amdgpu_smu.c 56.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/*
 * Copyright 2019 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 */

#include <linux/firmware.h>
24 25

#include "pp_debug.h"
26 27
#include "amdgpu.h"
#include "amdgpu_smu.h"
28
#include "smu_internal.h"
29
#include "soc15_common.h"
30
#include "smu_v11_0.h"
31
#include "smu_v12_0.h"
32
#include "atom.h"
33
#include "amd_pcie.h"
34 35 36 37
#include "vega20_ppt.h"
#include "arcturus_ppt.h"
#include "navi10_ppt.h"
#include "renoir_ppt.h"
38

39 40 41 42 43 44 45 46
#undef __SMU_DUMMY_MAP
#define __SMU_DUMMY_MAP(type)	#type
static const char* __smu_message_names[] = {
	SMU_MESSAGE_TYPES
};

const char *smu_get_message_name(struct smu_context *smu, enum smu_message_type type)
{
47
	if (type < 0 || type >= SMU_MSG_MAX_COUNT)
48
		return "unknown smu message";
49 50 51
	return __smu_message_names[type];
}

52 53 54 55 56 57 58 59
#undef __SMU_DUMMY_MAP
#define __SMU_DUMMY_MAP(fea)	#fea
static const char* __smu_feature_names[] = {
	SMU_FEATURE_MASKS
};

const char *smu_get_feature_name(struct smu_context *smu, enum smu_feature_mask feature)
{
60
	if (feature < 0 || feature >= SMU_FEATURE_COUNT)
61
		return "unknown smu feature";
62 63 64
	return __smu_feature_names[feature];
}

65 66 67 68 69 70 71
size_t smu_sys_get_pp_feature_mask(struct smu_context *smu, char *buf)
{
	size_t size = 0;
	int ret = 0, i = 0;
	uint32_t feature_mask[2] = { 0 };
	int32_t feature_index = 0;
	uint32_t count = 0;
72 73
	uint32_t sort_feature[SMU_FEATURE_COUNT];
	uint64_t hw_feature_count = 0;
74

75 76
	mutex_lock(&smu->mutex);

77 78 79 80 81 82 83 84 85 86 87
	ret = smu_feature_get_enabled_mask(smu, feature_mask, 2);
	if (ret)
		goto failed;

	size =  sprintf(buf + size, "features high: 0x%08x low: 0x%08x\n",
			feature_mask[1], feature_mask[0]);

	for (i = 0; i < SMU_FEATURE_COUNT; i++) {
		feature_index = smu_feature_get_index(smu, i);
		if (feature_index < 0)
			continue;
88 89 90 91 92
		sort_feature[feature_index] = i;
		hw_feature_count++;
	}

	for (i = 0; i < hw_feature_count; i++) {
93 94
		size += sprintf(buf + size, "%02d. %-20s (%2d) : %s\n",
			       count++,
95 96 97
			       smu_get_feature_name(smu, sort_feature[i]),
			       i,
			       !!smu_feature_is_enabled(smu, sort_feature[i]) ?
98
			       "enabled" : "disabled");
99 100 101
	}

failed:
102 103
	mutex_unlock(&smu->mutex);

104 105 106
	return size;
}

107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
static int smu_feature_update_enable_state(struct smu_context *smu,
					   uint64_t feature_mask,
					   bool enabled)
{
	struct smu_feature *feature = &smu->smu_feature;
	uint32_t feature_low = 0, feature_high = 0;
	int ret = 0;

	if (!smu->pm_enabled)
		return ret;

	feature_low = (feature_mask >> 0 ) & 0xffffffff;
	feature_high = (feature_mask >> 32) & 0xffffffff;

	if (enabled) {
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_EnableSmuFeaturesLow,
						  feature_low);
		if (ret)
			return ret;
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_EnableSmuFeaturesHigh,
						  feature_high);
		if (ret)
			return ret;
	} else {
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DisableSmuFeaturesLow,
						  feature_low);
		if (ret)
			return ret;
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DisableSmuFeaturesHigh,
						  feature_high);
		if (ret)
			return ret;
	}

	mutex_lock(&feature->mutex);
	if (enabled)
		bitmap_or(feature->enabled, feature->enabled,
				(unsigned long *)(&feature_mask), SMU_FEATURE_MAX);
	else
		bitmap_andnot(feature->enabled, feature->enabled,
				(unsigned long *)(&feature_mask), SMU_FEATURE_MAX);
	mutex_unlock(&feature->mutex);

	return ret;
}

153 154 155 156 157 158 159 160
int smu_sys_set_pp_feature_mask(struct smu_context *smu, uint64_t new_mask)
{
	int ret = 0;
	uint32_t feature_mask[2] = { 0 };
	uint64_t feature_2_enabled = 0;
	uint64_t feature_2_disabled = 0;
	uint64_t feature_enables = 0;

161 162
	mutex_lock(&smu->mutex);

163 164
	ret = smu_feature_get_enabled_mask(smu, feature_mask, 2);
	if (ret)
165
		goto out;
166 167 168 169 170 171 172 173 174

	feature_enables = ((uint64_t)feature_mask[1] << 32 | (uint64_t)feature_mask[0]);

	feature_2_enabled  = ~feature_enables & new_mask;
	feature_2_disabled = feature_enables & ~new_mask;

	if (feature_2_enabled) {
		ret = smu_feature_update_enable_state(smu, feature_2_enabled, true);
		if (ret)
175
			goto out;
176 177 178 179
	}
	if (feature_2_disabled) {
		ret = smu_feature_update_enable_state(smu, feature_2_disabled, false);
		if (ret)
180
			goto out;
181 182
	}

183 184 185
out:
	mutex_unlock(&smu->mutex);

186 187 188
	return ret;
}

189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
int smu_get_smc_version(struct smu_context *smu, uint32_t *if_version, uint32_t *smu_version)
{
	int ret = 0;

	if (!if_version && !smu_version)
		return -EINVAL;

	if (if_version) {
		ret = smu_send_smc_msg(smu, SMU_MSG_GetDriverIfVersion);
		if (ret)
			return ret;

		ret = smu_read_smc_arg(smu, if_version);
		if (ret)
			return ret;
	}

	if (smu_version) {
		ret = smu_send_smc_msg(smu, SMU_MSG_GetSmuVersion);
		if (ret)
			return ret;

		ret = smu_read_smc_arg(smu, smu_version);
		if (ret)
			return ret;
	}

	return ret;
}

219 220 221
int smu_set_soft_freq_range(struct smu_context *smu, enum smu_clk_type clk_type,
			    uint32_t min, uint32_t max)
{
222
	int ret = 0;
223 224 225 226

	if (min <= 0 && max <= 0)
		return -EINVAL;

227 228 229
	if (!smu_clk_dpm_is_enabled(smu, clk_type))
		return 0;

230
	ret = smu_set_soft_freq_limited_range(smu, clk_type, min, max);
231 232 233
	return ret;
}

234 235 236 237 238 239 240 241 242
int smu_set_hard_freq_range(struct smu_context *smu, enum smu_clk_type clk_type,
			    uint32_t min, uint32_t max)
{
	int ret = 0, clk_id = 0;
	uint32_t param;

	if (min <= 0 && max <= 0)
		return -EINVAL;

243 244 245
	if (!smu_clk_dpm_is_enabled(smu, clk_type))
		return 0;

246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
	clk_id = smu_clk_get_index(smu, clk_type);
	if (clk_id < 0)
		return clk_id;

	if (max > 0) {
		param = (uint32_t)((clk_id << 16) | (max & 0xffff));
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetHardMaxByFreq,
						  param);
		if (ret)
			return ret;
	}

	if (min > 0) {
		param = (uint32_t)((clk_id << 16) | (min & 0xffff));
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetHardMinByFreq,
						  param);
		if (ret)
			return ret;
	}


	return ret;
}

270
int smu_get_dpm_freq_range(struct smu_context *smu, enum smu_clk_type clk_type,
271
			   uint32_t *min, uint32_t *max, bool lock_needed)
272
{
273
	uint32_t clock_limit;
274
	int ret = 0;
275 276 277 278

	if (!min && !max)
		return -EINVAL;

279 280 281
	if (lock_needed)
		mutex_lock(&smu->mutex);

282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
	if (!smu_clk_dpm_is_enabled(smu, clk_type)) {
		switch (clk_type) {
		case SMU_MCLK:
		case SMU_UCLK:
			clock_limit = smu->smu_table.boot_values.uclk;
			break;
		case SMU_GFXCLK:
		case SMU_SCLK:
			clock_limit = smu->smu_table.boot_values.gfxclk;
			break;
		case SMU_SOCCLK:
			clock_limit = smu->smu_table.boot_values.socclk;
			break;
		default:
			clock_limit = 0;
			break;
		}

		/* clock in Mhz unit */
		if (min)
			*min = clock_limit / 100;
		if (max)
			*max = clock_limit / 100;
305 306 307 308 309 310
	} else {
		/*
		 * Todo: Use each asic(ASIC_ppt funcs) control the callbacks exposed to the
		 * core driver and then have helpers for stuff that is common(SMU_v11_x | SMU_v12_x funcs).
		 */
		ret = smu_get_dpm_ultimate_freq(smu, clk_type, min, max);
311
	}
312 313 314 315

	if (lock_needed)
		mutex_unlock(&smu->mutex);

316 317 318
	return ret;
}

319 320 321 322 323 324 325 326 327
int smu_get_dpm_freq_by_index(struct smu_context *smu, enum smu_clk_type clk_type,
			      uint16_t level, uint32_t *value)
{
	int ret = 0, clk_id = 0;
	uint32_t param;

	if (!value)
		return -EINVAL;

