_1);
	if (pp_hwcaps & SNOR_HWCAPS_PP_1_1_4)
		spi_nor_set_pp_settings(&params_pp[SNOR_CMD_PP_1_1_4],
					SPINOR_OP_PP_1_1_4_4B,
					SNOR_PROTO_1_1_4);
	if (pp_hwcaps & SNOR_HWCAPS_PP_1_4_4)
		spi_nor_set_pp_settings(&params_pp[SNOR_CMD_PP_1_4_4],
					SPINOR_OP_PP_1_4_4_4B,
					SNOR_PROTO_1_4_4);

	for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
		if (erase_mask & BIT(i))
			erase_type[i].opcode = (dwords[1] >>
						erase_type[i].idx * 8) & 0xFF;
		else
			spi_nor_set_erase_type(&erase_type[i], 0u, 0xFF);
	}

	/*
	 * We set SNOR_F_HAS_4BAIT in order to skip spi_nor_set_4byte_opcodes()
	 * later because we already did the conversion to 4byte opcodes. Also,
	 * this latest function implements a legacy quirk for the erase size of
	 * Spansion memory. However this quirk is no longer needed with new
	 * SFDP compliant memories.
	 */
	nor->addr_width = 4;
	nor->flags |= SNOR_F_4B_OPCODES | SNOR_F_HAS_4BAIT;

	/* fall through */
out:
	kfree(dwords);
	return ret;
}

4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322
/**
 * spi_nor_parse_sfdp() - parse the Serial Flash Discoverable Parameters.
 * @nor:		pointer to a 'struct spi_nor'
 * @params:		pointer to the 'struct spi_nor_flash_parameter' to be
 *			filled
 *
 * The Serial Flash Discoverable Parameters are described by the JEDEC JESD216
 * specification. This is a standard which tends to supported by almost all
 * (Q)SPI memory manufacturers. Those hard-coded tables allow us to learn at
 * runtime the main parameters needed to perform basic SPI flash operations such
 * as Fast Read, Page Program or Sector Erase commands.
 *
 * Return: 0 on success, -errno otherwise.
 */
static int spi_nor_parse_sfdp(struct spi_nor *nor,
			      struct spi_nor_flash_parameter *params)
{
	const struct sfdp_parameter_header *param_header, *bfpt_header;
	struct sfdp_parameter_header *param_headers = NULL;
	struct sfdp_header header;
	struct device *dev = nor->dev;
	size_t psize;
	int i, err;

	/* Get the SFDP header. */
4323
	err = spi_nor_read_sfdp_dma_unsafe(nor, 0, sizeof(header), &header);
4324 4325 4326 4327 4328
	if (err < 0)
		return err;

	/* Check the SFDP header version. */
	if (le32_to_cpu(header.signature) != SFDP_SIGNATURE ||
4329
	    header.major != SFDP_JESD216_MAJOR)
4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361
		return -EINVAL;

	/*
	 * Verify that the first and only mandatory parameter header is a
	 * Basic Flash Parameter Table header as specified in JESD216.
	 */
	bfpt_header = &header.bfpt_header;
	if (SFDP_PARAM_HEADER_ID(bfpt_header) != SFDP_BFPT_ID ||
	    bfpt_header->major != SFDP_JESD216_MAJOR)
		return -EINVAL;

	/*
	 * Allocate memory then read all parameter headers with a single
	 * Read SFDP command. These parameter headers will actually be parsed
	 * twice: a first time to get the latest revision of the basic flash
	 * parameter table, then a second time to handle the supported optional
	 * tables.
	 * Hence we read the parameter headers once for all to reduce the
	 * processing time. Also we use kmalloc() instead of devm_kmalloc()
	 * because we don't need to keep these parameter headers: the allocated
	 * memory is always released with kfree() before exiting this function.
	 */
	if (header.nph) {
		psize = header.nph * sizeof(*param_headers);

		param_headers = kmalloc(psize, GFP_KERNEL);
		if (!param_headers)
			return -ENOMEM;

		err = spi_nor_read_sfdp(nor, sizeof(header),
					psize, param_headers);
		if (err < 0) {
4362
			dev_dbg(dev, "failed to read SFDP parameter headers\n");
4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385
			goto exit;
		}
	}

	/*
	 * Check other parameter headers to get the latest revision of
	 * the basic flash parameter table.
	 */
	for (i = 0; i < header.nph; i++) {
		param_header = &param_headers[i];

		if (SFDP_PARAM_HEADER_ID(param_header) == SFDP_BFPT_ID &&
		    param_header->major == SFDP_JESD216_MAJOR &&
		    (param_header->minor > bfpt_header->minor ||
		     (param_header->minor == bfpt_header->minor &&
		      param_header->length > bfpt_header->length)))
			bfpt_header = param_header;
	}

	err = spi_nor_parse_bfpt(nor, bfpt_header, params);
	if (err)
		goto exit;

4386
	/* Parse optional parameter tables. */
4387 4388 4389 4390 4391
	for (i = 0; i < header.nph; i++) {
		param_header = &param_headers[i];

		switch (SFDP_PARAM_HEADER_ID(param_header)) {
		case SFDP_SECTOR_MAP_ID:
4392
			err = spi_nor_parse_smpt(nor, param_header, params);
4393 4394
			break;

4395 4396 4397 4398
		case SFDP_4BAIT_ID:
			err = spi_nor_parse_4bait(nor, param_header, params);
			break;

4399 4400 4401 4402
		default:
			break;
		}

4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413
		if (err) {
			dev_warn(dev, "Failed to parse optional parameter table: %04x\n",
				 SFDP_PARAM_HEADER_ID(param_header));
			/*
			 * Let's not drop all information we extracted so far
			 * if optional table parsers fail. In case of failing,
			 * each optional parser is responsible to roll back to
			 * the previously known spi_nor data.
			 */
			err = 0;
		}
4414 4415 4416 4417 4418 4419 4420
	}

exit:
	kfree(param_headers);
	return err;
}

4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523
static int spi_nor_select_read(struct spi_nor *nor,
			       u32 shared_hwcaps)
{
	int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_READ_MASK) - 1;
	const struct spi_nor_read_command *read;

	if (best_match < 0)
		return -EINVAL;

	cmd = spi_nor_hwcaps_read2cmd(BIT(best_match));
	if (cmd < 0)
		return -EINVAL;

	read = &nor->params.reads[cmd];
	nor->read_opcode = read->opcode;
	nor->read_proto = read->proto;

