intel_guc.c 17.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/*
 * Copyright © 2014-2017 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

#include "intel_guc.h"
26
#include "intel_guc_ads.h"
27
#include "intel_guc_submission.h"
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
#include "i915_drv.h"

static void gen8_guc_raise_irq(struct intel_guc *guc)
{
	struct drm_i915_private *dev_priv = guc_to_i915(guc);

	I915_WRITE(GUC_SEND_INTERRUPT, GUC_SEND_TRIGGER);
}

static inline i915_reg_t guc_send_reg(struct intel_guc *guc, u32 i)
{
	GEM_BUG_ON(!guc->send_regs.base);
	GEM_BUG_ON(!guc->send_regs.count);
	GEM_BUG_ON(i >= guc->send_regs.count);

	return _MMIO(guc->send_regs.base + 4 * i);
}

void intel_guc_init_send_regs(struct intel_guc *guc)
{
	struct drm_i915_private *dev_priv = guc_to_i915(guc);
	enum forcewake_domains fw_domains = 0;
	unsigned int i;

	guc->send_regs.base = i915_mmio_reg_offset(SOFT_SCRATCH(0));
	guc->send_regs.count = SOFT_SCRATCH_COUNT - 1;

	for (i = 0; i < guc->send_regs.count; i++) {
		fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
					guc_send_reg(guc, i),
					FW_REG_READ | FW_REG_WRITE);
	}
	guc->send_regs.fw_domains = fw_domains;
}

void intel_guc_init_early(struct intel_guc *guc)
{
65
	intel_guc_fw_init_early(guc);
66
	intel_guc_ct_init_early(&guc->ct);
67
	intel_guc_log_init_early(&guc->log);
68 69

	mutex_init(&guc->send_mutex);
70
	spin_lock_init(&guc->irq_lock);
71 72 73 74
	guc->send = intel_guc_send_nop;
	guc->notify = gen8_guc_raise_irq;
}

75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
int intel_guc_init_wq(struct intel_guc *guc)
{
	struct drm_i915_private *dev_priv = guc_to_i915(guc);

	/*
	 * GuC log buffer flush work item has to do register access to
	 * send the ack to GuC and this work item, if not synced before
	 * suspend, can potentially get executed after the GFX device is
	 * suspended.
	 * By marking the WQ as freezable, we don't have to bother about
	 * flushing of this work item from the suspend hooks, the pending
	 * work item if any will be either executed before the suspend
	 * or scheduled later on resume. This way the handling of work
	 * item can be kept same between system suspend & rpm suspend.
	 */
90 91 92 93
	guc->log.relay.flush_wq =
		alloc_ordered_workqueue("i915-guc_log",
					WQ_HIGHPRI | WQ_FREEZABLE);
	if (!guc->log.relay.flush_wq) {
94
		DRM_ERROR("Couldn't allocate workqueue for GuC log\n");
95
		return -ENOMEM;
96
	}
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115

	/*
	 * Even though both sending GuC action, and adding a new workitem to
	 * GuC workqueue are serialized (each with its own locking), since
	 * we're using mutliple engines, it's possible that we're going to
	 * issue a preempt request with two (or more - each for different
	 * engine) workitems in GuC queue. In this situation, GuC may submit
	 * all of them, which will make us very confused.
	 * Our preemption contexts may even already be complete - before we
	 * even had the chance to sent the preempt action to GuC!. Rather
	 * than introducing yet another lock, we can just use ordered workqueue
	 * to make sure we're always sending a single preemption request with a
	 * single workitem.
	 */
	if (HAS_LOGICAL_RING_PREEMPTION(dev_priv) &&
	    USES_GUC_SUBMISSION(dev_priv)) {
		guc->preempt_wq = alloc_ordered_workqueue("i915-guc_preempt",
							  WQ_HIGHPRI);
		if (!guc->preempt_wq) {
116
			destroy_workqueue(guc->log.relay.flush_wq);
117 118
			DRM_ERROR("Couldn't allocate workqueue for GuC "
				  "preemption\n");
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
			return -ENOMEM;
		}
	}

	return 0;
}

void intel_guc_fini_wq(struct intel_guc *guc)
{
	struct drm_i915_private *dev_priv = guc_to_i915(guc);

	if (HAS_LOGICAL_RING_PREEMPTION(dev_priv) &&
	    USES_GUC_SUBMISSION(dev_priv))
		destroy_workqueue(guc->preempt_wq);

