core.c 115.0 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3 4 5 6 7
 * Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with
 * influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c
 *
 * Copyright (C) 2005, Intec Automation Inc.
 * Copyright (C) 2014, Freescale Semiconductor, Inc.
8 9 10 11 12 13 14 15
 */

#include <linux/err.h>
#include <linux/errno.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/mutex.h>
#include <linux/math64.h>
16
#include <linux/sizes.h>
17
#include <linux/slab.h>
18 19 20

#include <linux/mtd/mtd.h>
#include <linux/of_platform.h>
21
#include <linux/sched/task_stack.h>
22 23 24
#include <linux/spi/flash.h>
#include <linux/mtd/spi-nor.h>

25 26
#include "core.h"

27
/* Define max times to check status register before we give up. */
28 29 30 31 32 33 34 35 36 37 38 39

/*
 * For everything but full-chip erase; probably could be much smaller, but kept
 * around for safety for now
 */
#define DEFAULT_READY_WAIT_JIFFIES		(40UL * HZ)

/*
 * For full-chip erase, calibrated to a 2MB flash (M25P16); should be scaled up
 * for larger flash
 */
#define CHIP_ERASE_2MB_READY_WAIT_JIFFIES	(40UL * HZ)
40

41
#define SPI_NOR_MAX_ADDR_WIDTH	4
42

43
#define JEDEC_MFR(info)        ((info)->id[0])
44

45
/**
46 47
 * spi_nor_spimem_bounce() - check if a bounce buffer is needed for the data
 *                           transfer
48 49 50
 * @nor:        pointer to 'struct spi_nor'
 * @op:         pointer to 'struct spi_mem_op' template for transfer
 *
51 52 53
 * If we have to use the bounce buffer, the data field in @op will be updated.
 *
 * Return: true if the bounce buffer is needed, false if not
54
 */
55
static bool spi_nor_spimem_bounce(struct spi_nor *nor, struct spi_mem_op *op)
56
{
57 58 59
	/* op->data.buf.in occupies the same memory as op->data.buf.out */
	if (object_is_on_stack(op->data.buf.in) ||
	    !virt_addr_valid(op->data.buf.in)) {
60 61
		if (op->data.nbytes > nor->bouncebuf_size)
			op->data.nbytes = nor->bouncebuf_size;
62 63
		op->data.buf.in = nor->bouncebuf;
		return true;
64 65
	}

66 67
	return false;
}
68

69 70 71 72 73 74 75 76 77 78
/**
 * spi_nor_spimem_exec_op() - execute a memory operation
 * @nor:        pointer to 'struct spi_nor'
 * @op:         pointer to 'struct spi_mem_op' template for transfer
 *
 * Return: 0 on success, -error otherwise.
 */
static int spi_nor_spimem_exec_op(struct spi_nor *nor, struct spi_mem_op *op)
{
	int error;
79

80 81 82
	error = spi_mem_adjust_op_size(nor->spimem, op);
	if (error)
		return error;
83

84
	return spi_mem_exec_op(nor->spimem, op);
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
}

/**
 * spi_nor_spimem_read_data() - read data from flash's memory region via
 *                              spi-mem
 * @nor:        pointer to 'struct spi_nor'
 * @from:       offset to read from
 * @len:        number of bytes to read
 * @buf:        pointer to dst buffer
 *
 * Return: number of bytes read successfully, -errno otherwise
 */
static ssize_t spi_nor_spimem_read_data(struct spi_nor *nor, loff_t from,
					size_t len, u8 *buf)
{
	struct spi_mem_op op =
		SPI_MEM_OP(SPI_MEM_OP_CMD(nor->read_opcode, 1),
			   SPI_MEM_OP_ADDR(nor->addr_width, from, 1),
			   SPI_MEM_OP_DUMMY(nor->read_dummy, 1),
			   SPI_MEM_OP_DATA_IN(len, buf, 1));
105
	bool usebouncebuf;
106
	ssize_t nbytes;
107
	int error;
108 109 110 111 112 113 114 115 116 117

	/* get transfer protocols. */
	op.cmd.buswidth = spi_nor_get_protocol_inst_nbits(nor->read_proto);
	op.addr.buswidth = spi_nor_get_protocol_addr_nbits(nor->read_proto);
	op.dummy.buswidth = op.addr.buswidth;
	op.data.buswidth = spi_nor_get_protocol_data_nbits(nor->read_proto);

	/* convert the dummy cycles to the number of bytes */
	op.dummy.nbytes = (nor->read_dummy * op.dummy.buswidth) / 8;

118 119
	usebouncebuf = spi_nor_spimem_bounce(nor, &op);

120 121 122 123 124 125 126 127 128
	if (nor->dirmap.rdesc) {
		nbytes = spi_mem_dirmap_read(nor->dirmap.rdesc, op.addr.val,
					     op.data.nbytes, op.data.buf.in);
	} else {
		error = spi_nor_spimem_exec_op(nor, &op);
		if (error)
			return error;
		nbytes = op.data.nbytes;
	}
129

130 131
	if (usebouncebuf && nbytes > 0)
		memcpy(buf, op.data.buf.in, nbytes);
132

133
	return nbytes;
134 135 136 137 138 139 140 141 142 143 144
}

/**
 * spi_nor_read_data() - read data from flash memory
 * @nor:        pointer to 'struct spi_nor'
 * @from:       offset to read from
 * @len:        number of bytes to read
 * @buf:        pointer to dst buffer
 *
 * Return: number of bytes read successfully, -errno otherwise
 */
145
ssize_t spi_nor_read_data(struct spi_nor *nor, loff_t from, size_t len, u8 *buf)
146 147 148 149
{
	if (nor->spimem)
		return spi_nor_spimem_read_data(nor, from, len, buf);

150
	return nor->controller_ops->read(nor, from, len, buf);
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
}

/**
 * spi_nor_spimem_write_data() - write data to flash memory via
 *                               spi-mem
 * @nor:        pointer to 'struct spi_nor'
 * @to:         offset to write to
 * @len:        number of bytes to write
 * @buf:        pointer to src buffer
 *
 * Return: number of bytes written successfully, -errno otherwise
 */
static ssize_t spi_nor_spimem_write_data(struct spi_nor *nor, loff_t to,
					 size_t len, const u8 *buf)
{
	struct spi_mem_op op =
		SPI_MEM_OP(SPI_MEM_OP_CMD(nor->program_opcode, 1),
			   SPI_MEM_OP_ADDR(nor->addr_width, to, 1),
			   SPI_MEM_OP_NO_DUMMY,
			   SPI_MEM_OP_DATA_OUT(len, buf, 1));
171
	ssize_t nbytes;
172
	int error;
173 174 175 176 177 178 179 180

	op.cmd.buswidth = spi_nor_get_protocol_inst_nbits(nor->write_proto);
	op.addr.buswidth = spi_nor_get_protocol_addr_nbits(nor->write_proto);
	op.data.buswidth = spi_nor_get_protocol_data_nbits(nor->write_proto);

	if (nor->program_opcode == SPINOR_OP_AAI_WP && nor->sst_write_second)
		op.addr.nbytes = 0;

181 182 183
	if (spi_nor_spimem_bounce(nor, &op))
		memcpy(nor->bouncebuf, buf, op.data.nbytes);

184 185 186 187 188 189 190 191 192
	if (nor->dirmap.wdesc) {
		nbytes = spi_mem_dirmap_write(nor->dirmap.wdesc, op.addr.val,
					      op.data.nbytes, op.data.buf.out);
	} else {
		error = spi_nor_spimem_exec_op(nor, &op);
		if (error)
			return error;
		nbytes = op.data.nbytes;
	}
193

194
	return nbytes;
195 196 197 198 199 200 201 202 203 204 205
}

/**
 * spi_nor_write_data() - write data to flash memory
 * @nor:        pointer to 'struct spi_nor'
 * @to:         offset to write to
 * @len:        number of bytes to write
 * @buf:        pointer to src buffer
 *
 * Return: number of bytes written successfully, -errno otherwise
 */
206 207
ssize_t spi_nor_write_data(struct spi_nor *nor, loff_t to, size_t len,
			   const u8 *buf)
208 209 210 211
{
	if (nor->spimem)
		return spi_nor_spimem_write_data(nor, to, len, buf);

212
	return nor->controller_ops->write(nor, to, len, buf);
213 214
}

215 216 217 218 219
/**
 * spi_nor_write_enable() - Set write enable latch with Write Enable command.
 * @nor:	pointer to 'struct spi_nor'.
 *
 * Return: 0 on success, -errno otherwise.
220
 */
221
int spi_nor_write_enable(struct spi_nor *nor)
222
{
223 224
	int ret;

225 226 227 228 229 230 231
	if (nor->spimem) {
		struct spi_mem_op op =
			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WREN, 1),
				   SPI_MEM_OP_NO_ADDR,
				   SPI_MEM_OP_NO_DUMMY,
				   SPI_MEM_OP_NO_DATA);

232 233 234 235
		ret = spi_mem_exec_op(nor->spimem, &op);
	} else {
		ret = nor->controller_ops->write_reg(nor, SPINOR_OP_WREN,
						     NULL, 0);
236 237
	}

238 239 240 241
	if (ret)
		dev_dbg(nor->dev, "error %d on Write Enable\n", ret);

	return ret;
242 243
}

244 245 246 247 248
/**
 * spi_nor_write_disable() - Send Write Disable instruction to the chip.
 * @nor:	pointer to 'struct spi_nor'.
 *
 * Return: 0 on success, -errno otherwise.
249
 */
250
int spi_nor_write_disable(struct spi_nor *nor)
251
{
252 253
	int ret;

254 255 256 257 258 259 260
	if (nor->spimem) {
		struct spi_mem_op op =
			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRDI, 1),
				   SPI_MEM_OP_NO_ADDR,
				   SPI_MEM_OP_NO_DUMMY,
				   SPI_MEM_OP_NO_DATA);

261 262 263 264
		ret = spi_mem_exec_op(nor->spimem, &op);
	} else {
		ret = nor->controller_ops->write_reg(nor, SPINOR_OP_WRDI,
						     NULL, 0);
265 266
	}

267 268 269 270
	if (ret)
		dev_dbg(nor->dev, "error %d on Write Disable\n", ret);

	return ret;
271 272
}

273 274 275 276 277 278 279
/**
 * spi_nor_read_sr() - Read the Status Register.
 * @nor:	pointer to 'struct spi_nor'.
 * @sr:		pointer to a DMA-able buffer where the value of the
 *              Status Register will be written.
 *
 * Return: 0 on success, -errno otherwise.
280
 */
281
static int spi_nor_read_sr(struct spi_nor *nor, u8 *sr)
282 283 284
{
	int ret;

285 286 287 288 289
	if (nor->spimem) {
		struct spi_mem_op op =
			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDSR, 1),
				   SPI_MEM_OP_NO_ADDR,
				   SPI_MEM_OP_NO_DUMMY,
290
				   SPI_MEM_OP_DATA_IN(1, sr, 1));
291 292 293

		ret = spi_mem_exec_op(nor->spimem, &op);
	} else {
294
		ret = nor->controller_ops->read_reg(nor, SPINOR_OP_RDSR,
295
						    sr, 1);
296 297
	}

298
	if (ret)
299
		dev_dbg(nor->dev, "error %d reading SR\n", ret);
300

301
	return ret;
302 303
}

304 305 306 307 308 309 310
/**
 * spi_nor_read_fsr() - Read the Flag Status Register.
 * @nor:	pointer to 'struct spi_nor'
 * @fsr:	pointer to a DMA-able buffer where the value of the
 *              Flag Status Register will be written.
 *
 * Return: 0 on success, -errno otherwise.
311
 */
312
static int spi_nor_read_fsr(struct spi_nor *nor, u8 *fsr)
313 314 315
{
	int ret;

316 317 318 319 320
	if (nor->spimem) {
		struct spi_mem_op op =
			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDFSR, 1),
				   SPI_MEM_OP_NO_ADDR,
				   SPI_MEM_OP_NO_DUMMY,
321
				   SPI_MEM_OP_DATA_IN(1, fsr, 1));
322 323 324

		ret = spi_mem_exec_op(nor->spimem, &op);
	} else {
325
		ret = nor->controller_ops->read_reg(nor, SPINOR_OP_RDFSR,
326
						    fsr, 1);
327 328
	}

329
	if (ret)
330
		dev_dbg(nor->dev, "error %d reading FSR\n", ret);
331

332
	return ret;
333 334
}

335 336 337 338 339 340 341 342
/**
 * spi_nor_read_cr() - Read the Configuration Register using the
 * SPINOR_OP_RDCR (35h) command.
 * @nor:	pointer to 'struct spi_nor'
 * @cr:		pointer to a DMA-able buffer where the value of the
 *              Configuration Register will be written.
 *
 * Return: 0 on success, -errno otherwise.
343
 */
344
static int spi_nor_read_cr(struct spi_nor *nor, u8 *cr)
345 346 347
{
	int ret;

348 349 350 351 352
	if (nor->spimem) {
		struct spi_mem_op op =
			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDCR, 1),
				   SPI_MEM_OP_NO_ADDR,
				   SPI_MEM_OP_NO_DUMMY,
353
				   SPI_MEM_OP_DATA_IN(1, cr, 1));
354 355 356

		ret = spi_mem_exec_op(nor->spimem, &op);
	} else {
357
		ret = nor->controller_ops->read_reg(nor, SPINOR_OP_RDCR, cr, 1);
358 359
	}

360
	if (ret)
361
		dev_dbg(nor->dev, "error %d reading CR\n", ret);
362

363
	return ret;
364 365
}

366
/**
367
 * spi_nor_set_4byte_addr_mode() - Enter/Exit 4-byte address mode.
368 369 370 371 372 373
 * @nor:	pointer to 'struct spi_nor'.
 * @enable:	true to enter the 4-byte address mode, false to exit the 4-byte
 *		address mode.
 *
 * Return: 0 on success, -errno otherwise.
 */
374
int spi_nor_set_4byte_addr_mode(struct spi_nor *nor, bool enable)
375
{
376 377
	int ret;

378 379 380 381 382 383 384 385 386 387
	if (nor->spimem) {
		struct spi_mem_op op =
			SPI_MEM_OP(SPI_MEM_OP_CMD(enable ?
						  SPINOR_OP_EN4B :
						  SPINOR_OP_EX4B,
						  1),
				  SPI_MEM_OP_NO_ADDR,
				  SPI_MEM_OP_NO_DUMMY,
				  SPI_MEM_OP_NO_DATA);

388 389 390 391 392 393
		ret = spi_mem_exec_op(nor->spimem, &op);
	} else {
		ret = nor->controller_ops->write_reg(nor,
						     enable ? SPINOR_OP_EN4B :
							      SPINOR_OP_EX4B,
						     NULL, 0);
394 395
	}

396 397 398 399
	if (ret)
		dev_dbg(nor->dev, "error %d setting 4-byte mode\n", ret);

	return ret;
400 401
}

402
/**
403 404
 * st_micron_set_4byte_addr_mode() - Set 4-byte address mode for ST and Micron
 * flashes.
405 406 407 408 409 410
 * @nor:	pointer to 'struct spi_nor'.
 * @enable:	true to enter the 4-byte address mode, false to exit the 4-byte
 *		address mode.
 *
 * Return: 0 on success, -errno otherwise.
 */
411
static int st_micron_set_4byte_addr_mode(struct spi_nor *nor, bool enable)
412 413 414
{
	int ret;

415 416 417 418
	ret = spi_nor_write_enable(nor);
	if (ret)
		return ret;

419
	ret = spi_nor_set_4byte_addr_mode(nor, enable);
420 421
	if (ret)
		return ret;
422

423
	return spi_nor_write_disable(nor);
424 425
}

426
/**
427 428
 * spansion_set_4byte_addr_mode() - Set 4-byte address mode for Spansion
 * flashes.
429 430 431 432 433 434
 * @nor:	pointer to 'struct spi_nor'.
 * @enable:	true to enter the 4-byte address mode, false to exit the 4-byte
 *		address mode.
 *
 * Return: 0 on success, -errno otherwise.
 */
435
static int spansion_set_4byte_addr_mode(struct spi_nor *nor, bool enable)
436
{
437 438
	int ret;

439 440 441 442 443 444 445 446 447
	nor->bouncebuf[0] = enable << 7;

	if (nor->spimem) {
		struct spi_mem_op op =
			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_BRWR, 1),
				   SPI_MEM_OP_NO_ADDR,
				   SPI_MEM_OP_NO_DUMMY,
				   SPI_MEM_OP_DATA_OUT(1, nor->bouncebuf, 1));

448 449 450 451
		ret = spi_mem_exec_op(nor->spimem, &op);
	} else {
		ret = nor->controller_ops->write_reg(nor, SPINOR_OP_BRWR,
						     nor->bouncebuf, 1);
452 453
	}

454 455 456 457
	if (ret)
		dev_dbg(nor->dev, "error %d setting 4-byte mode\n", ret);

	return ret;
458 459
}

460 461 462 463 464 465 466
/**
 * spi_nor_write_ear() - Write Extended Address Register.
 * @nor:	pointer to 'struct spi_nor'.
 * @ear:	value to write to the Extended Address Register.
 *
 * Return: 0 on success, -errno otherwise.
 */
467
int spi_nor_write_ear(struct spi_nor *nor, u8 ear)
468
{
469 470
	int ret;

471 472 473 474 475 476 477 478 479
	nor->bouncebuf[0] = ear;

	if (nor->spimem) {
		struct spi_mem_op op =
			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WREAR, 1),
				   SPI_MEM_OP_NO_ADDR,
				   SPI_MEM_OP_NO_DUMMY,
				   SPI_MEM_OP_DATA_OUT(1, nor->bouncebuf, 1));

480 481 482 483
		ret = spi_mem_exec_op(nor->spimem, &op);
	} else {
		ret = nor->controller_ops->write_reg(nor, SPINOR_OP_WREAR,
						     nor->bouncebuf, 1);
484 485
	}

486 487 488 489
	if (ret)
		dev_dbg(nor->dev, "error %d writing EAR\n", ret);

	return ret;
490 491
}

492
/**
493
 * winbond_set_4byte_addr_mode() - Set 4-byte address mode for Winbond flashes.
494 495 496 497 498 499
 * @nor:	pointer to 'struct spi_nor'.
 * @enable:	true to enter the 4-byte address mode, false to exit the 4-byte
 *		address mode.
 *
 * Return: 0 on success, -errno otherwise.
 */
500
static int winbond_set_4byte_addr_mode(struct spi_nor *nor, bool enable)
501
{
502
	int ret;
503

504
	ret = spi_nor_set_4byte_addr_mode(nor, enable);
505 506
	if (ret || enable)
		return ret;
507

508 509 510 511 512
	/*
	 * On Winbond W25Q256FV, leaving 4byte mode causes the Extended Address
	 * Register to be set to 1, so all 3-byte-address reads come from the
	 * second 16M. We must clear the register to enable normal behavior.
	 */
513 514 515 516
	ret = spi_nor_write_enable(nor);
	if (ret)
		return ret;

517
	ret = spi_nor_write_ear(nor, 0);
518 519
	if (ret)
		return ret;
520

521
	return spi_nor_write_disable(nor);
522
}
523

524 525 526 527 528 529 530 531
/**
 * spi_nor_xread_sr() - Read the Status Register on S3AN flashes.
 * @nor:	pointer to 'struct spi_nor'.
 * @sr:		pointer to a DMA-able buffer where the value of the
 *              Status Register will be written.
 *
 * Return: 0 on success, -errno otherwise.
 */
532
int spi_nor_xread_sr(struct spi_nor *nor, u8 *sr)
533
{
534 535
	int ret;

536 537 538 539 540 541 542
	if (nor->spimem) {
		struct spi_mem_op op =
			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_XRDSR, 1),
				   SPI_MEM_OP_NO_ADDR,
				   SPI_MEM_OP_NO_DUMMY,
				   SPI_MEM_OP_DATA_IN(1, sr, 1));

543 544 545 546
		ret = spi_mem_exec_op(nor->spimem, &op);
	} else {
		ret = nor->controller_ops->read_reg(nor, SPINOR_OP_XRDSR,
						    sr, 1);
547 548
	}

549 550 551 552
	if (ret)
		dev_dbg(nor->dev, "error %d reading XRDSR\n", ret);

	return ret;
553 554
}

555
/**
556 557
 * spi_nor_xsr_ready() - Query the Status Register of the S3AN flash to see if
 * the flash is ready for new commands.
558 559 560 561
 * @nor:	pointer to 'struct spi_nor'.
 *
 * Return: 0 on success, -errno otherwise.
 */
562
static int spi_nor_xsr_ready(struct spi_nor *nor)
563 564 565
{
	int ret;

