bio.c 43.6 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
L
Linus Torvalds 已提交
2
/*
3
 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
L
Linus Torvalds 已提交
4 5 6 7 8
 */
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
9
#include <linux/uio.h>
10
#include <linux/iocontext.h>
L
Linus Torvalds 已提交
11 12 13
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/kernel.h>
14
#include <linux/export.h>
L
Linus Torvalds 已提交
15 16
#include <linux/mempool.h>
#include <linux/workqueue.h>
17
#include <linux/cgroup.h>
18
#include <linux/blk-cgroup.h>
19
#include <linux/highmem.h>
20
#include <linux/sched/sysctl.h>
21
#include <linux/blk-crypto.h>
22
#include <linux/xarray.h>
L
Linus Torvalds 已提交
23

24
#include <trace/events/block.h>
25
#include "blk.h"
J
Josef Bacik 已提交
26
#include "blk-rq-qos.h"
27

28 29 30 31 32 33
/*
 * Test patch to inline a certain number of bi_io_vec's inside the bio
 * itself, to shrink a bio data allocation from two mempool calls to one
 */
#define BIO_INLINE_VECS		4

L
Linus Torvalds 已提交
34 35 36 37 38
/*
 * if you change this list, also change bvec_alloc or things will
 * break badly! cannot be bigger than what you can fit into an
 * unsigned short
 */
39
#define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n }
40
static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
41
	BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max),
L
Linus Torvalds 已提交
42 43 44 45 46 47 48
};
#undef BV

/*
 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
 * IO code that does not need private memory pools.
 */
49
struct bio_set fs_bio_set;
50
EXPORT_SYMBOL(fs_bio_set);
L
Linus Torvalds 已提交
51

52 53 54 55 56 57 58 59 60 61
/*
 * Our slab pool management
 */
struct bio_slab {
	struct kmem_cache *slab;
	unsigned int slab_ref;
	unsigned int slab_size;
	char name[8];
};
static DEFINE_MUTEX(bio_slab_lock);
62
static DEFINE_XARRAY(bio_slabs);
63

64
static struct bio_slab *create_bio_slab(unsigned int size)
65
{
66
	struct bio_slab *bslab = kzalloc(sizeof(*bslab), GFP_KERNEL);
67

68 69
	if (!bslab)
		return NULL;
70

71 72 73 74 75
	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", size);
	bslab->slab = kmem_cache_create(bslab->name, size,
			ARCH_KMALLOC_MINALIGN, SLAB_HWCACHE_ALIGN, NULL);
	if (!bslab->slab)
		goto fail_alloc_slab;
76

77 78
	bslab->slab_ref = 1;
	bslab->slab_size = size;
79

80 81
	if (!xa_err(xa_store(&bio_slabs, size, bslab, GFP_KERNEL)))
		return bslab;
82

83
	kmem_cache_destroy(bslab->slab);
84

85 86 87 88
fail_alloc_slab:
	kfree(bslab);
	return NULL;
}
89

90 91
static inline unsigned int bs_bio_slab_size(struct bio_set *bs)
{
92
	return bs->front_pad + sizeof(struct bio) + bs->back_pad;
93 94 95 96 97 98 99 100 101 102 103 104 105
}

static struct kmem_cache *bio_find_or_create_slab(struct bio_set *bs)
{
	unsigned int size = bs_bio_slab_size(bs);
	struct bio_slab *bslab;

	mutex_lock(&bio_slab_lock);
	bslab = xa_load(&bio_slabs, size);
	if (bslab)
		bslab->slab_ref++;
	else
		bslab = create_bio_slab(size);
106
	mutex_unlock(&bio_slab_lock);
107 108 109 110

	if (bslab)
		return bslab->slab;
	return NULL;
111 112 113 114 115
}

static void bio_put_slab(struct bio_set *bs)
{
	struct bio_slab *bslab = NULL;
116
	unsigned int slab_size = bs_bio_slab_size(bs);
117 118 119

	mutex_lock(&bio_slab_lock);

120
	bslab = xa_load(&bio_slabs, slab_size);
121 122 123
	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
		goto out;

124 125
	WARN_ON_ONCE(bslab->slab != bs->bio_slab);

126 127 128 129 130
	WARN_ON(!bslab->slab_ref);

	if (--bslab->slab_ref)
		goto out;

131 132
	xa_erase(&bio_slabs, slab_size);

133
	kmem_cache_destroy(bslab->slab);
134
	kfree(bslab);
135 136 137 138 139

out:
	mutex_unlock(&bio_slab_lock);
}

140 141
unsigned int bvec_nr_vecs(unsigned short idx)
{
142
	return bvec_slabs[--idx].nr_vecs;
143 144
}

145
void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
146
{
147 148 149 150 151
	if (!idx)
		return;
	idx--;

	BIO_BUG_ON(idx >= BVEC_POOL_NR);
152

153
	if (idx == BVEC_POOL_MAX) {
154
		mempool_free(bv, pool);
155
	} else {
156 157 158 159 160 161
		struct biovec_slab *bvs = bvec_slabs + idx;

		kmem_cache_free(bvs->slab, bv);
	}
}

162 163
struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
			   mempool_t *pool)
L
Linus Torvalds 已提交
164 165 166
{
	struct bio_vec *bvl;

167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
	/*
	 * see comment near bvec_array define!
	 */
	switch (nr) {
	case 1:
		*idx = 0;
		break;
	case 2 ... 4:
		*idx = 1;
		break;
	case 5 ... 16:
		*idx = 2;
		break;
	case 17 ... 64:
		*idx = 3;
		break;
	case 65 ... 128:
		*idx = 4;
		break;
	case 129 ... BIO_MAX_PAGES:
		*idx = 5;
		break;
	default:
		return NULL;
	}

	/*
	 * idx now points to the pool we want to allocate from. only the
	 * 1-vec entry pool is mempool backed.
	 */
197
	if (*idx == BVEC_POOL_MAX) {
198
fallback:
199
		bvl = mempool_alloc(pool, gfp_mask);
200 201
	} else {
		struct biovec_slab *bvs = bvec_slabs + *idx;
202
		gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
203

J
Jens Axboe 已提交
204
		/*
205 206 207
		 * Make this allocation restricted and don't dump info on
		 * allocation failures, since we'll fallback to the mempool
		 * in case of failure.
J
Jens Axboe 已提交
208
		 */
209
		__gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
L
Linus Torvalds 已提交
210

J
Jens Axboe 已提交
211
		/*
212
		 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
213
		 * is set, retry with the 1-entry mempool
J
Jens Axboe 已提交
214
		 */
215
		bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
216
		if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
217
			*idx = BVEC_POOL_MAX;
218 219 220 221
			goto fallback;
		}
	}

222
	(*idx)++;
L
Linus Torvalds 已提交
223 224 225
	return bvl;
}

226
void bio_uninit(struct bio *bio)
L
Linus Torvalds 已提交
227
{
228 229 230 231 232 233
#ifdef CONFIG_BLK_CGROUP
	if (bio->bi_blkg) {
		blkg_put(bio->bi_blkg);
		bio->bi_blkg = NULL;
	}
#endif
234 235
	if (bio_integrity(bio))
		bio_integrity_free(bio);
236 237

	bio_crypt_free_ctx(bio);
K
Kent Overstreet 已提交
238
}
239
EXPORT_SYMBOL(bio_uninit);
240

K
Kent Overstreet 已提交
241 242 243 244 245
static void bio_free(struct bio *bio)
{
	struct bio_set *bs = bio->bi_pool;
	void *p;