	/*
	 * In the spi-nor framework, we don't need to make the difference
	 * between mode clock cycles and wait state clock cycles.
	 * Indeed, the value of the mode clock cycles is used by a QSPI
	 * flash memory to know whether it should enter or leave its 0-4-4
	 * (Continuous Read / XIP) mode.
	 * eXecution In Place is out of the scope of the mtd sub-system.
	 * Hence we choose to merge both mode and wait state clock cycles
	 * into the so called dummy clock cycles.
	 */
	nor->read_dummy = read->num_mode_clocks + read->num_wait_states;
	return 0;
}

static int spi_nor_select_pp(struct spi_nor *nor,
			     u32 shared_hwcaps)
{
	int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_PP_MASK) - 1;
	const struct spi_nor_pp_command *pp;

	if (best_match < 0)
		return -EINVAL;

	cmd = spi_nor_hwcaps_pp2cmd(BIT(best_match));
	if (cmd < 0)
		return -EINVAL;

	pp = &nor->params.page_programs[cmd];
	nor->program_opcode = pp->opcode;
	nor->write_proto = pp->proto;
	return 0;
}

/**
 * spi_nor_select_uniform_erase() - select optimum uniform erase type
 * @map:		the erase map of the SPI NOR
 * @wanted_size:	the erase type size to search for. Contains the value of
 *			info->sector_size or of the "small sector" size in case
 *			CONFIG_MTD_SPI_NOR_USE_4K_SECTORS is defined.
 *
 * Once the optimum uniform sector erase command is found, disable all the
 * other.
 *
 * Return: pointer to erase type on success, NULL otherwise.
 */
static const struct spi_nor_erase_type *
spi_nor_select_uniform_erase(struct spi_nor_erase_map *map,
			     const u32 wanted_size)
{
	const struct spi_nor_erase_type *tested_erase, *erase = NULL;
	int i;
	u8 uniform_erase_type = map->uniform_erase_type;

	for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
		if (!(uniform_erase_type & BIT(i)))
			continue;

		tested_erase = &map->erase_type[i];

		/*
		 * If the current erase size is the one, stop here:
		 * we have found the right uniform Sector Erase command.
		 */
		if (tested_erase->size == wanted_size) {
			erase = tested_erase;
			break;
		}

		/*
		 * Otherwise, the current erase size is still a valid canditate.
		 * Select the biggest valid candidate.
		 */
		if (!erase && tested_erase->size)
			erase = tested_erase;
			/* keep iterating to find the wanted_size */
	}

	if (!erase)
		return NULL;

	/* Disable all other Sector Erase commands. */
	map->uniform_erase_type &= ~SNOR_ERASE_TYPE_MASK;
	map->uniform_erase_type |= BIT(erase - map->erase_type);
	return erase;
}

4524
static int spi_nor_select_erase(struct spi_nor *nor)
4525 4526 4527 4528
{
	struct spi_nor_erase_map *map = &nor->params.erase_map;
	const struct spi_nor_erase_type *erase = NULL;
	struct mtd_info *mtd = &nor->mtd;
4529
	u32 wanted_size = nor->info->sector_size;
4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608
	int i;

	/*
	 * The previous implementation handling Sector Erase commands assumed
	 * that the SPI flash memory has an uniform layout then used only one
	 * of the supported erase sizes for all Sector Erase commands.
	 * So to be backward compatible, the new implementation also tries to
	 * manage the SPI flash memory as uniform with a single erase sector
	 * size, when possible.
	 */
#ifdef CONFIG_MTD_SPI_NOR_USE_4K_SECTORS
	/* prefer "small sector" erase if possible */
	wanted_size = 4096u;
#endif

	if (spi_nor_has_uniform_erase(nor)) {
		erase = spi_nor_select_uniform_erase(map, wanted_size);
		if (!erase)
			return -EINVAL;
		nor->erase_opcode = erase->opcode;
		mtd->erasesize = erase->size;
		return 0;
	}

	/*
	 * For non-uniform SPI flash memory, set mtd->erasesize to the
	 * maximum erase sector size. No need to set nor->erase_opcode.
	 */
	for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
		if (map->erase_type[i].size) {
			erase = &map->erase_type[i];
			break;
		}
	}

	if (!erase)
		return -EINVAL;

	mtd->erasesize = erase->size;
	return 0;
}

static int spi_nor_default_setup(struct spi_nor *nor,
				 const struct spi_nor_hwcaps *hwcaps)
{
	struct spi_nor_flash_parameter *params = &nor->params;
	u32 ignored_mask, shared_mask;
	int err;

	/*
	 * Keep only the hardware capabilities supported by both the SPI
	 * controller and the SPI flash memory.
	 */
	shared_mask = hwcaps->mask & params->hwcaps.mask;

	if (nor->spimem) {
		/*
		 * When called from spi_nor_probe(), all caps are set and we
		 * need to discard some of them based on what the SPI
		 * controller actually supports (using spi_mem_supports_op()).
		 */
		spi_nor_spimem_adjust_hwcaps(nor, &shared_mask);
	} else {
		/*
		 * SPI n-n-n protocols are not supported when the SPI
		 * controller directly implements the spi_nor interface.
		 * Yet another reason to switch to spi-mem.
		 */
		ignored_mask = SNOR_HWCAPS_X_X_X;
		if (shared_mask & ignored_mask) {
			dev_dbg(nor->dev,
				"SPI n-n-n protocols are not supported.\n");
			shared_mask &= ~ignored_mask;
		}
	}