566
	ret = spi_nor_xread_sr(nor, nor->bouncebuf);
567
	if (ret)
568 569
		return ret;

570
	return !!(nor->bouncebuf[0] & XSR_RDY);
571 572
}

573 574 575 576
/**
 * spi_nor_clear_sr() - Clear the Status Register.
 * @nor:	pointer to 'struct spi_nor'.
 */
577
static void spi_nor_clear_sr(struct spi_nor *nor)
578
{
579 580
	int ret;

581 582 583 584 585 586 587
	if (nor->spimem) {
		struct spi_mem_op op =
			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_CLSR, 1),
				   SPI_MEM_OP_NO_ADDR,
				   SPI_MEM_OP_NO_DUMMY,
				   SPI_MEM_OP_NO_DATA);

588 589 590 591
		ret = spi_mem_exec_op(nor->spimem, &op);
	} else {
		ret = nor->controller_ops->write_reg(nor, SPINOR_OP_CLSR,
						     NULL, 0);
592 593
	}

594 595
	if (ret)
		dev_dbg(nor->dev, "error %d clearing SR\n", ret);
596 597
}

598 599 600 601 602 603 604
/**
 * spi_nor_sr_ready() - Query the Status Register to see if the flash is ready
 * for new commands.
 * @nor:	pointer to 'struct spi_nor'.
 *
 * Return: 0 on success, -errno otherwise.
 */
605
static int spi_nor_sr_ready(struct spi_nor *nor)
606
{
607
	int ret = spi_nor_read_sr(nor, nor->bouncebuf);
608

609 610 611 612 613 614
	if (ret)
		return ret;

	if (nor->flags & SNOR_F_USE_CLSR &&
	    nor->bouncebuf[0] & (SR_E_ERR | SR_P_ERR)) {
		if (nor->bouncebuf[0] & SR_E_ERR)
615 616 617 618
			dev_err(nor->dev, "Erase Error occurred\n");
		else
			dev_err(nor->dev, "Programming Error occurred\n");

619
		spi_nor_clear_sr(nor);
620 621 622
		return -EIO;
	}

623
	return !(nor->bouncebuf[0] & SR_WIP);
624
}
625

626 627 628 629
/**
 * spi_nor_clear_fsr() - Clear the Flag Status Register.
 * @nor:	pointer to 'struct spi_nor'.
 */
630
static void spi_nor_clear_fsr(struct spi_nor *nor)
631
{
632 633
	int ret;

634 635 636 637 638 639 640
	if (nor->spimem) {
		struct spi_mem_op op =
			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_CLFSR, 1),
				   SPI_MEM_OP_NO_ADDR,
				   SPI_MEM_OP_NO_DUMMY,
				   SPI_MEM_OP_NO_DATA);

641 642 643 644
		ret = spi_mem_exec_op(nor->spimem, &op);
	} else {
		ret = nor->controller_ops->write_reg(nor, SPINOR_OP_CLFSR,
						     NULL, 0);
645 646
	}

647 648
	if (ret)
		dev_dbg(nor->dev, "error %d clearing FSR\n", ret);
649 650
}

651 652 653 654 655 656 657
/**
 * spi_nor_fsr_ready() - Query the Flag Status Register to see if the flash is
 * ready for new commands.
 * @nor:	pointer to 'struct spi_nor'.
 *
 * Return: 0 on success, -errno otherwise.
 */
658
static int spi_nor_fsr_ready(struct spi_nor *nor)
659
{
660 661 662 663
	int ret = spi_nor_read_fsr(nor, nor->bouncebuf);

	if (ret)
		return ret;
664

665 666
	if (nor->bouncebuf[0] & (FSR_E_ERR | FSR_P_ERR)) {
		if (nor->bouncebuf[0] & FSR_E_ERR)
667 668 669 670
			dev_err(nor->dev, "Erase operation failed.\n");
		else
			dev_err(nor->dev, "Program operation failed.\n");

671
		if (nor->bouncebuf[0] & FSR_PT_ERR)
672 673 674
			dev_err(nor->dev,
			"Attempted to modify a protected sector.\n");

675
		spi_nor_clear_fsr(nor);
676 677 678
		return -EIO;
	}

679
	return nor->bouncebuf[0] & FSR_READY;
680
}
681

682 683 684 685 686 687
/**
 * spi_nor_ready() - Query the flash to see if it is ready for new commands.
 * @nor:	pointer to 'struct spi_nor'.
 *
 * Return: 0 on success, -errno otherwise.
 */
688 689 690
static int spi_nor_ready(struct spi_nor *nor)
{
	int sr, fsr;
691 692

	if (nor->flags & SNOR_F_READY_XSR_RDY)
693
		sr = spi_nor_xsr_ready(nor);
694 695
	else
		sr = spi_nor_sr_ready(nor);
696 697 698 699 700 701
	if (sr < 0)
		return sr;
	fsr = nor->flags & SNOR_F_USE_FSR ? spi_nor_fsr_ready(nor) : 1;
	if (fsr < 0)
		return fsr;
	return sr && fsr;
702 703
}

704 705 706 707 708 709 710
/**
 * spi_nor_wait_till_ready_with_timeout() - Service routine to read the
 * Status Register until ready, or timeout occurs.
 * @nor:		pointer to "struct spi_nor".
 * @timeout_jiffies:	jiffies to wait until timeout.
 *
 * Return: 0 on success, -errno otherwise.
711
 */
712 713
static int spi_nor_wait_till_ready_with_timeout(struct spi_nor *nor,
						unsigned long timeout_jiffies)
714 715
{
	unsigned long deadline;
716
	int timeout = 0, ret;
717

718
	deadline = jiffies + timeout_jiffies;
719

720 721 722
	while (!timeout) {
		if (time_after_eq(jiffies, deadline))
			timeout = 1;
723

724 725 726 727 728
		ret = spi_nor_ready(nor);
		if (ret < 0)
			return ret;
		if (ret)
			return 0;
729 730 731 732

		cond_resched();
	}

733
	dev_dbg(nor->dev, "flash operation timed out\n");
734 735 736 737

	return -ETIMEDOUT;
}

738 739 740 741 742 743 744
/**
 * spi_nor_wait_till_ready() - Wait for a predefined amount of time for the
 * flash to be ready, or timeout occurs.
 * @nor:	pointer to "struct spi_nor".
 *
 * Return: 0 on success, -errno otherwise.
 */
745
int spi_nor_wait_till_ready(struct spi_nor *nor)
746 747 748 749 750
{
	return spi_nor_wait_till_ready_with_timeout(nor,
						    DEFAULT_READY_WAIT_JIFFIES);
}

751 752 753 754 755 756 757
/**
 * spi_nor_write_sr() - Write the Status Register.
 * @nor:	pointer to 'struct spi_nor'.
 * @sr:		pointer to DMA-able buffer to write to the Status Register.
 * @len:	number of bytes to write to the Status Register.
 *
 * Return: 0 on success, -errno otherwise.
758
 */
759
static int spi_nor_write_sr(struct spi_nor *nor, const u8 *sr, size_t len)
760 761 762 763 764 765 766 767 768 769 770 771
{
	int ret;

	ret = spi_nor_write_enable(nor);
	if (ret)
		return ret;

	if (nor->spimem) {
		struct spi_mem_op op =
			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRSR, 1),
				   SPI_MEM_OP_NO_ADDR,
				   SPI_MEM_OP_NO_DUMMY,
772
				   SPI_MEM_OP_DATA_OUT(len, sr, 1));
773 774 775 776

		ret = spi_mem_exec_op(nor->spimem, &op);
	} else {
		ret = nor->controller_ops->write_reg(nor, SPINOR_OP_WRSR,
777
						     sr, len);
778 779 780 781 782 783 784 785 786 787
	}

	if (ret) {
		dev_dbg(nor->dev, "error %d writing SR\n", ret);
		return ret;
	}

	return spi_nor_wait_till_ready(nor);
}

788 789 790 791 792 793 794 795 796
/**
 * spi_nor_write_sr1_and_check() - Write one byte to the Status Register 1 and
 * ensure that the byte written match the received value.
 * @nor:	pointer to a 'struct spi_nor'.
 * @sr1:	byte value to be written to the Status Register.
 *
 * Return: 0 on success, -errno otherwise.
 */
static int spi_nor_write_sr1_and_check(struct spi_nor *nor, u8 sr1)
797 798 799
{
	int ret;

800
	nor->bouncebuf[0] = sr1;
801 802

	ret = spi_nor_write_sr(nor, nor->bouncebuf, 1);
803 804 805
	if (ret)
		return ret;

806 807
	ret = spi_nor_read_sr(nor, nor->bouncebuf);
	if (ret)
808 809
		return ret;

810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
	if (nor->bouncebuf[0] != sr1) {
		dev_dbg(nor->dev, "SR1: read back test failed\n");
		return -EIO;
	}

	return 0;
}

/**
 * spi_nor_write_16bit_sr_and_check() - Write the Status Register 1 and the
 * Status Register 2 in one shot. Ensure that the byte written in the Status
 * Register 1 match the received value, and that the 16-bit Write did not
 * affect what was already in the Status Register 2.
 * @nor:	pointer to a 'struct spi_nor'.
 * @sr1:	byte value to be written to the Status Register 1.
 *
 * Return: 0 on success, -errno otherwise.
 */
static int spi_nor_write_16bit_sr_and_check(struct spi_nor *nor, u8 sr1)
{
	int ret;
	u8 *sr_cr = nor->bouncebuf;
	u8 cr_written;

	/* Make sure we don't overwrite the contents of Status Register 2. */
	if (!(nor->flags & SNOR_F_NO_READ_CR)) {
		ret = spi_nor_read_cr(nor, &sr_cr[1]);
		if (ret)
			return ret;
	} else if (nor->params.quad_enable) {
		/*
		 * If the Status Register 2 Read command (35h) is not
		 * supported, we should at least be sure we don't
		 * change the value of the SR2 Quad Enable bit.
		 *
		 * We can safely assume that when the Quad Enable method is
		 * set, the value of the QE bit is one, as a consequence of the
		 * nor->params.quad_enable() call.
		 *
		 * We can safely assume that the Quad Enable bit is present in
		 * the Status Register 2 at BIT(1). According to the JESD216
		 * revB standard, BFPT DWORDS[15], bits 22:20, the 16-bit
		 * Write Status (01h) command is available just for the cases
		 * in which the QE bit is described in SR2 at BIT(1).
		 */
855
		sr_cr[1] = SR2_QUAD_EN_BIT1;
856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876
	} else {
		sr_cr[1] = 0;
	}

	sr_cr[0] = sr1;

	ret = spi_nor_write_sr(nor, sr_cr, 2);
	if (ret)
		return ret;

	if (nor->flags & SNOR_F_NO_READ_CR)
		return 0;

	cr_written = sr_cr[1];

	ret = spi_nor_read_cr(nor, &sr_cr[1]);
	if (ret)
		return ret;

	if (cr_written != sr_cr[1]) {
		dev_dbg(nor->dev, "CR: read back test failed\n");
877 878 879 880
		return -EIO;
	}

	return 0;
881 882
}

883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935
/**
 * spi_nor_write_16bit_cr_and_check() - Write the Status Register 1 and the
 * Configuration Register in one shot. Ensure that the byte written in the
 * Configuration Register match the received value, and that the 16-bit Write
 * did not affect what was already in the Status Register 1.
 * @nor:	pointer to a 'struct spi_nor'.
 * @cr:		byte value to be written to the Configuration Register.
 *
 * Return: 0 on success, -errno otherwise.
 */
static int spi_nor_write_16bit_cr_and_check(struct spi_nor *nor, u8 cr)
{
	int ret;
	u8 *sr_cr = nor->bouncebuf;
	u8 sr_written;

	/* Keep the current value of the Status Register 1. */
	ret = spi_nor_read_sr(nor, sr_cr);
	if (ret)
		return ret;

	sr_cr[1] = cr;

	ret = spi_nor_write_sr(nor, sr_cr, 2);
	if (ret)
		return ret;

	sr_written = sr_cr[0];

	ret = spi_nor_read_sr(nor, sr_cr);
	if (ret)
		return ret;

	if (sr_written != sr_cr[0]) {
		dev_dbg(nor->dev, "SR: Read back test failed\n");
		return -EIO;
	}

	if (nor->flags & SNOR_F_NO_READ_CR)
		return 0;

	ret = spi_nor_read_cr(nor, &sr_cr[1]);
	if (ret)
		return ret;

	if (cr != sr_cr[1]) {
		dev_dbg(nor->dev, "CR: read back test failed\n");
		return -EIO;
	}

	return 0;
}

936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
/**
 * spi_nor_write_sr_and_check() - Write the Status Register 1 and ensure that
 * the byte written match the received value without affecting other bits in the
 * Status Register 1 and 2.
 * @nor:	pointer to a 'struct spi_nor'.
 * @sr1:	byte value to be written to the Status Register.
 *
 * Return: 0 on success, -errno otherwise.
 */
static int spi_nor_write_sr_and_check(struct spi_nor *nor, u8 sr1)
{
	if (nor->flags & SNOR_F_HAS_16BIT_SR)
		return spi_nor_write_16bit_sr_and_check(nor, sr1);

	return spi_nor_write_sr1_and_check(nor, sr1);
}

953 954 955 956 957 958 959 960
/**
 * spi_nor_write_sr2() - Write the Status Register 2 using the
 * SPINOR_OP_WRSR2 (3eh) command.
 * @nor:	pointer to 'struct spi_nor'.
 * @sr2:	pointer to DMA-able buffer to write to the Status Register 2.
 *
 * Return: 0 on success, -errno otherwise.
 */
961
static int spi_nor_write_sr2(struct spi_nor *nor, const u8 *sr2)
962
{
963 964
	int ret;

965 966 967 968
	ret = spi_nor_write_enable(nor);
	if (ret)
		return ret;

969 970 971 972 973 974 975
	if (nor->spimem) {
		struct spi_mem_op op =
			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRSR2, 1),
				   SPI_MEM_OP_NO_ADDR,
				   SPI_MEM_OP_NO_DUMMY,
				   SPI_MEM_OP_DATA_OUT(1, sr2, 1));

976 977 978 979
		ret = spi_mem_exec_op(nor->spimem, &op);
	} else {
		ret = nor->controller_ops->write_reg(nor, SPINOR_OP_WRSR2,
						     sr2, 1);
980 981
	}

982
	if (ret) {
983
		dev_dbg(nor->dev, "error %d writing SR2\n", ret);
984 985
		return ret;
	}
986

987
	return spi_nor_wait_till_ready(nor);
988 989
}

990 991 992 993 994 995 996 997 998
/**
 * spi_nor_read_sr2() - Read the Status Register 2 using the
 * SPINOR_OP_RDSR2 (3fh) command.
 * @nor:	pointer to 'struct spi_nor'.
 * @sr2:	pointer to DMA-able buffer where the value of the
 *		Status Register 2 will be written.
 *
 * Return: 0 on success, -errno otherwise.
 */
999 1000
static int spi_nor_read_sr2(struct spi_nor *nor, u8 *sr2)
{
1001 1002
	int ret;

1003 1004 1005 1006 1007 1008 1009
	if (nor->spimem) {
		struct spi_mem_op op =
			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDSR2, 1),
				   SPI_MEM_OP_NO_ADDR,
				   SPI_MEM_OP_NO_DUMMY,
				   SPI_MEM_OP_DATA_IN(1, sr2, 1));

1010 1011 1012 1013
		ret = spi_mem_exec_op(nor->spimem, &op);
	} else {
		ret = nor->controller_ops->read_reg(nor, SPINOR_OP_RDSR2,
						    sr2, 1);
1014 1015
	}

1016 1017 1018 1019
	if (ret)
		dev_dbg(nor->dev, "error %d reading SR2\n", ret);

	return ret;
1020 1021
}

1022 1023 1024
/**
 * spi_nor_erase_chip() - Erase the entire flash memory.
 * @nor:	pointer to 'struct spi_nor'.
1025
 *
1026
 * Return: 0 on success, -errno otherwise.
1027
 */
1028
static int spi_nor_erase_chip(struct spi_nor *nor)
1029
{
1030 1031
	int ret;

1032
	dev_dbg(nor->dev, " %lldKiB\n", (long long)(nor->mtd.size >> 10));
1033

1034 1035 1036 1037 1038 1039 1040
	if (nor->spimem) {
		struct spi_mem_op op =
			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_CHIP_ERASE, 1),
				   SPI_MEM_OP_NO_ADDR,
				   SPI_MEM_OP_NO_DUMMY,
				   SPI_MEM_OP_NO_DATA);

1041 1042 1043 1044
		ret = spi_mem_exec_op(nor->spimem, &op);
	} else {
		ret = nor->controller_ops->write_reg(nor, SPINOR_OP_CHIP_ERASE,
						     NULL, 0);
1045 1046
	}

1047 1048 1049 1050
	if (ret)
		dev_dbg(nor->dev, "error %d erasing chip\n", ret);

	return ret;
1051 1052
}

1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
static u8 spi_nor_convert_opcode(u8 opcode, const u8 table[][2], size_t size)
{
	size_t i;

	for (i = 0; i < size; i++)
		if (table[i][0] == opcode)
			return table[i][1];

	/* No conversion found, keep input op code. */
	return opcode;
}

1065
u8 spi_nor_convert_3to4_read(u8 opcode)
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
{
	static const u8 spi_nor_3to4_read[][2] = {
		{ SPINOR_OP_READ,	SPINOR_OP_READ_4B },
		{ SPINOR_OP_READ_FAST,	SPINOR_OP_READ_FAST_4B },
		{ SPINOR_OP_READ_1_1_2,	SPINOR_OP_READ_1_1_2_4B },
		{ SPINOR_OP_READ_1_2_2,	SPINOR_OP_READ_1_2_2_4B },
		{ SPINOR_OP_READ_1_1_4,	SPINOR_OP_READ_1_1_4_4B },
		{ SPINOR_OP_READ_1_4_4,	SPINOR_OP_READ_1_4_4_4B },
		{ SPINOR_OP_READ_1_1_8,	SPINOR_OP_READ_1_1_8_4B },
		{ SPINOR_OP_READ_1_8_8,	SPINOR_OP_READ_1_8_8_4B },

		{ SPINOR_OP_READ_1_1_1_DTR,	SPINOR_OP_READ_1_1_1_DTR_4B },
		{ SPINOR_OP_READ_1_2_2_DTR,	SPINOR_OP_READ_1_2_2_DTR_4B },
		{ SPINOR_OP_READ_1_4_4_DTR,	SPINOR_OP_READ_1_4_4_DTR_4B },
	};

	return spi_nor_convert_opcode(opcode, spi_nor_3to4_read,
				      ARRAY_SIZE(spi_nor_3to4_read));
}

static u8 spi_nor_convert_3to4_program(u8 opcode)
{
	static const u8 spi_nor_3to4_program[][2] = {
		{ SPINOR_OP_PP,		SPINOR_OP_PP_4B },
		{ SPINOR_OP_PP_1_1_4,	SPINOR_OP_PP_1_1_4_4B },
		{ SPINOR_OP_PP_1_4_4,	SPINOR_OP_PP_1_4_4_4B },
		{ SPINOR_OP_PP_1_1_8,	SPINOR_OP_PP_1_1_8_4B },
		{ SPINOR_OP_PP_1_8_8,	SPINOR_OP_PP_1_8_8_4B },
	};

	return spi_nor_convert_opcode(opcode, spi_nor_3to4_program,
				      ARRAY_SIZE(spi_nor_3to4_program));
}

static u8 spi_nor_convert_3to4_erase(u8 opcode)
{
	static const u8 spi_nor_3to4_erase[][2] = {
		{ SPINOR_OP_BE_4K,	SPINOR_OP_BE_4K_4B },
		{ SPINOR_OP_BE_32K,	SPINOR_OP_BE_32K_4B },
		{ SPINOR_OP_SE,		SPINOR_OP_SE_4B },
	};

	return spi_nor_convert_opcode(opcode, spi_nor_3to4_erase,
				      ARRAY_SIZE(spi_nor_3to4_erase));
}

static void spi_nor_set_4byte_opcodes(struct spi_nor *nor)
{
	nor->read_opcode = spi_nor_convert_3to4_read(nor->read_opcode);
	nor->program_opcode = spi_nor_convert_3to4_program(nor->program_opcode);
	nor->erase_opcode = spi_nor_convert_3to4_erase(nor->erase_opcode);

	if (!spi_nor_has_uniform_erase(nor)) {
		struct spi_nor_erase_map *map = &nor->params.erase_map;
		struct spi_nor_erase_type *erase;
		int i;

		for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
			erase = &map->erase_type[i];
			erase->opcode =
				spi_nor_convert_3to4_erase(erase->opcode);
		}
	}
}

