intel_guc.c 18.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/*
 * Copyright © 2014-2017 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

#include "intel_guc.h"
26
#include "intel_guc_ads.h"
27
#include "intel_guc_submission.h"
28 29
#include "i915_drv.h"

30 31
static void guc_init_ggtt_pin_bias(struct intel_guc *guc);

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
static void gen8_guc_raise_irq(struct intel_guc *guc)
{
	struct drm_i915_private *dev_priv = guc_to_i915(guc);

	I915_WRITE(GUC_SEND_INTERRUPT, GUC_SEND_TRIGGER);
}

static inline i915_reg_t guc_send_reg(struct intel_guc *guc, u32 i)
{
	GEM_BUG_ON(!guc->send_regs.base);
	GEM_BUG_ON(!guc->send_regs.count);
	GEM_BUG_ON(i >= guc->send_regs.count);

	return _MMIO(guc->send_regs.base + 4 * i);
}

void intel_guc_init_send_regs(struct intel_guc *guc)
{
	struct drm_i915_private *dev_priv = guc_to_i915(guc);
	enum forcewake_domains fw_domains = 0;
	unsigned int i;

	guc->send_regs.base = i915_mmio_reg_offset(SOFT_SCRATCH(0));
	guc->send_regs.count = SOFT_SCRATCH_COUNT - 1;

	for (i = 0; i < guc->send_regs.count; i++) {
		fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
					guc_send_reg(guc, i),
					FW_REG_READ | FW_REG_WRITE);
	}
	guc->send_regs.fw_domains = fw_domains;
}

void intel_guc_init_early(struct intel_guc *guc)
{
67
	intel_guc_fw_init_early(guc);
68
	intel_guc_ct_init_early(&guc->ct);
69
	intel_guc_log_init_early(&guc->log);
70 71

	mutex_init(&guc->send_mutex);
72
	spin_lock_init(&guc->irq_lock);
73
	guc->send = intel_guc_send_nop;
74
	guc->handler = intel_guc_to_host_event_handler_nop;
75 76 77
	guc->notify = gen8_guc_raise_irq;
}

78
static int guc_init_wq(struct intel_guc *guc)
79 80 81 82 83 84 85 86 87 88 89 90 91 92
{
	struct drm_i915_private *dev_priv = guc_to_i915(guc);

	/*
	 * GuC log buffer flush work item has to do register access to
	 * send the ack to GuC and this work item, if not synced before
	 * suspend, can potentially get executed after the GFX device is
	 * suspended.
	 * By marking the WQ as freezable, we don't have to bother about
	 * flushing of this work item from the suspend hooks, the pending
	 * work item if any will be either executed before the suspend
	 * or scheduled later on resume. This way the handling of work
	 * item can be kept same between system suspend & rpm suspend.
	 */
93 94 95 96
	guc->log.relay.flush_wq =
		alloc_ordered_workqueue("i915-guc_log",
					WQ_HIGHPRI | WQ_FREEZABLE);
	if (!guc->log.relay.flush_wq) {
97
		DRM_ERROR("Couldn't allocate workqueue for GuC log\n");
98
		return -ENOMEM;
99
	}
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118

	/*
	 * Even though both sending GuC action, and adding a new workitem to
	 * GuC workqueue are serialized (each with its own locking), since
	 * we're using mutliple engines, it's possible that we're going to
	 * issue a preempt request with two (or more - each for different
	 * engine) workitems in GuC queue. In this situation, GuC may submit
	 * all of them, which will make us very confused.
	 * Our preemption contexts may even already be complete - before we
	 * even had the chance to sent the preempt action to GuC!. Rather
	 * than introducing yet another lock, we can just use ordered workqueue
	 * to make sure we're always sending a single preemption request with a
	 * single workitem.
	 */
	if (HAS_LOGICAL_RING_PREEMPTION(dev_priv) &&
	    USES_GUC_SUBMISSION(dev_priv)) {
		guc->preempt_wq = alloc_ordered_workqueue("i915-guc_preempt",
							  WQ_HIGHPRI);
		if (!guc->preempt_wq) {
119
			destroy_workqueue(guc->log.relay.flush_wq);
120 121
			DRM_ERROR("Couldn't allocate workqueue for GuC "
				  "preemption\n");
122 123 124 125 126 127 128
			return -ENOMEM;
		}
	}

	return 0;
}

129
static void guc_fini_wq(struct intel_guc *guc)
130 131 132 133 134 135 136
{
	struct drm_i915_private *dev_priv = guc_to_i915(guc);

	if (HAS_LOGICAL_RING_PREEMPTION(dev_priv) &&
	    USES_GUC_SUBMISSION(dev_priv))
		destroy_workqueue(guc->preempt_wq);