	/* Select the (Fast) Read command. */
	err = spi_nor_select_read(nor, shared_mask);
	if (err) {
4609
		dev_dbg(nor->dev,
4610 4611 4612 4613 4614 4615 4616
			"can't select read settings supported by both the SPI controller and memory.\n");
		return err;
	}

	/* Select the Page Program command. */
	err = spi_nor_select_pp(nor, shared_mask);
	if (err) {
4617
		dev_dbg(nor->dev,
4618 4619 4620 4621 4622
			"can't select write settings supported by both the SPI controller and memory.\n");
		return err;
	}

	/* Select the Sector Erase command. */
4623
	err = spi_nor_select_erase(nor);
4624
	if (err) {
4625
		dev_dbg(nor->dev,
4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641
			"can't select erase settings supported by both the SPI controller and memory.\n");
		return err;
	}

	return 0;
}

static int spi_nor_setup(struct spi_nor *nor,
			 const struct spi_nor_hwcaps *hwcaps)
{
	if (!nor->params.setup)
		return 0;

	return nor->params.setup(nor, hwcaps);
}

4642 4643 4644 4645 4646 4647 4648 4649 4650 4651
static void atmel_set_default_init(struct spi_nor *nor)
{
	nor->flags |= SNOR_F_HAS_LOCK;
}

static void intel_set_default_init(struct spi_nor *nor)
{
	nor->flags |= SNOR_F_HAS_LOCK;
}

4652 4653 4654 4655 4656
static void issi_set_default_init(struct spi_nor *nor)
{
	nor->params.quad_enable = spi_nor_sr1_bit6_quad_enable;
}

4657 4658
static void macronix_set_default_init(struct spi_nor *nor)
{
4659
	nor->params.quad_enable = spi_nor_sr1_bit6_quad_enable;
4660
	nor->params.set_4byte_addr_mode = spi_nor_set_4byte_addr_mode;
4661 4662
}

4663 4664 4665 4666 4667
static void sst_set_default_init(struct spi_nor *nor)
{
	nor->flags |= SNOR_F_HAS_LOCK;
}

4668 4669
static void st_micron_set_default_init(struct spi_nor *nor)
{
4670
	nor->flags |= SNOR_F_HAS_LOCK;
4671
	nor->flags &= ~SNOR_F_HAS_16BIT_SR;
4672
	nor->params.quad_enable = NULL;
4673
	nor->params.set_4byte_addr_mode = st_micron_set_4byte_addr_mode;
4674 4675 4676 4677
}

static void winbond_set_default_init(struct spi_nor *nor)
{
4678
	nor->params.set_4byte_addr_mode = winbond_set_4byte_addr_mode;
4679 4680
}

4681 4682
/**
 * spi_nor_manufacturer_init_params() - Initialize the flash's parameters and
4683
 * settings based on MFR register and ->default_init() hook.
4684 4685 4686 4687
 * @nor:	pointer to a 'struct spi-nor'.
 */
static void spi_nor_manufacturer_init_params(struct spi_nor *nor)
{
4688 4689
	/* Init flash parameters based on MFR */
	switch (JEDEC_MFR(nor->info)) {
4690 4691 4692 4693 4694 4695 4696 4697
	case SNOR_MFR_ATMEL:
		atmel_set_default_init(nor);
		break;

	case SNOR_MFR_INTEL:
		intel_set_default_init(nor);
		break;

4698 4699 4700 4701
	case SNOR_MFR_ISSI:
		issi_set_default_init(nor);
		break;

4702 4703 4704 4705 4706 4707 4708 4709 4710
	case SNOR_MFR_MACRONIX:
		macronix_set_default_init(nor);
		break;

	case SNOR_MFR_ST:
	case SNOR_MFR_MICRON:
		st_micron_set_default_init(nor);
		break;

4711 4712 4713 4714
	case SNOR_MFR_SST:
		sst_set_default_init(nor);
		break;

4715 4716 4717 4718
	case SNOR_MFR_WINBOND:
		winbond_set_default_init(nor);
		break;

4719 4720 4721 4722
	default:
		break;
	}

4723 4724 4725 4726
	if (nor->info->fixups && nor->info->fixups->default_init)
		nor->info->fixups->default_init(nor);
}

4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754
/**
 * spi_nor_sfdp_init_params() - Initialize the flash's parameters and settings
 * based on JESD216 SFDP standard.
 * @nor:	pointer to a 'struct spi-nor'.
 *
 * The method has a roll-back mechanism: in case the SFDP parsing fails, the
 * legacy flash parameters and settings will be restored.
 */
static void spi_nor_sfdp_init_params(struct spi_nor *nor)
{
	struct spi_nor_flash_parameter sfdp_params;

	memcpy(&sfdp_params, &nor->params, sizeof(sfdp_params));

	if (spi_nor_parse_sfdp(nor, &sfdp_params)) {
		nor->addr_width = 0;
		nor->flags &= ~SNOR_F_4B_OPCODES;
	} else {
		memcpy(&nor->params, &sfdp_params, sizeof(nor->params));
	}
}

/**
 * spi_nor_info_init_params() - Initialize the flash's parameters and settings
 * based on nor->info data.
 * @nor:	pointer to a 'struct spi-nor'.
 */
static void spi_nor_info_init_params(struct spi_nor *nor)
4755
{
T
Tudor Ambarus 已提交
4756
	struct spi_nor_flash_parameter *params = &nor->params;
4757
	struct spi_nor_erase_map *map = &params->erase_map;
4758
	const struct flash_info *info = nor->info;
4759
	struct device_node *np = spi_nor_get_flash_node(nor);
4760 4761
	u8 i, erase_mask;

4762
	/* Initialize legacy flash parameters and settings. */
4763
	params->quad_enable = spi_nor_sr2_bit1_quad_enable;
4764
	params->set_4byte_addr_mode = spansion_set_4byte_addr_mode;
4765
	params->setup = spi_nor_default_setup;
4766 4767
	/* Default to 16-bit Write Status (01h) Command */
	nor->flags |= SNOR_F_HAS_16BIT_SR;
4768

4769
	/* Set SPI NOR sizes. */
4770
	params->size = (u64)info->sector_size * info->n_sectors;
4771 4772
	params->page_size = info->page_size;