1131
int spi_nor_lock_and_prep(struct spi_nor *nor)
1132 1133 1134 1135 1136
{
	int ret = 0;

	mutex_lock(&nor->lock);

1137
	if (nor->controller_ops &&  nor->controller_ops->prepare) {
1138
		ret = nor->controller_ops->prepare(nor);
1139 1140 1141 1142 1143 1144 1145 1146
		if (ret) {
			mutex_unlock(&nor->lock);
			return ret;
		}
	}
	return ret;
}

1147
void spi_nor_unlock_and_unprep(struct spi_nor *nor)
1148
{
1149
	if (nor->controller_ops && nor->controller_ops->unprepare)
1150
		nor->controller_ops->unprepare(nor);
1151 1152 1153
	mutex_unlock(&nor->lock);
}

1154 1155 1156 1157 1158 1159 1160 1161 1162
/*
 * This code converts an address to the Default Address Mode, that has non
 * power of two page sizes. We must support this mode because it is the default
 * mode supported by Xilinx tools, it can access the whole flash area and
 * changing over to the Power-of-two mode is irreversible and corrupts the
 * original data.
 * Addr can safely be unsigned int, the biggest S3AN device is smaller than
 * 4 MiB.
 */
1163
static u32 s3an_convert_addr(struct spi_nor *nor, u32 addr)
1164
{
1165
	u32 offset, page;
1166

1167 1168 1169
	offset = addr % nor->page_size;
	page = addr / nor->page_size;
	page <<= (nor->page_size > 512) ? 10 : 9;
1170

1171
	return page | offset;
1172 1173
}

1174 1175 1176 1177 1178 1179 1180 1181
static u32 spi_nor_convert_addr(struct spi_nor *nor, loff_t addr)
{
	if (!nor->params.convert_addr)
		return addr;

	return nor->params.convert_addr(nor, addr);
}

1182 1183 1184 1185 1186 1187 1188
/*
 * Initiate the erasure of a single sector
 */
static int spi_nor_erase_sector(struct spi_nor *nor, u32 addr)
{
	int i;

1189
	addr = spi_nor_convert_addr(nor, addr);
1190

1191 1192 1193 1194 1195 1196 1197 1198
	if (nor->spimem) {
		struct spi_mem_op op =
			SPI_MEM_OP(SPI_MEM_OP_CMD(nor->erase_opcode, 1),
				   SPI_MEM_OP_ADDR(nor->addr_width, addr, 1),
				   SPI_MEM_OP_NO_DUMMY,
				   SPI_MEM_OP_NO_DATA);

		return spi_mem_exec_op(nor->spimem, &op);
1199 1200
	} else if (nor->controller_ops->erase) {
		return nor->controller_ops->erase(nor, addr);
1201 1202
	}

1203 1204 1205 1206 1207
	/*
	 * Default implementation, if driver doesn't have a specialized HW
	 * control
	 */
	for (i = nor->addr_width - 1; i >= 0; i--) {
1208
		nor->bouncebuf[i] = addr & 0xff;
1209 1210 1211
		addr >>= 8;
	}

1212 1213
	return nor->controller_ops->write_reg(nor, nor->erase_opcode,
					      nor->bouncebuf, nor->addr_width);
1214 1215
}

1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
/**
 * spi_nor_div_by_erase_size() - calculate remainder and update new dividend
 * @erase:	pointer to a structure that describes a SPI NOR erase type
 * @dividend:	dividend value
 * @remainder:	pointer to u32 remainder (will be updated)
 *
 * Return: the result of the division
 */
static u64 spi_nor_div_by_erase_size(const struct spi_nor_erase_type *erase,
				     u64 dividend, u32 *remainder)
{
	/* JEDEC JESD216B Standard imposes erase sizes to be power of 2. */
	*remainder = (u32)dividend & erase->size_mask;
	return dividend >> erase->size_shift;
}

/**
 * spi_nor_find_best_erase_type() - find the best erase type for the given
 *				    offset in the serial flash memory and the
 *				    number of bytes to erase. The region in
 *				    which the address fits is expected to be
 *				    provided.
 * @map:	the erase map of the SPI NOR
 * @region:	pointer to a structure that describes a SPI NOR erase region
 * @addr:	offset in the serial flash memory
 * @len:	number of bytes to erase
 *
 * Return: a pointer to the best fitted erase type, NULL otherwise.
 */
static const struct spi_nor_erase_type *
spi_nor_find_best_erase_type(const struct spi_nor_erase_map *map,
			     const struct spi_nor_erase_region *region,
			     u64 addr, u32 len)
{
	const struct spi_nor_erase_type *erase;
	u32 rem;
	int i;
	u8 erase_mask = region->offset & SNOR_ERASE_TYPE_MASK;

	/*
1256
	 * Erase types are ordered by size, with the smallest erase type at
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
	 * index 0.
	 */
	for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
		/* Does the erase region support the tested erase type? */
		if (!(erase_mask & BIT(i)))
			continue;

		erase = &map->erase_type[i];

		/* Don't erase more than what the user has asked for. */
		if (erase->size > len)
			continue;

		/* Alignment is not mandatory for overlaid regions */
		if (region->offset & SNOR_OVERLAID_REGION)
			return erase;

		spi_nor_div_by_erase_size(erase, addr, &rem);
		if (rem)
			continue;
		else
			return erase;
	}

	return NULL;
}

/**
 * spi_nor_region_next() - get the next spi nor region
 * @region:	pointer to a structure that describes a SPI NOR erase region
 *
 * Return: the next spi nor region or NULL if last region.
 */
1290
struct spi_nor_erase_region *
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
spi_nor_region_next(struct spi_nor_erase_region *region)
{
	if (spi_nor_region_is_last(region))
		return NULL;
	region++;
	return region;
}

/**
 * spi_nor_find_erase_region() - find the region of the serial flash memory in
 *				 which the offset fits
 * @map:	the erase map of the SPI NOR
 * @addr:	offset in the serial flash memory
 *
 * Return: a pointer to the spi_nor_erase_region struct, ERR_PTR(-errno)
 *	   otherwise.
 */
static struct spi_nor_erase_region *
spi_nor_find_erase_region(const struct spi_nor_erase_map *map, u64 addr)
{
	struct spi_nor_erase_region *region = map->regions;
	u64 region_start = region->offset & ~SNOR_ERASE_FLAGS_MASK;
	u64 region_end = region_start + region->size;

	while (addr < region_start || addr >= region_end) {
		region = spi_nor_region_next(region);
		if (!region)
			return ERR_PTR(-EINVAL);

		region_start = region->offset & ~SNOR_ERASE_FLAGS_MASK;
		region_end = region_start + region->size;
	}

	return region;
}

/**
 * spi_nor_init_erase_cmd() - initialize an erase command
 * @region:	pointer to a structure that describes a SPI NOR erase region
 * @erase:	pointer to a structure that describes a SPI NOR erase type
 *
 * Return: the pointer to the allocated erase command, ERR_PTR(-errno)
 *	   otherwise.
 */
static struct spi_nor_erase_command *
spi_nor_init_erase_cmd(const struct spi_nor_erase_region *region,
		       const struct spi_nor_erase_type *erase)
{
	struct spi_nor_erase_command *cmd;

	cmd = kmalloc(sizeof(*cmd), GFP_KERNEL);
	if (!cmd)
		return ERR_PTR(-ENOMEM);

	INIT_LIST_HEAD(&cmd->list);
	cmd->opcode = erase->opcode;
	cmd->count = 1;

	if (region->offset & SNOR_OVERLAID_REGION)
		cmd->size = region->size;
	else
		cmd->size = erase->size;

	return cmd;
}

/**
 * spi_nor_destroy_erase_cmd_list() - destroy erase command list
 * @erase_list:	list of erase commands
 */
static void spi_nor_destroy_erase_cmd_list(struct list_head *erase_list)
{
	struct spi_nor_erase_command *cmd, *next;

	list_for_each_entry_safe(cmd, next, erase_list, list) {
		list_del(&cmd->list);
		kfree(cmd);
	}
}

/**
 * spi_nor_init_erase_cmd_list() - initialize erase command list
 * @nor:	pointer to a 'struct spi_nor'
 * @erase_list:	list of erase commands to be executed once we validate that the
 *		erase can be performed
 * @addr:	offset in the serial flash memory
 * @len:	number of bytes to erase
 *
 * Builds the list of best fitted erase commands and verifies if the erase can
 * be performed.
 *
 * Return: 0 on success, -errno otherwise.
 */
static int spi_nor_init_erase_cmd_list(struct spi_nor *nor,
				       struct list_head *erase_list,
				       u64 addr, u32 len)
{
1388
	const struct spi_nor_erase_map *map = &nor->params.erase_map;
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
	const struct spi_nor_erase_type *erase, *prev_erase = NULL;
	struct spi_nor_erase_region *region;
	struct spi_nor_erase_command *cmd = NULL;
	u64 region_end;
	int ret = -EINVAL;

	region = spi_nor_find_erase_region(map, addr);
	if (IS_ERR(region))
		return PTR_ERR(region);

	region_end = spi_nor_region_end(region);

	while (len) {
		erase = spi_nor_find_best_erase_type(map, region, addr, len);
		if (!erase)
			goto destroy_erase_cmd_list;

		if (prev_erase != erase ||
		    region->offset & SNOR_OVERLAID_REGION) {
			cmd = spi_nor_init_erase_cmd(region, erase);
			if (IS_ERR(cmd)) {
				ret = PTR_ERR(cmd);
				goto destroy_erase_cmd_list;
			}

			list_add_tail(&cmd->list, erase_list);
		} else {
			cmd->count++;
		}

		addr += cmd->size;
		len -= cmd->size;

		if (len && addr >= region_end) {
			region = spi_nor_region_next(region);
			if (!region)
				goto destroy_erase_cmd_list;
			region_end = spi_nor_region_end(region);
		}

		prev_erase = erase;
	}

	return 0;

destroy_erase_cmd_list:
	spi_nor_destroy_erase_cmd_list(erase_list);
	return ret;
}

/**
 * spi_nor_erase_multi_sectors() - perform a non-uniform erase
 * @nor:	pointer to a 'struct spi_nor'
 * @addr:	offset in the serial flash memory
 * @len:	number of bytes to erase
 *
 * Build a list of best fitted erase commands and execute it once we validate
 * that the erase can be performed.
 *
 * Return: 0 on success, -errno otherwise.
 */
static int spi_nor_erase_multi_sectors(struct spi_nor *nor, u64 addr, u32 len)
{
	LIST_HEAD(erase_list);
	struct spi_nor_erase_command *cmd, *next;
	int ret;

	ret = spi_nor_init_erase_cmd_list(nor, &erase_list, addr, len);
	if (ret)
		return ret;

	list_for_each_entry_safe(cmd, next, &erase_list, list) {
		nor->erase_opcode = cmd->opcode;
		while (cmd->count) {
1463 1464 1465
			ret = spi_nor_write_enable(nor);
			if (ret)
				goto destroy_erase_cmd_list;
1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488

			ret = spi_nor_erase_sector(nor, addr);
			if (ret)
				goto destroy_erase_cmd_list;

			addr += cmd->size;
			cmd->count--;

			ret = spi_nor_wait_till_ready(nor);
			if (ret)
				goto destroy_erase_cmd_list;
		}
		list_del(&cmd->list);
		kfree(cmd);
	}

	return 0;

destroy_erase_cmd_list:
	spi_nor_destroy_erase_cmd_list(&erase_list);
	return ret;
}

1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
/*
 * Erase an address range on the nor chip.  The address range may extend
 * one or more erase sectors.  Return an error is there is a problem erasing.
 */
static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	u32 addr, len;
	uint32_t rem;
	int ret;

	dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr,
			(long long)instr->len);

1503 1504 1505 1506 1507
	if (spi_nor_has_uniform_erase(nor)) {
		div_u64_rem(instr->len, mtd->erasesize, &rem);
		if (rem)
			return -EINVAL;
	}
1508 1509 1510 1511

	addr = instr->addr;
	len = instr->len;

1512
	ret = spi_nor_lock_and_prep(nor);
1513 1514 1515 1516
	if (ret)
		return ret;

	/* whole-chip erase? */
1517
	if (len == mtd->size && !(nor->flags & SNOR_F_NO_OP_CHIP_ERASE)) {
1518 1519
		unsigned long timeout;

1520 1521 1522
		ret = spi_nor_write_enable(nor);
		if (ret)
			goto erase_err;
1523

1524 1525
		ret = spi_nor_erase_chip(nor);
		if (ret)
1526 1527
			goto erase_err;

1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
		/*
		 * Scale the timeout linearly with the size of the flash, with
		 * a minimum calibrated to an old 2MB flash. We could try to
		 * pull these from CFI/SFDP, but these values should be good
		 * enough for now.
		 */
		timeout = max(CHIP_ERASE_2MB_READY_WAIT_JIFFIES,
			      CHIP_ERASE_2MB_READY_WAIT_JIFFIES *
			      (unsigned long)(mtd->size / SZ_2M));
		ret = spi_nor_wait_till_ready_with_timeout(nor, timeout);
1538 1539 1540
		if (ret)
			goto erase_err;

1541
	/* REVISIT in some cases we could speed up erasing large regions
1542
	 * by using SPINOR_OP_SE instead of SPINOR_OP_BE_4K.  We may have set up
1543 1544 1545 1546
	 * to use "small sector erase", but that's not always optimal.
	 */

	/* "sector"-at-a-time erase */
1547
	} else if (spi_nor_has_uniform_erase(nor)) {
1548
		while (len) {
1549 1550 1551
			ret = spi_nor_write_enable(nor);
			if (ret)
				goto erase_err;
1552

1553 1554
			ret = spi_nor_erase_sector(nor, addr);
			if (ret)
1555 1556 1557 1558
				goto erase_err;

			addr += mtd->erasesize;
			len -= mtd->erasesize;
1559 1560 1561 1562

			ret = spi_nor_wait_till_ready(nor);
			if (ret)
				goto erase_err;
1563
		}
1564 1565 1566 1567 1568 1569

	/* erase multiple sectors */
	} else {
		ret = spi_nor_erase_multi_sectors(nor, addr, len);
		if (ret)
			goto erase_err;
1570 1571
	}

1572
	ret = spi_nor_write_disable(nor);
1573

1574
erase_err:
1575
	spi_nor_unlock_and_unprep(nor);
1576 1577 1578 1579

	return ret;
}

1580 1581
static void spi_nor_get_locked_range_sr(struct spi_nor *nor, u8 sr, loff_t *ofs,
					uint64_t *len)
1582 1583 1584
{
	struct mtd_info *mtd = &nor->mtd;
	u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
1585
	u8 tb_mask = SR_TB_BIT5;
1586 1587
	int pow;

1588 1589 1590
	if (nor->flags & SNOR_F_HAS_SR_TB_BIT6)
		tb_mask = SR_TB_BIT6;

1591 1592 1593 1594 1595
	if (!(sr & mask)) {
		/* No protection */
		*ofs = 0;
		*len = 0;
	} else {
1596
		pow = ((sr & mask) ^ mask) >> SR_BP_SHIFT;
1597
		*len = mtd->size >> pow;
1598
		if (nor->flags & SNOR_F_HAS_SR_TB && sr & tb_mask)
1599 1600 1601
			*ofs = 0;
		else
			*ofs = mtd->size - *len;
1602 1603 1604 1605
	}
}

/*
1606 1607
 * Return 1 if the entire region is locked (if @locked is true) or unlocked (if
 * @locked is false); 0 otherwise
1608
 */
1609 1610
static int spi_nor_check_lock_status_sr(struct spi_nor *nor, loff_t ofs,
					uint64_t len, u8 sr, bool locked)
1611 1612 1613 1614
{
	loff_t lock_offs;
	uint64_t lock_len;

1615 1616 1617
	if (!len)
		return 1;

1618
	spi_nor_get_locked_range_sr(nor, sr, &lock_offs, &lock_len);
1619

1620 1621 1622 1623 1624 1625 1626 1627
	if (locked)
		/* Requested range is a sub-range of locked range */
		return (ofs + len <= lock_offs + lock_len) && (ofs >= lock_offs);
	else
		/* Requested range does not overlap with locked range */
		return (ofs >= lock_offs + lock_len) || (ofs + len <= lock_offs);
}

1628 1629
static int spi_nor_is_locked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
				u8 sr)
1630
{
1631
	return spi_nor_check_lock_status_sr(nor, ofs, len, sr, true);
1632 1633
}

1634 1635
static int spi_nor_is_unlocked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
				  u8 sr)
1636
{
1637
	return spi_nor_check_lock_status_sr(nor, ofs, len, sr, false);
1638 1639 1640 1641
}

/*
 * Lock a region of the flash. Compatible with ST Micro and similar flash.
1642
 * Supports the block protection bits BP{0,1,2} in the status register
1643 1644 1645 1646
 * (SR). Does not support these features found in newer SR bitfields:
 *   - SEC: sector/block protect - only handle SEC=0 (block protect)
 *   - CMP: complement protect - only support CMP=0 (range is not complemented)
 *
1647 1648 1649
 * Support for the following is provided conditionally for some flash:
 *   - TB: top/bottom protect
 *
1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
 * Sample table portion for 8MB flash (Winbond w25q64fw):
 *
 *   SEC  |  TB   |  BP2  |  BP1  |  BP0  |  Prot Length  | Protected Portion
 *  --------------------------------------------------------------------------
 *    X   |   X   |   0   |   0   |   0   |  NONE         | NONE
 *    0   |   0   |   0   |   0   |   1   |  128 KB       | Upper 1/64
 *    0   |   0   |   0   |   1   |   0   |  256 KB       | Upper 1/32
 *    0   |   0   |   0   |   1   |   1   |  512 KB       | Upper 1/16
 *    0   |   0   |   1   |   0   |   0   |  1 MB         | Upper 1/8
 *    0   |   0   |   1   |   0   |   1   |  2 MB         | Upper 1/4
 *    0   |   0   |   1   |   1   |   0   |  4 MB         | Upper 1/2
 *    X   |   X   |   1   |   1   |   1   |  8 MB         | ALL
1662 1663 1664 1665 1666 1667 1668
 *  ------|-------|-------|-------|-------|---------------|-------------------
 *    0   |   1   |   0   |   0   |   1   |  128 KB       | Lower 1/64
 *    0   |   1   |   0   |   1   |   0   |  256 KB       | Lower 1/32
 *    0   |   1   |   0   |   1   |   1   |  512 KB       | Lower 1/16
 *    0   |   1   |   1   |   0   |   0   |  1 MB         | Lower 1/8
 *    0   |   1   |   1   |   0   |   1   |  2 MB         | Lower 1/4
 *    0   |   1   |   1   |   1   |   0   |  4 MB         | Lower 1/2
1669 1670 1671
 *
 * Returns negative on errors, 0 on success.
 */
1672
static int spi_nor_sr_lock(struct spi_nor *nor, loff_t ofs, uint64_t len)
1673
{
1674
	struct mtd_info *mtd = &nor->mtd;
1675
	int ret, status_old, status_new;
1676
	u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
1677
	u8 tb_mask = SR_TB_BIT5;
1678
	u8 pow, val;
1679
	loff_t lock_len;
1680 1681
	bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB;
	bool use_top;
1682

1683 1684 1685 1686 1687
	ret = spi_nor_read_sr(nor, nor->bouncebuf);
	if (ret)
		return ret;

	status_old = nor->bouncebuf[0];
1688

1689
	/* If nothing in our range is unlocked, we don't need to do anything */
1690
	if (spi_nor_is_locked_sr(nor, ofs, len, status_old))
1691 1692
		return 0;

1693
	/* If anything below us is unlocked, we can't use 'bottom' protection */
1694
	if (!spi_nor_is_locked_sr(nor, 0, ofs, status_old))
1695 1696
		can_be_bottom = false;

1697
	/* If anything above us is unlocked, we can't use 'top' protection */
1698 1699
	if (!spi_nor_is_locked_sr(nor, ofs + len, mtd->size - (ofs + len),
				  status_old))
1700 1701 1702
		can_be_top = false;

	if (!can_be_bottom && !can_be_top)
1703 1704
		return -EINVAL;

1705 1706 1707
	/* Prefer top, if both are valid */
	use_top = can_be_top;