328 329 330
	if (!smu_clk_dpm_is_enabled(smu, clk_type))
		return 0;

331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
	clk_id = smu_clk_get_index(smu, clk_type);
	if (clk_id < 0)
		return clk_id;

	param = (uint32_t)(((clk_id & 0xffff) << 16) | (level & 0xffff));

	ret = smu_send_smc_msg_with_param(smu,SMU_MSG_GetDpmFreqByIndex,
					  param);
	if (ret)
		return ret;

	ret = smu_read_smc_arg(smu, &param);
	if (ret)
		return ret;

	/* BIT31:  0 - Fine grained DPM, 1 - Dicrete DPM
	 * now, we un-support it */
	*value = param & 0x7fffffff;

	return ret;
}

int smu_get_dpm_level_count(struct smu_context *smu, enum smu_clk_type clk_type,
			    uint32_t *value)
{
	return smu_get_dpm_freq_by_index(smu, clk_type, 0xff, value);
}

359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
bool smu_clk_dpm_is_enabled(struct smu_context *smu, enum smu_clk_type clk_type)
{
	enum smu_feature_mask feature_id = 0;

	switch (clk_type) {
	case SMU_MCLK:
	case SMU_UCLK:
		feature_id = SMU_FEATURE_DPM_UCLK_BIT;
		break;
	case SMU_GFXCLK:
	case SMU_SCLK:
		feature_id = SMU_FEATURE_DPM_GFXCLK_BIT;
		break;
	case SMU_SOCCLK:
		feature_id = SMU_FEATURE_DPM_SOCCLK_BIT;
		break;
	default:
		return true;
	}

	if(!smu_feature_is_enabled(smu, feature_id)) {
		return false;
	}

	return true;
}

386 387 388 389 390 391 392 393 394 395 396 397 398 399
/**
 * smu_dpm_set_power_gate - power gate/ungate the specific IP block
 *
 * @smu:        smu_context pointer
 * @block_type: the IP block to power gate/ungate
 * @gate:       to power gate if true, ungate otherwise
 *
 * This API uses no smu->mutex lock protection due to:
 * 1. It is either called by other IP block(gfx/sdma/vcn/uvd/vce).
 *    This is guarded to be race condition free by the caller.
 * 2. Or get called on user setting request of power_dpm_force_performance_level.
 *    Under this case, the smu->mutex lock protection is already enforced on
 *    the parent API smu_force_performance_level of the call path.
 */
400 401 402 403 404 405 406 407 408 409 410 411
int smu_dpm_set_power_gate(struct smu_context *smu, uint32_t block_type,
			   bool gate)
{
	int ret = 0;

	switch (block_type) {
	case AMD_IP_BLOCK_TYPE_UVD:
		ret = smu_dpm_set_uvd_enable(smu, gate);
		break;
	case AMD_IP_BLOCK_TYPE_VCE:
		ret = smu_dpm_set_vce_enable(smu, gate);
		break;
412 413 414
	case AMD_IP_BLOCK_TYPE_GFX:
		ret = smu_gfx_off_control(smu, gate);
		break;
415 416 417
	case AMD_IP_BLOCK_TYPE_SDMA:
		ret = smu_powergate_sdma(smu, gate);
		break;
L
Leo Liu 已提交
418 419 420
	case AMD_IP_BLOCK_TYPE_JPEG:
		ret = smu_dpm_set_jpeg_enable(smu, gate);
		break;
421 422 423 424
	default:
		break;
	}

425
	return ret;
426 427
}

428 429 430 431 432 433 434 435
int smu_get_power_num_states(struct smu_context *smu,
			     struct pp_states_info *state_info)
{
	if (!state_info)
		return -EINVAL;

	/* not support power state */
	memset(state_info, 0, sizeof(struct pp_states_info));
436 437
	state_info->nums = 1;
	state_info->states[0] = POWER_STATE_TYPE_DEFAULT;
438 439 440 441

	return 0;
}

442 443 444
int smu_common_read_sensor(struct smu_context *smu, enum amd_pp_sensors sensor,
			   void *data, uint32_t *size)
{
445 446
	struct smu_power_context *smu_power = &smu->smu_power;
	struct smu_power_gate *power_gate = &smu_power->power_gate;
447 448
	int ret = 0;

449 450 451
	if(!data || !size)
		return -EINVAL;

452
	switch (sensor) {
453 454 455 456 457 458 459 460
	case AMDGPU_PP_SENSOR_STABLE_PSTATE_SCLK:
		*((uint32_t *)data) = smu->pstate_sclk;
		*size = 4;
		break;
	case AMDGPU_PP_SENSOR_STABLE_PSTATE_MCLK:
		*((uint32_t *)data) = smu->pstate_mclk;
		*size = 4;
		break;
461 462 463 464
	case AMDGPU_PP_SENSOR_ENABLED_SMC_FEATURES_MASK:
		ret = smu_feature_get_enabled_mask(smu, (uint32_t *)data, 2);
		*size = 8;
		break;
465 466 467 468 469 470 471 472
	case AMDGPU_PP_SENSOR_UVD_POWER:
		*(uint32_t *)data = smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UVD_BIT) ? 1 : 0;
		*size = 4;
		break;
	case AMDGPU_PP_SENSOR_VCE_POWER:
		*(uint32_t *)data = smu_feature_is_enabled(smu, SMU_FEATURE_DPM_VCE_BIT) ? 1 : 0;
		*size = 4;
		break;
473
	case AMDGPU_PP_SENSOR_VCN_POWER_STATE:
474
		*(uint32_t *)data = power_gate->vcn_gated ? 0 : 1;
475 476
		*size = 4;
		break;
477 478 479 480 481 482 483 484 485 486 487
	default:
		ret = -EINVAL;
		break;
	}

	if (ret)
		*size = 0;

	return ret;
}

488
int smu_update_table(struct smu_context *smu, enum smu_table_id table_index, int argument,
489 490 491
		     void *table_data, bool drv2smu)
{
	struct smu_table_context *smu_table = &smu->smu_table;
492
	struct amdgpu_device *adev = smu->adev;
493 494
	struct smu_table *table = NULL;
	int ret = 0;
495
	int table_id = smu_table_get_index(smu, table_index);
496

497
	if (!table_data || table_id >= SMU_TABLE_COUNT || table_id < 0)
498 499
		return -EINVAL;

500
	table = &smu_table->tables[table_index];
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515

	if (drv2smu)
		memcpy(table->cpu_addr, table_data, table->size);

	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetDriverDramAddrHigh,
					  upper_32_bits(table->mc_address));
	if (ret)
		return ret;
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetDriverDramAddrLow,
					  lower_32_bits(table->mc_address));
	if (ret)
		return ret;
	ret = smu_send_smc_msg_with_param(smu, drv2smu ?
					  SMU_MSG_TransferTableDram2Smu :
					  SMU_MSG_TransferTableSmu2Dram,
516
					  table_id | ((argument & 0xFFFF) << 16));
517 518 519
	if (ret)
		return ret;

520
	/* flush hdp cache */
521
	adev->nbio.funcs->hdp_flush(adev, NULL);
522

523 524 525 526 527 528
	if (!drv2smu)
		memcpy(table_data, table->cpu_addr, table->size);

	return ret;
}

529 530
bool is_support_sw_smu(struct amdgpu_device *adev)
{
531 532
	if (adev->asic_type == CHIP_VEGA20)
		return (amdgpu_dpm == 2) ? true : false;
533
	else if (adev->asic_type >= CHIP_ARCTURUS)
534
		return true;
535 536
	else
		return false;
537 538
}

539 540
bool is_support_sw_smu_xgmi(struct amdgpu_device *adev)
{
541
	if (!is_support_sw_smu(adev))
542 543 544 545 546 547 548 549
		return false;

	if (adev->asic_type == CHIP_VEGA20)
		return true;

	return false;
}

550 551 552
int smu_sys_get_pp_table(struct smu_context *smu, void **table)
{
	struct smu_table_context *smu_table = &smu->smu_table;
553
	uint32_t powerplay_table_size;
554 555 556 557

	if (!smu_table->power_play_table && !smu_table->hardcode_pptable)
		return -EINVAL;

558 559
	mutex_lock(&smu->mutex);

560 561 562 563 564
	if (smu_table->hardcode_pptable)
		*table = smu_table->hardcode_pptable;
	else
		*table = smu_table->power_play_table;

565 566 567 568 569
	powerplay_table_size = smu_table->power_play_table_size;

	mutex_unlock(&smu->mutex);

	return powerplay_table_size;
570 571 572 573 574 575 576 577
}

int smu_sys_set_pp_table(struct smu_context *smu,  void *buf, size_t size)
{
	struct smu_table_context *smu_table = &smu->smu_table;
	ATOM_COMMON_TABLE_HEADER *header = (ATOM_COMMON_TABLE_HEADER *)buf;
	int ret = 0;

578 579
	if (!smu->pm_enabled)
		return -EINVAL;
580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
	if (header->usStructureSize != size) {
		pr_err("pp table size not matched !\n");
		return -EIO;
	}

	mutex_lock(&smu->mutex);
	if (!smu_table->hardcode_pptable)
		smu_table->hardcode_pptable = kzalloc(size, GFP_KERNEL);
	if (!smu_table->hardcode_pptable) {
		ret = -ENOMEM;
		goto failed;
	}

	memcpy(smu_table->hardcode_pptable, buf, size);
	smu_table->power_play_table = smu_table->hardcode_pptable;
	smu_table->power_play_table_size = size;