4773 4774 4775 4776 4777 4778 4779 4780 4781
	if (!(info->flags & SPI_NOR_NO_FR)) {
		/* Default to Fast Read for DT and non-DT platform devices. */
		params->hwcaps.mask |= SNOR_HWCAPS_READ_FAST;

		/* Mask out Fast Read if not requested at DT instantiation. */
		if (np && !of_property_read_bool(np, "m25p,fast-read"))
			params->hwcaps.mask &= ~SNOR_HWCAPS_READ_FAST;
	}

4782 4783 4784 4785 4786 4787
	/* (Fast) Read settings. */
	params->hwcaps.mask |= SNOR_HWCAPS_READ;
	spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ],
				  0, 0, SPINOR_OP_READ,
				  SNOR_PROTO_1_1_1);

4788
	if (params->hwcaps.mask & SNOR_HWCAPS_READ_FAST)
4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806
		spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_FAST],
					  0, 8, SPINOR_OP_READ_FAST,
					  SNOR_PROTO_1_1_1);

	if (info->flags & SPI_NOR_DUAL_READ) {
		params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_2;
		spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_2],
					  0, 8, SPINOR_OP_READ_1_1_2,
					  SNOR_PROTO_1_1_2);
	}

	if (info->flags & SPI_NOR_QUAD_READ) {
		params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_4;
		spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_4],
					  0, 8, SPINOR_OP_READ_1_1_4,
					  SNOR_PROTO_1_1_4);
	}

4807 4808 4809 4810 4811 4812 4813
	if (info->flags & SPI_NOR_OCTAL_READ) {
		params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_8;
		spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_8],
					  0, 8, SPINOR_OP_READ_1_1_8,
					  SNOR_PROTO_1_1_8);
	}

4814 4815 4816 4817 4818
	/* Page Program settings. */
	params->hwcaps.mask |= SNOR_HWCAPS_PP;
	spi_nor_set_pp_settings(&params->page_programs[SNOR_CMD_PP],
				SPINOR_OP_PP, SNOR_PROTO_1_1_1);

4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839
	/*
	 * Sector Erase settings. Sort Erase Types in ascending order, with the
	 * smallest erase size starting at BIT(0).
	 */
	erase_mask = 0;
	i = 0;
	if (info->flags & SECT_4K_PMC) {
		erase_mask |= BIT(i);
		spi_nor_set_erase_type(&map->erase_type[i], 4096u,
				       SPINOR_OP_BE_4K_PMC);
		i++;
	} else if (info->flags & SECT_4K) {
		erase_mask |= BIT(i);
		spi_nor_set_erase_type(&map->erase_type[i], 4096u,
				       SPINOR_OP_BE_4K);
		i++;
	}
	erase_mask |= BIT(i);
	spi_nor_set_erase_type(&map->erase_type[i], info->sector_size,
			       SPINOR_OP_SE);
	spi_nor_init_uniform_erase_map(map, erase_mask, params->size);
4840
}
4841

4842 4843
static void spansion_post_sfdp_fixups(struct spi_nor *nor)
{
4844
	if (nor->params.size <= SZ_16M)
4845 4846 4847 4848 4849 4850 4851 4852
		return;

	nor->flags |= SNOR_F_4B_OPCODES;
	/* No small sector erase for 4-byte command set */
	nor->erase_opcode = SPINOR_OP_SE;
	nor->mtd.erasesize = nor->info->sector_size;
}

4853 4854 4855 4856 4857
static void s3an_post_sfdp_fixups(struct spi_nor *nor)
{
	nor->params.setup = s3an_nor_setup;
}

4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869
/**
 * spi_nor_post_sfdp_fixups() - Updates the flash's parameters and settings
 * after SFDP has been parsed (is also called for SPI NORs that do not
 * support RDSFDP).
 * @nor:	pointer to a 'struct spi_nor'
 *
 * Typically used to tweak various parameters that could not be extracted by
 * other means (i.e. when information provided by the SFDP/flash_info tables
 * are incomplete or wrong).
 */
static void spi_nor_post_sfdp_fixups(struct spi_nor *nor)
{
4870 4871 4872 4873 4874 4875 4876 4877 4878
	switch (JEDEC_MFR(nor->info)) {
	case SNOR_MFR_SPANSION:
		spansion_post_sfdp_fixups(nor);
		break;

	default:
		break;
	}

4879 4880 4881
	if (nor->info->flags & SPI_S3AN)
		s3an_post_sfdp_fixups(nor);

4882 4883 4884 4885
	if (nor->info->fixups && nor->info->fixups->post_sfdp)
		nor->info->fixups->post_sfdp(nor);
}

4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899
/**
 * spi_nor_late_init_params() - Late initialization of default flash parameters.
 * @nor:	pointer to a 'struct spi_nor'
 *
 * Used to set default flash parameters and settings when the ->default_init()
 * hook or the SFDP parser let voids.
 */
static void spi_nor_late_init_params(struct spi_nor *nor)
{
	/*
	 * NOR protection support. When locking_ops are not provided, we pick
	 * the default ones.
	 */
	if (nor->flags & SNOR_F_HAS_LOCK && !nor->params.locking_ops)
4900
		nor->params.locking_ops = &spi_nor_sr_locking_ops;
4901 4902
}