1708
	/* lock_len: length of region that should end up locked */
1709 1710 1711 1712
	if (use_top)
		lock_len = mtd->size - ofs;
	else
		lock_len = ofs + len;
1713

1714 1715 1716
	if (nor->flags & SNOR_F_HAS_SR_TB_BIT6)
		tb_mask = SR_TB_BIT6;

1717 1718 1719 1720 1721 1722 1723 1724 1725
	/*
	 * Need smallest pow such that:
	 *
	 *   1 / (2^pow) <= (len / size)
	 *
	 * so (assuming power-of-2 size) we do:
	 *
	 *   pow = ceil(log2(size / len)) = log2(size) - floor(log2(len))
	 */
1726
	pow = ilog2(mtd->size) - ilog2(lock_len);
1727
	val = mask - (pow << SR_BP_SHIFT);
1728 1729 1730 1731 1732 1733
	if (val & ~mask)
		return -EINVAL;
	/* Don't "lock" with no region! */
	if (!(val & mask))
		return -EINVAL;

1734
	status_new = (status_old & ~mask & ~tb_mask) | val;
1735

1736 1737 1738
	/* Disallow further writes if WP pin is asserted */
	status_new |= SR_SRWD;

1739
	if (!use_top)
1740
		status_new |= tb_mask;
1741

1742 1743 1744 1745
	/* Don't bother if they're the same */
	if (status_new == status_old)
		return 0;

1746
	/* Only modify protection if it will not unlock other areas */
1747
	if ((status_new & mask) < (status_old & mask))
1748
		return -EINVAL;
1749

1750
	return spi_nor_write_sr_and_check(nor, status_new);
1751 1752
}

1753
/*
1754
 * Unlock a region of the flash. See spi_nor_sr_lock() for more info
1755 1756 1757
 *
 * Returns negative on errors, 0 on success.
 */
1758
static int spi_nor_sr_unlock(struct spi_nor *nor, loff_t ofs, uint64_t len)
1759
{
1760
	struct mtd_info *mtd = &nor->mtd;
1761
	int ret, status_old, status_new;
1762
	u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
1763
	u8 tb_mask = SR_TB_BIT5;
1764
	u8 pow, val;
1765
	loff_t lock_len;
1766 1767
	bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB;
	bool use_top;
1768

1769 1770 1771 1772 1773
	ret = spi_nor_read_sr(nor, nor->bouncebuf);
	if (ret)
		return ret;

	status_old = nor->bouncebuf[0];
1774

1775
	/* If nothing in our range is locked, we don't need to do anything */
1776
	if (spi_nor_is_unlocked_sr(nor, ofs, len, status_old))
1777 1778 1779
		return 0;

	/* If anything below us is locked, we can't use 'top' protection */
1780
	if (!spi_nor_is_unlocked_sr(nor, 0, ofs, status_old))
1781 1782 1783
		can_be_top = false;

	/* If anything above us is locked, we can't use 'bottom' protection */
1784 1785
	if (!spi_nor_is_unlocked_sr(nor, ofs + len, mtd->size - (ofs + len),
				    status_old))
1786 1787 1788
		can_be_bottom = false;

	if (!can_be_bottom && !can_be_top)
1789
		return -EINVAL;
1790

1791 1792 1793
	/* Prefer top, if both are valid */
	use_top = can_be_top;

1794
	/* lock_len: length of region that should remain locked */
1795 1796 1797 1798
	if (use_top)
		lock_len = mtd->size - (ofs + len);
	else
		lock_len = ofs;
1799

1800 1801
	if (nor->flags & SNOR_F_HAS_SR_TB_BIT6)
		tb_mask = SR_TB_BIT6;
1802 1803 1804 1805 1806 1807 1808 1809 1810
	/*
	 * Need largest pow such that:
	 *
	 *   1 / (2^pow) >= (len / size)
	 *
	 * so (assuming power-of-2 size) we do:
	 *
	 *   pow = floor(log2(size / len)) = log2(size) - ceil(log2(len))
	 */
1811 1812
	pow = ilog2(mtd->size) - order_base_2(lock_len);
	if (lock_len == 0) {
1813 1814
		val = 0; /* fully unlocked */
	} else {
1815
		val = mask - (pow << SR_BP_SHIFT);
1816 1817 1818
		/* Some power-of-two sizes are not supported */
		if (val & ~mask)
			return -EINVAL;
1819 1820
	}

1821
	status_new = (status_old & ~mask & ~tb_mask) | val;
1822

1823
	/* Don't protect status register if we're fully unlocked */
1824
	if (lock_len == 0)
1825 1826
		status_new &= ~SR_SRWD;

1827
	if (!use_top)
1828
		status_new |= tb_mask;
1829

1830 1831 1832 1833
	/* Don't bother if they're the same */
	if (status_new == status_old)
		return 0;

1834
	/* Only modify protection if it will not lock other areas */
1835
	if ((status_new & mask) > (status_old & mask))
1836 1837
		return -EINVAL;

1838
	return spi_nor_write_sr_and_check(nor, status_new);
1839 1840
}

1841
/*
1842 1843
 * Check if a region of the flash is (completely) locked. See spi_nor_sr_lock()
 * for more info.
1844 1845 1846 1847
 *
 * Returns 1 if entire region is locked, 0 if any portion is unlocked, and
 * negative on errors.
 */
1848
static int spi_nor_sr_is_locked(struct spi_nor *nor, loff_t ofs, uint64_t len)
1849
{
1850
	int ret;
1851

1852 1853 1854
	ret = spi_nor_read_sr(nor, nor->bouncebuf);
	if (ret)
		return ret;
1855

1856
	return spi_nor_is_locked_sr(nor, ofs, len, nor->bouncebuf[0]);
1857 1858
}

1859 1860 1861 1862
static const struct spi_nor_locking_ops spi_nor_sr_locking_ops = {
	.lock = spi_nor_sr_lock,
	.unlock = spi_nor_sr_unlock,
	.is_locked = spi_nor_sr_is_locked,
1863 1864
};

1865 1866 1867 1868 1869
static int spi_nor_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	int ret;

1870
	ret = spi_nor_lock_and_prep(nor);
1871 1872 1873
	if (ret)
		return ret;

1874
	ret = nor->params.locking_ops->lock(nor, ofs, len);
1875

1876
	spi_nor_unlock_and_unprep(nor);
1877 1878 1879
	return ret;
}

1880 1881 1882 1883 1884
static int spi_nor_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	int ret;

1885
	ret = spi_nor_lock_and_prep(nor);
1886 1887 1888
	if (ret)
		return ret;

1889
	ret = nor->params.locking_ops->unlock(nor, ofs, len);
1890

1891
	spi_nor_unlock_and_unprep(nor);
1892 1893 1894
	return ret;
}

1895 1896 1897 1898 1899
static int spi_nor_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	int ret;

1900
	ret = spi_nor_lock_and_prep(nor);
1901 1902 1903
	if (ret)
		return ret;

1904
	ret = nor->params.locking_ops->is_locked(nor, ofs, len);
1905

1906
	spi_nor_unlock_and_unprep(nor);
1907 1908 1909
	return ret;
}

1910
/**
1911 1912
 * spi_nor_sr1_bit6_quad_enable() - Set the Quad Enable BIT(6) in the Status
 * Register 1.
1913 1914
 * @nor:	pointer to a 'struct spi_nor'
 *
1915
 * Bit 6 of the Status Register 1 is the QE bit for Macronix like QSPI memories.
1916 1917 1918
 *
 * Return: 0 on success, -errno otherwise.
 */
1919
int spi_nor_sr1_bit6_quad_enable(struct spi_nor *nor)
1920
{
1921 1922 1923 1924 1925
	int ret;

	ret = spi_nor_read_sr(nor, nor->bouncebuf);
	if (ret)
		return ret;
1926

1927
	if (nor->bouncebuf[0] & SR1_QUAD_EN_BIT6)
1928 1929
		return 0;

1930
	nor->bouncebuf[0] |= SR1_QUAD_EN_BIT6;
1931

1932
	return spi_nor_write_sr1_and_check(nor, nor->bouncebuf[0]);
1933 1934 1935
}

/**
1936 1937 1938
 * spi_nor_sr2_bit1_quad_enable() - set the Quad Enable BIT(1) in the Status
 * Register 2.
 * @nor:       pointer to a 'struct spi_nor'.
1939
 *
1940
 * Bit 1 of the Status Register 2 is the QE bit for Spansion like QSPI memories.
1941 1942 1943
 *
 * Return: 0 on success, -errno otherwise.
 */
1944
int spi_nor_sr2_bit1_quad_enable(struct spi_nor *nor)
1945 1946
{
	int ret;
1947

1948 1949
	if (nor->flags & SNOR_F_NO_READ_CR)
		return spi_nor_write_16bit_cr_and_check(nor, SR2_QUAD_EN_BIT1);
1950

1951
	ret = spi_nor_read_cr(nor, nor->bouncebuf);
1952
	if (ret)
1953
		return ret;
1954

1955
	if (nor->bouncebuf[0] & SR2_QUAD_EN_BIT1)
1956 1957
		return 0;

1958 1959
	nor->bouncebuf[0] |= SR2_QUAD_EN_BIT1;

1960
	return spi_nor_write_16bit_cr_and_check(nor, nor->bouncebuf[0]);
1961 1962 1963
}

/**
1964
 * spi_nor_sr2_bit7_quad_enable() - set QE bit in Status Register 2.
1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
 * @nor:	pointer to a 'struct spi_nor'
 *
 * Set the Quad Enable (QE) bit in the Status Register 2.
 *
 * This is one of the procedures to set the QE bit described in the SFDP
 * (JESD216 rev B) specification but no manufacturer using this procedure has
 * been identified yet, hence the name of the function.
 *
 * Return: 0 on success, -errno otherwise.
 */
1975
int spi_nor_sr2_bit7_quad_enable(struct spi_nor *nor)
1976
{
1977
	u8 *sr2 = nor->bouncebuf;
1978
	int ret;
1979
	u8 sr2_written;
1980 1981

	/* Check current Quad Enable bit value. */
1982
	ret = spi_nor_read_sr2(nor, sr2);
1983 1984
	if (ret)
		return ret;
1985
	if (*sr2 & SR2_QUAD_EN_BIT7)
1986 1987 1988
		return 0;

	/* Update the Quad Enable bit. */
1989
	*sr2 |= SR2_QUAD_EN_BIT7;
1990

1991
	ret = spi_nor_write_sr2(nor, sr2);
1992
	if (ret)
1993
		return ret;
1994

1995 1996
	sr2_written = *sr2;

1997
	/* Read back and check it. */
1998
	ret = spi_nor_read_sr2(nor, sr2);
1999 2000 2001
	if (ret)
		return ret;

2002 2003
	if (*sr2 != sr2_written) {
		dev_dbg(nor->dev, "SR2: Read back test failed\n");
2004
		return -EIO;
2005 2006 2007 2008
	}

	return 0;
}
A
Andy Yan 已提交
2009

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
static int
is25lp256_post_bfpt_fixups(struct spi_nor *nor,
			   const struct sfdp_parameter_header *bfpt_header,
			   const struct sfdp_bfpt *bfpt,
			   struct spi_nor_flash_parameter *params)
{
	/*
	 * IS25LP256 supports 4B opcodes, but the BFPT advertises a
	 * BFPT_DWORD1_ADDRESS_BYTES_3_ONLY address width.
	 * Overwrite the address width advertised by the BFPT.
	 */
	if ((bfpt->dwords[BFPT_DWORD(1)] & BFPT_DWORD1_ADDRESS_BYTES_MASK) ==
		BFPT_DWORD1_ADDRESS_BYTES_3_ONLY)
		nor->addr_width = 4;

	return 0;
}

static struct spi_nor_fixups is25lp256_fixups = {
	.post_bfpt = is25lp256_post_bfpt_fixups,
};

2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056
static int
mx25l25635_post_bfpt_fixups(struct spi_nor *nor,
			    const struct sfdp_parameter_header *bfpt_header,
			    const struct sfdp_bfpt *bfpt,
			    struct spi_nor_flash_parameter *params)
{
	/*
	 * MX25L25635F supports 4B opcodes but MX25L25635E does not.
	 * Unfortunately, Macronix has re-used the same JEDEC ID for both
	 * variants which prevents us from defining a new entry in the parts
	 * table.
	 * We need a way to differentiate MX25L25635E and MX25L25635F, and it
	 * seems that the F version advertises support for Fast Read 4-4-4 in
	 * its BFPT table.
	 */
	if (bfpt->dwords[BFPT_DWORD(5)] & BFPT_DWORD5_FAST_READ_4_4_4)
		nor->flags |= SNOR_F_4B_OPCODES;

	return 0;
}

static struct spi_nor_fixups mx25l25635_fixups = {
	.post_bfpt = mx25l25635_post_bfpt_fixups,
};

2057 2058 2059 2060 2061 2062 2063 2064
static void gd25q256_default_init(struct spi_nor *nor)
{
	/*
	 * Some manufacturer like GigaDevice may use different
	 * bit to set QE on different memories, so the MFR can't
	 * indicate the quad_enable method for this case, we need
	 * to set it in the default_init fixup hook.
	 */
2065
	nor->params.quad_enable = spi_nor_sr1_bit6_quad_enable;
2066 2067 2068 2069 2070 2071
}

static struct spi_nor_fixups gd25q256_fixups = {
	.default_init = gd25q256_default_init,
};

2072 2073 2074
/* NOTE: double check command sets and memory organization when you add
 * more nor chips.  This current list focusses on newer chips, which
 * have been converging on command sets which including JEDEC ID.
2075 2076 2077 2078 2079 2080 2081
 *
 * All newly added entries should describe *hardware* and should use SECT_4K
 * (or SECT_4K_PMC) if hardware supports erasing 4 KiB sectors. For usage
 * scenarios excluding small sectors there is config option that can be
 * disabled: CONFIG_MTD_SPI_NOR_USE_4K_SECTORS.
 * For historical (and compatibility) reasons (before we got above config) some
 * old entries may be missing 4K flag.
2082
 */
2083
static const struct flash_info spi_nor_ids[] = {
2084
	/* ESMT */
2085
	{ "f25l32pa", INFO(0x8c2016, 0, 64 * 1024, 64, SECT_4K | SPI_NOR_HAS_LOCK) },
2086 2087
	{ "f25l32qa", INFO(0x8c4116, 0, 64 * 1024, 64, SECT_4K | SPI_NOR_HAS_LOCK) },
	{ "f25l64qa", INFO(0x8c4117, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_HAS_LOCK) },
2088 2089

	/* Everspin */
2090
	{ "mr25h128", CAT25_INFO( 16 * 1024, 1, 256, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
2091 2092
	{ "mr25h256", CAT25_INFO( 32 * 1024, 1, 256, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
	{ "mr25h10",  CAT25_INFO(128 * 1024, 1, 256, 3, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
2093
	{ "mr25h40",  CAT25_INFO(512 * 1024, 1, 256, 3, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
2094

2095 2096 2097
	/* Fujitsu */
	{ "mb85rs1mt", INFO(0x047f27, 0, 128 * 1024, 1, SPI_NOR_NO_ERASE) },

2098
	/* GigaDevice */
2099 2100 2101 2102 2103
	{
		"gd25q16", INFO(0xc84015, 0, 64 * 1024,  32,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
2104 2105 2106 2107 2108
	{
		"gd25q32", INFO(0xc84016, 0, 64 * 1024,  64,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
2109 2110 2111 2112 2113
	{
		"gd25lq32", INFO(0xc86016, 0, 64 * 1024, 64,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
2114 2115 2116 2117 2118 2119 2120 2121 2122 2123
	{
		"gd25q64", INFO(0xc84017, 0, 64 * 1024, 128,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
	{
		"gd25lq64c", INFO(0xc86017, 0, 64 * 1024, 128,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
2124 2125 2126 2127 2128
	{
		"gd25lq128d", INFO(0xc86018, 0, 64 * 1024, 256,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
2129 2130 2131 2132 2133
	{
		"gd25q128", INFO(0xc84018, 0, 64 * 1024, 256,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
A
Andy Yan 已提交
2134 2135 2136
	{
		"gd25q256", INFO(0xc84019, 0, 64 * 1024, 512,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
2137 2138
			SPI_NOR_4B_OPCODES | SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB |
			SPI_NOR_TB_SR_BIT6)
2139
			.fixups = &gd25q256_fixups,
A
Andy Yan 已提交
2140
	},
2141 2142 2143 2144 2145 2146

	/* Intel/Numonyx -- xxxs33b */
	{ "160s33b",  INFO(0x898911, 0, 64 * 1024,  32, 0) },
	{ "320s33b",  INFO(0x898912, 0, 64 * 1024,  64, 0) },
	{ "640s33b",  INFO(0x898913, 0, 64 * 1024, 128, 0) },

2147
	/* ISSI */
S
Sean Nyekjaer 已提交
2148 2149
	{ "is25cd512",  INFO(0x7f9d20, 0, 32 * 1024,   2, SECT_4K) },
	{ "is25lq040b", INFO(0x9d4013, 0, 64 * 1024,   8,
2150
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2151 2152
	{ "is25lp016d", INFO(0x9d6015, 0, 64 * 1024,  32,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2153 2154
	{ "is25lp080d", INFO(0x9d6014, 0, 64 * 1024,  16,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2155 2156 2157 2158
	{ "is25lp032",  INFO(0x9d6016, 0, 64 * 1024,  64,
			SECT_4K | SPI_NOR_DUAL_READ) },
	{ "is25lp064",  INFO(0x9d6017, 0, 64 * 1024, 128,
			SECT_4K | SPI_NOR_DUAL_READ) },
S
Sean Nyekjaer 已提交
2159
	{ "is25lp128",  INFO(0x9d6018, 0, 64 * 1024, 256,
2160
			SECT_4K | SPI_NOR_DUAL_READ) },
2161
	{ "is25lp256",  INFO(0x9d6019, 0, 64 * 1024, 512,
2162
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
2163 2164
			SPI_NOR_4B_OPCODES)
			.fixups = &is25lp256_fixups },
2165 2166 2167 2168 2169 2170
	{ "is25wp032",  INFO(0x9d7016, 0, 64 * 1024,  64,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
	{ "is25wp064",  INFO(0x9d7017, 0, 64 * 1024, 128,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
	{ "is25wp128",  INFO(0x9d7018, 0, 64 * 1024, 256,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2171 2172 2173 2174
	{ "is25wp256", INFO(0x9d7019, 0, 64 * 1024, 512,
			    SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			    SPI_NOR_4B_OPCODES)
		       .fixups = &is25lp256_fixups },
2175

2176
	/* Macronix */
2177
	{ "mx25l512e",   INFO(0xc22010, 0, 64 * 1024,   1, SECT_4K) },
2178 2179 2180 2181
	{ "mx25l2005a",  INFO(0xc22012, 0, 64 * 1024,   4, SECT_4K) },
	{ "mx25l4005a",  INFO(0xc22013, 0, 64 * 1024,   8, SECT_4K) },
	{ "mx25l8005",   INFO(0xc22014, 0, 64 * 1024,  16, 0) },
	{ "mx25l1606e",  INFO(0xc22015, 0, 64 * 1024,  32, SECT_4K) },
2182
	{ "mx25l3205d",  INFO(0xc22016, 0, 64 * 1024,  64, SECT_4K) },
2183
	{ "mx25l3255e",  INFO(0xc29e16, 0, 64 * 1024,  64, SECT_4K) },
2184
	{ "mx25l6405d",  INFO(0xc22017, 0, 64 * 1024, 128, SECT_4K) },
2185
	{ "mx25u2033e",  INFO(0xc22532, 0, 64 * 1024,   4, SECT_4K) },
2186 2187
	{ "mx25u3235f",	 INFO(0xc22536, 0, 64 * 1024,  64,
			 SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2188 2189
	{ "mx25u4035",   INFO(0xc22533, 0, 64 * 1024,   8, SECT_4K) },
	{ "mx25u8035",   INFO(0xc22534, 0, 64 * 1024,  16, SECT_4K) },
2190
	{ "mx25u6435f",  INFO(0xc22537, 0, 64 * 1024, 128, SECT_4K) },
2191 2192
	{ "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) },
	{ "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) },
2193 2194
	{ "mx25r3235f",  INFO(0xc22816, 0, 64 * 1024,  64,
			 SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2195 2196
	{ "mx25u12835f", INFO(0xc22538, 0, 64 * 1024, 256,
			 SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2197 2198 2199
	{ "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512,
			 SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
			 .fixups = &mx25l25635_fixups },
2200
	{ "mx25u25635f", INFO(0xc22539, 0, 64 * 1024, 512, SECT_4K | SPI_NOR_4B_OPCODES) },
2201 2202
	{ "mx25v8035f",  INFO(0xc22314, 0, 64 * 1024,  16,
			 SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2203
	{ "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) },
2204
	{ "mx66l51235l", INFO(0xc2201a, 0, 64 * 1024, 1024, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | SPI_NOR_4B_OPCODES) },
2205
	{ "mx66u51235f", INFO(0xc2253a, 0, 64 * 1024, 1024, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | SPI_NOR_4B_OPCODES) },
2206
	{ "mx66l1g45g",  INFO(0xc2201b, 0, 64 * 1024, 2048, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2207 2208
	{ "mx66l1g55g",  INFO(0xc2261b, 0, 64 * 1024, 2048, SPI_NOR_QUAD_READ) },