137
	destroy_workqueue(guc->log.relay.flush_wq);
138 139
}

140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
int intel_guc_init_misc(struct intel_guc *guc)
{
	int ret;

	guc_init_ggtt_pin_bias(guc);

	ret = guc_init_wq(guc);
	if (ret)
		return ret;

	return 0;
}

void intel_guc_fini_misc(struct intel_guc *guc)
{
	guc_fini_wq(guc);
}

158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
static int guc_shared_data_create(struct intel_guc *guc)
{
	struct i915_vma *vma;
	void *vaddr;

	vma = intel_guc_allocate_vma(guc, PAGE_SIZE);
	if (IS_ERR(vma))
		return PTR_ERR(vma);

	vaddr = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		i915_vma_unpin_and_release(&vma);
		return PTR_ERR(vaddr);
	}

	guc->shared_data = vma;
	guc->shared_data_vaddr = vaddr;

	return 0;
}

static void guc_shared_data_destroy(struct intel_guc *guc)
{
	i915_gem_object_unpin_map(guc->shared_data->obj);
	i915_vma_unpin_and_release(&guc->shared_data);
}

int intel_guc_init(struct intel_guc *guc)
{
	struct drm_i915_private *dev_priv = guc_to_i915(guc);
	int ret;

	ret = guc_shared_data_create(guc);
	if (ret)
		return ret;
	GEM_BUG_ON(!guc->shared_data);

195
	ret = intel_guc_log_create(&guc->log);
196 197 198 199 200 201 202 203
	if (ret)
		goto err_shared;

	ret = intel_guc_ads_create(guc);
	if (ret)
		goto err_log;
	GEM_BUG_ON(!guc->ads_vma);

204 205 206 207
	/* We need to notify the guc whenever we change the GGTT */
	i915_ggtt_enable_guc(dev_priv);

	return 0;
208 209

err_log:
210
	intel_guc_log_destroy(&guc->log);
211 212 213
err_shared:
	guc_shared_data_destroy(guc);
	return ret;
214 215 216 217 218 219 220
}

void intel_guc_fini(struct intel_guc *guc)
{
	struct drm_i915_private *dev_priv = guc_to_i915(guc);

	i915_ggtt_disable_guc(dev_priv);
221
	intel_guc_ads_destroy(guc);
222
	intel_guc_log_destroy(&guc->log);
223 224 225
	guc_shared_data_destroy(guc);
}

226
static u32 guc_ctl_debug_flags(struct intel_guc *guc)
227
{
228
	u32 level = intel_guc_log_get_level(&guc->log);
229 230 231 232 233
	u32 flags;
	u32 ads;

	ads = intel_guc_ggtt_offset(guc, guc->ads_vma) >> PAGE_SHIFT;
	flags = ads << GUC_ADS_ADDR_SHIFT | GUC_ADS_ENABLED;
234

235
	if (!GUC_LOG_LEVEL_IS_ENABLED(level))
236 237
		flags |= GUC_LOG_DEFAULT_DISABLED;

238
	if (!GUC_LOG_LEVEL_IS_VERBOSE(level))
239 240 241 242
		flags |= GUC_LOG_DISABLED;
	else
		flags |= GUC_LOG_LEVEL_TO_VERBOSITY(level) <<
			 GUC_LOG_VERBOSITY_SHIFT;
243