4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927
/**
 * spi_nor_init_params() - Initialize the flash's parameters and settings.
 * @nor:	pointer to a 'struct spi-nor'.
 *
 * The flash parameters and settings are initialized based on a sequence of
 * calls that are ordered by priority:
 *
 * 1/ Default flash parameters initialization. The initializations are done
 *    based on nor->info data:
 *		spi_nor_info_init_params()
 *
 * which can be overwritten by:
 * 2/ Manufacturer flash parameters initialization. The initializations are
 *    done based on MFR register, or when the decisions can not be done solely
 *    based on MFR, by using specific flash_info tweeks, ->default_init():
 *		spi_nor_manufacturer_init_params()
 *
 * which can be overwritten by:
 * 3/ SFDP flash parameters initialization. JESD216 SFDP is a standard and
 *    should be more accurate that the above.
 *		spi_nor_sfdp_init_params()
 *
 *    Please note that there is a ->post_bfpt() fixup hook that can overwrite
 *    the flash parameters and settings immediately after parsing the Basic
 *    Flash Parameter Table.
4928
 *
4929 4930 4931 4932 4933 4934 4935 4936
 * which can be overwritten by:
 * 4/ Post SFDP flash parameters initialization. Used to tweak various
 *    parameters that could not be extracted by other means (i.e. when
 *    information provided by the SFDP/flash_info tables are incomplete or
 *    wrong).
 *		spi_nor_post_sfdp_fixups()
 *
 * 5/ Late default flash parameters initialization, used when the
4937 4938
 * ->default_init() hook or the SFDP parser do not set specific params.
 *		spi_nor_late_init_params()
4939 4940 4941 4942
 */
static void spi_nor_init_params(struct spi_nor *nor)
{
	spi_nor_info_init_params(nor);
4943

4944 4945
	spi_nor_manufacturer_init_params(nor);

4946 4947 4948
	if ((nor->info->flags & (SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)) &&
	    !(nor->info->flags & SPI_NOR_SKIP_SFDP))
		spi_nor_sfdp_init_params(nor);
4949

4950 4951
	spi_nor_post_sfdp_fixups(nor);

4952
	spi_nor_late_init_params(nor);
4953 4954
}

4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972
/**
 * spi_nor_quad_enable() - enable Quad I/O if needed.
 * @nor:                pointer to a 'struct spi_nor'
 *
 * Return: 0 on success, -errno otherwise.
 */
static int spi_nor_quad_enable(struct spi_nor *nor)
{
	if (!nor->params.quad_enable)
		return 0;

	if (!(spi_nor_get_protocol_width(nor->read_proto) == 4 ||
	      spi_nor_get_protocol_width(nor->write_proto) == 4))
		return 0;

	return nor->params.quad_enable(nor);
}

4973 4974 4975 4976 4977 4978 4979 4980 4981 4982
/**
 * spi_nor_unlock_all() - Unlocks the entire flash memory array.
 * @nor:	pointer to a 'struct spi_nor'.
 *
 * Some SPI NOR flashes are write protected by default after a power-on reset
 * cycle, in order to avoid inadvertent writes during power-up. Backward
 * compatibility imposes to unlock the entire flash memory array at power-up
 * by default.
 */
static int spi_nor_unlock_all(struct spi_nor *nor)
4983
{
4984 4985
	if (nor->flags & SNOR_F_HAS_LOCK)
		return spi_nor_unlock(&nor->mtd, 0, nor->params.size);
4986

4987 4988
	return 0;
}
4989

4990 4991 4992
static int spi_nor_init(struct spi_nor *nor)
{
	int err;
4993

4994 4995
	err = spi_nor_quad_enable(nor);
	if (err) {
4996
		dev_dbg(nor->dev, "quad mode not supported\n");
4997
		return err;
4998 4999
	}

5000 5001 5002 5003 5004 5005
	err = spi_nor_unlock_all(nor);
	if (err) {
		dev_dbg(nor->dev, "Failed to unlock the entire flash memory array\n");
		return err;
	}

5006
	if (nor->addr_width == 4 && !(nor->flags & SNOR_F_4B_OPCODES)) {
5007 5008 5009 5010 5011 5012 5013 5014 5015
		/*
		 * If the RESET# pin isn't hooked up properly, or the system
		 * otherwise doesn't perform a reset command in the boot
		 * sequence, it's impossible to 100% protect against unexpected
		 * reboots (e.g., crashes). Warn the user (or hopefully, system
		 * designer) that this is bad.
		 */
		WARN_ONCE(nor->flags & SNOR_F_BROKEN_RESET,
			  "enabling reset hack; may not recover from unexpected reboots\n");
5016
		nor->params.set_4byte_addr_mode(nor, true);
5017
	}
5018

5019 5020 5021
	return 0;
}

5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034
/* mtd resume handler */
static void spi_nor_resume(struct mtd_info *mtd)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	struct device *dev = nor->dev;
	int ret;

	/* re-initialize the nor chip */
	ret = spi_nor_init(nor);
	if (ret)
		dev_err(dev, "resume() failed\n");
}

5035 5036 5037
void spi_nor_restore(struct spi_nor *nor)
{
	/* restore the addressing mode */
5038 5039
	if (nor->addr_width == 4 && !(nor->flags & SNOR_F_4B_OPCODES) &&
	    nor->flags & SNOR_F_BROKEN_RESET)
5040
		nor->params.set_4byte_addr_mode(nor, false);
5041 5042 5043
}
EXPORT_SYMBOL_GPL(spi_nor_restore);

5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055
static const struct flash_info *spi_nor_match_id(const char *name)
{
	const struct flash_info *id = spi_nor_ids;

	while (id->name) {
		if (!strcmp(name, id->name))
			return id;
		id++;
	}
	return NULL;
}

5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069
static int spi_nor_set_addr_width(struct spi_nor *nor)
{
	if (nor->addr_width) {
		/* already configured from SFDP */
	} else if (nor->info->addr_width) {
		nor->addr_width = nor->info->addr_width;
	} else if (nor->mtd.size > 0x1000000) {
		/* enable 4-byte addressing if the device exceeds 16MiB */
		nor->addr_width = 4;
	} else {
		nor->addr_width = 3;
	}

	if (nor->addr_width > SPI_NOR_MAX_ADDR_WIDTH) {
5070
		dev_dbg(nor->dev, "address width is too large: %u\n",
5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082
			nor->addr_width);
		return -EINVAL;
	}