2209
	/* Micron <--> ST Micro */
2210
	{ "n25q016a",	 INFO(0x20bb15, 0, 64 * 1024,   32, SECT_4K | SPI_NOR_QUAD_READ) },
2211
	{ "n25q032",	 INFO(0x20ba16, 0, 64 * 1024,   64, SPI_NOR_QUAD_READ) },
2212
	{ "n25q032a",	 INFO(0x20bb16, 0, 64 * 1024,   64, SPI_NOR_QUAD_READ) },
2213
	{ "n25q064",     INFO(0x20ba17, 0, 64 * 1024,  128, SECT_4K | SPI_NOR_QUAD_READ) },
2214
	{ "n25q064a",    INFO(0x20bb17, 0, 64 * 1024,  128, SECT_4K | SPI_NOR_QUAD_READ) },
2215 2216 2217 2218
	{ "n25q128a11",  INFO(0x20bb18, 0, 64 * 1024,  256, SECT_4K |
			      USE_FSR | SPI_NOR_QUAD_READ) },
	{ "n25q128a13",  INFO(0x20ba18, 0, 64 * 1024,  256, SECT_4K |
			      USE_FSR | SPI_NOR_QUAD_READ) },
2219 2220 2221
	{ "mt25ql256a",  INFO6(0x20ba19, 0x104400, 64 * 1024,  512,
			       SECT_4K | USE_FSR | SPI_NOR_DUAL_READ |
			       SPI_NOR_QUAD_READ | SPI_NOR_4B_OPCODES) },
2222 2223 2224
	{ "n25q256a",    INFO(0x20ba19, 0, 64 * 1024,  512, SECT_4K |
			      USE_FSR | SPI_NOR_DUAL_READ |
			      SPI_NOR_QUAD_READ) },
2225 2226 2227
	{ "mt25qu256a",  INFO6(0x20bb19, 0x104400, 64 * 1024,  512,
			       SECT_4K | USE_FSR | SPI_NOR_DUAL_READ |
			       SPI_NOR_QUAD_READ | SPI_NOR_4B_OPCODES) },
2228 2229
	{ "n25q256ax1",  INFO(0x20bb19, 0, 64 * 1024,  512, SECT_4K |
			      USE_FSR | SPI_NOR_QUAD_READ) },
2230 2231 2232
	{ "mt25ql512a",  INFO6(0x20ba20, 0x104400, 64 * 1024, 1024,
			       SECT_4K | USE_FSR | SPI_NOR_DUAL_READ |
			       SPI_NOR_QUAD_READ | SPI_NOR_4B_OPCODES) },
2233
	{ "n25q512ax3",  INFO(0x20ba20, 0, 64 * 1024, 1024, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) },
2234 2235 2236 2237
	{ "mt25qu512a",  INFO6(0x20bb20, 0x104400, 64 * 1024, 1024,
			       SECT_4K | USE_FSR | SPI_NOR_DUAL_READ |
			       SPI_NOR_QUAD_READ | SPI_NOR_4B_OPCODES) },
	{ "n25q512a",    INFO(0x20bb20, 0, 64 * 1024, 1024, SECT_4K |
2238
			      USE_FSR | SPI_NOR_QUAD_READ) },
2239 2240
	{ "n25q00",      INFO(0x20ba21, 0, 64 * 1024, 2048, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ | NO_CHIP_ERASE) },
	{ "n25q00a",     INFO(0x20bb21, 0, 64 * 1024, 2048, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ | NO_CHIP_ERASE) },
2241 2242 2243
	{ "mt25ql02g",   INFO(0x20ba22, 0, 64 * 1024, 4096,
			      SECT_4K | USE_FSR | SPI_NOR_QUAD_READ |
			      NO_CHIP_ERASE) },
2244
	{ "mt25qu02g",   INFO(0x20bb22, 0, 64 * 1024, 4096, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ | NO_CHIP_ERASE) },
2245

2246 2247 2248
	/* Micron */
	{
		"mt35xu512aba", INFO(0x2c5b1a, 0, 128 * 1024, 512,
2249 2250
			SECT_4K | USE_FSR | SPI_NOR_OCTAL_READ |
			SPI_NOR_4B_OPCODES)
2251
	},
2252 2253 2254
	{ "mt35xu02g",  INFO(0x2c5b1c, 0, 128 * 1024, 2048,
			     SECT_4K | USE_FSR | SPI_NOR_OCTAL_READ |
			     SPI_NOR_4B_OPCODES) },
2255

2256 2257 2258 2259 2260
	/* PMC */
	{ "pm25lv512",   INFO(0,        0, 32 * 1024,    2, SECT_4K_PMC) },
	{ "pm25lv010",   INFO(0,        0, 32 * 1024,    4, SECT_4K_PMC) },
	{ "pm25lq032",   INFO(0x7f9d46, 0, 64 * 1024,   64, SECT_4K) },

2261
	/* Spansion/Cypress -- single (large) sector size only, at least
2262 2263
	 * for the chips listed here (without boot sectors).
	 */
2264
	{ "s25sl032p",  INFO(0x010215, 0x4d00,  64 * 1024,  64, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2265
	{ "s25sl064p",  INFO(0x010216, 0x4d00,  64 * 1024, 128, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2266 2267 2268 2269
	{ "s25fl128s0", INFO6(0x012018, 0x4d0080, 256 * 1024, 64,
			SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | USE_CLSR) },
	{ "s25fl128s1", INFO6(0x012018, 0x4d0180, 64 * 1024, 256,
			SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | USE_CLSR) },
2270 2271
	{ "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, USE_CLSR) },
	{ "s25fl256s1", INFO(0x010219, 0x4d01,  64 * 1024, 512, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | USE_CLSR) },
2272 2273
	{ "s25fl512s",  INFO6(0x010220, 0x4d0080, 256 * 1024, 256,
			SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
2274
			SPI_NOR_HAS_LOCK | USE_CLSR) },
2275
	{ "s25fs512s",  INFO6(0x010220, 0x4d0081, 256 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | USE_CLSR) },
2276 2277 2278
	{ "s70fl01gs",  INFO(0x010221, 0x4d00, 256 * 1024, 256, 0) },
	{ "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024,  64, 0) },
	{ "s25sl12801", INFO(0x012018, 0x0301,  64 * 1024, 256, 0) },
2279 2280
	{ "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024,  64, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | USE_CLSR) },
	{ "s25fl129p1", INFO(0x012018, 0x4d01,  64 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | USE_CLSR) },
2281 2282 2283 2284 2285
	{ "s25sl004a",  INFO(0x010212,      0,  64 * 1024,   8, 0) },
	{ "s25sl008a",  INFO(0x010213,      0,  64 * 1024,  16, 0) },
	{ "s25sl016a",  INFO(0x010214,      0,  64 * 1024,  32, 0) },
	{ "s25sl032a",  INFO(0x010215,      0,  64 * 1024,  64, 0) },
	{ "s25sl064a",  INFO(0x010216,      0,  64 * 1024, 128, 0) },
2286
	{ "s25fl004k",  INFO(0xef4013,      0,  64 * 1024,   8, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2287 2288
	{ "s25fl008k",  INFO(0xef4014,      0,  64 * 1024,  16, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
	{ "s25fl016k",  INFO(0xef4015,      0,  64 * 1024,  32, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2289
	{ "s25fl064k",  INFO(0xef4017,      0,  64 * 1024, 128, SECT_4K) },
2290
	{ "s25fl116k",  INFO(0x014015,      0,  64 * 1024,  32, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2291
	{ "s25fl132k",  INFO(0x014016,      0,  64 * 1024,  64, SECT_4K) },
2292
	{ "s25fl164k",  INFO(0x014017,      0,  64 * 1024, 128, SECT_4K) },
2293
	{ "s25fl204k",  INFO(0x014013,      0,  64 * 1024,   8, SECT_4K | SPI_NOR_DUAL_READ) },
2294
	{ "s25fl208k",  INFO(0x014014,      0,  64 * 1024,  16, SECT_4K | SPI_NOR_DUAL_READ) },
2295
	{ "s25fl064l",  INFO(0x016017,      0,  64 * 1024, 128, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | SPI_NOR_4B_OPCODES) },
2296 2297
	{ "s25fl128l",  INFO(0x016018,      0,  64 * 1024, 256, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | SPI_NOR_4B_OPCODES) },
	{ "s25fl256l",  INFO(0x016019,      0,  64 * 1024, 512, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | SPI_NOR_4B_OPCODES) },
2298 2299 2300 2301 2302 2303 2304 2305 2306 2307

	/* SST -- large erase sizes are "overlays", "sectors" are 4K */
	{ "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024,  8, SECT_4K | SST_WRITE) },
	{ "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) },
	{ "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K | SST_WRITE) },
	{ "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K | SST_WRITE) },
	{ "sst25vf064c", INFO(0xbf254b, 0, 64 * 1024, 128, SECT_4K) },
	{ "sst25wf512",  INFO(0xbf2501, 0, 64 * 1024,  1, SECT_4K | SST_WRITE) },
	{ "sst25wf010",  INFO(0xbf2502, 0, 64 * 1024,  2, SECT_4K | SST_WRITE) },
	{ "sst25wf020",  INFO(0xbf2503, 0, 64 * 1024,  4, SECT_4K | SST_WRITE) },
2308
	{ "sst25wf020a", INFO(0x621612, 0, 64 * 1024,  4, SECT_4K) },
2309
	{ "sst25wf040b", INFO(0x621613, 0, 64 * 1024,  8, SECT_4K) },
2310
	{ "sst25wf040",  INFO(0xbf2504, 0, 64 * 1024,  8, SECT_4K | SST_WRITE) },
2311
	{ "sst25wf080",  INFO(0xbf2505, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) },
2312 2313
	{ "sst26wf016b", INFO(0xbf2651, 0, 64 * 1024, 32, SECT_4K |
			      SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2314 2315
	{ "sst26vf016b", INFO(0xbf2641, 0, 64 * 1024, 32, SECT_4K |
			      SPI_NOR_DUAL_READ) },
2316
	{ "sst26vf064b", INFO(0xbf2643, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351

	/* ST Microelectronics -- newer production may have feature updates */
	{ "m25p05",  INFO(0x202010,  0,  32 * 1024,   2, 0) },
	{ "m25p10",  INFO(0x202011,  0,  32 * 1024,   4, 0) },
	{ "m25p20",  INFO(0x202012,  0,  64 * 1024,   4, 0) },
	{ "m25p40",  INFO(0x202013,  0,  64 * 1024,   8, 0) },
	{ "m25p80",  INFO(0x202014,  0,  64 * 1024,  16, 0) },
	{ "m25p16",  INFO(0x202015,  0,  64 * 1024,  32, 0) },
	{ "m25p32",  INFO(0x202016,  0,  64 * 1024,  64, 0) },
	{ "m25p64",  INFO(0x202017,  0,  64 * 1024, 128, 0) },
	{ "m25p128", INFO(0x202018,  0, 256 * 1024,  64, 0) },

	{ "m25p05-nonjedec",  INFO(0, 0,  32 * 1024,   2, 0) },
	{ "m25p10-nonjedec",  INFO(0, 0,  32 * 1024,   4, 0) },
	{ "m25p20-nonjedec",  INFO(0, 0,  64 * 1024,   4, 0) },
	{ "m25p40-nonjedec",  INFO(0, 0,  64 * 1024,   8, 0) },
	{ "m25p80-nonjedec",  INFO(0, 0,  64 * 1024,  16, 0) },
	{ "m25p16-nonjedec",  INFO(0, 0,  64 * 1024,  32, 0) },
	{ "m25p32-nonjedec",  INFO(0, 0,  64 * 1024,  64, 0) },
	{ "m25p64-nonjedec",  INFO(0, 0,  64 * 1024, 128, 0) },
	{ "m25p128-nonjedec", INFO(0, 0, 256 * 1024,  64, 0) },

	{ "m45pe10", INFO(0x204011,  0, 64 * 1024,    2, 0) },
	{ "m45pe80", INFO(0x204014,  0, 64 * 1024,   16, 0) },
	{ "m45pe16", INFO(0x204015,  0, 64 * 1024,   32, 0) },

	{ "m25pe20", INFO(0x208012,  0, 64 * 1024,  4,       0) },
	{ "m25pe80", INFO(0x208014,  0, 64 * 1024, 16,       0) },
	{ "m25pe16", INFO(0x208015,  0, 64 * 1024, 32, SECT_4K) },

	{ "m25px16",    INFO(0x207115,  0, 64 * 1024, 32, SECT_4K) },
	{ "m25px32",    INFO(0x207116,  0, 64 * 1024, 64, SECT_4K) },
	{ "m25px32-s0", INFO(0x207316,  0, 64 * 1024, 64, SECT_4K) },
	{ "m25px32-s1", INFO(0x206316,  0, 64 * 1024, 64, SECT_4K) },
	{ "m25px64",    INFO(0x207117,  0, 64 * 1024, 128, 0) },
2352
	{ "m25px80",    INFO(0x207114,  0, 64 * 1024, 16, 0) },
2353 2354

	/* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
2355
	{ "w25x05", INFO(0xef3010, 0, 64 * 1024,  1,  SECT_4K) },
2356 2357 2358 2359 2360
	{ "w25x10", INFO(0xef3011, 0, 64 * 1024,  2,  SECT_4K) },
	{ "w25x20", INFO(0xef3012, 0, 64 * 1024,  4,  SECT_4K) },
	{ "w25x40", INFO(0xef3013, 0, 64 * 1024,  8,  SECT_4K) },
	{ "w25x80", INFO(0xef3014, 0, 64 * 1024,  16, SECT_4K) },
	{ "w25x16", INFO(0xef3015, 0, 64 * 1024,  32, SECT_4K) },
2361 2362 2363 2364 2365
	{
		"w25q16dw", INFO(0xef6015, 0, 64 * 1024,  32,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
2366
	{ "w25x32", INFO(0xef3016, 0, 64 * 1024,  64, SECT_4K) },
2367 2368 2369 2370 2371
	{
		"w25q16jv-im/jm", INFO(0xef7015, 0, 64 * 1024,  32,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
2372 2373 2374
	{ "w25q20cl", INFO(0xef4012, 0, 64 * 1024,  4, SECT_4K) },
	{ "w25q20bw", INFO(0xef5012, 0, 64 * 1024,  4, SECT_4K) },
	{ "w25q20ew", INFO(0xef6012, 0, 64 * 1024,  4, SECT_4K) },
2375
	{ "w25q32", INFO(0xef4016, 0, 64 * 1024,  64, SECT_4K) },
2376 2377 2378 2379 2380
	{
		"w25q32dw", INFO(0xef6016, 0, 64 * 1024,  64,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
2381 2382 2383 2384 2385
	{
		"w25q32jv", INFO(0xef7016, 0, 64 * 1024,  64,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
2386 2387 2388 2389 2390
	{
		"w25q32jwm", INFO(0xef8016, 0, 64 * 1024,  64,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
2391 2392
	{ "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) },
	{ "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
2393 2394 2395 2396 2397 2398 2399 2400 2401 2402
	{
		"w25q64dw", INFO(0xef6017, 0, 64 * 1024, 128,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
	{
		"w25q128fw", INFO(0xef6018, 0, 64 * 1024, 256,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
2403 2404 2405 2406 2407
	{
		"w25q128jv", INFO(0xef7018, 0, 64 * 1024, 256,
			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
	},
2408 2409 2410
	{ "w25q80", INFO(0xef5014, 0, 64 * 1024,  16, SECT_4K) },
	{ "w25q80bl", INFO(0xef4014, 0, 64 * 1024,  16, SECT_4K) },
	{ "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K) },
2411 2412 2413
	{ "w25q256", INFO(0xef4019, 0, 64 * 1024, 512,
			  SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
			  SPI_NOR_4B_OPCODES) },
2414 2415
	{ "w25q256jvm", INFO(0xef7019, 0, 64 * 1024, 512,
			     SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2416 2417
	{ "w25q256jw", INFO(0xef6019, 0, 64 * 1024, 512,
			     SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2418 2419
	{ "w25m512jv", INFO(0xef7119, 0, 64 * 1024, 1024,
			SECT_4K | SPI_NOR_QUAD_READ | SPI_NOR_DUAL_READ) },
2420 2421 2422 2423 2424 2425 2426

	/* Catalyst / On Semiconductor -- non-JEDEC */
	{ "cat25c11", CAT25_INFO(  16, 8, 16, 1, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
	{ "cat25c03", CAT25_INFO(  32, 8, 16, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
	{ "cat25c09", CAT25_INFO( 128, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
	{ "cat25c17", CAT25_INFO( 256, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
	{ "cat25128", CAT25_INFO(2048, 8, 64, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
2427 2428 2429 2430 2431 2432 2433

	/* Xilinx S3AN Internal Flash */
	{ "3S50AN", S3AN_INFO(0x1f2200, 64, 264) },
	{ "3S200AN", S3AN_INFO(0x1f2400, 256, 264) },
	{ "3S400AN", S3AN_INFO(0x1f2400, 256, 264) },
	{ "3S700AN", S3AN_INFO(0x1f2500, 512, 264) },
	{ "3S1400AN", S3AN_INFO(0x1f2600, 512, 528) },
2434 2435 2436 2437

	/* XMC (Wuhan Xinxin Semiconductor Manufacturing Corp.) */
	{ "XM25QH64A", INFO(0x207017, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
	{ "XM25QH128A", INFO(0x207018, 0, 64 * 1024, 256, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
2438 2439 2440
	{ },
};

2441 2442
static const struct spi_nor_manufacturer *manufacturers[] = {
	&spi_nor_atmel,
2443
	&spi_nor_eon,
2444
};
2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460

static const struct flash_info *
spi_nor_search_part_by_id(const struct flash_info *parts, unsigned int nparts,
			  const u8 *id)
{
	unsigned int i;

	for (i = 0; i < nparts; i++) {
		if (parts[i].id_len &&
		    !memcmp(parts[i].id, id, parts[i].id_len))
			return &parts[i];
	}

	return NULL;
}

2461
static const struct flash_info *spi_nor_read_id(struct spi_nor *nor)
2462
{
2463
	const struct flash_info *info;
2464 2465 2466
	u8 *id = nor->bouncebuf;
	unsigned int i;
	int ret;
2467

2468 2469 2470 2471 2472 2473 2474
	if (nor->spimem) {
		struct spi_mem_op op =
			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDID, 1),
				   SPI_MEM_OP_NO_ADDR,
				   SPI_MEM_OP_NO_DUMMY,
				   SPI_MEM_OP_DATA_IN(SPI_NOR_MAX_ID_LEN, id, 1));

2475
		ret = spi_mem_exec_op(nor->spimem, &op);
2476
	} else {
2477
		ret = nor->controller_ops->read_reg(nor, SPINOR_OP_RDID, id,
2478
						    SPI_NOR_MAX_ID_LEN);
2479
	}
2480 2481 2482
	if (ret) {
		dev_dbg(nor->dev, "error %d reading JEDEC ID\n", ret);
		return ERR_PTR(ret);
2483 2484
	}

2485 2486 2487 2488 2489 2490 2491 2492
	for (i = 0; i < ARRAY_SIZE(manufacturers); i++) {
		info = spi_nor_search_part_by_id(manufacturers[i]->parts,
						 manufacturers[i]->nparts,
						 id);
		if (info) {
			nor->manufacturer = manufacturers[i];
			return info;
		}
2493
	}
2494 2495 2496 2497 2498 2499

	info = spi_nor_search_part_by_id(spi_nor_ids,
					 ARRAY_SIZE(spi_nor_ids) - 1, id);
	if (info)
		return info;