134
	destroy_workqueue(guc->log.relay.flush_wq);
135 136
}

137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
static int guc_shared_data_create(struct intel_guc *guc)
{
	struct i915_vma *vma;
	void *vaddr;

	vma = intel_guc_allocate_vma(guc, PAGE_SIZE);
	if (IS_ERR(vma))
		return PTR_ERR(vma);

	vaddr = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		i915_vma_unpin_and_release(&vma);
		return PTR_ERR(vaddr);
	}

	guc->shared_data = vma;
	guc->shared_data_vaddr = vaddr;

	return 0;
}

static void guc_shared_data_destroy(struct intel_guc *guc)
{
	i915_gem_object_unpin_map(guc->shared_data->obj);
	i915_vma_unpin_and_release(&guc->shared_data);
}

int intel_guc_init(struct intel_guc *guc)
{
	struct drm_i915_private *dev_priv = guc_to_i915(guc);
	int ret;

	ret = guc_shared_data_create(guc);
	if (ret)
		return ret;
	GEM_BUG_ON(!guc->shared_data);

174
	ret = intel_guc_log_create(&guc->log);
175 176 177 178 179 180 181 182
	if (ret)
		goto err_shared;

	ret = intel_guc_ads_create(guc);
	if (ret)
		goto err_log;
	GEM_BUG_ON(!guc->ads_vma);

183 184 185 186
	/* We need to notify the guc whenever we change the GGTT */
	i915_ggtt_enable_guc(dev_priv);

	return 0;
187 188

err_log:
189
	intel_guc_log_destroy(&guc->log);
190 191 192
err_shared:
	guc_shared_data_destroy(guc);
	return ret;
193 194 195 196 197 198 199
}

void intel_guc_fini(struct intel_guc *guc)
{
	struct drm_i915_private *dev_priv = guc_to_i915(guc);

	i915_ggtt_disable_guc(dev_priv);
200
	intel_guc_ads_destroy(guc);
201
	intel_guc_log_destroy(&guc->log);
202 203 204
	guc_shared_data_destroy(guc);
}

205
static u32 get_gt_type(struct drm_i915_private *dev_priv)
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
{
	/* XXX: GT type based on PCI device ID? field seems unused by fw */
	return 0;
}

static u32 get_core_family(struct drm_i915_private *dev_priv)
{
	u32 gen = INTEL_GEN(dev_priv);

	switch (gen) {
	case 9:
		return GUC_CORE_FAMILY_GEN9;

	default:
		MISSING_CASE(gen);
		return GUC_CORE_FAMILY_UNKNOWN;
	}
}

225
static u32 get_log_control_flags(void)
226
{
227 228
	u32 level = i915_modparams.guc_log_level;
	u32 flags = 0;
229

230 231
	GEM_BUG_ON(level < 0);

232
	if (!GUC_LOG_LEVEL_IS_ENABLED(level))
233 234
		flags |= GUC_LOG_DEFAULT_DISABLED;

235
	if (!GUC_LOG_LEVEL_IS_VERBOSE(level))
236 237 238 239
		flags |= GUC_LOG_DISABLED;
	else
		flags |= GUC_LOG_LEVEL_TO_VERBOSITY(level) <<
			 GUC_LOG_VERBOSITY_SHIFT;
240

241
	return flags;
242 243
}

244 245 246 247 248 249 250 251 252 253 254
/*
 * Initialise the GuC parameter block before starting the firmware
 * transfer. These parameters are read by the firmware on startup
 * and cannot be changed thereafter.
 */
void intel_guc_init_params(struct intel_guc *guc)
{
	struct drm_i915_private *dev_priv = guc_to_i915(guc);
	u32 params[GUC_CTL_MAX_DWORDS];
	int i;

255
	memset(params, 0, sizeof(params));
256 257

	params[GUC_CTL_DEVICE_INFO] |=
258 259
		(get_gt_type(dev_priv) << GUC_CTL_GT_TYPE_SHIFT) |
		(get_core_family(dev_priv) << GUC_CTL_CORE_FAMILY_SHIFT);
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275

	/*
	 * GuC ARAT increment is 10 ns. GuC default scheduler quantum is one
	 * second. This ARAR is calculated by:
	 * Scheduler-Quantum-in-ns / ARAT-increment-in-ns = 1000000000 / 10
	 */
	params[GUC_CTL_ARAT_HIGH] = 0;
	params[GUC_CTL_ARAT_LOW] = 100000000;

	params[GUC_CTL_WA] |= GUC_CTL_WA_UK_BY_DRIVER;

	params[GUC_CTL_FEATURE] |= GUC_CTL_DISABLE_SCHEDULER |
			GUC_CTL_VCS2_ENABLED;

	params[GUC_CTL_LOG_PARAMS] = guc->log.flags;