	/* Set 4byte opcodes when possible. */
	if (nor->addr_width == 4 && nor->flags & SNOR_F_4B_OPCODES &&
	    !(nor->flags & SNOR_F_HAS_4BAIT))
		spi_nor_set_4byte_opcodes(nor);

	return 0;
}

5083 5084 5085 5086 5087 5088 5089 5090 5091 5092
static void spi_nor_debugfs_init(struct spi_nor *nor,
				 const struct flash_info *info)
{
	struct mtd_info *mtd = &nor->mtd;

	mtd->dbg.partname = info->name;
	mtd->dbg.partid = devm_kasprintf(nor->dev, GFP_KERNEL, "spi-nor:%*phN",
					 info->id_len, info->id);
}

5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132
static const struct flash_info *spi_nor_get_flash_info(struct spi_nor *nor,
						       const char *name)
{
	const struct flash_info *info = NULL;

	if (name)
		info = spi_nor_match_id(name);
	/* Try to auto-detect if chip name wasn't specified or not found */
	if (!info)
		info = spi_nor_read_id(nor);
	if (IS_ERR_OR_NULL(info))
		return ERR_PTR(-ENOENT);

	/*
	 * If caller has specified name of flash model that can normally be
	 * detected using JEDEC, let's verify it.
	 */
	if (name && info->id_len) {
		const struct flash_info *jinfo;

		jinfo = spi_nor_read_id(nor);
		if (IS_ERR(jinfo)) {
			return jinfo;
		} else if (jinfo != info) {
			/*
			 * JEDEC knows better, so overwrite platform ID. We
			 * can't trust partitions any longer, but we'll let
			 * mtd apply them anyway, since some partitions may be
			 * marked read-only, and we don't want to lose that
			 * information, even if it's not 100% accurate.
			 */
			dev_warn(nor->dev, "found %s, expected %s\n",
				 jinfo->name, info->name);
			info = jinfo;
		}
	}

	return info;
}

5133 5134
int spi_nor_scan(struct spi_nor *nor, const char *name,
		 const struct spi_nor_hwcaps *hwcaps)
5135
{
5136
	const struct flash_info *info;
5137
	struct device *dev = nor->dev;
5138
	struct mtd_info *mtd = &nor->mtd;
5139
	struct device_node *np = spi_nor_get_flash_node(nor);
T
Tudor Ambarus 已提交
5140
	struct spi_nor_flash_parameter *params = &nor->params;
5141 5142 5143 5144 5145 5146 5147
	int ret;
	int i;

	ret = spi_nor_check(nor);
	if (ret)
		return ret;

5148 5149 5150 5151 5152
	/* Reset SPI protocol for all commands. */
	nor->reg_proto = SNOR_PROTO_1_1_1;
	nor->read_proto = SNOR_PROTO_1_1_1;
	nor->write_proto = SNOR_PROTO_1_1_1;

5153 5154 5155
	/*
	 * We need the bounce buffer early to read/write registers when going
	 * through the spi-mem layer (buffers have to be DMA-able).
5156 5157 5158 5159
	 * For spi-mem drivers, we'll reallocate a new buffer if
	 * nor->page_size turns out to be greater than PAGE_SIZE (which
	 * shouldn't happen before long since NOR pages are usually less
	 * than 1KB) after spi_nor_scan() returns.
5160 5161 5162 5163 5164 5165 5166
	 */
	nor->bouncebuf_size = PAGE_SIZE;
	nor->bouncebuf = devm_kmalloc(dev, nor->bouncebuf_size,
				      GFP_KERNEL);
	if (!nor->bouncebuf)
		return -ENOMEM;

5167 5168 5169
	info = spi_nor_get_flash_info(nor, name);
	if (IS_ERR(info))
		return PTR_ERR(info);
5170

5171 5172
	nor->info = info;

5173 5174
	spi_nor_debugfs_init(nor, info);

5175 5176
	mutex_init(&nor->lock);

5177 5178 5179 5180 5181
	/*
	 * Make sure the XSR_RDY flag is set before calling
	 * spi_nor_wait_till_ready(). Xilinx S3AN share MFR
	 * with Atmel spi-nor
	 */
5182
	if (info->flags & SPI_NOR_XSR_RDY)
5183 5184
		nor->flags |=  SNOR_F_READY_XSR_RDY;

5185 5186 5187
	if (info->flags & SPI_NOR_HAS_LOCK)
		nor->flags |= SNOR_F_HAS_LOCK;

5188 5189
	/* Init flash parameters based on flash_info struct and SFDP */
	spi_nor_init_params(nor);
5190

5191
	if (!mtd->name)
5192
		mtd->name = dev_name(dev);
5193
	mtd->priv = nor;
5194 5195 5196
	mtd->type = MTD_NORFLASH;
	mtd->writesize = 1;
	mtd->flags = MTD_CAP_NORFLASH;
T
Tudor Ambarus 已提交
5197
	mtd->size = params->size;
5198 5199
	mtd->_erase = spi_nor_erase;
	mtd->_read = spi_nor_read;
5200
	mtd->_resume = spi_nor_resume;
5201

5202
	if (nor->params.locking_ops) {
5203 5204
		mtd->_lock = spi_nor_lock;
		mtd->_unlock = spi_nor_unlock;
5205
		mtd->_is_locked = spi_nor_is_locked;
5206 5207 5208 5209 5210 5211 5212 5213
	}

	/* sst nor chips use AAI word program */
	if (info->flags & SST_WRITE)
		mtd->_write = sst_write;
	else
		mtd->_write = spi_nor_write;

5214 5215
	if (info->flags & USE_FSR)
		nor->flags |= SNOR_F_USE_FSR;
5216
	if (info->flags & SPI_NOR_HAS_TB) {
5217
		nor->flags |= SNOR_F_HAS_SR_TB;
5218 5219 5220 5221
		if (info->flags & SPI_NOR_TB_SR_BIT6)
			nor->flags |= SNOR_F_HAS_SR_TB_BIT6;
	}

5222 5223
	if (info->flags & NO_CHIP_ERASE)
		nor->flags |= SNOR_F_NO_OP_CHIP_ERASE;
5224 5225
	if (info->flags & USE_CLSR)
		nor->flags |= SNOR_F_USE_CLSR;
5226