244
	return flags;
245 246
}

247 248 249 250 251 252 253 254 255 256 257 258 259
static u32 guc_ctl_feature_flags(struct intel_guc *guc)
{
	u32 flags = 0;

	flags |=  GUC_CTL_VCS2_ENABLED;

	if (USES_GUC_SUBMISSION(guc_to_i915(guc)))
		flags |= GUC_CTL_KERNEL_SUBMISSIONS;
	else
		flags |= GUC_CTL_DISABLE_SCHEDULER;

	return flags;
}
260

261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
static u32 guc_ctl_ctxinfo_flags(struct intel_guc *guc)
{
	u32 flags = 0;

	if (USES_GUC_SUBMISSION(guc_to_i915(guc))) {
		u32 ctxnum, base;

		base = intel_guc_ggtt_offset(guc, guc->stage_desc_pool);
		ctxnum = GUC_MAX_STAGE_DESCRIPTORS / 16;

		base >>= PAGE_SHIFT;
		flags |= (base << GUC_CTL_BASE_ADDR_SHIFT) |
			(ctxnum << GUC_CTL_CTXNUM_IN16_SHIFT);
	}
	return flags;
}

278 279 280 281 282
static u32 guc_ctl_log_params_flags(struct intel_guc *guc)
{
	u32 offset = intel_guc_ggtt_offset(guc, guc->log.vma) >> PAGE_SHIFT;
	u32 flags;

283 284 285 286
	#if (((CRASH_BUFFER_SIZE) % SZ_1M) == 0)
	#define UNIT SZ_1M
	#define FLAG GUC_LOG_ALLOC_IN_MEGABYTE
	#else
287
	#define UNIT SZ_4K
288 289
	#define FLAG 0
	#endif
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306

	BUILD_BUG_ON(!CRASH_BUFFER_SIZE);
	BUILD_BUG_ON(!IS_ALIGNED(CRASH_BUFFER_SIZE, UNIT));
	BUILD_BUG_ON(!DPC_BUFFER_SIZE);
	BUILD_BUG_ON(!IS_ALIGNED(DPC_BUFFER_SIZE, UNIT));
	BUILD_BUG_ON(!ISR_BUFFER_SIZE);
	BUILD_BUG_ON(!IS_ALIGNED(ISR_BUFFER_SIZE, UNIT));

	BUILD_BUG_ON((CRASH_BUFFER_SIZE / UNIT - 1) >
			(GUC_LOG_CRASH_MASK >> GUC_LOG_CRASH_SHIFT));
	BUILD_BUG_ON((DPC_BUFFER_SIZE / UNIT - 1) >
			(GUC_LOG_DPC_MASK >> GUC_LOG_DPC_SHIFT));
	BUILD_BUG_ON((ISR_BUFFER_SIZE / UNIT - 1) >
			(GUC_LOG_ISR_MASK >> GUC_LOG_ISR_SHIFT));

	flags = GUC_LOG_VALID |
		GUC_LOG_NOTIFY_ON_HALF_FULL |
307
		FLAG |
308 309 310
		((CRASH_BUFFER_SIZE / UNIT - 1) << GUC_LOG_CRASH_SHIFT) |
		((DPC_BUFFER_SIZE / UNIT - 1) << GUC_LOG_DPC_SHIFT) |
		((ISR_BUFFER_SIZE / UNIT - 1) << GUC_LOG_ISR_SHIFT) |
311 312
		(offset << GUC_LOG_BUF_ADDR_SHIFT);

313
	#undef UNIT
314
	#undef FLAG
315

316 317 318
	return flags;
}

319 320 321 322 323 324 325 326 327 328 329
/*
 * Initialise the GuC parameter block before starting the firmware
 * transfer. These parameters are read by the firmware on startup
 * and cannot be changed thereafter.
 */
void intel_guc_init_params(struct intel_guc *guc)
{
	struct drm_i915_private *dev_priv = guc_to_i915(guc);
	u32 params[GUC_CTL_MAX_DWORDS];
	int i;

330
	memset(params, 0, sizeof(params));
331 332 333 334 335 336 337 338 339 340 341

	/*
	 * GuC ARAT increment is 10 ns. GuC default scheduler quantum is one
	 * second. This ARAR is calculated by:
	 * Scheduler-Quantum-in-ns / ARAT-increment-in-ns = 1000000000 / 10
	 */
	params[GUC_CTL_ARAT_HIGH] = 0;
	params[GUC_CTL_ARAT_LOW] = 100000000;

	params[GUC_CTL_WA] |= GUC_CTL_WA_UK_BY_DRIVER;