597 598 599 600 601 602
	/*
	 * Special hw_fini action(for Navi1x, the DPMs disablement will be
	 * skipped) may be needed for custom pptable uploading.
	 */
	smu->uploading_custom_pp_table = true;

603 604 605 606
	ret = smu_reset(smu);
	if (ret)
		pr_info("smu reset failed, ret = %d\n", ret);

607 608
	smu->uploading_custom_pp_table = false;

609 610 611 612 613
failed:
	mutex_unlock(&smu->mutex);
	return ret;
}

614 615 616 617
int smu_feature_init_dpm(struct smu_context *smu)
{
	struct smu_feature *feature = &smu->smu_feature;
	int ret = 0;
618
	uint32_t allowed_feature_mask[SMU_FEATURE_MAX/32];
619

620 621
	if (!smu->pm_enabled)
		return ret;
622
	mutex_lock(&feature->mutex);
623
	bitmap_zero(feature->allowed, SMU_FEATURE_MAX);
624
	mutex_unlock(&feature->mutex);
625

626
	ret = smu_get_allowed_feature_mask(smu, allowed_feature_mask,
627 628 629 630
					     SMU_FEATURE_MAX/32);
	if (ret)
		return ret;

631
	mutex_lock(&feature->mutex);
632 633
	bitmap_or(feature->allowed, feature->allowed,
		      (unsigned long *)allowed_feature_mask,
634
		      feature->feature_num);
635
	mutex_unlock(&feature->mutex);
636 637 638

	return ret;
}
639

640

641
int smu_feature_is_enabled(struct smu_context *smu, enum smu_feature_mask mask)
642
{
643
	struct amdgpu_device *adev = smu->adev;
644
	struct smu_feature *feature = &smu->smu_feature;
645
	int feature_id;
646 647
	int ret = 0;

648
	if (adev->flags & AMD_IS_APU)
649
		return 1;
650

651
	feature_id = smu_feature_get_index(smu, mask);
652 653
	if (feature_id < 0)
		return 0;
654

655
	WARN_ON(feature_id > feature->feature_num);
656 657 658 659 660 661

	mutex_lock(&feature->mutex);
	ret = test_bit(feature_id, feature->enabled);
	mutex_unlock(&feature->mutex);

	return ret;
662 663
}

664 665
int smu_feature_set_enabled(struct smu_context *smu, enum smu_feature_mask mask,
			    bool enable)
666 667
{
	struct smu_feature *feature = &smu->smu_feature;
668
	int feature_id;
669

670
	feature_id = smu_feature_get_index(smu, mask);
671 672
	if (feature_id < 0)
		return -EINVAL;
673

674
	WARN_ON(feature_id > feature->feature_num);
675

676 677 678
	return smu_feature_update_enable_state(smu,
					       1ULL << feature_id,
					       enable);
679 680
}

681
int smu_feature_is_supported(struct smu_context *smu, enum smu_feature_mask mask)
682 683
{
	struct smu_feature *feature = &smu->smu_feature;
684
	int feature_id;
685 686
	int ret = 0;

687
	feature_id = smu_feature_get_index(smu, mask);
688 689
	if (feature_id < 0)
		return 0;
690

691
	WARN_ON(feature_id > feature->feature_num);
692 693 694 695 696 697

	mutex_lock(&feature->mutex);
	ret = test_bit(feature_id, feature->supported);
	mutex_unlock(&feature->mutex);

	return ret;
698 699
}

700 701
int smu_feature_set_supported(struct smu_context *smu,
			      enum smu_feature_mask mask,
702 703 704
			      bool enable)
{
	struct smu_feature *feature = &smu->smu_feature;
705
	int feature_id;
706 707
	int ret = 0;

708
	feature_id = smu_feature_get_index(smu, mask);
709 710
	if (feature_id < 0)
		return -EINVAL;
711

712
	WARN_ON(feature_id > feature->feature_num);
713

714
	mutex_lock(&feature->mutex);
715 716 717 718
	if (enable)
		test_and_set_bit(feature_id, feature->supported);
	else
		test_and_clear_bit(feature_id, feature->supported);
719 720 721
	mutex_unlock(&feature->mutex);

	return ret;
722 723
}

724 725
static int smu_set_funcs(struct amdgpu_device *adev)
{
726 727
	struct smu_context *smu = &adev->smu;

728 729 730
	if (adev->pm.pp_feature & PP_OVERDRIVE_MASK)
		smu->od_enabled = true;

731 732
	switch (adev->asic_type) {
	case CHIP_VEGA20:
733 734
		vega20_set_ppt_funcs(smu);
		break;
735
	case CHIP_NAVI10:
736
	case CHIP_NAVI14:
737
	case CHIP_NAVI12:
738 739
		navi10_set_ppt_funcs(smu);
		break;
740
	case CHIP_ARCTURUS:
741
		arcturus_set_ppt_funcs(smu);
742 743
		/* OD is not supported on Arcturus */
		smu->od_enabled =false;
744
		break;
745
	case CHIP_RENOIR:
746
		renoir_set_ppt_funcs(smu);
747
		break;
748 749 750 751
	default:
		return -EINVAL;
	}

752 753 754 755 756 757 758 759 760
	return 0;
}

static int smu_early_init(void *handle)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
	struct smu_context *smu = &adev->smu;

	smu->adev = adev;
761
	smu->pm_enabled = !!amdgpu_dpm;
762
	smu->is_apu = false;
763 764
	mutex_init(&smu->mutex);

765
	return smu_set_funcs(adev);
766 767
}

768 769 770 771
static int smu_late_init(void *handle)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
	struct smu_context *smu = &adev->smu;
772 773 774

	if (!smu->pm_enabled)
		return 0;
H
Huang Rui 已提交
775

776 777
	smu_handle_task(&adev->smu,
			smu->smu_dpm.dpm_level,
778 779
			AMD_PP_TASK_COMPLETE_INIT,
			false);
780 781 782 783

	return 0;
}

784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
int smu_get_atom_data_table(struct smu_context *smu, uint32_t table,
			    uint16_t *size, uint8_t *frev, uint8_t *crev,
			    uint8_t **addr)
{
	struct amdgpu_device *adev = smu->adev;
	uint16_t data_start;

	if (!amdgpu_atom_parse_data_header(adev->mode_info.atom_context, table,
					   size, frev, crev, &data_start))
		return -EINVAL;

	*addr = (uint8_t *)adev->mode_info.atom_context->bios + data_start;

	return 0;
}

800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
static int smu_initialize_pptable(struct smu_context *smu)
{
	/* TODO */
	return 0;
}

static int smu_smc_table_sw_init(struct smu_context *smu)
{
	int ret;

	ret = smu_initialize_pptable(smu);
	if (ret) {
		pr_err("Failed to init smu_initialize_pptable!\n");
		return ret;
	}

816 817 818 819 820 821 822 823 824 825
	/**
	 * Create smu_table structure, and init smc tables such as
	 * TABLE_PPTABLE, TABLE_WATERMARKS, TABLE_SMU_METRICS, and etc.
	 */
	ret = smu_init_smc_tables(smu);
	if (ret) {
		pr_err("Failed to init smc tables!\n");
		return ret;
	}

826 827 828 829 830 831 832 833 834 835
	/**
	 * Create smu_power_context structure, and allocate smu_dpm_context and
	 * context size to fill the smu_power_context data.
	 */
	ret = smu_init_power(smu);
	if (ret) {
		pr_err("Failed to init smu_init_power!\n");
		return ret;
	}

836 837 838
	return 0;
}

839 840 841 842 843 844 845 846 847 848 849 850 851
static int smu_smc_table_sw_fini(struct smu_context *smu)
{
	int ret;

	ret = smu_fini_smc_tables(smu);
	if (ret) {
		pr_err("Failed to smu_fini_smc_tables!\n");
		return ret;
	}

	return 0;
}

852 853 854 855 856 857
static int smu_sw_init(void *handle)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
	struct smu_context *smu = &adev->smu;
	int ret;

858
	smu->pool_size = adev->pm.smu_prv_buffer_size;
859
	smu->smu_feature.feature_num = SMU_FEATURE_MAX;
860
	mutex_init(&smu->smu_feature.mutex);
861 862 863
	bitmap_zero(smu->smu_feature.supported, SMU_FEATURE_MAX);
	bitmap_zero(smu->smu_feature.enabled, SMU_FEATURE_MAX);
	bitmap_zero(smu->smu_feature.allowed, SMU_FEATURE_MAX);
864 865 866 867 868

	mutex_init(&smu->smu_baco.mutex);
	smu->smu_baco.state = SMU_BACO_STATE_EXIT;
	smu->smu_baco.platform_support = false;

869 870
	mutex_init(&smu->sensor_lock);

871
	smu->watermarks_bitmap = 0;
872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
	smu->power_profile_mode = PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT;
	smu->default_power_profile_mode = PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT;

	smu->workload_mask = 1 << smu->workload_prority[PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT];
	smu->workload_prority[PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT] = 0;
	smu->workload_prority[PP_SMC_POWER_PROFILE_FULLSCREEN3D] = 1;
	smu->workload_prority[PP_SMC_POWER_PROFILE_POWERSAVING] = 2;
	smu->workload_prority[PP_SMC_POWER_PROFILE_VIDEO] = 3;
	smu->workload_prority[PP_SMC_POWER_PROFILE_VR] = 4;
	smu->workload_prority[PP_SMC_POWER_PROFILE_COMPUTE] = 5;
	smu->workload_prority[PP_SMC_POWER_PROFILE_CUSTOM] = 6;

	smu->workload_setting[0] = PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT;
	smu->workload_setting[1] = PP_SMC_POWER_PROFILE_FULLSCREEN3D;
	smu->workload_setting[2] = PP_SMC_POWER_PROFILE_POWERSAVING;
	smu->workload_setting[3] = PP_SMC_POWER_PROFILE_VIDEO;
	smu->workload_setting[4] = PP_SMC_POWER_PROFILE_VR;
	smu->workload_setting[5] = PP_SMC_POWER_PROFILE_COMPUTE;
	smu->workload_setting[6] = PP_SMC_POWER_PROFILE_CUSTOM;
891
	smu->display_config = &adev->pm.pm_display_cfg;
892