276
	params[GUC_CTL_DEBUG] = get_log_control_flags();
277 278

	/* If GuC submission is enabled, set up additional parameters here */
279
	if (USES_GUC_SUBMISSION(dev_priv)) {
280 281 282
		u32 ads = intel_guc_ggtt_offset(guc,
						guc->ads_vma) >> PAGE_SHIFT;
		u32 pgs = intel_guc_ggtt_offset(guc, guc->stage_desc_pool);
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
		u32 ctx_in_16 = GUC_MAX_STAGE_DESCRIPTORS / 16;

		params[GUC_CTL_DEBUG] |= ads << GUC_ADS_ADDR_SHIFT;
		params[GUC_CTL_DEBUG] |= GUC_ADS_ENABLED;

		pgs >>= PAGE_SHIFT;
		params[GUC_CTL_CTXINFO] = (pgs << GUC_CTL_BASE_ADDR_SHIFT) |
			(ctx_in_16 << GUC_CTL_CTXNUM_IN16_SHIFT);

		params[GUC_CTL_FEATURE] |= GUC_CTL_KERNEL_SUBMISSIONS;

		/* Unmask this bit to enable the GuC's internal scheduler */
		params[GUC_CTL_FEATURE] &= ~GUC_CTL_DISABLE_SCHEDULER;
	}

	/*
	 * All SOFT_SCRATCH registers are in FORCEWAKE_BLITTER domain and
	 * they are power context saved so it's ok to release forcewake
	 * when we are done here and take it again at xfer time.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_BLITTER);

	I915_WRITE(SOFT_SCRATCH(0), 0);

	for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
		I915_WRITE(SOFT_SCRATCH(1 + i), params[i]);

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_BLITTER);
}

313 314
int intel_guc_send_nop(struct intel_guc *guc, const u32 *action, u32 len,
		       u32 *response_buf, u32 response_buf_size)
315 316 317 318 319 320 321 322
{
	WARN(1, "Unexpected send: action=%#x\n", *action);
	return -ENODEV;
}

/*
 * This function implements the MMIO based host to GuC interface.
 */
323 324
int intel_guc_send_mmio(struct intel_guc *guc, const u32 *action, u32 len,
			u32 *response_buf, u32 response_buf_size)
325 326 327 328 329 330 331 332 333
{
	struct drm_i915_private *dev_priv = guc_to_i915(guc);
	u32 status;
	int i;
	int ret;

	GEM_BUG_ON(!len);
	GEM_BUG_ON(len > guc->send_regs.count);

334 335 336
	/* We expect only action code */
	GEM_BUG_ON(*action & ~INTEL_GUC_MSG_CODE_MASK);

337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
	/* If CT is available, we expect to use MMIO only during init/fini */
	GEM_BUG_ON(HAS_GUC_CT(dev_priv) &&
		*action != INTEL_GUC_ACTION_REGISTER_COMMAND_TRANSPORT_BUFFER &&
		*action != INTEL_GUC_ACTION_DEREGISTER_COMMAND_TRANSPORT_BUFFER);

	mutex_lock(&guc->send_mutex);
	intel_uncore_forcewake_get(dev_priv, guc->send_regs.fw_domains);

	for (i = 0; i < len; i++)
		I915_WRITE(guc_send_reg(guc, i), action[i]);

	POSTING_READ(guc_send_reg(guc, i - 1));

	intel_guc_notify(guc);

	/*
	 * No GuC command should ever take longer than 10ms.
	 * Fast commands should still complete in 10us.
	 */
	ret = __intel_wait_for_register_fw(dev_priv,
					   guc_send_reg(guc, 0),
358 359 360
					   INTEL_GUC_MSG_TYPE_MASK,
					   INTEL_GUC_MSG_TYPE_RESPONSE <<
					   INTEL_GUC_MSG_TYPE_SHIFT,
361
					   10, 10, &status);
362 363 364
	/* If GuC explicitly returned an error, convert it to -EIO */
	if (!ret && !INTEL_GUC_MSG_IS_RESPONSE_SUCCESS(status))
		ret = -EIO;
365

366
	if (ret) {
367 368 369 370
		DRM_DEBUG_DRIVER("INTEL_GUC_SEND: Action 0x%X failed;"
				 " ret=%d status=0x%08X response=0x%08X\n",
				 action[0], ret, status,
				 I915_READ(SOFT_SCRATCH(15)));
371
		goto out;
372 373
	}