246
	bio_uninit(bio);
K
Kent Overstreet 已提交
247 248

	if (bs) {
249
		bvec_free(&bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
K
Kent Overstreet 已提交
250 251 252 253 254

		/*
		 * If we have front padding, adjust the bio pointer before freeing
		 */
		p = bio;
255 256
		p -= bs->front_pad;

257
		mempool_free(p, &bs->bio_pool);
K
Kent Overstreet 已提交
258 259 260 261
	} else {
		/* Bio was allocated by bio_kmalloc() */
		kfree(bio);
	}
P
Peter Osterlund 已提交
262 263
}

264 265 266 267 268
/*
 * Users of this function have their own bio allocation. Subsequently,
 * they must remember to pair any call to bio_init() with bio_uninit()
 * when IO has completed, or when the bio is released.
 */
269 270
void bio_init(struct bio *bio, struct bio_vec *table,
	      unsigned short max_vecs)
L
Linus Torvalds 已提交
271
{
J
Jens Axboe 已提交
272
	memset(bio, 0, sizeof(*bio));
273
	atomic_set(&bio->__bi_remaining, 1);
274
	atomic_set(&bio->__bi_cnt, 1);
275 276 277

	bio->bi_io_vec = table;
	bio->bi_max_vecs = max_vecs;
L
Linus Torvalds 已提交
278
}
279
EXPORT_SYMBOL(bio_init);
L
Linus Torvalds 已提交
280

K
Kent Overstreet 已提交
281 282 283 284 285 286 287 288 289 290 291 292 293 294
/**
 * bio_reset - reinitialize a bio
 * @bio:	bio to reset
 *
 * Description:
 *   After calling bio_reset(), @bio will be in the same state as a freshly
 *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
 *   preserved are the ones that are initialized by bio_alloc_bioset(). See
 *   comment in struct bio.
 */
void bio_reset(struct bio *bio)
{
	unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);

295
	bio_uninit(bio);
K
Kent Overstreet 已提交
296 297

	memset(bio, 0, BIO_RESET_BYTES);
298
	bio->bi_flags = flags;
299
	atomic_set(&bio->__bi_remaining, 1);
K
Kent Overstreet 已提交
300 301 302
}
EXPORT_SYMBOL(bio_reset);

303
static struct bio *__bio_chain_endio(struct bio *bio)
K
Kent Overstreet 已提交
304
{
305 306
	struct bio *parent = bio->bi_private;

307 308
	if (!parent->bi_status)
		parent->bi_status = bio->bi_status;
K
Kent Overstreet 已提交
309
	bio_put(bio);
310 311 312 313 314 315
	return parent;
}

static void bio_chain_endio(struct bio *bio)
{
	bio_endio(__bio_chain_endio(bio));
K
Kent Overstreet 已提交
316 317 318 319
}

/**
 * bio_chain - chain bio completions
320
 * @bio: the target bio
321
 * @parent: the parent bio of @bio
K
Kent Overstreet 已提交
322 323 324 325 326 327 328 329 330 331 332 333 334
 *
 * The caller won't have a bi_end_io called when @bio completes - instead,
 * @parent's bi_end_io won't be called until both @parent and @bio have
 * completed; the chained bio will also be freed when it completes.
 *
 * The caller must not set bi_private or bi_end_io in @bio.
 */
void bio_chain(struct bio *bio, struct bio *parent)
{
	BUG_ON(bio->bi_private || bio->bi_end_io);

	bio->bi_private = parent;
	bio->bi_end_io	= bio_chain_endio;
335
	bio_inc_remaining(parent);
K
Kent Overstreet 已提交
336 337 338
}
EXPORT_SYMBOL(bio_chain);

339 340 341 342 343 344 345 346 347 348 349 350 351
static void bio_alloc_rescue(struct work_struct *work)
{
	struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
	struct bio *bio;

	while (1) {
		spin_lock(&bs->rescue_lock);
		bio = bio_list_pop(&bs->rescue_list);
		spin_unlock(&bs->rescue_lock);

		if (!bio)
			break;

352
		submit_bio_noacct(bio);
353 354 355 356 357 358 359 360
	}
}

static void punt_bios_to_rescuer(struct bio_set *bs)
{
	struct bio_list punt, nopunt;
	struct bio *bio;

361 362
	if (WARN_ON_ONCE(!bs->rescue_workqueue))
		return;
363 364 365 366 367 368 369 370 371 372 373 374 375 376
	/*
	 * In order to guarantee forward progress we must punt only bios that
	 * were allocated from this bio_set; otherwise, if there was a bio on
	 * there for a stacking driver higher up in the stack, processing it
	 * could require allocating bios from this bio_set, and doing that from
	 * our own rescuer would be bad.
	 *
	 * Since bio lists are singly linked, pop them all instead of trying to
	 * remove from the middle of the list:
	 */

	bio_list_init(&punt);
	bio_list_init(&nopunt);

377
	while ((bio = bio_list_pop(&current->bio_list[0])))
378
		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
379
	current->bio_list[0] = nopunt;
380

381 382 383 384
	bio_list_init(&nopunt);
	while ((bio = bio_list_pop(&current->bio_list[1])))
		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
	current->bio_list[1] = nopunt;
385 386 387 388 389 390 391 392

	spin_lock(&bs->rescue_lock);
	bio_list_merge(&bs->rescue_list, &punt);
	spin_unlock(&bs->rescue_lock);

	queue_work(bs->rescue_workqueue, &bs->rescue_work);
}

L
Linus Torvalds 已提交
393 394
/**
 * bio_alloc_bioset - allocate a bio for I/O
395
 * @gfp_mask:   the GFP_* mask given to the slab allocator
L
Linus Torvalds 已提交
396
 * @nr_iovecs:	number of iovecs to pre-allocate
397
 * @bs:		the bio_set to allocate from.
L
Linus Torvalds 已提交
398 399
 *
 * Description:
400 401 402
 *   If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
 *   backed by the @bs's mempool.
 *
403 404 405 406 407 408
 *   When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
 *   always be able to allocate a bio. This is due to the mempool guarantees.
 *   To make this work, callers must never allocate more than 1 bio at a time
 *   from this pool. Callers that need to allocate more than 1 bio must always
 *   submit the previously allocated bio for IO before attempting to allocate
 *   a new one. Failure to do so can cause deadlocks under memory pressure.
409
 *
410
 *   Note that when running under submit_bio_noacct() (i.e. any block
411
 *   driver), bios are not submitted until after you return - see the code in
412
 *   submit_bio_noacct() that converts recursion into iteration, to prevent
413 414 415
 *   stack overflows.
 *
 *   This would normally mean allocating multiple bios under
416
 *   submit_bio_noacct() would be susceptible to deadlocks, but we have
417 418 419 420 421
 *   deadlock avoidance code that resubmits any blocked bios from a rescuer
 *   thread.
 *
 *   However, we do not guarantee forward progress for allocations from other
 *   mempools. Doing multiple allocations from the same mempool under
422
 *   submit_bio_noacct() should be avoided - instead, use bio_set's front_pad
423 424
 *   for per bio allocations.
 *
425 426 427
 *   RETURNS:
 *   Pointer to new bio on success, NULL on failure.
 */
428 429
struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
			     struct bio_set *bs)
L
Linus Torvalds 已提交
430
{
431
	gfp_t saved_gfp = gfp_mask;
432 433
	unsigned front_pad;
	unsigned inline_vecs;
I
Ingo Molnar 已提交
434
	struct bio_vec *bvl = NULL;
T
Tejun Heo 已提交
435 436 437
	struct bio *bio;
	void *p;

438 439 440 441
	if (!bs) {
		if (nr_iovecs > UIO_MAXIOV)
			return NULL;