2500 2501
	dev_err(nor->dev, "unrecognized JEDEC id bytes: %*ph\n",
		SPI_NOR_MAX_ID_LEN, id);
2502 2503 2504 2505 2506 2507 2508
	return ERR_PTR(-ENODEV);
}

static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len,
			size_t *retlen, u_char *buf)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
2509
	ssize_t ret;
2510 2511 2512

	dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len);

2513
	ret = spi_nor_lock_and_prep(nor);
2514 2515 2516
	if (ret)
		return ret;

M
Michal Suchanek 已提交
2517
	while (len) {
2518 2519
		loff_t addr = from;

2520
		addr = spi_nor_convert_addr(nor, addr);
2521

2522
		ret = spi_nor_read_data(nor, addr, len, buf);
M
Michal Suchanek 已提交
2523 2524 2525 2526 2527 2528 2529
		if (ret == 0) {
			/* We shouldn't see 0-length reads */
			ret = -EIO;
			goto read_err;
		}
		if (ret < 0)
			goto read_err;
2530

M
Michal Suchanek 已提交
2531 2532 2533 2534 2535 2536 2537
		WARN_ON(ret > len);
		*retlen += ret;
		buf += ret;
		from += ret;
		len -= ret;
	}
	ret = 0;
2538

M
Michal Suchanek 已提交
2539
read_err:
2540
	spi_nor_unlock_and_unprep(nor);
M
Michal Suchanek 已提交
2541
	return ret;
2542 2543 2544 2545 2546 2547
}

static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
		size_t *retlen, const u_char *buf)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
2548
	size_t actual = 0;
2549 2550 2551 2552
	int ret;

	dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);

2553
	ret = spi_nor_lock_and_prep(nor);
2554 2555 2556
	if (ret)
		return ret;

2557 2558
	ret = spi_nor_write_enable(nor);
	if (ret)
2559
		goto out;
2560 2561 2562 2563

	nor->sst_write_second = false;

	/* Start write from odd address. */
2564
	if (to % 2) {
2565
		nor->program_opcode = SPINOR_OP_BP;
2566 2567

		/* write one byte. */
2568
		ret = spi_nor_write_data(nor, to, 1, buf);
2569
		if (ret < 0)
2570
			goto out;
2571
		WARN(ret != 1, "While writing 1 byte written %i bytes\n", ret);
2572
		ret = spi_nor_wait_till_ready(nor);
2573
		if (ret)
2574
			goto out;
2575 2576 2577

		to++;
		actual++;
2578 2579 2580 2581
	}

	/* Write out most of the data here. */
	for (; actual < len - 1; actual += 2) {
2582
		nor->program_opcode = SPINOR_OP_AAI_WP;
2583 2584

		/* write two bytes. */
2585
		ret = spi_nor_write_data(nor, to, 2, buf + actual);
2586
		if (ret < 0)
2587
			goto out;
2588
		WARN(ret != 2, "While writing 2 bytes written %i bytes\n", ret);
2589
		ret = spi_nor_wait_till_ready(nor);
2590
		if (ret)
2591
			goto out;
2592 2593 2594 2595 2596
		to += 2;
		nor->sst_write_second = true;
	}
	nor->sst_write_second = false;

2597 2598
	ret = spi_nor_write_disable(nor);
	if (ret)
2599
		goto out;
2600

2601
	ret = spi_nor_wait_till_ready(nor);
2602
	if (ret)
2603
		goto out;
2604 2605 2606

	/* Write out trailing byte if it exists. */
	if (actual != len) {
2607 2608
		ret = spi_nor_write_enable(nor);
		if (ret)
2609
			goto out;
2610

2611
		nor->program_opcode = SPINOR_OP_BP;
2612
		ret = spi_nor_write_data(nor, to, 1, buf + actual);
2613
		if (ret < 0)
2614
			goto out;
2615
		WARN(ret != 1, "While writing 1 byte written %i bytes\n", ret);
2616
		ret = spi_nor_wait_till_ready(nor);
2617
		if (ret)
2618
			goto out;
2619

2620
		actual += 1;
2621 2622

		ret = spi_nor_write_disable(nor);
2623
	}
2624
out:
2625
	*retlen += actual;
2626
	spi_nor_unlock_and_unprep(nor);
2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638
	return ret;
}

/*
 * Write an address range to the nor chip.  Data must be written in
 * FLASH_PAGESIZE chunks.  The address range may be any size provided
 * it is within the physical boundaries.
 */
static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len,
	size_t *retlen, const u_char *buf)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
2639 2640
	size_t page_offset, page_remain, i;
	ssize_t ret;
2641 2642 2643

	dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);

2644
	ret = spi_nor_lock_and_prep(nor);
2645 2646 2647
	if (ret)
		return ret;

2648 2649
	for (i = 0; i < len; ) {
		ssize_t written;
2650
		loff_t addr = to + i;
2651

2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663
		/*
		 * If page_size is a power of two, the offset can be quickly
		 * calculated with an AND operation. On the other cases we
		 * need to do a modulus operation (more expensive).
		 * Power of two numbers have only one bit set and we can use
		 * the instruction hweight32 to detect if we need to do a
		 * modulus (do_div()) or not.
		 */
		if (hweight32(nor->page_size) == 1) {
			page_offset = addr & (nor->page_size - 1);
		} else {
			uint64_t aux = addr;
2664

2665 2666
			page_offset = do_div(aux, nor->page_size);
		}
2667
		/* the size of data remaining on the first page */
2668 2669 2670
		page_remain = min_t(size_t,
				    nor->page_size - page_offset, len - i);

2671
		addr = spi_nor_convert_addr(nor, addr);
2672

2673 2674 2675 2676
		ret = spi_nor_write_enable(nor);
		if (ret)
			goto write_err;

2677
		ret = spi_nor_write_data(nor, addr, page_remain, buf + i);
2678 2679
		if (ret < 0)
			goto write_err;
2680
		written = ret;
2681

2682 2683 2684 2685 2686
		ret = spi_nor_wait_till_ready(nor);
		if (ret)
			goto write_err;
		*retlen += written;
		i += written;
2687 2688 2689
	}

write_err:
2690
	spi_nor_unlock_and_unprep(nor);
2691
	return ret;
2692 2693
}

2694
static int spi_nor_check(struct spi_nor *nor)
2695
{
2696
	if (!nor->dev ||
2697
	    (!nor->spimem && !nor->controller_ops) ||
2698 2699 2700 2701 2702
	    (!nor->spimem && nor->controller_ops &&
	    (!nor->controller_ops->read ||
	     !nor->controller_ops->write ||
	     !nor->controller_ops->read_reg ||
	     !nor->controller_ops->write_reg))) {
2703 2704 2705 2706
		pr_err("spi-nor: please fill all the necessary fields!\n");
		return -EINVAL;
	}

2707 2708 2709 2710 2711
	if (nor->spimem && nor->controller_ops) {
		dev_err(nor->dev, "nor->spimem and nor->controller_ops are mutually exclusive, please set just one of them.\n");
		return -EINVAL;
	}

2712 2713 2714
	return 0;
}

2715 2716
static int s3an_nor_setup(struct spi_nor *nor,
			  const struct spi_nor_hwcaps *hwcaps)
2717 2718 2719
{
	int ret;

2720
	ret = spi_nor_xread_sr(nor, nor->bouncebuf);
2721
	if (ret)
2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739
		return ret;

	nor->erase_opcode = SPINOR_OP_XSE;
	nor->program_opcode = SPINOR_OP_XPP;
	nor->read_opcode = SPINOR_OP_READ;
	nor->flags |= SNOR_F_NO_OP_CHIP_ERASE;

	/*
	 * This flashes have a page size of 264 or 528 bytes (known as
	 * Default addressing mode). It can be changed to a more standard
	 * Power of two mode where the page size is 256/512. This comes
	 * with a price: there is 3% less of space, the data is corrupted
	 * and the page size cannot be changed back to default addressing
	 * mode.
	 *
	 * The current addressing mode can be read from the XRDSR register
	 * and should not be changed, because is a destructive operation.
	 */
2740
	if (nor->bouncebuf[0] & XSR_PAGESIZE) {
2741 2742 2743
		/* Flash in Power of 2 mode */
		nor->page_size = (nor->page_size == 264) ? 256 : 512;
		nor->mtd.writebufsize = nor->page_size;
2744
		nor->mtd.size = 8 * nor->page_size * nor->info->n_sectors;
2745 2746 2747
		nor->mtd.erasesize = 8 * nor->page_size;
	} else {
		/* Flash in Default addressing mode */
2748
		nor->params.convert_addr = s3an_convert_addr;
2749
		nor->mtd.erasesize = nor->info->sector_size;
2750 2751 2752 2753 2754
	}

	return 0;
}

2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767
static void
spi_nor_set_read_settings(struct spi_nor_read_command *read,
			  u8 num_mode_clocks,
			  u8 num_wait_states,
			  u8 opcode,
			  enum spi_nor_protocol proto)
{
	read->num_mode_clocks = num_mode_clocks;
	read->num_wait_states = num_wait_states;
	read->opcode = opcode;
	read->proto = proto;
}

2768 2769
void spi_nor_set_pp_settings(struct spi_nor_pp_command *pp, u8 opcode,
			     enum spi_nor_protocol proto)
2770 2771 2772 2773 2774
{
	pp->opcode = opcode;
	pp->proto = proto;
}

2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785
static int spi_nor_hwcaps2cmd(u32 hwcaps, const int table[][2], size_t size)
{
	size_t i;

	for (i = 0; i < size; i++)
		if (table[i][0] == (int)hwcaps)
			return table[i][1];

	return -EINVAL;
}

2786
int spi_nor_hwcaps_read2cmd(u32 hwcaps)
2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825
{
	static const int hwcaps_read2cmd[][2] = {
		{ SNOR_HWCAPS_READ,		SNOR_CMD_READ },
		{ SNOR_HWCAPS_READ_FAST,	SNOR_CMD_READ_FAST },
		{ SNOR_HWCAPS_READ_1_1_1_DTR,	SNOR_CMD_READ_1_1_1_DTR },
		{ SNOR_HWCAPS_READ_1_1_2,	SNOR_CMD_READ_1_1_2 },
		{ SNOR_HWCAPS_READ_1_2_2,	SNOR_CMD_READ_1_2_2 },
		{ SNOR_HWCAPS_READ_2_2_2,	SNOR_CMD_READ_2_2_2 },
		{ SNOR_HWCAPS_READ_1_2_2_DTR,	SNOR_CMD_READ_1_2_2_DTR },
		{ SNOR_HWCAPS_READ_1_1_4,	SNOR_CMD_READ_1_1_4 },
		{ SNOR_HWCAPS_READ_1_4_4,	SNOR_CMD_READ_1_4_4 },
		{ SNOR_HWCAPS_READ_4_4_4,	SNOR_CMD_READ_4_4_4 },
		{ SNOR_HWCAPS_READ_1_4_4_DTR,	SNOR_CMD_READ_1_4_4_DTR },
		{ SNOR_HWCAPS_READ_1_1_8,	SNOR_CMD_READ_1_1_8 },
		{ SNOR_HWCAPS_READ_1_8_8,	SNOR_CMD_READ_1_8_8 },
		{ SNOR_HWCAPS_READ_8_8_8,	SNOR_CMD_READ_8_8_8 },
		{ SNOR_HWCAPS_READ_1_8_8_DTR,	SNOR_CMD_READ_1_8_8_DTR },
	};

	return spi_nor_hwcaps2cmd(hwcaps, hwcaps_read2cmd,
				  ARRAY_SIZE(hwcaps_read2cmd));
}

static int spi_nor_hwcaps_pp2cmd(u32 hwcaps)
{
	static const int hwcaps_pp2cmd[][2] = {
		{ SNOR_HWCAPS_PP,		SNOR_CMD_PP },
		{ SNOR_HWCAPS_PP_1_1_4,		SNOR_CMD_PP_1_1_4 },
		{ SNOR_HWCAPS_PP_1_4_4,		SNOR_CMD_PP_1_4_4 },
		{ SNOR_HWCAPS_PP_4_4_4,		SNOR_CMD_PP_4_4_4 },
		{ SNOR_HWCAPS_PP_1_1_8,		SNOR_CMD_PP_1_1_8 },
		{ SNOR_HWCAPS_PP_1_8_8,		SNOR_CMD_PP_1_8_8 },
		{ SNOR_HWCAPS_PP_8_8_8,		SNOR_CMD_PP_8_8_8 },
	};

	return spi_nor_hwcaps2cmd(hwcaps, hwcaps_pp2cmd,
				  ARRAY_SIZE(hwcaps_pp2cmd));
}

2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913
/**
 * spi_nor_spimem_check_op - check if the operation is supported
 *                           by controller
 *@nor:        pointer to a 'struct spi_nor'
 *@op:         pointer to op template to be checked
 *
 * Returns 0 if operation is supported, -ENOTSUPP otherwise.
 */
static int spi_nor_spimem_check_op(struct spi_nor *nor,
				   struct spi_mem_op *op)
{
	/*
	 * First test with 4 address bytes. The opcode itself might
	 * be a 3B addressing opcode but we don't care, because
	 * SPI controller implementation should not check the opcode,
	 * but just the sequence.
	 */
	op->addr.nbytes = 4;
	if (!spi_mem_supports_op(nor->spimem, op)) {
		if (nor->mtd.size > SZ_16M)
			return -ENOTSUPP;

		/* If flash size <= 16MB, 3 address bytes are sufficient */
		op->addr.nbytes = 3;
		if (!spi_mem_supports_op(nor->spimem, op))
			return -ENOTSUPP;
	}

	return 0;
}

/**
 * spi_nor_spimem_check_readop - check if the read op is supported
 *                               by controller
 *@nor:         pointer to a 'struct spi_nor'
 *@read:        pointer to op template to be checked
 *
 * Returns 0 if operation is supported, -ENOTSUPP otherwise.
 */
static int spi_nor_spimem_check_readop(struct spi_nor *nor,
				       const struct spi_nor_read_command *read)
{
	struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(read->opcode, 1),
					  SPI_MEM_OP_ADDR(3, 0, 1),
					  SPI_MEM_OP_DUMMY(0, 1),
					  SPI_MEM_OP_DATA_IN(0, NULL, 1));

	op.cmd.buswidth = spi_nor_get_protocol_inst_nbits(read->proto);
	op.addr.buswidth = spi_nor_get_protocol_addr_nbits(read->proto);
	op.data.buswidth = spi_nor_get_protocol_data_nbits(read->proto);
	op.dummy.buswidth = op.addr.buswidth;
	op.dummy.nbytes = (read->num_mode_clocks + read->num_wait_states) *
			  op.dummy.buswidth / 8;

	return spi_nor_spimem_check_op(nor, &op);
}

/**
 * spi_nor_spimem_check_pp - check if the page program op is supported
 *                           by controller
 *@nor:         pointer to a 'struct spi_nor'
 *@pp:          pointer to op template to be checked
 *
 * Returns 0 if operation is supported, -ENOTSUPP otherwise.
 */
static int spi_nor_spimem_check_pp(struct spi_nor *nor,
				   const struct spi_nor_pp_command *pp)
{
	struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(pp->opcode, 1),
					  SPI_MEM_OP_ADDR(3, 0, 1),
					  SPI_MEM_OP_NO_DUMMY,
					  SPI_MEM_OP_DATA_OUT(0, NULL, 1));

	op.cmd.buswidth = spi_nor_get_protocol_inst_nbits(pp->proto);
	op.addr.buswidth = spi_nor_get_protocol_addr_nbits(pp->proto);
	op.data.buswidth = spi_nor_get_protocol_data_nbits(pp->proto);

	return spi_nor_spimem_check_op(nor, &op);
}

/**
 * spi_nor_spimem_adjust_hwcaps - Find optimal Read/Write protocol
 *                                based on SPI controller capabilities
 * @nor:        pointer to a 'struct spi_nor'
 * @hwcaps:     pointer to resulting capabilities after adjusting
 *              according to controller and flash's capability
 */
static void
T
Tudor Ambarus 已提交
2914
spi_nor_spimem_adjust_hwcaps(struct spi_nor *nor, u32 *hwcaps)
2915
{
T
Tudor Ambarus 已提交
2916
	struct spi_nor_flash_parameter *params =  &nor->params;
2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945
	unsigned int cap;

	/* DTR modes are not supported yet, mask them all. */
	*hwcaps &= ~SNOR_HWCAPS_DTR;

	/* X-X-X modes are not supported yet, mask them all. */
	*hwcaps &= ~SNOR_HWCAPS_X_X_X;

	for (cap = 0; cap < sizeof(*hwcaps) * BITS_PER_BYTE; cap++) {
		int rdidx, ppidx;

		if (!(*hwcaps & BIT(cap)))
			continue;

		rdidx = spi_nor_hwcaps_read2cmd(BIT(cap));
		if (rdidx >= 0 &&
		    spi_nor_spimem_check_readop(nor, &params->reads[rdidx]))
			*hwcaps &= ~BIT(cap);

		ppidx = spi_nor_hwcaps_pp2cmd(BIT(cap));
		if (ppidx < 0)
			continue;

		if (spi_nor_spimem_check_pp(nor,
					    &params->page_programs[ppidx]))
			*hwcaps &= ~BIT(cap);
	}
}

2946 2947 2948 2949 2950 2951
/**
 * spi_nor_set_erase_type() - set a SPI NOR erase type
 * @erase:	pointer to a structure that describes a SPI NOR erase type
 * @size:	the size of the sector/block erased by the erase type
 * @opcode:	the SPI command op code to erase the sector/block
 */
2952 2953
void spi_nor_set_erase_type(struct spi_nor_erase_type *erase, u32 size,
			    u8 opcode)
2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968
{
	erase->size = size;
	erase->opcode = opcode;
	/* JEDEC JESD216B Standard imposes erase sizes to be power of 2. */
	erase->size_shift = ffs(erase->size) - 1;
	erase->size_mask = (1 << erase->size_shift) - 1;
}

/**
 * spi_nor_init_uniform_erase_map() - Initialize uniform erase map
 * @map:		the erase map of the SPI NOR
 * @erase_mask:		bitmask encoding erase types that can erase the entire
 *			flash memory
 * @flash_size:		the spi nor flash memory size
 */
2969 2970
void spi_nor_init_uniform_erase_map(struct spi_nor_erase_map *map,
				    u8 erase_mask, u64 flash_size)
2971 2972 2973 2974 2975 2976 2977 2978 2979
{
	/* Offset 0 with erase_mask and SNOR_LAST_REGION bit set */
	map->uniform_region.offset = (erase_mask & SNOR_ERASE_TYPE_MASK) |
				     SNOR_LAST_REGION;
	map->uniform_region.size = flash_size;
	map->regions = &map->uniform_region;
	map->uniform_erase_type = erase_mask;
}

2980 2981 2982 2983
int spi_nor_post_bfpt_fixups(struct spi_nor *nor,
			     const struct sfdp_parameter_header *bfpt_header,
			     const struct sfdp_bfpt *bfpt,
			     struct spi_nor_flash_parameter *params)
2984
{
2985 2986 2987 2988 2989 2990 2991 2992 2993 2994
	int ret;

	if (nor->manufacturer && nor->manufacturer->fixups &&
	    nor->manufacturer->fixups->post_bfpt) {
		ret = nor->manufacturer->fixups->post_bfpt(nor, bfpt_header,
							   bfpt, params);
		if (ret)
			return ret;
	}

2995 2996 2997 2998 2999 3000 3001
	if (nor->info->fixups && nor->info->fixups->post_bfpt)
		return nor->info->fixups->post_bfpt(nor, bfpt_header, bfpt,
						    params);

	return 0;
}

3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104
static int spi_nor_select_read(struct spi_nor *nor,
			       u32 shared_hwcaps)
{
	int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_READ_MASK) - 1;
	const struct spi_nor_read_command *read;

	if (best_match < 0)
		return -EINVAL;

	cmd = spi_nor_hwcaps_read2cmd(BIT(best_match));
	if (cmd < 0)
		return -EINVAL;

	read = &nor->params.reads[cmd];
	nor->read_opcode = read->opcode;
	nor->read_proto = read->proto;

	/*
	 * In the spi-nor framework, we don't need to make the difference
	 * between mode clock cycles and wait state clock cycles.
	 * Indeed, the value of the mode clock cycles is used by a QSPI
	 * flash memory to know whether it should enter or leave its 0-4-4
	 * (Continuous Read / XIP) mode.
	 * eXecution In Place is out of the scope of the mtd sub-system.
	 * Hence we choose to merge both mode and wait state clock cycles
	 * into the so called dummy clock cycles.
	 */
	nor->read_dummy = read->num_mode_clocks + read->num_wait_states;
	return 0;
}

static int spi_nor_select_pp(struct spi_nor *nor,
			     u32 shared_hwcaps)
{
	int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_PP_MASK) - 1;
	const struct spi_nor_pp_command *pp;

	if (best_match < 0)
		return -EINVAL;

	cmd = spi_nor_hwcaps_pp2cmd(BIT(best_match));
	if (cmd < 0)
		return -EINVAL;

	pp = &nor->params.page_programs[cmd];
	nor->program_opcode = pp->opcode;
	nor->write_proto = pp->proto;
	return 0;
}