374 375 376 377 378 379 380 381 382 383 384
	if (response_buf) {
		int count = min(response_buf_size, guc->send_regs.count - 1);

		for (i = 0; i < count; i++)
			response_buf[i] = I915_READ(guc_send_reg(guc, i + 1));
	}

	/* Use data from the GuC response as our return value */
	ret = INTEL_GUC_MSG_TO_DATA(status);

out:
385 386 387 388 389 390
	intel_uncore_forcewake_put(dev_priv, guc->send_regs.fw_domains);
	mutex_unlock(&guc->send_mutex);

	return ret;
}

391 392 393
void intel_guc_to_host_event_handler(struct intel_guc *guc)
{
	struct drm_i915_private *dev_priv = guc_to_i915(guc);
394
	u32 msg, val;
395 396 397 398 399 400 401 402 403 404 405 406

	/*
	 * Sample the log buffer flush related bits & clear them out now
	 * itself from the message identity register to minimize the
	 * probability of losing a flush interrupt, when there are back
	 * to back flush interrupts.
	 * There can be a new flush interrupt, for different log buffer
	 * type (like for ISR), whilst Host is handling one (for DPC).
	 * Since same bit is used in message register for ISR & DPC, it
	 * could happen that GuC sets the bit for 2nd interrupt but Host
	 * clears out the bit on handling the 1st interrupt.
	 */
407 408 409 410 411 412 413
	spin_lock(&guc->irq_lock);
	val = I915_READ(SOFT_SCRATCH(15));
	msg = val & guc->msg_enabled_mask;
	I915_WRITE(SOFT_SCRATCH(15), val & ~msg);
	spin_unlock(&guc->irq_lock);

	if (msg & (INTEL_GUC_RECV_MSG_FLUSH_LOG_BUFFER |
414
		   INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED))
415
		intel_guc_log_handle_flush_event(&guc->log);
416 417
}

418 419 420 421 422 423
int intel_guc_sample_forcewake(struct intel_guc *guc)
{
	struct drm_i915_private *dev_priv = guc_to_i915(guc);
	u32 action[2];

	action[0] = INTEL_GUC_ACTION_SAMPLE_FORCEWAKE;
424
	/* WaRsDisableCoarsePowerGating:skl,cnl */
425
	if (!HAS_RC6(dev_priv) || NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
		action[1] = 0;
	else
		/* bit 0 and 1 are for Render and Media domain separately */
		action[1] = GUC_FORCEWAKE_RENDER | GUC_FORCEWAKE_MEDIA;

	return intel_guc_send(guc, action, ARRAY_SIZE(action));
}

/**
 * intel_guc_auth_huc() - Send action to GuC to authenticate HuC ucode
 * @guc: intel_guc structure
 * @rsa_offset: rsa offset w.r.t ggtt base of huc vma
 *
 * Triggers a HuC firmware authentication request to the GuC via intel_guc_send
 * INTEL_GUC_ACTION_AUTHENTICATE_HUC interface. This function is invoked by
 * intel_huc_auth().
 *
 * Return:	non-zero code on error
 */
int intel_guc_auth_huc(struct intel_guc *guc, u32 rsa_offset)
{
	u32 action[] = {
		INTEL_GUC_ACTION_AUTHENTICATE_HUC,
		rsa_offset
	};

	return intel_guc_send(guc, action, ARRAY_SIZE(action));
}

/**
 * intel_guc_suspend() - notify GuC entering suspend state
457
 * @guc:	the guc
458
 */
459
int intel_guc_suspend(struct intel_guc *guc)
460
{
461 462 463
	u32 data[] = {
		INTEL_GUC_ACTION_ENTER_S_STATE,
		GUC_POWER_D1, /* any value greater than GUC_POWER_D0 */
464
		intel_guc_ggtt_offset(guc, guc->shared_data)
465
	};
466 467 468 469

	return intel_guc_send(guc, data, ARRAY_SIZE(data));
}

470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
/**
 * intel_guc_reset_engine() - ask GuC to reset an engine
 * @guc:	intel_guc structure
 * @engine:	engine to be reset
 */
int intel_guc_reset_engine(struct intel_guc *guc,
			   struct intel_engine_cs *engine)
{
	u32 data[7];