442
		p = kmalloc(struct_size(bio, bi_inline_vecs, nr_iovecs), gfp_mask);
443 444 445
		front_pad = 0;
		inline_vecs = nr_iovecs;
	} else {
J
Junichi Nomura 已提交
446
		/* should not use nobvec bioset for nr_iovecs > 0 */
447 448
		if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) &&
				 nr_iovecs > 0))
J
Junichi Nomura 已提交
449
			return NULL;
450
		/*
451
		 * submit_bio_noacct() converts recursion to iteration; this
452 453 454 455 456 457
		 * means if we're running beneath it, any bios we allocate and
		 * submit will not be submitted (and thus freed) until after we
		 * return.
		 *
		 * This exposes us to a potential deadlock if we allocate
		 * multiple bios from the same bio_set() while running
458
		 * underneath submit_bio_noacct(). If we were to allocate
459 460 461 462 463 464 465
		 * multiple bios (say a stacking block driver that was splitting
		 * bios), we would deadlock if we exhausted the mempool's
		 * reserve.
		 *
		 * We solve this, and guarantee forward progress, with a rescuer
		 * workqueue per bio_set. If we go to allocate and there are
		 * bios on current->bio_list, we first try the allocation
466 467 468
		 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
		 * bios we would be blocking to the rescuer workqueue before
		 * we retry with the original gfp_flags.
469 470
		 */

471 472
		if (current->bio_list &&
		    (!bio_list_empty(&current->bio_list[0]) ||
473 474
		     !bio_list_empty(&current->bio_list[1])) &&
		    bs->rescue_workqueue)
475
			gfp_mask &= ~__GFP_DIRECT_RECLAIM;
476

477
		p = mempool_alloc(&bs->bio_pool, gfp_mask);
478 479 480
		if (!p && gfp_mask != saved_gfp) {
			punt_bios_to_rescuer(bs);
			gfp_mask = saved_gfp;
481
			p = mempool_alloc(&bs->bio_pool, gfp_mask);
482 483
		}

484 485 486 487
		front_pad = bs->front_pad;
		inline_vecs = BIO_INLINE_VECS;
	}

T
Tejun Heo 已提交
488 489
	if (unlikely(!p))
		return NULL;
L
Linus Torvalds 已提交
490

491
	bio = p + front_pad;
492
	bio_init(bio, NULL, 0);
I
Ingo Molnar 已提交
493

494
	if (nr_iovecs > inline_vecs) {
495 496
		unsigned long idx = 0;

497
		bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
498 499 500
		if (!bvl && gfp_mask != saved_gfp) {
			punt_bios_to_rescuer(bs);
			gfp_mask = saved_gfp;
501
			bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
502 503
		}

I
Ingo Molnar 已提交
504 505
		if (unlikely(!bvl))
			goto err_free;
506

507
		bio->bi_flags |= idx << BVEC_POOL_OFFSET;
508
		bio->bi_max_vecs = bvec_nr_vecs(idx);
509 510
	} else if (nr_iovecs) {
		bvl = bio->bi_inline_vecs;
511
		bio->bi_max_vecs = inline_vecs;
L
Linus Torvalds 已提交
512
	}
513 514

	bio->bi_pool = bs;
I
Ingo Molnar 已提交
515
	bio->bi_io_vec = bvl;
L
Linus Torvalds 已提交
516
	return bio;
I
Ingo Molnar 已提交
517 518

err_free:
519
	mempool_free(p, &bs->bio_pool);
I
Ingo Molnar 已提交
520
	return NULL;
L
Linus Torvalds 已提交
521
}
522
EXPORT_SYMBOL(bio_alloc_bioset);
L
Linus Torvalds 已提交
523

524
void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
L
Linus Torvalds 已提交
525 526
{
	unsigned long flags;
527 528
	struct bio_vec bv;
	struct bvec_iter iter;
L
Linus Torvalds 已提交
529

530
	__bio_for_each_segment(bv, bio, iter, start) {
531 532 533
		char *data = bvec_kmap_irq(&bv, &flags);
		memset(data, 0, bv.bv_len);
		flush_dcache_page(bv.bv_page);
L
Linus Torvalds 已提交
534 535 536
		bvec_kunmap_irq(data, &flags);
	}
}
537
EXPORT_SYMBOL(zero_fill_bio_iter);
L
Linus Torvalds 已提交
538

539 540 541 542 543 544 545 546 547 548
/**
 * bio_truncate - truncate the bio to small size of @new_size
 * @bio:	the bio to be truncated
 * @new_size:	new size for truncating the bio
 *
 * Description:
 *   Truncate the bio to new size of @new_size. If bio_op(bio) is
 *   REQ_OP_READ, zero the truncated part. This function should only
 *   be used for handling corner cases, such as bio eod.
 */
549 550 551 552 553 554 555 556 557 558
void bio_truncate(struct bio *bio, unsigned new_size)
{
	struct bio_vec bv;
	struct bvec_iter iter;
	unsigned int done = 0;
	bool truncated = false;

	if (new_size >= bio->bi_iter.bi_size)
		return;

559
	if (bio_op(bio) != REQ_OP_READ)
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
		goto exit;

	bio_for_each_segment(bv, bio, iter) {
		if (done + bv.bv_len > new_size) {
			unsigned offset;

			if (!truncated)
				offset = new_size - done;
			else
				offset = 0;
			zero_user(bv.bv_page, offset, bv.bv_len - offset);
			truncated = true;
		}
		done += bv.bv_len;
	}

 exit:
	/*
	 * Don't touch bvec table here and make it really immutable, since
	 * fs bio user has to retrieve all pages via bio_for_each_segment_all
	 * in its .end_bio() callback.
	 *
	 * It is enough to truncate bio by updating .bi_size since we can make
	 * correct bvec with the updated .bi_size for drivers.
	 */
	bio->bi_iter.bi_size = new_size;
}

588 589 590 591 592 593 594 595 596 597 598 599 600 601
/**
 * guard_bio_eod - truncate a BIO to fit the block device
 * @bio:	bio to truncate
 *
 * This allows us to do IO even on the odd last sectors of a device, even if the
 * block size is some multiple of the physical sector size.
 *
 * We'll just truncate the bio to the size of the device, and clear the end of
 * the buffer head manually.  Truly out-of-range accesses will turn into actual
 * I/O errors, this only handles the "we need to be able to do I/O at the final
 * sector" case.
 */
void guard_bio_eod(struct bio *bio)
{
602
	sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621

	if (!maxsector)
		return;

	/*
	 * If the *whole* IO is past the end of the device,
	 * let it through, and the IO layer will turn it into
	 * an EIO.
	 */
	if (unlikely(bio->bi_iter.bi_sector >= maxsector))
		return;

	maxsector -= bio->bi_iter.bi_sector;
	if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
		return;

	bio_truncate(bio, maxsector << 9);
}

L
Linus Torvalds 已提交
622 623 624 625 626 627
/**
 * bio_put - release a reference to a bio
 * @bio:   bio to release reference to
 *
 * Description:
 *   Put a reference to a &struct bio, either one you have gotten with
628
 *   bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
L
Linus Torvalds 已提交
629 630 631
 **/
void bio_put(struct bio *bio)
{
632
	if (!bio_flagged(bio, BIO_REFFED))
K
Kent Overstreet 已提交
633
		bio_free(bio);
634 635 636 637 638 639 640 641 642
	else {
		BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));

		/*
		 * last put frees it
		 */
		if (atomic_dec_and_test(&bio->__bi_cnt))
			bio_free(bio);
	}
L
Linus Torvalds 已提交
643
}
644
EXPORT_SYMBOL(bio_put);
L
Linus Torvalds 已提交
645