893 894
	smu->smu_dpm.dpm_level = AMD_DPM_FORCED_LEVEL_AUTO;
	smu->smu_dpm.requested_dpm_level = AMD_DPM_FORCED_LEVEL_AUTO;
895 896 897 898 899 900
	ret = smu_init_microcode(smu);
	if (ret) {
		pr_err("Failed to load smu firmware!\n");
		return ret;
	}

901 902 903 904 905 906
	ret = smu_smc_table_sw_init(smu);
	if (ret) {
		pr_err("Failed to sw init smc table!\n");
		return ret;
	}

907 908 909 910 911 912
	ret = smu_register_irq_handler(smu);
	if (ret) {
		pr_err("Failed to register smc irq handler!\n");
		return ret;
	}

913 914 915 916 917 918
	return 0;
}

static int smu_sw_fini(void *handle)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
919 920
	struct smu_context *smu = &adev->smu;
	int ret;
921

922 923 924
	kfree(smu->irq_source);
	smu->irq_source = NULL;

925 926 927 928 929 930
	ret = smu_smc_table_sw_fini(smu);
	if (ret) {
		pr_err("Failed to sw fini smc table!\n");
		return ret;
	}

931 932 933 934 935 936
	ret = smu_fini_power(smu);
	if (ret) {
		pr_err("Failed to init smu_fini_power!\n");
		return ret;
	}

937 938 939
	return 0;
}

940 941
static int smu_init_fb_allocations(struct smu_context *smu)
{
942 943 944
	struct amdgpu_device *adev = smu->adev;
	struct smu_table_context *smu_table = &smu->smu_table;
	struct smu_table *tables = smu_table->tables;
945
	int ret, i;
946

947
	for (i = 0; i < SMU_TABLE_COUNT; i++) {
948 949 950 951 952 953 954 955 956 957 958 959 960
		if (tables[i].size == 0)
			continue;
		ret = amdgpu_bo_create_kernel(adev,
					      tables[i].size,
					      tables[i].align,
					      tables[i].domain,
					      &tables[i].bo,
					      &tables[i].mc_address,
					      &tables[i].cpu_addr);
		if (ret)
			goto failed;
	}

961
	return 0;
962
failed:
963
	while (--i >= 0) {
964 965 966 967 968 969 970 971
		if (tables[i].size == 0)
			continue;
		amdgpu_bo_free_kernel(&tables[i].bo,
				      &tables[i].mc_address,
				      &tables[i].cpu_addr);

	}
	return ret;
972 973
}

974 975 976 977 978 979
static int smu_fini_fb_allocations(struct smu_context *smu)
{
	struct smu_table_context *smu_table = &smu->smu_table;
	struct smu_table *tables = smu_table->tables;
	uint32_t i = 0;

980
	if (!tables)
981
		return 0;
982

983
	for (i = 0; i < SMU_TABLE_COUNT; i++) {
984 985 986 987 988 989 990 991 992
		if (tables[i].size == 0)
			continue;
		amdgpu_bo_free_kernel(&tables[i].bo,
				      &tables[i].mc_address,
				      &tables[i].cpu_addr);
	}

	return 0;
}
993

994 995
static int smu_smc_table_hw_init(struct smu_context *smu,
				 bool initialize)
996
{
997
	struct amdgpu_device *adev = smu->adev;
998 999
	int ret;

1000 1001 1002 1003 1004
	if (smu_is_dpm_running(smu) && adev->in_suspend) {
		pr_info("dpm has been enabled\n");
		return 0;
	}

1005 1006 1007 1008 1009
	if (adev->asic_type != CHIP_ARCTURUS) {
		ret = smu_init_display_count(smu, 0);
		if (ret)
			return ret;
	}
1010

1011
	if (initialize) {
1012 1013
		/* get boot_values from vbios to set revision, gfxclk, and etc. */
		ret = smu_get_vbios_bootup_values(smu);
1014 1015
		if (ret)
			return ret;
1016

1017
		ret = smu_setup_pptable(smu);
1018 1019
		if (ret)
			return ret;
1020

1021 1022 1023 1024
		ret = smu_get_clk_info_from_vbios(smu);
		if (ret)
			return ret;

1025 1026 1027 1028 1029 1030 1031
		/*
		 * check if the format_revision in vbios is up to pptable header
		 * version, and the structure size is not 0.
		 */
		ret = smu_check_pptable(smu);
		if (ret)
			return ret;
1032

1033 1034 1035 1036 1037 1038
		/*
		 * allocate vram bos to store smc table contents.
		 */
		ret = smu_init_fb_allocations(smu);
		if (ret)
			return ret;
1039

1040 1041 1042 1043 1044 1045 1046 1047
		/*
		 * Parse pptable format and fill PPTable_t smc_pptable to
		 * smu_table_context structure. And read the smc_dpm_table from vbios,
		 * then fill it into smc_pptable.
		 */
		ret = smu_parse_pptable(smu);
		if (ret)
			return ret;
1048

1049 1050 1051 1052 1053 1054 1055 1056
		/*
		 * Send msg GetDriverIfVersion to check if the return value is equal
		 * with DRIVER_IF_VERSION of smc header.
		 */
		ret = smu_check_fw_version(smu);
		if (ret)
			return ret;
	}
1057

1058 1059
	/* smu_dump_pptable(smu); */

1060 1061 1062 1063 1064 1065 1066 1067
	/*
	 * Copy pptable bo in the vram to smc with SMU MSGs such as
	 * SetDriverDramAddr and TransferTableDram2Smu.
	 */
	ret = smu_write_pptable(smu);
	if (ret)
		return ret;

1068 1069
	/* issue Run*Btc msg */
	ret = smu_run_btc(smu);
1070 1071 1072
	if (ret)
		return ret;

1073 1074 1075 1076
	ret = smu_feature_set_allowed_mask(smu);
	if (ret)
		return ret;

1077
	ret = smu_system_features_control(smu, true);
1078 1079 1080
	if (ret)
		return ret;

1081 1082 1083 1084
	if (adev->asic_type != CHIP_ARCTURUS) {
		ret = smu_notify_display_change(smu);
		if (ret)
			return ret;
1085

1086 1087 1088 1089 1090 1091 1092 1093
		/*
		 * Set min deep sleep dce fclk with bootup value from vbios via
		 * SetMinDeepSleepDcefclk MSG.
		 */
		ret = smu_set_min_dcef_deep_sleep(smu);
		if (ret)
			return ret;
	}
1094

1095 1096 1097 1098 1099
	/*
	 * Set initialized values (get from vbios) to dpm tables context such as
	 * gfxclk, memclk, dcefclk, and etc. And enable the DPM feature for each
	 * type of clks.
	 */
1100
	if (initialize) {
1101
		ret = smu_populate_smc_tables(smu);
1102 1103
		if (ret)
			return ret;
1104

1105 1106 1107 1108
		ret = smu_init_max_sustainable_clocks(smu);
		if (ret)
			return ret;
	}
1109

1110 1111 1112 1113 1114 1115
	if (adev->asic_type != CHIP_ARCTURUS) {
		ret = smu_override_pcie_parameters(smu);
		if (ret)
			return ret;
	}

1116
	ret = smu_set_default_od_settings(smu, initialize);
1117 1118 1119
	if (ret)
		return ret;

1120 1121 1122 1123
	if (initialize) {
		ret = smu_populate_umd_state_clk(smu);
		if (ret)
			return ret;
1124

1125
		ret = smu_get_power_limit(smu, &smu->default_power_limit, false, false);
1126 1127 1128
		if (ret)
			return ret;
	}
1129

1130 1131 1132 1133 1134
	/*
	 * Set PMSTATUSLOG table bo address with SetToolsDramAddr MSG for tools.
	 */
	ret = smu_set_tool_table_location(smu);

1135 1136 1137
	if (!smu_is_dpm_running(smu))
		pr_info("dpm has been disabled\n");