342
	params[GUC_CTL_FEATURE] = guc_ctl_feature_flags(guc);
343
	params[GUC_CTL_LOG_PARAMS]  = guc_ctl_log_params_flags(guc);
344
	params[GUC_CTL_DEBUG] = guc_ctl_debug_flags(guc);
345
	params[GUC_CTL_CTXINFO] = guc_ctl_ctxinfo_flags(guc);
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361

	/*
	 * All SOFT_SCRATCH registers are in FORCEWAKE_BLITTER domain and
	 * they are power context saved so it's ok to release forcewake
	 * when we are done here and take it again at xfer time.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_BLITTER);

	I915_WRITE(SOFT_SCRATCH(0), 0);

	for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
		I915_WRITE(SOFT_SCRATCH(1 + i), params[i]);

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_BLITTER);
}

362 363
int intel_guc_send_nop(struct intel_guc *guc, const u32 *action, u32 len,
		       u32 *response_buf, u32 response_buf_size)
364 365 366 367 368
{
	WARN(1, "Unexpected send: action=%#x\n", *action);
	return -ENODEV;
}

369 370 371 372 373
void intel_guc_to_host_event_handler_nop(struct intel_guc *guc)
{
	WARN(1, "Unexpected event: no suitable handler\n");
}

374 375 376
/*
 * This function implements the MMIO based host to GuC interface.
 */
377 378
int intel_guc_send_mmio(struct intel_guc *guc, const u32 *action, u32 len,
			u32 *response_buf, u32 response_buf_size)
379 380 381 382 383 384 385 386 387
{
	struct drm_i915_private *dev_priv = guc_to_i915(guc);
	u32 status;
	int i;
	int ret;

	GEM_BUG_ON(!len);
	GEM_BUG_ON(len > guc->send_regs.count);

388 389 390
	/* We expect only action code */
	GEM_BUG_ON(*action & ~INTEL_GUC_MSG_CODE_MASK);

391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
	/* If CT is available, we expect to use MMIO only during init/fini */
	GEM_BUG_ON(HAS_GUC_CT(dev_priv) &&
		*action != INTEL_GUC_ACTION_REGISTER_COMMAND_TRANSPORT_BUFFER &&
		*action != INTEL_GUC_ACTION_DEREGISTER_COMMAND_TRANSPORT_BUFFER);

	mutex_lock(&guc->send_mutex);
	intel_uncore_forcewake_get(dev_priv, guc->send_regs.fw_domains);

	for (i = 0; i < len; i++)
		I915_WRITE(guc_send_reg(guc, i), action[i]);

	POSTING_READ(guc_send_reg(guc, i - 1));

	intel_guc_notify(guc);

	/*
	 * No GuC command should ever take longer than 10ms.
	 * Fast commands should still complete in 10us.
	 */
	ret = __intel_wait_for_register_fw(dev_priv,
					   guc_send_reg(guc, 0),
412 413 414
					   INTEL_GUC_MSG_TYPE_MASK,
					   INTEL_GUC_MSG_TYPE_RESPONSE <<
					   INTEL_GUC_MSG_TYPE_SHIFT,
415
					   10, 10, &status);
416 417 418
	/* If GuC explicitly returned an error, convert it to -EIO */
	if (!ret && !INTEL_GUC_MSG_IS_RESPONSE_SUCCESS(status))
		ret = -EIO;
419

420
	if (ret) {
421 422
		DRM_ERROR("MMIO: GuC action %#x failed with error %d %#x\n",
			  action[0], ret, status);
423
		goto out;
424 425
	}

426 427 428 429 430 431 432 433 434 435 436
	if (response_buf) {
		int count = min(response_buf_size, guc->send_regs.count - 1);

		for (i = 0; i < count; i++)
			response_buf[i] = I915_READ(guc_send_reg(guc, i + 1));
	}

	/* Use data from the GuC response as our return value */
	ret = INTEL_GUC_MSG_TO_DATA(status);

out:
437 438 439 440 441 442
	intel_uncore_forcewake_put(dev_priv, guc->send_regs.fw_domains);
	mutex_unlock(&guc->send_mutex);

	return ret;
}

443
void intel_guc_to_host_event_handler_mmio(struct intel_guc *guc)
444 445
{
	struct drm_i915_private *dev_priv = guc_to_i915(guc);
446
	u32 msg, val;
447 448 449 450 451 452 453 454 455 456 457 458