K
Kent Overstreet 已提交
646 647 648 649 650 651 652 653 654 655 656 657 658
/**
 * 	__bio_clone_fast - clone a bio that shares the original bio's biovec
 * 	@bio: destination bio
 * 	@bio_src: bio to clone
 *
 *	Clone a &bio. Caller will own the returned bio, but not
 *	the actual data it points to. Reference count of returned
 * 	bio will be one.
 *
 * 	Caller must ensure that @bio_src is not freed before @bio.
 */
void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
{
659
	BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
K
Kent Overstreet 已提交
660 661

	/*
662
	 * most users will be overriding ->bi_bdev with a new target,
K
Kent Overstreet 已提交
663 664
	 * so we don't set nor calculate new physical/hw segment counts here
	 */
665
	bio->bi_bdev = bio_src->bi_bdev;
666
	bio_set_flag(bio, BIO_CLONED);
S
Shaohua Li 已提交
667 668
	if (bio_flagged(bio_src, BIO_THROTTLED))
		bio_set_flag(bio, BIO_THROTTLED);
J
Jens Axboe 已提交
669
	bio->bi_opf = bio_src->bi_opf;
670
	bio->bi_ioprio = bio_src->bi_ioprio;
671
	bio->bi_write_hint = bio_src->bi_write_hint;
K
Kent Overstreet 已提交
672 673
	bio->bi_iter = bio_src->bi_iter;
	bio->bi_io_vec = bio_src->bi_io_vec;
674

675
	bio_clone_blkg_association(bio, bio_src);
676
	blkcg_bio_issue_init(bio);
K
Kent Overstreet 已提交
677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
}
EXPORT_SYMBOL(__bio_clone_fast);

/**
 *	bio_clone_fast - clone a bio that shares the original bio's biovec
 *	@bio: bio to clone
 *	@gfp_mask: allocation priority
 *	@bs: bio_set to allocate from
 *
 * 	Like __bio_clone_fast, only also allocates the returned bio
 */
struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
{
	struct bio *b;

	b = bio_alloc_bioset(gfp_mask, 0, bs);
	if (!b)
		return NULL;

	__bio_clone_fast(b, bio);

698 699
	if (bio_crypt_clone(b, bio, gfp_mask) < 0)
		goto err_put;
700

701 702 703
	if (bio_integrity(bio) &&
	    bio_integrity_clone(b, bio, gfp_mask) < 0)
		goto err_put;
K
Kent Overstreet 已提交
704 705

	return b;
706 707 708 709

err_put:
	bio_put(b);
	return NULL;
K
Kent Overstreet 已提交
710 711 712
}
EXPORT_SYMBOL(bio_clone_fast);

713 714
const char *bio_devname(struct bio *bio, char *buf)
{
715
	return bdevname(bio->bi_bdev, buf);
716 717 718
}
EXPORT_SYMBOL(bio_devname);

719 720
static inline bool page_is_mergeable(const struct bio_vec *bv,
		struct page *page, unsigned int len, unsigned int off,
721
		bool *same_page)
722
{
723 724
	size_t bv_end = bv->bv_offset + bv->bv_len;
	phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1;
725 726 727 728 729 730
	phys_addr_t page_addr = page_to_phys(page);

	if (vec_end_addr + 1 != page_addr + off)
		return false;
	if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
		return false;
731

732
	*same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
733 734 735
	if (*same_page)
		return true;
	return (bv->bv_page + bv_end / PAGE_SIZE) == (page + off / PAGE_SIZE);
736 737
}

738 739 740 741 742 743 744 745
/*
 * Try to merge a page into a segment, while obeying the hardware segment
 * size limit.  This is not for normal read/write bios, but for passthrough
 * or Zone Append operations that we can't split.
 */
static bool bio_try_merge_hw_seg(struct request_queue *q, struct bio *bio,
				 struct page *page, unsigned len,
				 unsigned offset, bool *same_page)
746
{
747
	struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
748 749 750 751 752 753 754 755
	unsigned long mask = queue_segment_boundary(q);
	phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
	phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;

	if ((addr1 | mask) != (addr2 | mask))
		return false;
	if (bv->bv_len + len > queue_max_segment_size(q))
		return false;
756
	return __bio_try_merge_page(bio, page, len, offset, same_page);
757 758
}

L
Linus Torvalds 已提交
759
/**
760 761 762 763 764 765 766 767
 * bio_add_hw_page - attempt to add a page to a bio with hw constraints
 * @q: the target queue
 * @bio: destination bio
 * @page: page to add
 * @len: vec entry length
 * @offset: vec entry offset
 * @max_sectors: maximum number of sectors that can be added
 * @same_page: return if the segment has been merged inside the same page
K
Kent Overstreet 已提交
768
 *
769 770
 * Add a page to a bio while respecting the hardware max_sectors, max_segment
 * and gap limitations.
L
Linus Torvalds 已提交
771
 */
772
int bio_add_hw_page(struct request_queue *q, struct bio *bio,
773
		struct page *page, unsigned int len, unsigned int offset,
774
		unsigned int max_sectors, bool *same_page)
L
Linus Torvalds 已提交
775 776 777
{
	struct bio_vec *bvec;

778
	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
L
Linus Torvalds 已提交
779 780
		return 0;

781
	if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
L
Linus Torvalds 已提交
782 783
		return 0;

784
	if (bio->bi_vcnt > 0) {
785
		if (bio_try_merge_hw_seg(q, bio, page, len, offset, same_page))
786
			return len;
787 788 789 790 791

		/*
		 * If the queue doesn't support SG gaps and adding this segment
		 * would create a gap, disallow it.
		 */
792
		bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
793 794
		if (bvec_gap_to_prev(q, bvec, offset))
			return 0;
795 796
	}

M
Ming Lei 已提交
797
	if (bio_full(bio, len))
L
Linus Torvalds 已提交
798 799
		return 0;

800
	if (bio->bi_vcnt >= queue_max_segments(q))
801 802
		return 0;

803 804 805 806 807
	bvec = &bio->bi_io_vec[bio->bi_vcnt];
	bvec->bv_page = page;
	bvec->bv_len = len;
	bvec->bv_offset = offset;
	bio->bi_vcnt++;
808
	bio->bi_iter.bi_size += len;
L
Linus Torvalds 已提交
809 810
	return len;
}
811

812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
/**
 * bio_add_pc_page	- attempt to add page to passthrough bio
 * @q: the target queue
 * @bio: destination bio
 * @page: page to add
 * @len: vec entry length
 * @offset: vec entry offset
 *
 * Attempt to add a page to the bio_vec maplist. This can fail for a
 * number of reasons, such as the bio being full or target block device
 * limitations. The target block device must allow bio's up to PAGE_SIZE,
 * so it is always possible to add a single page to an empty bio.
 *
 * This should only be used by passthrough bios.
 */
827 828 829
int bio_add_pc_page(struct request_queue *q, struct bio *bio,
		struct page *page, unsigned int len, unsigned int offset)
{
830
	bool same_page = false;
831 832
	return bio_add_hw_page(q, bio, page, len, offset,
			queue_max_hw_sectors(q), &same_page);
833
}
834
EXPORT_SYMBOL(bio_add_pc_page);
835