1138
	return ret;
1139 1140
}

1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
/**
 * smu_alloc_memory_pool - allocate memory pool in the system memory
 *
 * @smu: amdgpu_device pointer
 *
 * This memory pool will be used for SMC use and msg SetSystemVirtualDramAddr
 * and DramLogSetDramAddr can notify it changed.
 *
 * Returns 0 on success, error on failure.
 */
static int smu_alloc_memory_pool(struct smu_context *smu)
{
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
	struct amdgpu_device *adev = smu->adev;
	struct smu_table_context *smu_table = &smu->smu_table;
	struct smu_table *memory_pool = &smu_table->memory_pool;
	uint64_t pool_size = smu->pool_size;
	int ret = 0;

	if (pool_size == SMU_MEMORY_POOL_SIZE_ZERO)
		return ret;

	memory_pool->size = pool_size;
	memory_pool->align = PAGE_SIZE;
	memory_pool->domain = AMDGPU_GEM_DOMAIN_GTT;

	switch (pool_size) {
	case SMU_MEMORY_POOL_SIZE_256_MB:
	case SMU_MEMORY_POOL_SIZE_512_MB:
	case SMU_MEMORY_POOL_SIZE_1_GB:
	case SMU_MEMORY_POOL_SIZE_2_GB:
		ret = amdgpu_bo_create_kernel(adev,
					      memory_pool->size,
					      memory_pool->align,
					      memory_pool->domain,
					      &memory_pool->bo,
					      &memory_pool->mc_address,
					      &memory_pool->cpu_addr);
		break;
	default:
		break;
	}

	return ret;
1184 1185
}

1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
static int smu_free_memory_pool(struct smu_context *smu)
{
	struct smu_table_context *smu_table = &smu->smu_table;
	struct smu_table *memory_pool = &smu_table->memory_pool;
	int ret = 0;

	if (memory_pool->size == SMU_MEMORY_POOL_SIZE_ZERO)
		return ret;

	amdgpu_bo_free_kernel(&memory_pool->bo,
			      &memory_pool->mc_address,
			      &memory_pool->cpu_addr);

	memset(memory_pool, 0, sizeof(struct smu_table));

	return ret;
}
1203

1204
static int smu_start_smc_engine(struct smu_context *smu)
1205
{
1206 1207
	struct amdgpu_device *adev = smu->adev;
	int ret = 0;
1208

1209 1210
	if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) {
		if (adev->asic_type < CHIP_NAVI10) {
1211 1212
			if (smu->ppt_funcs->load_microcode) {
				ret = smu->ppt_funcs->load_microcode(smu);
1213 1214 1215
				if (ret)
					return ret;
			}
1216
		}
1217 1218
	}

1219 1220
	if (smu->ppt_funcs->check_fw_status) {
		ret = smu->ppt_funcs->check_fw_status(smu);
1221 1222 1223
		if (ret)
			pr_err("SMC is not ready\n");
	}
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234

	return ret;
}

static int smu_hw_init(void *handle)
{
	int ret;
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
	struct smu_context *smu = &adev->smu;

	ret = smu_start_smc_engine(smu);
1235
	if (ret) {
1236
		pr_err("SMU is not ready yet!\n");
1237 1238 1239
		return ret;
	}

1240
	if (adev->flags & AMD_IS_APU) {
1241
		smu_powergate_sdma(&adev->smu, false);
1242
		smu_powergate_vcn(&adev->smu, false);
1243
		smu_powergate_jpeg(&adev->smu, false);
1244
		smu_set_gfx_cgpg(&adev->smu, true);
1245
	}
1246

1247 1248 1249
	if (!smu->pm_enabled)
		return 0;

1250 1251 1252 1253
	ret = smu_feature_init_dpm(smu);
	if (ret)
		goto failed;

1254
	ret = smu_smc_table_hw_init(smu, true);
1255 1256
	if (ret)
		goto failed;
1257

1258 1259 1260 1261
	ret = smu_alloc_memory_pool(smu);
	if (ret)
		goto failed;

1262 1263 1264 1265 1266 1267 1268 1269
	/*
	 * Use msg SetSystemVirtualDramAddr and DramLogSetDramAddr can notify
	 * pool location.
	 */
	ret = smu_notify_memory_pool_location(smu);
	if (ret)
		goto failed;

1270 1271 1272 1273
	ret = smu_start_thermal_control(smu);
	if (ret)
		goto failed;

1274 1275 1276
	if (!smu->pm_enabled)
		adev->pm.dpm_enabled = false;
	else
1277
		adev->pm.dpm_enabled = true;	/* TODO: will set dpm_enabled flag while VCN and DAL DPM is workable */
1278

1279 1280 1281
	pr_info("SMU is initialized successfully!\n");

	return 0;
1282 1283 1284

failed:
	return ret;
1285 1286
}

1287 1288 1289 1290 1291
static int smu_stop_dpms(struct smu_context *smu)
{
	return smu_send_smc_msg(smu, SMU_MSG_DisableAllSmuFeatures);
}

1292 1293 1294 1295
static int smu_hw_fini(void *handle)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
	struct smu_context *smu = &adev->smu;
1296
	struct smu_table_context *table_context = &smu->smu_table;
1297
	int ret = 0;
1298

1299
	if (adev->flags & AMD_IS_APU) {
1300
		smu_powergate_sdma(&adev->smu, true);
1301
		smu_powergate_vcn(&adev->smu, true);
1302
		smu_powergate_jpeg(&adev->smu, true);
1303
	}
1304

1305 1306 1307 1308 1309 1310
	ret = smu_stop_thermal_control(smu);
	if (ret) {
		pr_warn("Fail to stop thermal control!\n");
		return ret;
	}

1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
	/*
	 * For custom pptable uploading, skip the DPM features
	 * disable process on Navi1x ASICs.
	 *   - As the gfx related features are under control of
	 *     RLC on those ASICs. RLC reinitialization will be
	 *     needed to reenable them. That will cost much more
	 *     efforts.
	 *
	 *   - SMU firmware can handle the DPM reenablement
	 *     properly.
	 */
	if (!smu->uploading_custom_pp_table ||
	    !((adev->asic_type >= CHIP_NAVI10) &&
	      (adev->asic_type <= CHIP_NAVI12))) {
		ret = smu_stop_dpms(smu);
		if (ret) {
			pr_warn("Fail to stop Dpms!\n");
			return ret;
		}
1330 1331
	}

1332 1333
	kfree(table_context->driver_pptable);
	table_context->driver_pptable = NULL;
1334

1335 1336
	kfree(table_context->max_sustainable_clocks);
	table_context->max_sustainable_clocks = NULL;
1337

1338 1339
	kfree(table_context->overdrive_table);
	table_context->overdrive_table = NULL;
1340

1341 1342 1343 1344
	ret = smu_fini_fb_allocations(smu);
	if (ret)
		return ret;

1345 1346 1347 1348
	ret = smu_free_memory_pool(smu);
	if (ret)
		return ret;

1349 1350 1351
	return 0;
}

1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
int smu_reset(struct smu_context *smu)
{
	struct amdgpu_device *adev = smu->adev;
	int ret = 0;

	ret = smu_hw_fini(adev);
	if (ret)
		return ret;

	ret = smu_hw_init(adev);
	if (ret)
		return ret;

	return ret;
}

1368 1369
static int smu_suspend(void *handle)
{
1370
	int ret;
1371
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1372
	struct smu_context *smu = &adev->smu;
1373 1374 1375 1376
	bool baco_feature_is_enabled = false;

	if(!(adev->flags & AMD_IS_APU))
		baco_feature_is_enabled = smu_feature_is_enabled(smu, SMU_FEATURE_BACO_BIT);
1377

1378
	ret = smu_system_features_control(smu, false);
1379 1380 1381
	if (ret)
		return ret;

1382 1383 1384 1385 1386 1387 1388 1389
	if (adev->in_gpu_reset && baco_feature_is_enabled) {
		ret = smu_feature_set_enabled(smu, SMU_FEATURE_BACO_BIT, true);
		if (ret) {
			pr_warn("set BACO feature enabled failed, return %d\n", ret);
			return ret;
		}
	}

1390 1391
	smu->watermarks_bitmap &= ~(WATERMARKS_LOADED);

1392 1393 1394
	if (adev->asic_type >= CHIP_NAVI10 &&
	    adev->gfx.rlc.funcs->stop)
		adev->gfx.rlc.funcs->stop(adev);
1395 1396
	if (smu->is_apu)
		smu_set_gfx_cgpg(&adev->smu, false);
1397

1398 1399 1400 1401 1402 1403 1404 1405 1406
	return 0;
}

static int smu_resume(void *handle)
{
	int ret;
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
	struct smu_context *smu = &adev->smu;

1407 1408
	pr_info("SMU is resuming...\n");

1409 1410 1411
	ret = smu_start_smc_engine(smu);
	if (ret) {
		pr_err("SMU is not ready yet!\n");
1412
		goto failed;
1413 1414
	}

1415
	ret = smu_smc_table_hw_init(smu, false);
1416 1417 1418
	if (ret)
		goto failed;

1419
	ret = smu_start_thermal_control(smu);
1420 1421
	if (ret)
		goto failed;
1422

1423 1424 1425
	if (smu->is_apu)
		smu_set_gfx_cgpg(&adev->smu, true);

1426 1427
	smu->disable_uclk_switch = 0;

1428 1429
	pr_info("SMU is resumed successfully!\n");

1430
	return 0;
1431

1432 1433
failed:
	return ret;
1434 1435
}

1436 1437 1438 1439 1440 1441
int smu_display_configuration_change(struct smu_context *smu,
				     const struct amd_pp_display_configuration *display_config)
{
	int index = 0;
	int num_of_active_display = 0;

1442
	if (!smu->pm_enabled || !is_support_sw_smu(smu->adev))
1443 1444 1445 1446 1447 1448 1449
		return -EINVAL;

	if (!display_config)
		return -EINVAL;

	mutex_lock(&smu->mutex);