5227 5228 5229 5230
	if (info->flags & SPI_NOR_NO_ERASE)
		mtd->flags |= MTD_NO_ERASE;

	mtd->dev.parent = dev;
T
Tudor Ambarus 已提交
5231
	nor->page_size = params->page_size;
5232 5233
	mtd->writebufsize = nor->page_size;

5234 5235 5236
	if (of_property_read_bool(np, "broken-flash-reset"))
		nor->flags |= SNOR_F_BROKEN_RESET;

5237 5238 5239 5240 5241 5242
	/*
	 * Configure the SPI memory:
	 * - select op codes for (Fast) Read, Page Program and Sector Erase.
	 * - set the number of dummy cycles (mode cycles + wait states).
	 * - set the SPI protocols for register and memory accesses.
	 */
T
Tudor Ambarus 已提交
5243
	ret = spi_nor_setup(nor, hwcaps);
5244 5245
	if (ret)
		return ret;
5246

5247
	if (info->flags & SPI_NOR_4B_OPCODES)
5248 5249
		nor->flags |= SNOR_F_4B_OPCODES;

5250 5251 5252
	ret = spi_nor_set_addr_width(nor);
	if (ret)
		return ret;
5253

5254 5255 5256 5257 5258
	/* Send all the required SPI flash commands to initialize device */
	ret = spi_nor_init(nor);
	if (ret)
		return ret;

5259
	dev_info(dev, "%s (%lld Kbytes)\n", info->name,
5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279
			(long long)mtd->size >> 10);

	dev_dbg(dev,
		"mtd .name = %s, .size = 0x%llx (%lldMiB), "
		".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
		mtd->name, (long long)mtd->size, (long long)(mtd->size >> 20),
		mtd->erasesize, mtd->erasesize / 1024, mtd->numeraseregions);

	if (mtd->numeraseregions)
		for (i = 0; i < mtd->numeraseregions; i++)
			dev_dbg(dev,
				"mtd.eraseregions[%d] = { .offset = 0x%llx, "
				".erasesize = 0x%.8x (%uKiB), "
				".numblocks = %d }\n",
				i, (long long)mtd->eraseregions[i].offset,
				mtd->eraseregions[i].erasesize,
				mtd->eraseregions[i].erasesize / 1024,
				mtd->eraseregions[i].numblocks);
	return 0;
}
5280
EXPORT_SYMBOL_GPL(spi_nor_scan);
5281

5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333
static int spi_nor_create_read_dirmap(struct spi_nor *nor)
{
	struct spi_mem_dirmap_info info = {
		.op_tmpl = SPI_MEM_OP(SPI_MEM_OP_CMD(nor->read_opcode, 1),
				      SPI_MEM_OP_ADDR(nor->addr_width, 0, 1),
				      SPI_MEM_OP_DUMMY(nor->read_dummy, 1),
				      SPI_MEM_OP_DATA_IN(0, NULL, 1)),
		.offset = 0,
		.length = nor->mtd.size,
	};
	struct spi_mem_op *op = &info.op_tmpl;

	/* get transfer protocols. */
	op->cmd.buswidth = spi_nor_get_protocol_inst_nbits(nor->read_proto);
	op->addr.buswidth = spi_nor_get_protocol_addr_nbits(nor->read_proto);
	op->dummy.buswidth = op->addr.buswidth;
	op->data.buswidth = spi_nor_get_protocol_data_nbits(nor->read_proto);

	/* convert the dummy cycles to the number of bytes */
	op->dummy.nbytes = (nor->read_dummy * op->dummy.buswidth) / 8;

	nor->dirmap.rdesc = devm_spi_mem_dirmap_create(nor->dev, nor->spimem,
						       &info);
	return PTR_ERR_OR_ZERO(nor->dirmap.rdesc);
}

static int spi_nor_create_write_dirmap(struct spi_nor *nor)
{
	struct spi_mem_dirmap_info info = {
		.op_tmpl = SPI_MEM_OP(SPI_MEM_OP_CMD(nor->program_opcode, 1),
				      SPI_MEM_OP_ADDR(nor->addr_width, 0, 1),
				      SPI_MEM_OP_NO_DUMMY,
				      SPI_MEM_OP_DATA_OUT(0, NULL, 1)),
		.offset = 0,
		.length = nor->mtd.size,
	};
	struct spi_mem_op *op = &info.op_tmpl;

	/* get transfer protocols. */
	op->cmd.buswidth = spi_nor_get_protocol_inst_nbits(nor->write_proto);
	op->addr.buswidth = spi_nor_get_protocol_addr_nbits(nor->write_proto);
	op->dummy.buswidth = op->addr.buswidth;
	op->data.buswidth = spi_nor_get_protocol_data_nbits(nor->write_proto);

	if (nor->program_opcode == SPINOR_OP_AAI_WP && nor->sst_write_second)
		op->addr.nbytes = 0;

	nor->dirmap.wdesc = devm_spi_mem_dirmap_create(nor->dev, nor->spimem,
						       &info);
	return PTR_ERR_OR_ZERO(nor->dirmap.wdesc);
}

5334 5335 5336 5337 5338
static int spi_nor_probe(struct spi_mem *spimem)
{
	struct spi_device *spi = spimem->spi;
	struct flash_platform_data *data = dev_get_platdata(&spi->dev);
	struct spi_nor *nor;
5339 5340 5341 5342 5343
	/*
	 * Enable all caps by default. The core will mask them after
	 * checking what's really supported using spi_mem_supports_op().
	 */
	const struct spi_nor_hwcaps hwcaps = { .mask = SNOR_HWCAPS_ALL };
5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394
	char *flash_name;
	int ret;

	nor = devm_kzalloc(&spi->dev, sizeof(*nor), GFP_KERNEL);
	if (!nor)
		return -ENOMEM;

	nor->spimem = spimem;
	nor->dev = &spi->dev;
	spi_nor_set_flash_node(nor, spi->dev.of_node);

	spi_mem_set_drvdata(spimem, nor);

	if (data && data->name)
		nor->mtd.name = data->name;

	if (!nor->mtd.name)
		nor->mtd.name = spi_mem_get_name(spimem);