L
Linus Torvalds 已提交
836
/**
837 838
 * __bio_try_merge_page - try appending data to an existing bvec.
 * @bio: destination bio
839
 * @page: start page to add
840
 * @len: length of the data to add
841
 * @off: offset of the data relative to @page
842
 * @same_page: return if the segment has been merged inside the same page
L
Linus Torvalds 已提交
843
 *
844
 * Try to add the data at @page + @off to the last bvec of @bio.  This is a
845
 * useful optimisation for file systems with a block size smaller than the
846 847
 * page size.
 *
848 849
 * Warn if (@len, @off) crosses pages in case that @same_page is true.
 *
850
 * Return %true on success or %false on failure.
L
Linus Torvalds 已提交
851
 */
852
bool __bio_try_merge_page(struct bio *bio, struct page *page,
853
		unsigned int len, unsigned int off, bool *same_page)
L
Linus Torvalds 已提交
854
{
K
Kent Overstreet 已提交
855
	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
856
		return false;
857

858
	if (bio->bi_vcnt > 0) {
859
		struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
860 861

		if (page_is_mergeable(bv, page, len, off, same_page)) {
862 863
			if (bio->bi_iter.bi_size > UINT_MAX - len) {
				*same_page = false;
864
				return false;
865
			}
866 867 868 869
			bv->bv_len += len;
			bio->bi_iter.bi_size += len;
			return true;
		}
K
Kent Overstreet 已提交
870
	}
871 872 873
	return false;
}
EXPORT_SYMBOL_GPL(__bio_try_merge_page);
K
Kent Overstreet 已提交
874

875
/**
876
 * __bio_add_page - add page(s) to a bio in a new segment
877
 * @bio: destination bio
878 879 880
 * @page: start page to add
 * @len: length of the data to add, may cross pages
 * @off: offset of the data relative to @page, may cross pages
881 882 883 884 885 886 887 888
 *
 * Add the data at @page + @off to @bio as a new bvec.  The caller must ensure
 * that @bio has space for another bvec.
 */
void __bio_add_page(struct bio *bio, struct page *page,
		unsigned int len, unsigned int off)
{
	struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
K
Kent Overstreet 已提交
889

890
	WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
M
Ming Lei 已提交
891
	WARN_ON_ONCE(bio_full(bio, len));
892 893 894 895

	bv->bv_page = page;
	bv->bv_offset = off;
	bv->bv_len = len;
K
Kent Overstreet 已提交
896 897

	bio->bi_iter.bi_size += len;
898
	bio->bi_vcnt++;
899 900 901

	if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page)))
		bio_set_flag(bio, BIO_WORKINGSET);
902 903 904 905
}
EXPORT_SYMBOL_GPL(__bio_add_page);

/**
906
 *	bio_add_page	-	attempt to add page(s) to bio
907
 *	@bio: destination bio
908 909 910
 *	@page: start page to add
 *	@len: vec entry length, may cross pages
 *	@offset: vec entry offset relative to @page, may cross pages
911
 *
912
 *	Attempt to add page(s) to the bio_vec maplist. This will only fail
913 914 915 916 917
 *	if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
 */
int bio_add_page(struct bio *bio, struct page *page,
		 unsigned int len, unsigned int offset)
{
918 919 920
	bool same_page = false;

	if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
M
Ming Lei 已提交
921
		if (bio_full(bio, len))
922 923 924
			return 0;
		__bio_add_page(bio, page, len, offset);
	}
K
Kent Overstreet 已提交
925
	return len;
L
Linus Torvalds 已提交
926
}
927
EXPORT_SYMBOL(bio_add_page);
L
Linus Torvalds 已提交
928

929
void bio_release_pages(struct bio *bio, bool mark_dirty)
930 931 932 933
{
	struct bvec_iter_all iter_all;
	struct bio_vec *bvec;

934 935 936
	if (bio_flagged(bio, BIO_NO_PAGE_REF))
		return;

937 938 939
	bio_for_each_segment_all(bvec, bio, iter_all) {
		if (mark_dirty && !PageCompound(bvec->bv_page))
			set_page_dirty_lock(bvec->bv_page);
940
		put_page(bvec->bv_page);
941
	}
942
}
943
EXPORT_SYMBOL_GPL(bio_release_pages);
944

945
static int bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter)
946
{
947 948 949 950 951 952 953 954 955
	WARN_ON_ONCE(BVEC_POOL_IDX(bio) != 0);

	bio->bi_vcnt = iter->nr_segs;
	bio->bi_max_vecs = iter->nr_segs;
	bio->bi_io_vec = (struct bio_vec *)iter->bvec;
	bio->bi_iter.bi_bvec_done = iter->iov_offset;
	bio->bi_iter.bi_size = iter->count;

	iov_iter_advance(iter, iter->count);
956
	return 0;
957 958
}

959 960
#define PAGE_PTRS_PER_BVEC     (sizeof(struct bio_vec) / sizeof(struct page *))

961
/**
962
 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
963 964 965
 * @bio: bio to add pages to
 * @iter: iov iterator describing the region to be mapped
 *
966
 * Pins pages from *iter and appends them to @bio's bvec array. The
967
 * pages will have to be released using put_page() when done.
968
 * For multi-segment *iter, this function only adds pages from the
969
 * next non-empty segment of the iov iterator.
970
 */
971
static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
972
{
973 974
	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
	unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
975 976
	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
	struct page **pages = (struct page **)bv;
977
	bool same_page = false;
978 979
	ssize_t size, left;
	unsigned len, i;
980
	size_t offset;
981 982 983 984 985 986 987 988

	/*
	 * Move page array up in the allocated memory for the bio vecs as far as
	 * possible so that we can start filling biovecs from the beginning
	 * without overwriting the temporary page array.
	*/
	BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
	pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
989 990 991 992 993

	size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
	if (unlikely(size <= 0))
		return size ? size : -EFAULT;

994 995
	for (left = size, i = 0; left > 0; left -= len, i++) {
		struct page *page = pages[i];
996

997
		len = min_t(size_t, PAGE_SIZE - offset, left);
998 999 1000 1001 1002

		if (__bio_try_merge_page(bio, page, len, offset, &same_page)) {
			if (same_page)
				put_page(page);
		} else {
M
Ming Lei 已提交
1003
			if (WARN_ON_ONCE(bio_full(bio, len)))
1004 1005 1006
                                return -EINVAL;
			__bio_add_page(bio, page, len, offset);
		}
1007
		offset = 0;
1008 1009 1010 1011 1012
	}

	iov_iter_advance(iter, size);
	return 0;
}
1013

1014 1015 1016 1017
static int __bio_iov_append_get_pages(struct bio *bio, struct iov_iter *iter)
{
	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
	unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
1018
	struct request_queue *q = bio->bi_bdev->bd_disk->queue;
1019 1020 1021 1022 1023 1024
	unsigned int max_append_sectors = queue_max_zone_append_sectors(q);
	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
	struct page **pages = (struct page **)bv;
	ssize_t size, left;
	unsigned len, i;
	size_t offset;
1025
	int ret = 0;
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047

	if (WARN_ON_ONCE(!max_append_sectors))
		return 0;

	/*
	 * Move page array up in the allocated memory for the bio vecs as far as
	 * possible so that we can start filling biovecs from the beginning
	 * without overwriting the temporary page array.
	 */
	BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
	pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);

	size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
	if (unlikely(size <= 0))
		return size ? size : -EFAULT;

	for (left = size, i = 0; left > 0; left -= len, i++) {
		struct page *page = pages[i];
		bool same_page = false;

		len = min_t(size_t, PAGE_SIZE - offset, left);
		if (bio_add_hw_page(q, bio, page, len, offset,
1048 1049 1050 1051
				max_append_sectors, &same_page) != len) {
			ret = -EINVAL;
			break;
		}
1052 1053 1054 1055 1056
		if (same_page)
			put_page(page);
		offset = 0;
	}