1450 1451
	if (smu->ppt_funcs->set_deep_sleep_dcefclk)
		smu->ppt_funcs->set_deep_sleep_dcefclk(smu,
1452
				display_config->min_dcef_deep_sleep_set_clk / 100);
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470

	for (index = 0; index < display_config->num_path_including_non_display; index++) {
		if (display_config->displays[index].controller_id != 0)
			num_of_active_display++;
	}

	smu_set_active_display_count(smu, num_of_active_display);

	smu_store_cc6_data(smu, display_config->cpu_pstate_separation_time,
			   display_config->cpu_cc6_disable,
			   display_config->cpu_pstate_disable,
			   display_config->nb_pstate_switch_disable);

	mutex_unlock(&smu->mutex);

	return 0;
}

1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
static int smu_get_clock_info(struct smu_context *smu,
			      struct smu_clock_info *clk_info,
			      enum smu_perf_level_designation designation)
{
	int ret;
	struct smu_performance_level level = {0};

	if (!clk_info)
		return -EINVAL;

	ret = smu_get_perf_level(smu, PERF_LEVEL_ACTIVITY, &level);
	if (ret)
		return -EINVAL;

	clk_info->min_mem_clk = level.memory_clock;
	clk_info->min_eng_clk = level.core_clock;
	clk_info->min_bus_bandwidth = level.non_local_mem_freq * level.non_local_mem_width;

	ret = smu_get_perf_level(smu, designation, &level);
	if (ret)
		return -EINVAL;

	clk_info->min_mem_clk = level.memory_clock;
	clk_info->min_eng_clk = level.core_clock;
	clk_info->min_bus_bandwidth = level.non_local_mem_freq * level.non_local_mem_width;

	return 0;
}

int smu_get_current_clocks(struct smu_context *smu,
			   struct amd_pp_clock_info *clocks)
{
	struct amd_pp_simple_clock_info simple_clocks = {0};
	struct smu_clock_info hw_clocks;
	int ret = 0;

	if (!is_support_sw_smu(smu->adev))
		return -EINVAL;

	mutex_lock(&smu->mutex);

	smu_get_dal_power_level(smu, &simple_clocks);

	if (smu->support_power_containment)
		ret = smu_get_clock_info(smu, &hw_clocks,
					 PERF_LEVEL_POWER_CONTAINMENT);
	else
		ret = smu_get_clock_info(smu, &hw_clocks, PERF_LEVEL_ACTIVITY);

	if (ret) {
		pr_err("Error in smu_get_clock_info\n");
		goto failed;
	}

	clocks->min_engine_clock = hw_clocks.min_eng_clk;
	clocks->max_engine_clock = hw_clocks.max_eng_clk;
	clocks->min_memory_clock = hw_clocks.min_mem_clk;
	clocks->max_memory_clock = hw_clocks.max_mem_clk;
	clocks->min_bus_bandwidth = hw_clocks.min_bus_bandwidth;
	clocks->max_bus_bandwidth = hw_clocks.max_bus_bandwidth;
	clocks->max_engine_clock_in_sr = hw_clocks.max_eng_clk;
	clocks->min_engine_clock_in_sr = hw_clocks.min_eng_clk;

        if (simple_clocks.level == 0)
                clocks->max_clocks_state = PP_DAL_POWERLEVEL_7;
        else
                clocks->max_clocks_state = simple_clocks.level;

        if (!smu_get_current_shallow_sleep_clocks(smu, &hw_clocks)) {
                clocks->max_engine_clock_in_sr = hw_clocks.max_eng_clk;
                clocks->min_engine_clock_in_sr = hw_clocks.min_eng_clk;
        }

failed:
	mutex_unlock(&smu->mutex);
	return ret;
}

1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
static int smu_set_clockgating_state(void *handle,
				     enum amd_clockgating_state state)
{
	return 0;
}

static int smu_set_powergating_state(void *handle,
				     enum amd_powergating_state state)
{
	return 0;
}

1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
static int smu_enable_umd_pstate(void *handle,
		      enum amd_dpm_forced_level *level)
{
	uint32_t profile_mode_mask = AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD |
					AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK |
					AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK |
					AMD_DPM_FORCED_LEVEL_PROFILE_PEAK;

	struct smu_context *smu = (struct smu_context*)(handle);
	struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm);
1571 1572

	if (!smu->is_apu && (!smu->pm_enabled || !smu_dpm_ctx->dpm_context))
1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
		return -EINVAL;

	if (!(smu_dpm_ctx->dpm_level & profile_mode_mask)) {
		/* enter umd pstate, save current level, disable gfx cg*/
		if (*level & profile_mode_mask) {
			smu_dpm_ctx->saved_dpm_level = smu_dpm_ctx->dpm_level;
			smu_dpm_ctx->enable_umd_pstate = true;
			amdgpu_device_ip_set_clockgating_state(smu->adev,
							       AMD_IP_BLOCK_TYPE_GFX,
							       AMD_CG_STATE_UNGATE);
			amdgpu_device_ip_set_powergating_state(smu->adev,
							       AMD_IP_BLOCK_TYPE_GFX,
							       AMD_PG_STATE_UNGATE);
		}
	} else {
		/* exit umd pstate, restore level, enable gfx cg*/
		if (!(*level & profile_mode_mask)) {
			if (*level == AMD_DPM_FORCED_LEVEL_PROFILE_EXIT)
				*level = smu_dpm_ctx->saved_dpm_level;
			smu_dpm_ctx->enable_umd_pstate = false;
			amdgpu_device_ip_set_clockgating_state(smu->adev,
							       AMD_IP_BLOCK_TYPE_GFX,
							       AMD_CG_STATE_GATE);
			amdgpu_device_ip_set_powergating_state(smu->adev,
							       AMD_IP_BLOCK_TYPE_GFX,
							       AMD_PG_STATE_GATE);
		}
	}

	return 0;
}

1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
static int smu_default_set_performance_level(struct smu_context *smu, enum amd_dpm_forced_level level)
{
	int ret = 0;
	uint32_t sclk_mask, mclk_mask, soc_mask;

	switch (level) {
	case AMD_DPM_FORCED_LEVEL_HIGH:
		ret = smu_force_dpm_limit_value(smu, true);
		break;
	case AMD_DPM_FORCED_LEVEL_LOW:
		ret = smu_force_dpm_limit_value(smu, false);
		break;
	case AMD_DPM_FORCED_LEVEL_AUTO:
	case AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD:
		ret = smu_unforce_dpm_levels(smu);
		break;
	case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK:
	case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK:
	case AMD_DPM_FORCED_LEVEL_PROFILE_PEAK:
		ret = smu_get_profiling_clk_mask(smu, level,
						 &sclk_mask,
						 &mclk_mask,
						 &soc_mask);
		if (ret)
			return ret;
1630 1631 1632
		smu_force_clk_levels(smu, SMU_SCLK, 1 << sclk_mask, false);
		smu_force_clk_levels(smu, SMU_MCLK, 1 << mclk_mask, false);
		smu_force_clk_levels(smu, SMU_SOCCLK, 1 << soc_mask, false);
1633 1634 1635 1636 1637 1638 1639 1640 1641
		break;
	case AMD_DPM_FORCED_LEVEL_MANUAL:
	case AMD_DPM_FORCED_LEVEL_PROFILE_EXIT:
	default:
		break;
	}
	return ret;
}

1642 1643 1644 1645 1646 1647 1648 1649 1650
int smu_adjust_power_state_dynamic(struct smu_context *smu,
				   enum amd_dpm_forced_level level,
				   bool skip_display_settings)
{
	int ret = 0;
	int index = 0;
	long workload;
	struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm);

1651 1652
	if (!smu->pm_enabled)
		return -EINVAL;
1653

1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
	if (!skip_display_settings) {
		ret = smu_display_config_changed(smu);
		if (ret) {
			pr_err("Failed to change display config!");
			return ret;
		}
	}

	ret = smu_apply_clocks_adjust_rules(smu);
	if (ret) {
		pr_err("Failed to apply clocks adjust rules!");
		return ret;
	}

	if (!skip_display_settings) {
		ret = smu_notify_smc_dispaly_config(smu);
		if (ret) {
			pr_err("Failed to notify smc display config!");
			return ret;
		}
	}

	if (smu_dpm_ctx->dpm_level != level) {
1677 1678 1679
		ret = smu_asic_set_performance_level(smu, level);
		if (ret) {
			ret = smu_default_set_performance_level(smu, level);
1680 1681 1682 1683
			if (ret) {
				pr_err("Failed to set performance level!");
				return ret;
			}
1684
		}
1685 1686 1687

		/* update the saved copy */
		smu_dpm_ctx->dpm_level = level;
1688 1689 1690 1691 1692 1693 1694 1695
	}

	if (smu_dpm_ctx->dpm_level != AMD_DPM_FORCED_LEVEL_MANUAL) {
		index = fls(smu->workload_mask);
		index = index > 0 && index <= WORKLOAD_POLICY_MAX ? index - 1 : 0;
		workload = smu->workload_setting[index];

		if (smu->power_profile_mode != workload)
1696
			smu_set_power_profile_mode(smu, &workload, 0, false);
1697 1698 1699 1700 1701 1702 1703
	}

	return ret;
}

int smu_handle_task(struct smu_context *smu,
		    enum amd_dpm_forced_level level,
1704 1705
		    enum amd_pp_task task_id,
		    bool lock_needed)
1706 1707 1708
{
	int ret = 0;

1709 1710 1711
	if (lock_needed)
		mutex_lock(&smu->mutex);

1712 1713 1714 1715
	switch (task_id) {
	case AMD_PP_TASK_DISPLAY_CONFIG_CHANGE:
		ret = smu_pre_display_config_changed(smu);
		if (ret)
1716
			goto out;
1717 1718
		ret = smu_set_cpu_power_state(smu);
		if (ret)
1719
			goto out;
1720 1721 1722 1723 1724 1725 1726 1727 1728 1729
		ret = smu_adjust_power_state_dynamic(smu, level, false);
		break;
	case AMD_PP_TASK_COMPLETE_INIT:
	case AMD_PP_TASK_READJUST_POWER_STATE:
		ret = smu_adjust_power_state_dynamic(smu, level, true);
		break;
	default:
		break;
	}