/**
 * spi_nor_select_uniform_erase() - select optimum uniform erase type
 * @map:		the erase map of the SPI NOR
 * @wanted_size:	the erase type size to search for. Contains the value of
 *			info->sector_size or of the "small sector" size in case
 *			CONFIG_MTD_SPI_NOR_USE_4K_SECTORS is defined.
 *
 * Once the optimum uniform sector erase command is found, disable all the
 * other.
 *
 * Return: pointer to erase type on success, NULL otherwise.
 */
static const struct spi_nor_erase_type *
spi_nor_select_uniform_erase(struct spi_nor_erase_map *map,
			     const u32 wanted_size)
{
	const struct spi_nor_erase_type *tested_erase, *erase = NULL;
	int i;
	u8 uniform_erase_type = map->uniform_erase_type;

	for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
		if (!(uniform_erase_type & BIT(i)))
			continue;

		tested_erase = &map->erase_type[i];

		/*
		 * If the current erase size is the one, stop here:
		 * we have found the right uniform Sector Erase command.
		 */
		if (tested_erase->size == wanted_size) {
			erase = tested_erase;
			break;
		}

		/*
		 * Otherwise, the current erase size is still a valid canditate.
		 * Select the biggest valid candidate.
		 */
		if (!erase && tested_erase->size)
			erase = tested_erase;
			/* keep iterating to find the wanted_size */
	}

	if (!erase)
		return NULL;

	/* Disable all other Sector Erase commands. */
	map->uniform_erase_type &= ~SNOR_ERASE_TYPE_MASK;
	map->uniform_erase_type |= BIT(erase - map->erase_type);
	return erase;
}

3105
static int spi_nor_select_erase(struct spi_nor *nor)
3106 3107 3108 3109
{
	struct spi_nor_erase_map *map = &nor->params.erase_map;
	const struct spi_nor_erase_type *erase = NULL;
	struct mtd_info *mtd = &nor->mtd;
3110
	u32 wanted_size = nor->info->sector_size;
3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189
	int i;

	/*
	 * The previous implementation handling Sector Erase commands assumed
	 * that the SPI flash memory has an uniform layout then used only one
	 * of the supported erase sizes for all Sector Erase commands.
	 * So to be backward compatible, the new implementation also tries to
	 * manage the SPI flash memory as uniform with a single erase sector
	 * size, when possible.
	 */
#ifdef CONFIG_MTD_SPI_NOR_USE_4K_SECTORS
	/* prefer "small sector" erase if possible */
	wanted_size = 4096u;
#endif

	if (spi_nor_has_uniform_erase(nor)) {
		erase = spi_nor_select_uniform_erase(map, wanted_size);
		if (!erase)
			return -EINVAL;
		nor->erase_opcode = erase->opcode;
		mtd->erasesize = erase->size;
		return 0;
	}

	/*
	 * For non-uniform SPI flash memory, set mtd->erasesize to the
	 * maximum erase sector size. No need to set nor->erase_opcode.
	 */
	for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
		if (map->erase_type[i].size) {
			erase = &map->erase_type[i];
			break;
		}
	}

	if (!erase)
		return -EINVAL;

	mtd->erasesize = erase->size;
	return 0;
}

static int spi_nor_default_setup(struct spi_nor *nor,
				 const struct spi_nor_hwcaps *hwcaps)
{
	struct spi_nor_flash_parameter *params = &nor->params;
	u32 ignored_mask, shared_mask;
	int err;

	/*
	 * Keep only the hardware capabilities supported by both the SPI
	 * controller and the SPI flash memory.
	 */
	shared_mask = hwcaps->mask & params->hwcaps.mask;

	if (nor->spimem) {
		/*
		 * When called from spi_nor_probe(), all caps are set and we
		 * need to discard some of them based on what the SPI
		 * controller actually supports (using spi_mem_supports_op()).
		 */
		spi_nor_spimem_adjust_hwcaps(nor, &shared_mask);
	} else {
		/*
		 * SPI n-n-n protocols are not supported when the SPI
		 * controller directly implements the spi_nor interface.
		 * Yet another reason to switch to spi-mem.
		 */
		ignored_mask = SNOR_HWCAPS_X_X_X;
		if (shared_mask & ignored_mask) {
			dev_dbg(nor->dev,
				"SPI n-n-n protocols are not supported.\n");
			shared_mask &= ~ignored_mask;
		}
	}

	/* Select the (Fast) Read command. */
	err = spi_nor_select_read(nor, shared_mask);
	if (err) {
3190
		dev_dbg(nor->dev,
3191 3192 3193 3194 3195 3196 3197
			"can't select read settings supported by both the SPI controller and memory.\n");
		return err;
	}

	/* Select the Page Program command. */
	err = spi_nor_select_pp(nor, shared_mask);
	if (err) {
3198
		dev_dbg(nor->dev,
3199 3200 3201 3202 3203
			"can't select write settings supported by both the SPI controller and memory.\n");
		return err;
	}

	/* Select the Sector Erase command. */
3204
	err = spi_nor_select_erase(nor);
3205
	if (err) {
3206
		dev_dbg(nor->dev,
3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222
			"can't select erase settings supported by both the SPI controller and memory.\n");
		return err;
	}

	return 0;
}

static int spi_nor_setup(struct spi_nor *nor,
			 const struct spi_nor_hwcaps *hwcaps)
{
	if (!nor->params.setup)
		return 0;

	return nor->params.setup(nor, hwcaps);
}

3223 3224 3225 3226 3227
static void intel_set_default_init(struct spi_nor *nor)
{
	nor->flags |= SNOR_F_HAS_LOCK;
}

3228 3229 3230 3231 3232
static void issi_set_default_init(struct spi_nor *nor)
{
	nor->params.quad_enable = spi_nor_sr1_bit6_quad_enable;
}

3233 3234
static void macronix_set_default_init(struct spi_nor *nor)
{
3235
	nor->params.quad_enable = spi_nor_sr1_bit6_quad_enable;
3236
	nor->params.set_4byte_addr_mode = spi_nor_set_4byte_addr_mode;
3237 3238
}

3239 3240 3241 3242 3243
static void sst_set_default_init(struct spi_nor *nor)
{
	nor->flags |= SNOR_F_HAS_LOCK;
}

3244 3245
static void st_micron_set_default_init(struct spi_nor *nor)
{
3246
	nor->flags |= SNOR_F_HAS_LOCK;
3247
	nor->flags &= ~SNOR_F_HAS_16BIT_SR;
3248
	nor->params.quad_enable = NULL;
3249
	nor->params.set_4byte_addr_mode = st_micron_set_4byte_addr_mode;
3250 3251 3252 3253
}

static void winbond_set_default_init(struct spi_nor *nor)
{
3254
	nor->params.set_4byte_addr_mode = winbond_set_4byte_addr_mode;
3255 3256
}

3257 3258
/**
 * spi_nor_manufacturer_init_params() - Initialize the flash's parameters and
3259
 * settings based on MFR register and ->default_init() hook.
3260 3261 3262 3263
 * @nor:	pointer to a 'struct spi-nor'.
 */
static void spi_nor_manufacturer_init_params(struct spi_nor *nor)
{
3264 3265
	/* Init flash parameters based on MFR */
	switch (JEDEC_MFR(nor->info)) {
3266 3267 3268 3269
	case SNOR_MFR_INTEL:
		intel_set_default_init(nor);
		break;

3270 3271 3272 3273
	case SNOR_MFR_ISSI:
		issi_set_default_init(nor);
		break;

3274 3275 3276 3277 3278 3279 3280 3281 3282
	case SNOR_MFR_MACRONIX:
		macronix_set_default_init(nor);
		break;

	case SNOR_MFR_ST:
	case SNOR_MFR_MICRON:
		st_micron_set_default_init(nor);
		break;

3283 3284 3285 3286
	case SNOR_MFR_SST:
		sst_set_default_init(nor);
		break;

3287 3288 3289 3290
	case SNOR_MFR_WINBOND:
		winbond_set_default_init(nor);
		break;

3291 3292 3293 3294
	default:
		break;
	}

3295 3296 3297 3298
	if (nor->manufacturer && nor->manufacturer->fixups &&
	    nor->manufacturer->fixups->default_init)
		nor->manufacturer->fixups->default_init(nor);

3299 3300 3301 3302
	if (nor->info->fixups && nor->info->fixups->default_init)
		nor->info->fixups->default_init(nor);
}

3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330
/**
 * spi_nor_sfdp_init_params() - Initialize the flash's parameters and settings
 * based on JESD216 SFDP standard.
 * @nor:	pointer to a 'struct spi-nor'.
 *
 * The method has a roll-back mechanism: in case the SFDP parsing fails, the
 * legacy flash parameters and settings will be restored.
 */
static void spi_nor_sfdp_init_params(struct spi_nor *nor)
{
	struct spi_nor_flash_parameter sfdp_params;

	memcpy(&sfdp_params, &nor->params, sizeof(sfdp_params));

	if (spi_nor_parse_sfdp(nor, &sfdp_params)) {
		nor->addr_width = 0;
		nor->flags &= ~SNOR_F_4B_OPCODES;
	} else {
		memcpy(&nor->params, &sfdp_params, sizeof(nor->params));
	}
}

/**
 * spi_nor_info_init_params() - Initialize the flash's parameters and settings
 * based on nor->info data.
 * @nor:	pointer to a 'struct spi-nor'.
 */
static void spi_nor_info_init_params(struct spi_nor *nor)
3331
{
T
Tudor Ambarus 已提交
3332
	struct spi_nor_flash_parameter *params = &nor->params;
3333
	struct spi_nor_erase_map *map = &params->erase_map;
3334
	const struct flash_info *info = nor->info;
3335
	struct device_node *np = spi_nor_get_flash_node(nor);
3336 3337
	u8 i, erase_mask;

3338
	/* Initialize legacy flash parameters and settings. */
3339
	params->quad_enable = spi_nor_sr2_bit1_quad_enable;
3340
	params->set_4byte_addr_mode = spansion_set_4byte_addr_mode;
3341
	params->setup = spi_nor_default_setup;
3342 3343
	/* Default to 16-bit Write Status (01h) Command */
	nor->flags |= SNOR_F_HAS_16BIT_SR;
3344

3345
	/* Set SPI NOR sizes. */
3346
	params->size = (u64)info->sector_size * info->n_sectors;
3347 3348
	params->page_size = info->page_size;

3349 3350 3351 3352 3353 3354 3355 3356 3357
	if (!(info->flags & SPI_NOR_NO_FR)) {
		/* Default to Fast Read for DT and non-DT platform devices. */
		params->hwcaps.mask |= SNOR_HWCAPS_READ_FAST;

		/* Mask out Fast Read if not requested at DT instantiation. */
		if (np && !of_property_read_bool(np, "m25p,fast-read"))
			params->hwcaps.mask &= ~SNOR_HWCAPS_READ_FAST;
	}

3358 3359 3360 3361 3362 3363
	/* (Fast) Read settings. */
	params->hwcaps.mask |= SNOR_HWCAPS_READ;
	spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ],
				  0, 0, SPINOR_OP_READ,
				  SNOR_PROTO_1_1_1);

3364
	if (params->hwcaps.mask & SNOR_HWCAPS_READ_FAST)
3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382
		spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_FAST],
					  0, 8, SPINOR_OP_READ_FAST,
					  SNOR_PROTO_1_1_1);

	if (info->flags & SPI_NOR_DUAL_READ) {
		params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_2;
		spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_2],
					  0, 8, SPINOR_OP_READ_1_1_2,
					  SNOR_PROTO_1_1_2);
	}

	if (info->flags & SPI_NOR_QUAD_READ) {
		params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_4;
		spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_4],
					  0, 8, SPINOR_OP_READ_1_1_4,
					  SNOR_PROTO_1_1_4);
	}

3383 3384 3385 3386 3387 3388 3389
	if (info->flags & SPI_NOR_OCTAL_READ) {
		params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_8;
		spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_8],
					  0, 8, SPINOR_OP_READ_1_1_8,
					  SNOR_PROTO_1_1_8);
	}

3390 3391 3392 3393 3394
	/* Page Program settings. */
	params->hwcaps.mask |= SNOR_HWCAPS_PP;
	spi_nor_set_pp_settings(&params->page_programs[SNOR_CMD_PP],
				SPINOR_OP_PP, SNOR_PROTO_1_1_1);

3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415
	/*
	 * Sector Erase settings. Sort Erase Types in ascending order, with the
	 * smallest erase size starting at BIT(0).
	 */
	erase_mask = 0;
	i = 0;
	if (info->flags & SECT_4K_PMC) {
		erase_mask |= BIT(i);
		spi_nor_set_erase_type(&map->erase_type[i], 4096u,
				       SPINOR_OP_BE_4K_PMC);
		i++;
	} else if (info->flags & SECT_4K) {
		erase_mask |= BIT(i);
		spi_nor_set_erase_type(&map->erase_type[i], 4096u,
				       SPINOR_OP_BE_4K);
		i++;
	}
	erase_mask |= BIT(i);
	spi_nor_set_erase_type(&map->erase_type[i], info->sector_size,
			       SPINOR_OP_SE);
	spi_nor_init_uniform_erase_map(map, erase_mask, params->size);
3416
}
3417

3418 3419
static void spansion_post_sfdp_fixups(struct spi_nor *nor)
{
3420
	if (nor->params.size <= SZ_16M)
3421 3422 3423 3424 3425 3426 3427 3428
		return;

	nor->flags |= SNOR_F_4B_OPCODES;
	/* No small sector erase for 4-byte command set */
	nor->erase_opcode = SPINOR_OP_SE;
	nor->mtd.erasesize = nor->info->sector_size;
}

3429 3430 3431 3432 3433
static void s3an_post_sfdp_fixups(struct spi_nor *nor)
{
	nor->params.setup = s3an_nor_setup;
}

3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445
/**
 * spi_nor_post_sfdp_fixups() - Updates the flash's parameters and settings
 * after SFDP has been parsed (is also called for SPI NORs that do not
 * support RDSFDP).
 * @nor:	pointer to a 'struct spi_nor'
 *
 * Typically used to tweak various parameters that could not be extracted by
 * other means (i.e. when information provided by the SFDP/flash_info tables
 * are incomplete or wrong).
 */
static void spi_nor_post_sfdp_fixups(struct spi_nor *nor)
{
3446 3447 3448 3449 3450 3451 3452 3453 3454
	switch (JEDEC_MFR(nor->info)) {
	case SNOR_MFR_SPANSION:
		spansion_post_sfdp_fixups(nor);
		break;

	default:
		break;
	}

3455 3456 3457
	if (nor->info->flags & SPI_S3AN)
		s3an_post_sfdp_fixups(nor);

3458 3459 3460 3461
	if (nor->manufacturer && nor->manufacturer->fixups &&
	    nor->manufacturer->fixups->post_sfdp)
		nor->manufacturer->fixups->post_sfdp(nor);

3462 3463 3464 3465
	if (nor->info->fixups && nor->info->fixups->post_sfdp)
		nor->info->fixups->post_sfdp(nor);
}

3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479
/**
 * spi_nor_late_init_params() - Late initialization of default flash parameters.
 * @nor:	pointer to a 'struct spi_nor'
 *
 * Used to set default flash parameters and settings when the ->default_init()
 * hook or the SFDP parser let voids.
 */
static void spi_nor_late_init_params(struct spi_nor *nor)
{
	/*
	 * NOR protection support. When locking_ops are not provided, we pick
	 * the default ones.
	 */
	if (nor->flags & SNOR_F_HAS_LOCK && !nor->params.locking_ops)
3480
		nor->params.locking_ops = &spi_nor_sr_locking_ops;
3481 3482
}

3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507
/**
 * spi_nor_init_params() - Initialize the flash's parameters and settings.
 * @nor:	pointer to a 'struct spi-nor'.
 *
 * The flash parameters and settings are initialized based on a sequence of
 * calls that are ordered by priority:
 *
 * 1/ Default flash parameters initialization. The initializations are done
 *    based on nor->info data:
 *		spi_nor_info_init_params()
 *
 * which can be overwritten by:
 * 2/ Manufacturer flash parameters initialization. The initializations are
 *    done based on MFR register, or when the decisions can not be done solely
 *    based on MFR, by using specific flash_info tweeks, ->default_init():
 *		spi_nor_manufacturer_init_params()
 *
 * which can be overwritten by:
 * 3/ SFDP flash parameters initialization. JESD216 SFDP is a standard and
 *    should be more accurate that the above.
 *		spi_nor_sfdp_init_params()
 *
 *    Please note that there is a ->post_bfpt() fixup hook that can overwrite
 *    the flash parameters and settings immediately after parsing the Basic
 *    Flash Parameter Table.
3508
 *
3509 3510 3511 3512 3513 3514 3515 3516
 * which can be overwritten by:
 * 4/ Post SFDP flash parameters initialization. Used to tweak various
 *    parameters that could not be extracted by other means (i.e. when
 *    information provided by the SFDP/flash_info tables are incomplete or
 *    wrong).
 *		spi_nor_post_sfdp_fixups()
 *
 * 5/ Late default flash parameters initialization, used when the
3517 3518
 * ->default_init() hook or the SFDP parser do not set specific params.
 *		spi_nor_late_init_params()
3519 3520 3521 3522
 */
static void spi_nor_init_params(struct spi_nor *nor)
{
	spi_nor_info_init_params(nor);
3523

3524 3525
	spi_nor_manufacturer_init_params(nor);

3526 3527 3528
	if ((nor->info->flags & (SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)) &&
	    !(nor->info->flags & SPI_NOR_SKIP_SFDP))
		spi_nor_sfdp_init_params(nor);
3529

3530 3531
	spi_nor_post_sfdp_fixups(nor);

3532
	spi_nor_late_init_params(nor);
3533 3534
}

3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552
/**
 * spi_nor_quad_enable() - enable Quad I/O if needed.
 * @nor:                pointer to a 'struct spi_nor'
 *
 * Return: 0 on success, -errno otherwise.
 */
static int spi_nor_quad_enable(struct spi_nor *nor)
{
	if (!nor->params.quad_enable)
		return 0;

	if (!(spi_nor_get_protocol_width(nor->read_proto) == 4 ||
	      spi_nor_get_protocol_width(nor->write_proto) == 4))
		return 0;

	return nor->params.quad_enable(nor);
}

3553 3554 3555 3556 3557 3558 3559 3560 3561 3562
/**
 * spi_nor_unlock_all() - Unlocks the entire flash memory array.
 * @nor:	pointer to a 'struct spi_nor'.
 *
 * Some SPI NOR flashes are write protected by default after a power-on reset
 * cycle, in order to avoid inadvertent writes during power-up. Backward
 * compatibility imposes to unlock the entire flash memory array at power-up
 * by default.
 */
static int spi_nor_unlock_all(struct spi_nor *nor)
3563
{
3564 3565
	if (nor->flags & SNOR_F_HAS_LOCK)
		return spi_nor_unlock(&nor->mtd, 0, nor->params.size);
3566

3567 3568
	return 0;
}
3569

3570 3571 3572
static int spi_nor_init(struct spi_nor *nor)
{
	int err;
3573

3574 3575
	err = spi_nor_quad_enable(nor);
	if (err) {
3576
		dev_dbg(nor->dev, "quad mode not supported\n");
3577
		return err;
3578 3579
	}

3580 3581 3582 3583 3584 3585
	err = spi_nor_unlock_all(nor);
	if (err) {
		dev_dbg(nor->dev, "Failed to unlock the entire flash memory array\n");
		return err;
	}

3586
	if (nor->addr_width == 4 && !(nor->flags & SNOR_F_4B_OPCODES)) {
3587 3588 3589 3590 3591 3592 3593 3594 3595
		/*
		 * If the RESET# pin isn't hooked up properly, or the system
		 * otherwise doesn't perform a reset command in the boot
		 * sequence, it's impossible to 100% protect against unexpected
		 * reboots (e.g., crashes). Warn the user (or hopefully, system
		 * designer) that this is bad.
		 */
		WARN_ONCE(nor->flags & SNOR_F_BROKEN_RESET,
			  "enabling reset hack; may not recover from unexpected reboots\n");
3596
		nor->params.set_4byte_addr_mode(nor, true);
3597
	}
3598