	/*
	 * Sample the log buffer flush related bits & clear them out now
	 * itself from the message identity register to minimize the
	 * probability of losing a flush interrupt, when there are back
	 * to back flush interrupts.
	 * There can be a new flush interrupt, for different log buffer
	 * type (like for ISR), whilst Host is handling one (for DPC).
	 * Since same bit is used in message register for ISR & DPC, it
	 * could happen that GuC sets the bit for 2nd interrupt but Host
	 * clears out the bit on handling the 1st interrupt.
	 */
459 460 461 462 463 464
	spin_lock(&guc->irq_lock);
	val = I915_READ(SOFT_SCRATCH(15));
	msg = val & guc->msg_enabled_mask;
	I915_WRITE(SOFT_SCRATCH(15), val & ~msg);
	spin_unlock(&guc->irq_lock);

465 466 467 468 469 470 471 472
	intel_guc_to_host_process_recv_msg(guc, msg);
}

void intel_guc_to_host_process_recv_msg(struct intel_guc *guc, u32 msg)
{
	/* Make sure to handle only enabled messages */
	msg &= guc->msg_enabled_mask;

473
	if (msg & (INTEL_GUC_RECV_MSG_FLUSH_LOG_BUFFER |
474
		   INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED))
475
		intel_guc_log_handle_flush_event(&guc->log);
476 477
}

478 479 480 481 482 483
int intel_guc_sample_forcewake(struct intel_guc *guc)
{
	struct drm_i915_private *dev_priv = guc_to_i915(guc);
	u32 action[2];

	action[0] = INTEL_GUC_ACTION_SAMPLE_FORCEWAKE;
484
	/* WaRsDisableCoarsePowerGating:skl,cnl */
485
	if (!HAS_RC6(dev_priv) || NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
		action[1] = 0;
	else
		/* bit 0 and 1 are for Render and Media domain separately */
		action[1] = GUC_FORCEWAKE_RENDER | GUC_FORCEWAKE_MEDIA;

	return intel_guc_send(guc, action, ARRAY_SIZE(action));
}

/**
 * intel_guc_auth_huc() - Send action to GuC to authenticate HuC ucode
 * @guc: intel_guc structure
 * @rsa_offset: rsa offset w.r.t ggtt base of huc vma
 *
 * Triggers a HuC firmware authentication request to the GuC via intel_guc_send
 * INTEL_GUC_ACTION_AUTHENTICATE_HUC interface. This function is invoked by
 * intel_huc_auth().
 *
 * Return:	non-zero code on error
 */
int intel_guc_auth_huc(struct intel_guc *guc, u32 rsa_offset)
{
	u32 action[] = {
		INTEL_GUC_ACTION_AUTHENTICATE_HUC,
		rsa_offset
	};

	return intel_guc_send(guc, action, ARRAY_SIZE(action));
}

/**
 * intel_guc_suspend() - notify GuC entering suspend state
517
 * @guc:	the guc
518
 */
519
int intel_guc_suspend(struct intel_guc *guc)
520
{
521 522 523
	u32 data[] = {
		INTEL_GUC_ACTION_ENTER_S_STATE,
		GUC_POWER_D1, /* any value greater than GUC_POWER_D0 */
524
		intel_guc_ggtt_offset(guc, guc->shared_data)
525
	};
526 527 528 529

	return intel_guc_send(guc, data, ARRAY_SIZE(data));
}

530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
/**
 * intel_guc_reset_engine() - ask GuC to reset an engine
 * @guc:	intel_guc structure
 * @engine:	engine to be reset
 */
int intel_guc_reset_engine(struct intel_guc *guc,
			   struct intel_engine_cs *engine)
{
	u32 data[7];