1730 1731 1732 1733
out:
	if (lock_needed)
		mutex_unlock(&smu->mutex);

1734 1735 1736
	return ret;
}

1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765
int smu_switch_power_profile(struct smu_context *smu,
			     enum PP_SMC_POWER_PROFILE type,
			     bool en)
{
	struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm);
	long workload;
	uint32_t index;

	if (!smu->pm_enabled)
		return -EINVAL;

	if (!(type < PP_SMC_POWER_PROFILE_CUSTOM))
		return -EINVAL;

	mutex_lock(&smu->mutex);

	if (!en) {
		smu->workload_mask &= ~(1 << smu->workload_prority[type]);
		index = fls(smu->workload_mask);
		index = index > 0 && index <= WORKLOAD_POLICY_MAX ? index - 1 : 0;
		workload = smu->workload_setting[index];
	} else {
		smu->workload_mask |= (1 << smu->workload_prority[type]);
		index = fls(smu->workload_mask);
		index = index <= WORKLOAD_POLICY_MAX ? index - 1 : 0;
		workload = smu->workload_setting[index];
	}

	if (smu_dpm_ctx->dpm_level != AMD_DPM_FORCED_LEVEL_MANUAL)
1766
		smu_set_power_profile_mode(smu, &workload, 0, false);
1767 1768 1769 1770 1771 1772

	mutex_unlock(&smu->mutex);

	return 0;
}

1773 1774 1775
enum amd_dpm_forced_level smu_get_performance_level(struct smu_context *smu)
{
	struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm);
1776
	enum amd_dpm_forced_level level;
1777

1778
	if (!smu->is_apu && !smu_dpm_ctx->dpm_context)
1779 1780 1781
		return -EINVAL;

	mutex_lock(&(smu->mutex));
1782
	level = smu_dpm_ctx->dpm_level;
1783 1784
	mutex_unlock(&(smu->mutex));

1785
	return level;
1786 1787 1788 1789 1790
}

int smu_force_performance_level(struct smu_context *smu, enum amd_dpm_forced_level level)
{
	struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm);
1791
	int ret = 0;
1792

1793
	if (!smu->is_apu && !smu_dpm_ctx->dpm_context)
1794 1795
		return -EINVAL;

1796 1797
	mutex_lock(&smu->mutex);

1798
	ret = smu_enable_umd_pstate(smu, &level);
1799 1800
	if (ret) {
		mutex_unlock(&smu->mutex);
1801
		return ret;
1802
	}
1803

1804
	ret = smu_handle_task(smu, level,
1805 1806 1807 1808
			      AMD_PP_TASK_READJUST_POWER_STATE,
			      false);

	mutex_unlock(&smu->mutex);
1809 1810 1811 1812

	return ret;
}

1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
int smu_set_display_count(struct smu_context *smu, uint32_t count)
{
	int ret = 0;

	mutex_lock(&smu->mutex);
	ret = smu_init_display_count(smu, count);
	mutex_unlock(&smu->mutex);

	return ret;
}

1824 1825
int smu_force_clk_levels(struct smu_context *smu,
			 enum smu_clk_type clk_type,
1826 1827
			 uint32_t mask,
			 bool lock_needed)
1828 1829 1830 1831 1832 1833 1834 1835 1836
{
	struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm);
	int ret = 0;

	if (smu_dpm_ctx->dpm_level != AMD_DPM_FORCED_LEVEL_MANUAL) {
		pr_debug("force clock level is for dpm manual mode only.\n");
		return -EINVAL;
	}

1837 1838 1839
	if (lock_needed)
		mutex_lock(&smu->mutex);

1840 1841 1842
	if (smu->ppt_funcs && smu->ppt_funcs->force_clk_levels)
		ret = smu->ppt_funcs->force_clk_levels(smu, clk_type, mask);

1843 1844 1845
	if (lock_needed)
		mutex_unlock(&smu->mutex);

1846 1847 1848
	return ret;
}

1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862
int smu_set_mp1_state(struct smu_context *smu,
		      enum pp_mp1_state mp1_state)
{
	uint16_t msg;
	int ret;

	/*
	 * The SMC is not fully ready. That may be
	 * expected as the IP may be masked.
	 * So, just return without error.
	 */
	if (!smu->pm_enabled)
		return 0;

1863 1864
	mutex_lock(&smu->mutex);

1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876
	switch (mp1_state) {
	case PP_MP1_STATE_SHUTDOWN:
		msg = SMU_MSG_PrepareMp1ForShutdown;
		break;
	case PP_MP1_STATE_UNLOAD:
		msg = SMU_MSG_PrepareMp1ForUnload;
		break;
	case PP_MP1_STATE_RESET:
		msg = SMU_MSG_PrepareMp1ForReset;
		break;
	case PP_MP1_STATE_NONE:
	default:
1877
		mutex_unlock(&smu->mutex);
1878 1879 1880 1881
		return 0;
	}

	/* some asics may not support those messages */
1882 1883
	if (smu_msg_get_index(smu, msg) < 0) {
		mutex_unlock(&smu->mutex);
1884
		return 0;
1885
	}
1886 1887 1888 1889 1890

	ret = smu_send_smc_msg(smu, msg);
	if (ret)
		pr_err("[PrepareMp1] Failed!\n");

1891 1892
	mutex_unlock(&smu->mutex);

1893 1894 1895
	return ret;
}

1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911
int smu_set_df_cstate(struct smu_context *smu,
		      enum pp_df_cstate state)
{
	int ret = 0;

	/*
	 * The SMC is not fully ready. That may be
	 * expected as the IP may be masked.
	 * So, just return without error.
	 */
	if (!smu->pm_enabled)
		return 0;

	if (!smu->ppt_funcs || !smu->ppt_funcs->set_df_cstate)
		return 0;

1912 1913
	mutex_lock(&smu->mutex);

1914 1915 1916 1917
	ret = smu->ppt_funcs->set_df_cstate(smu, state);
	if (ret)
		pr_err("[SetDfCstate] failed!\n");

1918 1919
	mutex_unlock(&smu->mutex);

1920 1921 1922
	return ret;
}

1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
int smu_write_watermarks_table(struct smu_context *smu)
{
	int ret = 0;
	struct smu_table_context *smu_table = &smu->smu_table;
	struct smu_table *table = NULL;

	table = &smu_table->tables[SMU_TABLE_WATERMARKS];

	if (!table->cpu_addr)
		return -EINVAL;

	ret = smu_update_table(smu, SMU_TABLE_WATERMARKS, 0, table->cpu_addr,
				true);

	return ret;
}

int smu_set_watermarks_for_clock_ranges(struct smu_context *smu,
		struct dm_pp_wm_sets_with_clock_ranges_soc15 *clock_ranges)
{
	int ret = 0;
	struct smu_table *watermarks = &smu->smu_table.tables[SMU_TABLE_WATERMARKS];
	void *table = watermarks->cpu_addr;

1947 1948
	mutex_lock(&smu->mutex);

1949 1950 1951 1952 1953 1954 1955 1956
	if (!smu->disable_watermark &&
			smu_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT) &&
			smu_feature_is_enabled(smu, SMU_FEATURE_DPM_SOCCLK_BIT)) {
		smu_set_watermarks_table(smu, table, clock_ranges);
		smu->watermarks_bitmap |= WATERMARKS_EXIST;
		smu->watermarks_bitmap &= ~WATERMARKS_LOADED;
	}

1957 1958
	mutex_unlock(&smu->mutex);

1959 1960 1961
	return ret;
}

1962 1963 1964
const struct amd_ip_funcs smu_ip_funcs = {
	.name = "smu",
	.early_init = smu_early_init,
1965
	.late_init = smu_late_init,
1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
	.sw_init = smu_sw_init,
	.sw_fini = smu_sw_fini,
	.hw_init = smu_hw_init,
	.hw_fini = smu_hw_fini,
	.suspend = smu_suspend,
	.resume = smu_resume,
	.is_idle = NULL,
	.check_soft_reset = NULL,
	.wait_for_idle = NULL,
	.soft_reset = NULL,
	.set_clockgating_state = smu_set_clockgating_state,
	.set_powergating_state = smu_set_powergating_state,
1978
	.enable_umd_pstate = smu_enable_umd_pstate,
1979
};
1980 1981 1982 1983 1984 1985 1986 1987 1988

const struct amdgpu_ip_block_version smu_v11_0_ip_block =
{
	.type = AMD_IP_BLOCK_TYPE_SMC,
	.major = 11,
	.minor = 0,
	.rev = 0,
	.funcs = &smu_ip_funcs,
};
1989 1990 1991 1992 1993 1994 1995 1996 1997

const struct amdgpu_ip_block_version smu_v12_0_ip_block =
{
	.type = AMD_IP_BLOCK_TYPE_SMC,
	.major = 12,
	.minor = 0,
	.rev = 0,
	.funcs = &smu_ip_funcs,
};
1998 1999 2000 2001 2002 2003 2004

int smu_load_microcode(struct smu_context *smu)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2005 2006
	if (smu->ppt_funcs->load_microcode)
		ret = smu->ppt_funcs->load_microcode(smu);
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_check_fw_status(struct smu_context *smu)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2019 2020
	if (smu->ppt_funcs->check_fw_status)
		ret = smu->ppt_funcs->check_fw_status(smu);
2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_set_gfx_cgpg(struct smu_context *smu, bool enabled)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2033 2034
	if (smu->ppt_funcs->set_gfx_cgpg)
		ret = smu->ppt_funcs->set_gfx_cgpg(smu, enabled);
2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_set_fan_speed_rpm(struct smu_context *smu, uint32_t speed)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2047 2048
	if (smu->ppt_funcs->set_fan_speed_rpm)
		ret = smu->ppt_funcs->set_fan_speed_rpm(smu, speed);
2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_get_power_limit(struct smu_context *smu,
			uint32_t *limit,
			bool def,
			bool lock_needed)
{
	int ret = 0;

	if (lock_needed)
		mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->get_power_limit)
		ret = smu->ppt_funcs->get_power_limit(smu, limit, def);

	if (lock_needed)
		mutex_unlock(&smu->mutex);

	return ret;
}

int smu_set_power_limit(struct smu_context *smu, uint32_t limit)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2080 2081
	if (smu->ppt_funcs->set_power_limit)
		ret = smu->ppt_funcs->set_power_limit(smu, limit);
2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_print_clk_levels(struct smu_context *smu, enum smu_clk_type clk_type, char *buf)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->print_clk_levels)
		ret = smu->ppt_funcs->print_clk_levels(smu, clk_type, buf);