1057 1058
	iov_iter_advance(iter, size - left);
	return ret;
1059 1060
}

1061
/**
1062
 * bio_iov_iter_get_pages - add user or kernel pages to a bio
1063
 * @bio: bio to add pages to
1064 1065 1066 1067 1068
 * @iter: iov iterator describing the region to be added
 *
 * This takes either an iterator pointing to user memory, or one pointing to
 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
 * map them into the kernel. On IO completion, the caller should put those
1069 1070 1071 1072 1073 1074
 * pages. For bvec based iterators bio_iov_iter_get_pages() uses the provided
 * bvecs rather than copying them. Hence anyone issuing kiocb based IO needs
 * to ensure the bvecs and pages stay referenced until the submitted I/O is
 * completed by a call to ->ki_complete() or returns with an error other than
 * -EIOCBQUEUED. The caller needs to check if the bio is flagged BIO_NO_PAGE_REF
 * on IO completion. If it isn't, then pages should be released.
1075 1076
 *
 * The function tries, but does not guarantee, to pin as many pages as
1077
 * fit into the bio, or are requested in @iter, whatever is smaller. If
1078 1079
 * MM encounters an error pinning the requested pages, it stops. Error
 * is returned only if 0 pages could be pinned.
1080 1081 1082
 *
 * It's intended for direct IO, so doesn't do PSI tracking, the caller is
 * responsible for setting BIO_WORKINGSET if necessary.
1083 1084 1085
 */
int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
{
1086
	int ret = 0;
1087

1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
	if (iov_iter_is_bvec(iter)) {
		if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
			return -EINVAL;
		bio_iov_bvec_set(bio, iter);
		bio_set_flag(bio, BIO_NO_PAGE_REF);
		return 0;
	} else {
		do {
			if (bio_op(bio) == REQ_OP_ZONE_APPEND)
				ret = __bio_iov_append_get_pages(bio, iter);
1098 1099
			else
				ret = __bio_iov_iter_get_pages(bio, iter);
1100 1101
		} while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
	}
1102 1103 1104

	/* don't account direct I/O as memory stall */
	bio_clear_flag(bio, BIO_WORKINGSET);
1105
	return bio->bi_vcnt ? 0 : ret;
1106
}
1107
EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
1108

1109
static void submit_bio_wait_endio(struct bio *bio)
1110
{
1111
	complete(bio->bi_private);
1112 1113 1114 1115 1116 1117 1118 1119
}

/**
 * submit_bio_wait - submit a bio, and wait until it completes
 * @bio: The &struct bio which describes the I/O
 *
 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
 * bio_endio() on failure.
1120 1121 1122 1123
 *
 * WARNING: Unlike to how submit_bio() is usually used, this function does not
 * result in bio reference to be consumed. The caller must drop the reference
 * on his own.
1124
 */
1125
int submit_bio_wait(struct bio *bio)
1126
{
1127 1128
	DECLARE_COMPLETION_ONSTACK_MAP(done,
			bio->bi_bdev->bd_disk->lockdep_map);
1129
	unsigned long hang_check;
1130

1131
	bio->bi_private = &done;
1132
	bio->bi_end_io = submit_bio_wait_endio;
J
Jens Axboe 已提交
1133
	bio->bi_opf |= REQ_SYNC;
1134
	submit_bio(bio);
1135 1136 1137 1138 1139 1140 1141 1142 1143

	/* Prevent hang_check timer from firing at us during very long I/O */
	hang_check = sysctl_hung_task_timeout_secs;
	if (hang_check)
		while (!wait_for_completion_io_timeout(&done,
					hang_check * (HZ/2)))
			;
	else
		wait_for_completion_io(&done);
1144

1145
	return blk_status_to_errno(bio->bi_status);
1146 1147 1148
}
EXPORT_SYMBOL(submit_bio_wait);

K
Kent Overstreet 已提交
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
/**
 * bio_advance - increment/complete a bio by some number of bytes
 * @bio:	bio to advance
 * @bytes:	number of bytes to complete
 *
 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
 * be updated on the last bvec as well.
 *
 * @bio will then represent the remaining, uncompleted portion of the io.
 */
void bio_advance(struct bio *bio, unsigned bytes)
{
	if (bio_integrity(bio))
		bio_integrity_advance(bio, bytes);

1165
	bio_crypt_advance(bio, bytes);
K
Kent Overstreet 已提交
1166
	bio_advance_iter(bio, &bio->bi_iter, bytes);
K
Kent Overstreet 已提交
1167 1168 1169
}
EXPORT_SYMBOL(bio_advance);

1170 1171
void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
			struct bio *src, struct bvec_iter *src_iter)
K
Kent Overstreet 已提交
1172
{
1173
	struct bio_vec src_bv, dst_bv;
K
Kent Overstreet 已提交
1174
	void *src_p, *dst_p;
1175
	unsigned bytes;
K
Kent Overstreet 已提交
1176

1177 1178 1179
	while (src_iter->bi_size && dst_iter->bi_size) {
		src_bv = bio_iter_iovec(src, *src_iter);
		dst_bv = bio_iter_iovec(dst, *dst_iter);
1180 1181

		bytes = min(src_bv.bv_len, dst_bv.bv_len);
K
Kent Overstreet 已提交
1182

1183 1184
		src_p = kmap_atomic(src_bv.bv_page);
		dst_p = kmap_atomic(dst_bv.bv_page);
K
Kent Overstreet 已提交
1185

1186 1187
		memcpy(dst_p + dst_bv.bv_offset,
		       src_p + src_bv.bv_offset,
K
Kent Overstreet 已提交
1188 1189 1190 1191 1192
		       bytes);

		kunmap_atomic(dst_p);
		kunmap_atomic(src_p);

1193 1194
		flush_dcache_page(dst_bv.bv_page);

P
Pavel Begunkov 已提交
1195 1196
		bio_advance_iter_single(src, src_iter, bytes);
		bio_advance_iter_single(dst, dst_iter, bytes);
K
Kent Overstreet 已提交
1197 1198
	}
}
1199 1200 1201
EXPORT_SYMBOL(bio_copy_data_iter);

/**
1202 1203 1204
 * bio_copy_data - copy contents of data buffers from one bio to another
 * @src: source bio
 * @dst: destination bio
1205 1206 1207 1208 1209 1210
 *
 * Stops when it reaches the end of either @src or @dst - that is, copies
 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
 */
void bio_copy_data(struct bio *dst, struct bio *src)
{
1211 1212 1213 1214
	struct bvec_iter src_iter = src->bi_iter;
	struct bvec_iter dst_iter = dst->bi_iter;

	bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1215
}
K
Kent Overstreet 已提交
1216 1217
EXPORT_SYMBOL(bio_copy_data);

1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
/**
 * bio_list_copy_data - copy contents of data buffers from one chain of bios to
 * another
 * @src: source bio list
 * @dst: destination bio list
 *
 * Stops when it reaches the end of either the @src list or @dst list - that is,
 * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
 * bios).
 */
void bio_list_copy_data(struct bio *dst, struct bio *src)
{
	struct bvec_iter src_iter = src->bi_iter;
	struct bvec_iter dst_iter = dst->bi_iter;

	while (1) {
		if (!src_iter.bi_size) {
			src = src->bi_next;
			if (!src)
				break;

			src_iter = src->bi_iter;
		}

		if (!dst_iter.bi_size) {
			dst = dst->bi_next;
			if (!dst)
				break;

			dst_iter = dst->bi_iter;
		}

		bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
	}
}
EXPORT_SYMBOL(bio_list_copy_data);