3599 3600 3601
	return 0;
}

3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614
/* mtd resume handler */
static void spi_nor_resume(struct mtd_info *mtd)
{
	struct spi_nor *nor = mtd_to_spi_nor(mtd);
	struct device *dev = nor->dev;
	int ret;

	/* re-initialize the nor chip */
	ret = spi_nor_init(nor);
	if (ret)
		dev_err(dev, "resume() failed\n");
}

3615 3616 3617
void spi_nor_restore(struct spi_nor *nor)
{
	/* restore the addressing mode */
3618 3619
	if (nor->addr_width == 4 && !(nor->flags & SNOR_F_4B_OPCODES) &&
	    nor->flags & SNOR_F_BROKEN_RESET)
3620
		nor->params.set_4byte_addr_mode(nor, false);
3621 3622 3623
}
EXPORT_SYMBOL_GPL(spi_nor_restore);

3624 3625
static const struct flash_info *spi_nor_match_id(struct spi_nor *nor,
						 const char *name)
3626
{
3627
	unsigned int i, j;
3628

3629 3630 3631
	for (i = 0; i < ARRAY_SIZE(spi_nor_ids) - 1; i++) {
		if (!strcmp(name, spi_nor_ids[i].name))
			return &spi_nor_ids[i];
3632
	}
3633 3634 3635 3636 3637 3638 3639 3640 3641 3642

	for (i = 0; i < ARRAY_SIZE(manufacturers); i++) {
		for (j = 0; j < manufacturers[i]->nparts; j++) {
			if (!strcmp(name, manufacturers[i]->parts[j].name)) {
				nor->manufacturer = manufacturers[i];
				return &manufacturers[i]->parts[j];
			}
		}
	}

3643 3644 3645
	return NULL;
}

3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659
static int spi_nor_set_addr_width(struct spi_nor *nor)
{
	if (nor->addr_width) {
		/* already configured from SFDP */
	} else if (nor->info->addr_width) {
		nor->addr_width = nor->info->addr_width;
	} else if (nor->mtd.size > 0x1000000) {
		/* enable 4-byte addressing if the device exceeds 16MiB */
		nor->addr_width = 4;
	} else {
		nor->addr_width = 3;
	}

	if (nor->addr_width > SPI_NOR_MAX_ADDR_WIDTH) {
3660
		dev_dbg(nor->dev, "address width is too large: %u\n",
3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672
			nor->addr_width);
		return -EINVAL;
	}

	/* Set 4byte opcodes when possible. */
	if (nor->addr_width == 4 && nor->flags & SNOR_F_4B_OPCODES &&
	    !(nor->flags & SNOR_F_HAS_4BAIT))
		spi_nor_set_4byte_opcodes(nor);

	return 0;
}

3673 3674 3675 3676 3677 3678 3679 3680 3681 3682
static void spi_nor_debugfs_init(struct spi_nor *nor,
				 const struct flash_info *info)
{
	struct mtd_info *mtd = &nor->mtd;

	mtd->dbg.partname = info->name;
	mtd->dbg.partid = devm_kasprintf(nor->dev, GFP_KERNEL, "spi-nor:%*phN",
					 info->id_len, info->id);
}

3683 3684 3685 3686 3687 3688
static const struct flash_info *spi_nor_get_flash_info(struct spi_nor *nor,
						       const char *name)
{
	const struct flash_info *info = NULL;

	if (name)
3689
		info = spi_nor_match_id(nor, name);
3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722
	/* Try to auto-detect if chip name wasn't specified or not found */
	if (!info)
		info = spi_nor_read_id(nor);
	if (IS_ERR_OR_NULL(info))
		return ERR_PTR(-ENOENT);

	/*
	 * If caller has specified name of flash model that can normally be
	 * detected using JEDEC, let's verify it.
	 */
	if (name && info->id_len) {
		const struct flash_info *jinfo;

		jinfo = spi_nor_read_id(nor);
		if (IS_ERR(jinfo)) {
			return jinfo;
		} else if (jinfo != info) {
			/*
			 * JEDEC knows better, so overwrite platform ID. We
			 * can't trust partitions any longer, but we'll let
			 * mtd apply them anyway, since some partitions may be
			 * marked read-only, and we don't want to lose that
			 * information, even if it's not 100% accurate.
			 */
			dev_warn(nor->dev, "found %s, expected %s\n",
				 jinfo->name, info->name);
			info = jinfo;
		}
	}

	return info;
}

3723 3724
int spi_nor_scan(struct spi_nor *nor, const char *name,
		 const struct spi_nor_hwcaps *hwcaps)
3725
{
3726
	const struct flash_info *info;
3727
	struct device *dev = nor->dev;
3728
	struct mtd_info *mtd = &nor->mtd;
3729
	struct device_node *np = spi_nor_get_flash_node(nor);
T
Tudor Ambarus 已提交
3730
	struct spi_nor_flash_parameter *params = &nor->params;
3731 3732 3733 3734 3735 3736 3737
	int ret;
	int i;

	ret = spi_nor_check(nor);
	if (ret)
		return ret;

3738 3739 3740 3741 3742
	/* Reset SPI protocol for all commands. */
	nor->reg_proto = SNOR_PROTO_1_1_1;
	nor->read_proto = SNOR_PROTO_1_1_1;
	nor->write_proto = SNOR_PROTO_1_1_1;

3743 3744 3745
	/*
	 * We need the bounce buffer early to read/write registers when going
	 * through the spi-mem layer (buffers have to be DMA-able).
3746 3747 3748 3749
	 * For spi-mem drivers, we'll reallocate a new buffer if
	 * nor->page_size turns out to be greater than PAGE_SIZE (which
	 * shouldn't happen before long since NOR pages are usually less
	 * than 1KB) after spi_nor_scan() returns.
3750 3751 3752 3753 3754 3755 3756
	 */
	nor->bouncebuf_size = PAGE_SIZE;
	nor->bouncebuf = devm_kmalloc(dev, nor->bouncebuf_size,
				      GFP_KERNEL);
	if (!nor->bouncebuf)
		return -ENOMEM;

3757 3758 3759
	info = spi_nor_get_flash_info(nor, name);
	if (IS_ERR(info))
		return PTR_ERR(info);
3760

3761 3762
	nor->info = info;

3763 3764
	spi_nor_debugfs_init(nor, info);

3765 3766
	mutex_init(&nor->lock);

3767 3768 3769 3770 3771
	/*
	 * Make sure the XSR_RDY flag is set before calling
	 * spi_nor_wait_till_ready(). Xilinx S3AN share MFR
	 * with Atmel spi-nor
	 */
3772
	if (info->flags & SPI_NOR_XSR_RDY)
3773 3774
		nor->flags |=  SNOR_F_READY_XSR_RDY;

3775 3776 3777
	if (info->flags & SPI_NOR_HAS_LOCK)
		nor->flags |= SNOR_F_HAS_LOCK;

3778 3779
	/* Init flash parameters based on flash_info struct and SFDP */
	spi_nor_init_params(nor);
3780

3781
	if (!mtd->name)
3782
		mtd->name = dev_name(dev);
3783
	mtd->priv = nor;
3784 3785 3786
	mtd->type = MTD_NORFLASH;
	mtd->writesize = 1;
	mtd->flags = MTD_CAP_NORFLASH;
T
Tudor Ambarus 已提交
3787
	mtd->size = params->size;
3788 3789
	mtd->_erase = spi_nor_erase;
	mtd->_read = spi_nor_read;
3790
	mtd->_resume = spi_nor_resume;
3791

3792
	if (nor->params.locking_ops) {
3793 3794
		mtd->_lock = spi_nor_lock;
		mtd->_unlock = spi_nor_unlock;
3795
		mtd->_is_locked = spi_nor_is_locked;
3796 3797 3798 3799 3800 3801 3802 3803
	}

	/* sst nor chips use AAI word program */
	if (info->flags & SST_WRITE)
		mtd->_write = sst_write;
	else
		mtd->_write = spi_nor_write;

3804 3805
	if (info->flags & USE_FSR)
		nor->flags |= SNOR_F_USE_FSR;
3806
	if (info->flags & SPI_NOR_HAS_TB) {
3807
		nor->flags |= SNOR_F_HAS_SR_TB;
3808 3809 3810 3811
		if (info->flags & SPI_NOR_TB_SR_BIT6)
			nor->flags |= SNOR_F_HAS_SR_TB_BIT6;
	}

3812 3813
	if (info->flags & NO_CHIP_ERASE)
		nor->flags |= SNOR_F_NO_OP_CHIP_ERASE;
3814 3815
	if (info->flags & USE_CLSR)
		nor->flags |= SNOR_F_USE_CLSR;
3816

3817 3818 3819 3820
	if (info->flags & SPI_NOR_NO_ERASE)
		mtd->flags |= MTD_NO_ERASE;

	mtd->dev.parent = dev;
T
Tudor Ambarus 已提交
3821
	nor->page_size = params->page_size;
3822 3823
	mtd->writebufsize = nor->page_size;

3824 3825 3826
	if (of_property_read_bool(np, "broken-flash-reset"))
		nor->flags |= SNOR_F_BROKEN_RESET;

3827 3828 3829 3830 3831 3832
	/*
	 * Configure the SPI memory:
	 * - select op codes for (Fast) Read, Page Program and Sector Erase.
	 * - set the number of dummy cycles (mode cycles + wait states).
	 * - set the SPI protocols for register and memory accesses.
	 */
T
Tudor Ambarus 已提交
3833
	ret = spi_nor_setup(nor, hwcaps);
3834 3835
	if (ret)
		return ret;
3836

3837
	if (info->flags & SPI_NOR_4B_OPCODES)
3838 3839
		nor->flags |= SNOR_F_4B_OPCODES;

3840 3841 3842
	ret = spi_nor_set_addr_width(nor);
	if (ret)
		return ret;
3843

3844 3845 3846 3847 3848
	/* Send all the required SPI flash commands to initialize device */
	ret = spi_nor_init(nor);
	if (ret)
		return ret;

3849
	dev_info(dev, "%s (%lld Kbytes)\n", info->name,
3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869
			(long long)mtd->size >> 10);

	dev_dbg(dev,
		"mtd .name = %s, .size = 0x%llx (%lldMiB), "
		".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
		mtd->name, (long long)mtd->size, (long long)(mtd->size >> 20),
		mtd->erasesize, mtd->erasesize / 1024, mtd->numeraseregions);

	if (mtd->numeraseregions)
		for (i = 0; i < mtd->numeraseregions; i++)
			dev_dbg(dev,
				"mtd.eraseregions[%d] = { .offset = 0x%llx, "
				".erasesize = 0x%.8x (%uKiB), "
				".numblocks = %d }\n",
				i, (long long)mtd->eraseregions[i].offset,
				mtd->eraseregions[i].erasesize,
				mtd->eraseregions[i].erasesize / 1024,
				mtd->eraseregions[i].numblocks);
	return 0;
}
3870
EXPORT_SYMBOL_GPL(spi_nor_scan);
3871

3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923
static int spi_nor_create_read_dirmap(struct spi_nor *nor)
{
	struct spi_mem_dirmap_info info = {
		.op_tmpl = SPI_MEM_OP(SPI_MEM_OP_CMD(nor->read_opcode, 1),
				      SPI_MEM_OP_ADDR(nor->addr_width, 0, 1),
				      SPI_MEM_OP_DUMMY(nor->read_dummy, 1),
				      SPI_MEM_OP_DATA_IN(0, NULL, 1)),
		.offset = 0,
		.length = nor->mtd.size,
	};
	struct spi_mem_op *op = &info.op_tmpl;

	/* get transfer protocols. */
	op->cmd.buswidth = spi_nor_get_protocol_inst_nbits(nor->read_proto);
	op->addr.buswidth = spi_nor_get_protocol_addr_nbits(nor->read_proto);
	op->dummy.buswidth = op->addr.buswidth;
	op->data.buswidth = spi_nor_get_protocol_data_nbits(nor->read_proto);

	/* convert the dummy cycles to the number of bytes */
	op->dummy.nbytes = (nor->read_dummy * op->dummy.buswidth) / 8;

	nor->dirmap.rdesc = devm_spi_mem_dirmap_create(nor->dev, nor->spimem,
						       &info);
	return PTR_ERR_OR_ZERO(nor->dirmap.rdesc);
}

static int spi_nor_create_write_dirmap(struct spi_nor *nor)
{
	struct spi_mem_dirmap_info info = {
		.op_tmpl = SPI_MEM_OP(SPI_MEM_OP_CMD(nor->program_opcode, 1),
				      SPI_MEM_OP_ADDR(nor->addr_width, 0, 1),
				      SPI_MEM_OP_NO_DUMMY,
				      SPI_MEM_OP_DATA_OUT(0, NULL, 1)),
		.offset = 0,
		.length = nor->mtd.size,
	};
	struct spi_mem_op *op = &info.op_tmpl;

	/* get transfer protocols. */
	op->cmd.buswidth = spi_nor_get_protocol_inst_nbits(nor->write_proto);
	op->addr.buswidth = spi_nor_get_protocol_addr_nbits(nor->write_proto);
	op->dummy.buswidth = op->addr.buswidth;
	op->data.buswidth = spi_nor_get_protocol_data_nbits(nor->write_proto);

	if (nor->program_opcode == SPINOR_OP_AAI_WP && nor->sst_write_second)
		op->addr.nbytes = 0;

	nor->dirmap.wdesc = devm_spi_mem_dirmap_create(nor->dev, nor->spimem,
						       &info);
	return PTR_ERR_OR_ZERO(nor->dirmap.wdesc);
}

3924 3925 3926 3927 3928
static int spi_nor_probe(struct spi_mem *spimem)
{
	struct spi_device *spi = spimem->spi;
	struct flash_platform_data *data = dev_get_platdata(&spi->dev);
	struct spi_nor *nor;
3929 3930 3931 3932 3933
	/*
	 * Enable all caps by default. The core will mask them after
	 * checking what's really supported using spi_mem_supports_op().
	 */
	const struct spi_nor_hwcaps hwcaps = { .mask = SNOR_HWCAPS_ALL };
3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984
	char *flash_name;
	int ret;

	nor = devm_kzalloc(&spi->dev, sizeof(*nor), GFP_KERNEL);
	if (!nor)
		return -ENOMEM;

	nor->spimem = spimem;
	nor->dev = &spi->dev;
	spi_nor_set_flash_node(nor, spi->dev.of_node);

	spi_mem_set_drvdata(spimem, nor);

	if (data && data->name)
		nor->mtd.name = data->name;

	if (!nor->mtd.name)
		nor->mtd.name = spi_mem_get_name(spimem);

	/*
	 * For some (historical?) reason many platforms provide two different
	 * names in flash_platform_data: "name" and "type". Quite often name is
	 * set to "m25p80" and then "type" provides a real chip name.
	 * If that's the case, respect "type" and ignore a "name".
	 */
	if (data && data->type)
		flash_name = data->type;
	else if (!strcmp(spi->modalias, "spi-nor"))
		flash_name = NULL; /* auto-detect */
	else
		flash_name = spi->modalias;

	ret = spi_nor_scan(nor, flash_name, &hwcaps);
	if (ret)
		return ret;

	/*
	 * None of the existing parts have > 512B pages, but let's play safe
	 * and add this logic so that if anyone ever adds support for such
	 * a NOR we don't end up with buffer overflows.
	 */
	if (nor->page_size > PAGE_SIZE) {
		nor->bouncebuf_size = nor->page_size;
		devm_kfree(nor->dev, nor->bouncebuf);
		nor->bouncebuf = devm_kmalloc(nor->dev,
					      nor->bouncebuf_size,
					      GFP_KERNEL);
		if (!nor->bouncebuf)
			return -ENOMEM;
	}

3985 3986 3987 3988 3989 3990 3991 3992
	ret = spi_nor_create_read_dirmap(nor);
	if (ret)
		return ret;

	ret = spi_nor_create_write_dirmap(nor);
	if (ret)
		return ret;

3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099
	return mtd_device_register(&nor->mtd, data ? data->parts : NULL,
				   data ? data->nr_parts : 0);
}

static int spi_nor_remove(struct spi_mem *spimem)
{
	struct spi_nor *nor = spi_mem_get_drvdata(spimem);

	spi_nor_restore(nor);

	/* Clean up MTD stuff. */
	return mtd_device_unregister(&nor->mtd);
}

static void spi_nor_shutdown(struct spi_mem *spimem)
{
	struct spi_nor *nor = spi_mem_get_drvdata(spimem);

	spi_nor_restore(nor);
}

/*
 * Do NOT add to this array without reading the following:
 *
 * Historically, many flash devices are bound to this driver by their name. But
 * since most of these flash are compatible to some extent, and their
 * differences can often be differentiated by the JEDEC read-ID command, we
 * encourage new users to add support to the spi-nor library, and simply bind
 * against a generic string here (e.g., "jedec,spi-nor").
 *
 * Many flash names are kept here in this list (as well as in spi-nor.c) to
 * keep them available as module aliases for existing platforms.
 */
static const struct spi_device_id spi_nor_dev_ids[] = {
	/*
	 * Allow non-DT platform devices to bind to the "spi-nor" modalias, and
	 * hack around the fact that the SPI core does not provide uevent
	 * matching for .of_match_table
	 */
	{"spi-nor"},

	/*
	 * Entries not used in DTs that should be safe to drop after replacing
	 * them with "spi-nor" in platform data.
	 */
	{"s25sl064a"},	{"w25x16"},	{"m25p10"},	{"m25px64"},

	/*
	 * Entries that were used in DTs without "jedec,spi-nor" fallback and
	 * should be kept for backward compatibility.
	 */
	{"at25df321a"},	{"at25df641"},	{"at26df081a"},
	{"mx25l4005a"},	{"mx25l1606e"},	{"mx25l6405d"},	{"mx25l12805d"},
	{"mx25l25635e"},{"mx66l51235l"},
	{"n25q064"},	{"n25q128a11"},	{"n25q128a13"},	{"n25q512a"},
	{"s25fl256s1"},	{"s25fl512s"},	{"s25sl12801"},	{"s25fl008k"},
	{"s25fl064k"},
	{"sst25vf040b"},{"sst25vf016b"},{"sst25vf032b"},{"sst25wf040"},
	{"m25p40"},	{"m25p80"},	{"m25p16"},	{"m25p32"},
	{"m25p64"},	{"m25p128"},
	{"w25x80"},	{"w25x32"},	{"w25q32"},	{"w25q32dw"},
	{"w25q80bl"},	{"w25q128"},	{"w25q256"},

	/* Flashes that can't be detected using JEDEC */
	{"m25p05-nonjedec"},	{"m25p10-nonjedec"},	{"m25p20-nonjedec"},
	{"m25p40-nonjedec"},	{"m25p80-nonjedec"},	{"m25p16-nonjedec"},
	{"m25p32-nonjedec"},	{"m25p64-nonjedec"},	{"m25p128-nonjedec"},

	/* Everspin MRAMs (non-JEDEC) */
	{ "mr25h128" }, /* 128 Kib, 40 MHz */
	{ "mr25h256" }, /* 256 Kib, 40 MHz */
	{ "mr25h10" },  /*   1 Mib, 40 MHz */
	{ "mr25h40" },  /*   4 Mib, 40 MHz */

	{ },
};
MODULE_DEVICE_TABLE(spi, spi_nor_dev_ids);

static const struct of_device_id spi_nor_of_table[] = {
	/*
	 * Generic compatibility for SPI NOR that can be identified by the
	 * JEDEC READ ID opcode (0x9F). Use this, if possible.
	 */
	{ .compatible = "jedec,spi-nor" },
	{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, spi_nor_of_table);

/*
 * REVISIT: many of these chips have deep power-down modes, which
 * should clearly be entered on suspend() to minimize power use.
 * And also when they're otherwise idle...
 */
static struct spi_mem_driver spi_nor_driver = {
	.spidrv = {
		.driver = {
			.name = "spi-nor",
			.of_match_table = spi_nor_of_table,
		},
		.id_table = spi_nor_dev_ids,
	},
	.probe = spi_nor_probe,
	.remove = spi_nor_remove,
	.shutdown = spi_nor_shutdown,
};
module_spi_mem_driver(spi_nor_driver);

4100
MODULE_LICENSE("GPL v2");
4101 4102 4103
MODULE_AUTHOR("Huang Shijie <shijie8@gmail.com>");
MODULE_AUTHOR("Mike Lavender");
MODULE_DESCRIPTION("framework for SPI NOR");