	GEM_BUG_ON(!guc->execbuf_client);

	data[0] = INTEL_GUC_ACTION_REQUEST_ENGINE_RESET;
	data[1] = engine->guc_id;
	data[2] = 0;
	data[3] = 0;
	data[4] = 0;
	data[5] = guc->execbuf_client->stage_id;
548
	data[6] = intel_guc_ggtt_offset(guc, guc->shared_data);
549 550 551 552

	return intel_guc_send(guc, data, ARRAY_SIZE(data));
}

553 554
/**
 * intel_guc_resume() - notify GuC resuming from suspend state
555
 * @guc:	the guc
556
 */
557
int intel_guc_resume(struct intel_guc *guc)
558
{
559 560 561
	u32 data[] = {
		INTEL_GUC_ACTION_EXIT_S_STATE,
		GUC_POWER_D0,
562
		intel_guc_ggtt_offset(guc, guc->shared_data)
563
	};
564 565 566 567

	return intel_guc_send(guc, data, ARRAY_SIZE(data));
}

568 569 570
/**
 * DOC: GuC Address Space
 *
571
 * The layout of GuC address space is shown below:
572
 *
573
 * ::
574
 *
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
 *     +==============> +====================+ <== GUC_GGTT_TOP
 *     ^                |                    |
 *     |                |                    |
 *     |                |        DRAM        |
 *     |                |       Memory       |
 *     |                |                    |
 *    GuC               |                    |
 *  Address  +========> +====================+ <== WOPCM Top
 *   Space   ^          |   HW contexts RSVD |
 *     |     |          |        WOPCM       |
 *     |     |     +==> +--------------------+ <== GuC WOPCM Top
 *     |    GuC    ^    |                    |
 *     |    GGTT   |    |                    |
 *     |    Pin   GuC   |        GuC         |
 *     |    Bias WOPCM  |       WOPCM        |
 *     |     |    Size  |                    |
 *     |     |     |    |                    |
 *     v     v     v    |                    |
 *     +=====+=====+==> +====================+ <== GuC WOPCM Base
 *                      |   Non-GuC WOPCM    |
 *                      |   (HuC/Reserved)   |
 *                      +====================+ <== WOPCM Base
 *
 * The lower part of GuC Address Space [0, ggtt_pin_bias) is mapped to WOPCM
 * while upper part of GuC Address Space [ggtt_pin_bias, GUC_GGTT_TOP) is mapped
 * to DRAM. The value of the GuC ggtt_pin_bias is determined by WOPCM size and
 * actual GuC WOPCM size.
602 603 604
 */

/**
605
 * guc_init_ggtt_pin_bias() - Initialize the GuC ggtt_pin_bias value.
606 607 608 609 610
 * @guc: intel_guc structure.
 *
 * This function will calculate and initialize the ggtt_pin_bias value based on
 * overall WOPCM size and GuC WOPCM size.
 */
611
static void guc_init_ggtt_pin_bias(struct intel_guc *guc)
612 613 614 615 616 617 618 619 620
{
	struct drm_i915_private *i915 = guc_to_i915(guc);

	GEM_BUG_ON(!i915->wopcm.size);
	GEM_BUG_ON(i915->wopcm.size < i915->wopcm.guc.base);

	guc->ggtt_pin_bias = i915->wopcm.size - i915->wopcm.guc.base;
}

621 622 623 624 625 626 627 628
/**
 * intel_guc_allocate_vma() - Allocate a GGTT VMA for GuC usage
 * @guc:	the guc
 * @size:	size of area to allocate (both virtual space and memory)
 *
 * This is a wrapper to create an object for use with the GuC. In order to
 * use it inside the GuC, an object needs to be pinned lifetime, so we allocate
 * both some backing storage and a range inside the Global GTT. We must pin
629
 * it in the GGTT somewhere other than than [0, GUC ggtt_pin_bias) because that
630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
 * range is reserved inside GuC.
 *
 * Return:	A i915_vma if successful, otherwise an ERR_PTR.
 */
struct i915_vma *intel_guc_allocate_vma(struct intel_guc *guc, u32 size)
{
	struct drm_i915_private *dev_priv = guc_to_i915(guc);
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int ret;

	obj = i915_gem_object_create(dev_priv, size);
	if (IS_ERR(obj))
		return ERR_CAST(obj);

645
	vma = i915_vma_instance(obj, &dev_priv->ggtt.vm, NULL);
646 647 648 649
	if (IS_ERR(vma))
		goto err;

	ret = i915_vma_pin(vma, 0, PAGE_SIZE,
650
			   PIN_GLOBAL | PIN_OFFSET_BIAS | guc->ggtt_pin_bias);
651 652 653 654 655 656 657 658 659 660 661
	if (ret) {
		vma = ERR_PTR(ret);
		goto err;
	}

	return vma;

err:
	i915_gem_object_put(obj);
	return vma;
}