1255
void bio_free_pages(struct bio *bio)
1256 1257
{
	struct bio_vec *bvec;
1258
	struct bvec_iter_all iter_all;
1259

1260
	bio_for_each_segment_all(bvec, bio, iter_all)
1261 1262
		__free_page(bvec->bv_page);
}
1263
EXPORT_SYMBOL(bio_free_pages);
1264

L
Linus Torvalds 已提交
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
/*
 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
 * for performing direct-IO in BIOs.
 *
 * The problem is that we cannot run set_page_dirty() from interrupt context
 * because the required locks are not interrupt-safe.  So what we can do is to
 * mark the pages dirty _before_ performing IO.  And in interrupt context,
 * check that the pages are still dirty.   If so, fine.  If not, redirty them
 * in process context.
 *
 * We special-case compound pages here: normally this means reads into hugetlb
 * pages.  The logic in here doesn't really work right for compound pages
 * because the VM does not uniformly chase down the head page in all cases.
 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
 * handle them at all.  So we skip compound pages here at an early stage.
 *
 * Note that this code is very hard to test under normal circumstances because
 * direct-io pins the pages with get_user_pages().  This makes
 * is_page_cache_freeable return false, and the VM will not clean the pages.
1284
 * But other code (eg, flusher threads) could clean the pages if they are mapped
L
Linus Torvalds 已提交
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
 * pagecache.
 *
 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
 * deferred bio dirtying paths.
 */

/*
 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
 */
void bio_set_pages_dirty(struct bio *bio)
{
1296
	struct bio_vec *bvec;
1297
	struct bvec_iter_all iter_all;
L
Linus Torvalds 已提交
1298

1299
	bio_for_each_segment_all(bvec, bio, iter_all) {
1300 1301
		if (!PageCompound(bvec->bv_page))
			set_page_dirty_lock(bvec->bv_page);
L
Linus Torvalds 已提交
1302 1303 1304 1305 1306 1307 1308
	}
}

/*
 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
 * If they are, then fine.  If, however, some pages are clean then they must
 * have been written out during the direct-IO read.  So we take another ref on
1309
 * the BIO and re-dirty the pages in process context.
L
Linus Torvalds 已提交
1310 1311
 *
 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1312 1313
 * here on.  It will run one put_page() against each page and will run one
 * bio_put() against the BIO.
L
Linus Torvalds 已提交
1314 1315
 */

1316
static void bio_dirty_fn(struct work_struct *work);
L
Linus Torvalds 已提交
1317

1318
static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
L
Linus Torvalds 已提交
1319 1320 1321 1322 1323 1324
static DEFINE_SPINLOCK(bio_dirty_lock);
static struct bio *bio_dirty_list;

/*
 * This runs in process context
 */
1325
static void bio_dirty_fn(struct work_struct *work)
L
Linus Torvalds 已提交
1326
{
1327
	struct bio *bio, *next;
L
Linus Torvalds 已提交
1328

1329 1330
	spin_lock_irq(&bio_dirty_lock);
	next = bio_dirty_list;
L
Linus Torvalds 已提交
1331
	bio_dirty_list = NULL;
1332
	spin_unlock_irq(&bio_dirty_lock);
L
Linus Torvalds 已提交
1333

1334 1335
	while ((bio = next) != NULL) {
		next = bio->bi_private;
L
Linus Torvalds 已提交
1336

1337
		bio_release_pages(bio, true);
L
Linus Torvalds 已提交
1338 1339 1340 1341 1342 1343
		bio_put(bio);
	}
}

void bio_check_pages_dirty(struct bio *bio)
{
1344
	struct bio_vec *bvec;
1345
	unsigned long flags;
1346
	struct bvec_iter_all iter_all;
L
Linus Torvalds 已提交
1347

1348
	bio_for_each_segment_all(bvec, bio, iter_all) {
1349 1350
		if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
			goto defer;
L
Linus Torvalds 已提交
1351 1352
	}

1353
	bio_release_pages(bio, false);
1354 1355 1356 1357 1358 1359 1360 1361
	bio_put(bio);
	return;
defer:
	spin_lock_irqsave(&bio_dirty_lock, flags);
	bio->bi_private = bio_dirty_list;
	bio_dirty_list = bio;
	spin_unlock_irqrestore(&bio_dirty_lock, flags);
	schedule_work(&bio_dirty_work);
L
Linus Torvalds 已提交
1362 1363
}

1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
static inline bool bio_remaining_done(struct bio *bio)
{
	/*
	 * If we're not chaining, then ->__bi_remaining is always 1 and
	 * we always end io on the first invocation.
	 */
	if (!bio_flagged(bio, BIO_CHAIN))
		return true;

	BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);

1375
	if (atomic_dec_and_test(&bio->__bi_remaining)) {
1376
		bio_clear_flag(bio, BIO_CHAIN);
1377
		return true;
1378
	}
1379 1380 1381 1382

	return false;
}

L
Linus Torvalds 已提交
1383 1384 1385 1386 1387
/**
 * bio_endio - end I/O on a bio
 * @bio:	bio
 *
 * Description:
1388 1389 1390
 *   bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
 *   way to end I/O on a bio. No one should call bi_end_io() directly on a
 *   bio unless they own it and thus know that it has an end_io function.
N
NeilBrown 已提交
1391 1392 1393 1394 1395
 *
 *   bio_endio() can be called several times on a bio that has been chained
 *   using bio_chain().  The ->bi_end_io() function will only be called the
 *   last time.  At this point the BLK_TA_COMPLETE tracing event will be
 *   generated if BIO_TRACE_COMPLETION is set.
L
Linus Torvalds 已提交
1396
 **/
1397
void bio_endio(struct bio *bio)
L
Linus Torvalds 已提交
1398
{
C
Christoph Hellwig 已提交
1399
again:
1400
	if (!bio_remaining_done(bio))
C
Christoph Hellwig 已提交
1401
		return;
1402 1403
	if (!bio_integrity_endio(bio))
		return;
L
Linus Torvalds 已提交
1404

1405 1406
	if (bio->bi_bdev)
		rq_qos_done_bio(bio->bi_bdev->bd_disk->queue, bio);
J
Josef Bacik 已提交
1407

C
Christoph Hellwig 已提交
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
	/*
	 * Need to have a real endio function for chained bios, otherwise
	 * various corner cases will break (like stacking block devices that
	 * save/restore bi_end_io) - however, we want to avoid unbounded
	 * recursion and blowing the stack. Tail call optimization would
	 * handle this, but compiling with frame pointers also disables
	 * gcc's sibling call optimization.
	 */
	if (bio->bi_end_io == bio_chain_endio) {
		bio = __bio_chain_endio(bio);
		goto again;
K
Kent Overstreet 已提交
1419
	}
C
Christoph Hellwig 已提交
1420

1421 1422
	if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
		trace_block_bio_complete(bio->bi_bdev->bd_disk->queue, bio);
N
NeilBrown 已提交
1423 1424 1425
		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
	}

1426
	blk_throtl_bio_endio(bio);
S
Shaohua Li 已提交
1427 1428
	/* release cgroup info */
	bio_uninit(bio);
C
Christoph Hellwig 已提交
1429 1430
	if (bio->bi_end_io)
		bio->bi_end_io(bio);
L
Linus Torvalds 已提交
1431
}
1432
EXPORT_SYMBOL(bio_endio);
L
Linus Torvalds 已提交
1433