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_get_od_percentage(struct smu_context *smu, enum smu_clk_type type)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->get_od_percentage)
		ret = smu->ppt_funcs->get_od_percentage(smu, type);

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_set_od_percentage(struct smu_context *smu, enum smu_clk_type type, uint32_t value)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->set_od_percentage)
		ret = smu->ppt_funcs->set_od_percentage(smu, type, value);

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_od_edit_dpm_table(struct smu_context *smu,
			  enum PP_OD_DPM_TABLE_COMMAND type,
			  long *input, uint32_t size)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->od_edit_dpm_table)
		ret = smu->ppt_funcs->od_edit_dpm_table(smu, type, input, size);

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_read_sensor(struct smu_context *smu,
		    enum amd_pp_sensors sensor,
		    void *data, uint32_t *size)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->read_sensor)
		ret = smu->ppt_funcs->read_sensor(smu, sensor, data, size);

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_get_power_profile_mode(struct smu_context *smu, char *buf)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->get_power_profile_mode)
		ret = smu->ppt_funcs->get_power_profile_mode(smu, buf);

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_set_power_profile_mode(struct smu_context *smu,
			       long *param,
			       uint32_t param_size,
			       bool lock_needed)
{
	int ret = 0;

	if (lock_needed)
		mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->set_power_profile_mode)
		ret = smu->ppt_funcs->set_power_profile_mode(smu, param, param_size);

	if (lock_needed)
		mutex_unlock(&smu->mutex);

	return ret;
}


int smu_get_fan_control_mode(struct smu_context *smu)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2202 2203
	if (smu->ppt_funcs->get_fan_control_mode)
		ret = smu->ppt_funcs->get_fan_control_mode(smu);
2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_set_fan_control_mode(struct smu_context *smu, int value)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2216 2217
	if (smu->ppt_funcs->set_fan_control_mode)
		ret = smu->ppt_funcs->set_fan_control_mode(smu, value);
2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_get_fan_speed_percent(struct smu_context *smu, uint32_t *speed)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->get_fan_speed_percent)
		ret = smu->ppt_funcs->get_fan_speed_percent(smu, speed);

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_set_fan_speed_percent(struct smu_context *smu, uint32_t speed)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2244 2245
	if (smu->ppt_funcs->set_fan_speed_percent)
		ret = smu->ppt_funcs->set_fan_speed_percent(smu, speed);
2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_get_fan_speed_rpm(struct smu_context *smu, uint32_t *speed)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->get_fan_speed_rpm)
		ret = smu->ppt_funcs->get_fan_speed_rpm(smu, speed);

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_set_deep_sleep_dcefclk(struct smu_context *smu, int clk)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2272 2273
	if (smu->ppt_funcs->set_deep_sleep_dcefclk)
		ret = smu->ppt_funcs->set_deep_sleep_dcefclk(smu, clk);
2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_set_active_display_count(struct smu_context *smu, uint32_t count)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2286 2287
	if (smu->ppt_funcs->set_active_display_count)
		ret = smu->ppt_funcs->set_active_display_count(smu, count);
2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_get_clock_by_type(struct smu_context *smu,
			  enum amd_pp_clock_type type,
			  struct amd_pp_clocks *clocks)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2302 2303
	if (smu->ppt_funcs->get_clock_by_type)
		ret = smu->ppt_funcs->get_clock_by_type(smu, type, clocks);
2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_get_max_high_clocks(struct smu_context *smu,
			    struct amd_pp_simple_clock_info *clocks)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2317 2318
	if (smu->ppt_funcs->get_max_high_clocks)
		ret = smu->ppt_funcs->get_max_high_clocks(smu, clocks);
2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_get_clock_by_type_with_latency(struct smu_context *smu,
				       enum smu_clk_type clk_type,
				       struct pp_clock_levels_with_latency *clocks)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->get_clock_by_type_with_latency)
		ret = smu->ppt_funcs->get_clock_by_type_with_latency(smu, clk_type, clocks);

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_get_clock_by_type_with_voltage(struct smu_context *smu,
				       enum amd_pp_clock_type type,
				       struct pp_clock_levels_with_voltage *clocks)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->get_clock_by_type_with_voltage)
		ret = smu->ppt_funcs->get_clock_by_type_with_voltage(smu, type, clocks);

	mutex_unlock(&smu->mutex);

	return ret;
}


int smu_display_clock_voltage_request(struct smu_context *smu,
				      struct pp_display_clock_request *clock_req)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2365 2366
	if (smu->ppt_funcs->display_clock_voltage_request)
		ret = smu->ppt_funcs->display_clock_voltage_request(smu, clock_req);
2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393

	mutex_unlock(&smu->mutex);

	return ret;
}


int smu_display_disable_memory_clock_switch(struct smu_context *smu, bool disable_memory_clock_switch)
{
	int ret = -EINVAL;

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->display_disable_memory_clock_switch)
		ret = smu->ppt_funcs->display_disable_memory_clock_switch(smu, disable_memory_clock_switch);

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_notify_smu_enable_pwe(struct smu_context *smu)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2394 2395
	if (smu->ppt_funcs->notify_smu_enable_pwe)
		ret = smu->ppt_funcs->notify_smu_enable_pwe(smu);
2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_set_xgmi_pstate(struct smu_context *smu,
			uint32_t pstate)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2409 2410
	if (smu->ppt_funcs->set_xgmi_pstate)
		ret = smu->ppt_funcs->set_xgmi_pstate(smu, pstate);
2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_set_azalia_d3_pme(struct smu_context *smu)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2423 2424
	if (smu->ppt_funcs->set_azalia_d3_pme)
		ret = smu->ppt_funcs->set_azalia_d3_pme(smu);
2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436

	mutex_unlock(&smu->mutex);

	return ret;
}

bool smu_baco_is_support(struct smu_context *smu)
{
	bool ret = false;

	mutex_lock(&smu->mutex);

2437 2438
	if (smu->ppt_funcs->baco_is_support)
		ret = smu->ppt_funcs->baco_is_support(smu);
2439 2440 2441 2442 2443 2444 2445 2446

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_baco_get_state(struct smu_context *smu, enum smu_baco_state *state)
{
2447
	if (smu->ppt_funcs->baco_get_state)
2448 2449 2450
		return -EINVAL;

	mutex_lock(&smu->mutex);
2451
	*state = smu->ppt_funcs->baco_get_state(smu);
2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462
	mutex_unlock(&smu->mutex);

	return 0;
}

int smu_baco_reset(struct smu_context *smu)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2463 2464
	if (smu->ppt_funcs->baco_reset)
		ret = smu->ppt_funcs->baco_reset(smu);
2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_mode2_reset(struct smu_context *smu)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2477 2478
	if (smu->ppt_funcs->mode2_reset)
		ret = smu->ppt_funcs->mode2_reset(smu);
2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_get_max_sustainable_clocks_by_dc(struct smu_context *smu,
					 struct pp_smu_nv_clock_table *max_clocks)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

2492 2493
	if (smu->ppt_funcs->get_max_sustainable_clocks_by_dc)
		ret = smu->ppt_funcs->get_max_sustainable_clocks_by_dc(smu, max_clocks);
2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543

	mutex_unlock(&smu->mutex);

	return ret;
}

int smu_get_uclk_dpm_states(struct smu_context *smu,
			    unsigned int *clock_values_in_khz,
			    unsigned int *num_states)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->get_uclk_dpm_states)
		ret = smu->ppt_funcs->get_uclk_dpm_states(smu, clock_values_in_khz, num_states);

	mutex_unlock(&smu->mutex);

	return ret;
}

enum amd_pm_state_type smu_get_current_power_state(struct smu_context *smu)
{
	enum amd_pm_state_type pm_state = POWER_STATE_TYPE_DEFAULT;

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->get_current_power_state)
		pm_state = smu->ppt_funcs->get_current_power_state(smu);

	mutex_unlock(&smu->mutex);

	return pm_state;
}

int smu_get_dpm_clock_table(struct smu_context *smu,
			    struct dpm_clocks *clock_table)
{
	int ret = 0;

	mutex_lock(&smu->mutex);

	if (smu->ppt_funcs->get_dpm_clock_table)
		ret = smu->ppt_funcs->get_dpm_clock_table(smu, clock_table);

	mutex_unlock(&smu->mutex);

	return ret;
}
2544 2545 2546 2547 2548 2549 2550 2551 2552 2553

uint32_t smu_get_pptable_power_limit(struct smu_context *smu)
{
	uint32_t ret = 0;

	if (smu->ppt_funcs->get_pptable_power_limit)
		ret = smu->ppt_funcs->get_pptable_power_limit(smu);

	return ret;
}