	GEM_BUG_ON(!guc->execbuf_client);

	data[0] = INTEL_GUC_ACTION_REQUEST_ENGINE_RESET;
	data[1] = engine->guc_id;
	data[2] = 0;
	data[3] = 0;
	data[4] = 0;
	data[5] = guc->execbuf_client->stage_id;
488
	data[6] = intel_guc_ggtt_offset(guc, guc->shared_data);
489 490 491 492

	return intel_guc_send(guc, data, ARRAY_SIZE(data));
}

493 494
/**
 * intel_guc_resume() - notify GuC resuming from suspend state
495
 * @guc:	the guc
496
 */
497
int intel_guc_resume(struct intel_guc *guc)
498
{
499 500 501
	u32 data[] = {
		INTEL_GUC_ACTION_EXIT_S_STATE,
		GUC_POWER_D0,
502
		intel_guc_ggtt_offset(guc, guc->shared_data)
503
	};
504 505 506 507

	return intel_guc_send(guc, data, ARRAY_SIZE(data));
}

508 509 510
/**
 * DOC: GuC Address Space
 *
511
 * The layout of GuC address space is shown below:
512
 *
513
 * ::
514
 *
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
 *     +==============> +====================+ <== GUC_GGTT_TOP
 *     ^                |                    |
 *     |                |                    |
 *     |                |        DRAM        |
 *     |                |       Memory       |
 *     |                |                    |
 *    GuC               |                    |
 *  Address  +========> +====================+ <== WOPCM Top
 *   Space   ^          |   HW contexts RSVD |
 *     |     |          |        WOPCM       |
 *     |     |     +==> +--------------------+ <== GuC WOPCM Top
 *     |    GuC    ^    |                    |
 *     |    GGTT   |    |                    |
 *     |    Pin   GuC   |        GuC         |
 *     |    Bias WOPCM  |       WOPCM        |
 *     |     |    Size  |                    |
 *     |     |     |    |                    |
 *     v     v     v    |                    |
 *     +=====+=====+==> +====================+ <== GuC WOPCM Base
 *                      |   Non-GuC WOPCM    |
 *                      |   (HuC/Reserved)   |
 *                      +====================+ <== WOPCM Base
 *
 * The lower part of GuC Address Space [0, ggtt_pin_bias) is mapped to WOPCM
 * while upper part of GuC Address Space [ggtt_pin_bias, GUC_GGTT_TOP) is mapped
 * to DRAM. The value of the GuC ggtt_pin_bias is determined by WOPCM size and
 * actual GuC WOPCM size.
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
 */

/**
 * intel_guc_init_ggtt_pin_bias() - Initialize the GuC ggtt_pin_bias value.
 * @guc: intel_guc structure.
 *
 * This function will calculate and initialize the ggtt_pin_bias value based on
 * overall WOPCM size and GuC WOPCM size.
 */
void intel_guc_init_ggtt_pin_bias(struct intel_guc *guc)
{
	struct drm_i915_private *i915 = guc_to_i915(guc);

	GEM_BUG_ON(!i915->wopcm.size);
	GEM_BUG_ON(i915->wopcm.size < i915->wopcm.guc.base);

	guc->ggtt_pin_bias = i915->wopcm.size - i915->wopcm.guc.base;
}

561 562 563 564 565 566 567 568
/**
 * intel_guc_allocate_vma() - Allocate a GGTT VMA for GuC usage
 * @guc:	the guc
 * @size:	size of area to allocate (both virtual space and memory)
 *
 * This is a wrapper to create an object for use with the GuC. In order to
 * use it inside the GuC, an object needs to be pinned lifetime, so we allocate
 * both some backing storage and a range inside the Global GTT. We must pin
569
 * it in the GGTT somewhere other than than [0, GUC ggtt_pin_bias) because that
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
 * range is reserved inside GuC.
 *
 * Return:	A i915_vma if successful, otherwise an ERR_PTR.
 */
struct i915_vma *intel_guc_allocate_vma(struct intel_guc *guc, u32 size)
{
	struct drm_i915_private *dev_priv = guc_to_i915(guc);
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int ret;

	obj = i915_gem_object_create(dev_priv, size);
	if (IS_ERR(obj))
		return ERR_CAST(obj);

	vma = i915_vma_instance(obj, &dev_priv->ggtt.base, NULL);
	if (IS_ERR(vma))
		goto err;

	ret = i915_vma_pin(vma, 0, PAGE_SIZE,
590
			   PIN_GLOBAL | PIN_OFFSET_BIAS | guc->ggtt_pin_bias);
591 592 593 594 595 596 597 598 599 600 601
	if (ret) {
		vma = ERR_PTR(ret);
		goto err;
	}

	return vma;

err:
	i915_gem_object_put(obj);
	return vma;
}