K
Kent Overstreet 已提交
1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
/**
 * bio_split - split a bio
 * @bio:	bio to split
 * @sectors:	number of sectors to split from the front of @bio
 * @gfp:	gfp mask
 * @bs:		bio set to allocate from
 *
 * Allocates and returns a new bio which represents @sectors from the start of
 * @bio, and updates @bio to represent the remaining sectors.
 *
1444
 * Unless this is a discard request the newly allocated bio will point
1445 1446
 * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
 * neither @bio nor @bs are freed before the split bio.
K
Kent Overstreet 已提交
1447 1448 1449 1450
 */
struct bio *bio_split(struct bio *bio, int sectors,
		      gfp_t gfp, struct bio_set *bs)
{
1451
	struct bio *split;
K
Kent Overstreet 已提交
1452 1453 1454 1455

	BUG_ON(sectors <= 0);
	BUG_ON(sectors >= bio_sectors(bio));

1456 1457 1458 1459
	/* Zone append commands cannot be split */
	if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
		return NULL;

1460
	split = bio_clone_fast(bio, gfp, bs);
K
Kent Overstreet 已提交
1461 1462 1463 1464 1465 1466
	if (!split)
		return NULL;

	split->bi_iter.bi_size = sectors << 9;

	if (bio_integrity(split))
1467
		bio_integrity_trim(split);
K
Kent Overstreet 已提交
1468 1469 1470

	bio_advance(bio, split->bi_iter.bi_size);

N
NeilBrown 已提交
1471
	if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1472
		bio_set_flag(split, BIO_TRACE_COMPLETION);
N
NeilBrown 已提交
1473

K
Kent Overstreet 已提交
1474 1475 1476 1477
	return split;
}
EXPORT_SYMBOL(bio_split);

1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
/**
 * bio_trim - trim a bio
 * @bio:	bio to trim
 * @offset:	number of sectors to trim from the front of @bio
 * @size:	size we want to trim @bio to, in sectors
 */
void bio_trim(struct bio *bio, int offset, int size)
{
	/* 'bio' is a cloned bio which we need to trim to match
	 * the given offset and size.
	 */

	size <<= 9;
1491
	if (offset == 0 && size == bio->bi_iter.bi_size)
1492 1493 1494
		return;

	bio_advance(bio, offset << 9);
1495
	bio->bi_iter.bi_size = size;
1496 1497

	if (bio_integrity(bio))
1498
		bio_integrity_trim(bio);
1499

1500 1501 1502
}
EXPORT_SYMBOL_GPL(bio_trim);

L
Linus Torvalds 已提交
1503 1504 1505 1506
/*
 * create memory pools for biovec's in a bio_set.
 * use the global biovec slabs created for general use.
 */
1507
int biovec_init_pool(mempool_t *pool, int pool_entries)
L
Linus Torvalds 已提交
1508
{
1509
	struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
L
Linus Torvalds 已提交
1510

1511
	return mempool_init_slab_pool(pool, pool_entries, bp->slab);
L
Linus Torvalds 已提交
1512 1513
}

1514 1515 1516 1517 1518 1519 1520
/*
 * bioset_exit - exit a bioset initialized with bioset_init()
 *
 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
 * kzalloc()).
 */
void bioset_exit(struct bio_set *bs)
L
Linus Torvalds 已提交
1521
{
1522 1523
	if (bs->rescue_workqueue)
		destroy_workqueue(bs->rescue_workqueue);
1524
	bs->rescue_workqueue = NULL;
1525

1526 1527
	mempool_exit(&bs->bio_pool);
	mempool_exit(&bs->bvec_pool);
1528

1529
	bioset_integrity_free(bs);
1530 1531 1532 1533 1534
	if (bs->bio_slab)
		bio_put_slab(bs);
	bs->bio_slab = NULL;
}
EXPORT_SYMBOL(bioset_exit);
L
Linus Torvalds 已提交
1535

1536 1537
/**
 * bioset_init - Initialize a bio_set
K
Kent Overstreet 已提交
1538
 * @bs:		pool to initialize
1539 1540 1541 1542 1543
 * @pool_size:	Number of bio and bio_vecs to cache in the mempool
 * @front_pad:	Number of bytes to allocate in front of the returned bio
 * @flags:	Flags to modify behavior, currently %BIOSET_NEED_BVECS
 *              and %BIOSET_NEED_RESCUER
 *
K
Kent Overstreet 已提交
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
 * Description:
 *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
 *    to ask for a number of bytes to be allocated in front of the bio.
 *    Front pad allocation is useful for embedding the bio inside
 *    another structure, to avoid allocating extra data to go with the bio.
 *    Note that the bio must be embedded at the END of that structure always,
 *    or things will break badly.
 *    If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
 *    for allocating iovecs.  This pool is not needed e.g. for bio_clone_fast().
 *    If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
 *    dispatch queued requests when the mempool runs out of space.
 *
1556 1557 1558 1559 1560 1561 1562
 */
int bioset_init(struct bio_set *bs,
		unsigned int pool_size,
		unsigned int front_pad,
		int flags)
{
	bs->front_pad = front_pad;
1563 1564 1565 1566
	if (flags & BIOSET_NEED_BVECS)
		bs->back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
	else
		bs->back_pad = 0;
1567 1568 1569 1570 1571

	spin_lock_init(&bs->rescue_lock);
	bio_list_init(&bs->rescue_list);
	INIT_WORK(&bs->rescue_work, bio_alloc_rescue);

1572
	bs->bio_slab = bio_find_or_create_slab(bs);
1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
	if (!bs->bio_slab)
		return -ENOMEM;

	if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
		goto bad;

	if ((flags & BIOSET_NEED_BVECS) &&
	    biovec_init_pool(&bs->bvec_pool, pool_size))
		goto bad;

	if (!(flags & BIOSET_NEED_RESCUER))
		return 0;

	bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
	if (!bs->rescue_workqueue)
		goto bad;

	return 0;
bad:
	bioset_exit(bs);
	return -ENOMEM;
}
EXPORT_SYMBOL(bioset_init);

1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
/*
 * Initialize and setup a new bio_set, based on the settings from
 * another bio_set.
 */
int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
{
	int flags;

	flags = 0;
	if (src->bvec_pool.min_nr)
		flags |= BIOSET_NEED_BVECS;
	if (src->rescue_workqueue)
		flags |= BIOSET_NEED_RESCUER;

	return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
}
EXPORT_SYMBOL(bioset_init_from_src);

L
Linus Torvalds 已提交
1615 1616 1617 1618
static void __init biovec_init_slabs(void)
{
	int i;

1619
	for (i = 0; i < BVEC_POOL_NR; i++) {
L
Linus Torvalds 已提交
1620 1621 1622
		int size;
		struct biovec_slab *bvs = bvec_slabs + i;

1623 1624 1625 1626 1627
		if (bvs->nr_vecs <= BIO_INLINE_VECS) {
			bvs->slab = NULL;
			continue;
		}

L
Linus Torvalds 已提交
1628 1629
		size = bvs->nr_vecs * sizeof(struct bio_vec);
		bvs->slab = kmem_cache_create(bvs->name, size, 0,
1630
                                SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
L
Linus Torvalds 已提交
1631 1632 1633 1634 1635
	}
}

static int __init init_bio(void)
{
1636 1637
	BUILD_BUG_ON(BIO_FLAG_LAST > BVEC_POOL_OFFSET);

1638
	bio_integrity_init();
L
Linus Torvalds 已提交
1639 1640
	biovec_init_slabs();

1641
	if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
L
Linus Torvalds 已提交
1642 1643
		panic("bio: can't allocate bios\n");

1644
	if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
1645 1646
		panic("bio: can't create integrity pool\n");

L
Linus Torvalds 已提交
1647 1648 1649
	return 0;
}
subsys_initcall(init_bio);