	/*
	 * For some (historical?) reason many platforms provide two different
	 * names in flash_platform_data: "name" and "type". Quite often name is
	 * set to "m25p80" and then "type" provides a real chip name.
	 * If that's the case, respect "type" and ignore a "name".
	 */
	if (data && data->type)
		flash_name = data->type;
	else if (!strcmp(spi->modalias, "spi-nor"))
		flash_name = NULL; /* auto-detect */
	else
		flash_name = spi->modalias;

	ret = spi_nor_scan(nor, flash_name, &hwcaps);
	if (ret)
		return ret;

	/*
	 * None of the existing parts have > 512B pages, but let's play safe
	 * and add this logic so that if anyone ever adds support for such
	 * a NOR we don't end up with buffer overflows.
	 */
	if (nor->page_size > PAGE_SIZE) {
		nor->bouncebuf_size = nor->page_size;
		devm_kfree(nor->dev, nor->bouncebuf);
		nor->bouncebuf = devm_kmalloc(nor->dev,
					      nor->bouncebuf_size,
					      GFP_KERNEL);
		if (!nor->bouncebuf)
			return -ENOMEM;
	}

5395 5396 5397 5398 5399 5400 5401 5402
	ret = spi_nor_create_read_dirmap(nor);
	if (ret)
		return ret;

	ret = spi_nor_create_write_dirmap(nor);
	if (ret)
		return ret;

5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509
	return mtd_device_register(&nor->mtd, data ? data->parts : NULL,
				   data ? data->nr_parts : 0);
}

static int spi_nor_remove(struct spi_mem *spimem)
{
	struct spi_nor *nor = spi_mem_get_drvdata(spimem);

	spi_nor_restore(nor);

	/* Clean up MTD stuff. */
	return mtd_device_unregister(&nor->mtd);
}

static void spi_nor_shutdown(struct spi_mem *spimem)
{
	struct spi_nor *nor = spi_mem_get_drvdata(spimem);

	spi_nor_restore(nor);
}

/*
 * Do NOT add to this array without reading the following:
 *
 * Historically, many flash devices are bound to this driver by their name. But
 * since most of these flash are compatible to some extent, and their
 * differences can often be differentiated by the JEDEC read-ID command, we
 * encourage new users to add support to the spi-nor library, and simply bind
 * against a generic string here (e.g., "jedec,spi-nor").
 *
 * Many flash names are kept here in this list (as well as in spi-nor.c) to
 * keep them available as module aliases for existing platforms.
 */
static const struct spi_device_id spi_nor_dev_ids[] = {
	/*
	 * Allow non-DT platform devices to bind to the "spi-nor" modalias, and
	 * hack around the fact that the SPI core does not provide uevent
	 * matching for .of_match_table
	 */
	{"spi-nor"},

	/*
	 * Entries not used in DTs that should be safe to drop after replacing
	 * them with "spi-nor" in platform data.
	 */
	{"s25sl064a"},	{"w25x16"},	{"m25p10"},	{"m25px64"},

	/*
	 * Entries that were used in DTs without "jedec,spi-nor" fallback and
	 * should be kept for backward compatibility.
	 */
	{"at25df321a"},	{"at25df641"},	{"at26df081a"},
	{"mx25l4005a"},	{"mx25l1606e"},	{"mx25l6405d"},	{"mx25l12805d"},
	{"mx25l25635e"},{"mx66l51235l"},
	{"n25q064"},	{"n25q128a11"},	{"n25q128a13"},	{"n25q512a"},
	{"s25fl256s1"},	{"s25fl512s"},	{"s25sl12801"},	{"s25fl008k"},
	{"s25fl064k"},
	{"sst25vf040b"},{"sst25vf016b"},{"sst25vf032b"},{"sst25wf040"},
	{"m25p40"},	{"m25p80"},	{"m25p16"},	{"m25p32"},
	{"m25p64"},	{"m25p128"},
	{"w25x80"},	{"w25x32"},	{"w25q32"},	{"w25q32dw"},
	{"w25q80bl"},	{"w25q128"},	{"w25q256"},

	/* Flashes that can't be detected using JEDEC */
	{"m25p05-nonjedec"},	{"m25p10-nonjedec"},	{"m25p20-nonjedec"},
	{"m25p40-nonjedec"},	{"m25p80-nonjedec"},	{"m25p16-nonjedec"},
	{"m25p32-nonjedec"},	{"m25p64-nonjedec"},	{"m25p128-nonjedec"},

	/* Everspin MRAMs (non-JEDEC) */
	{ "mr25h128" }, /* 128 Kib, 40 MHz */
	{ "mr25h256" }, /* 256 Kib, 40 MHz */
	{ "mr25h10" },  /*   1 Mib, 40 MHz */
	{ "mr25h40" },  /*   4 Mib, 40 MHz */

	{ },
};
MODULE_DEVICE_TABLE(spi, spi_nor_dev_ids);

static const struct of_device_id spi_nor_of_table[] = {
	/*
	 * Generic compatibility for SPI NOR that can be identified by the
	 * JEDEC READ ID opcode (0x9F). Use this, if possible.
	 */
	{ .compatible = "jedec,spi-nor" },
	{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, spi_nor_of_table);

/*
 * REVISIT: many of these chips have deep power-down modes, which
 * should clearly be entered on suspend() to minimize power use.
 * And also when they're otherwise idle...
 */
static struct spi_mem_driver spi_nor_driver = {
	.spidrv = {
		.driver = {
			.name = "spi-nor",
			.of_match_table = spi_nor_of_table,
		},
		.id_table = spi_nor_dev_ids,
	},
	.probe = spi_nor_probe,
	.remove = spi_nor_remove,
	.shutdown = spi_nor_shutdown,
};
module_spi_mem_driver(spi_nor_driver);

5510
MODULE_LICENSE("GPL v2");
5511 5512 5513
MODULE_AUTHOR("Huang Shijie <shijie8@gmail.com>");
MODULE_AUTHOR("Mike Lavender");
MODULE_DESCRIPTION("framework for SPI NOR");