intel_guc.c 18.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/*
 * Copyright © 2014-2017 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

#include "intel_guc.h"
26
#include "intel_guc_ads.h"
27
#include "intel_guc_submission.h"
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
#include "i915_drv.h"

static void gen8_guc_raise_irq(struct intel_guc *guc)
{
	struct drm_i915_private *dev_priv = guc_to_i915(guc);

	I915_WRITE(GUC_SEND_INTERRUPT, GUC_SEND_TRIGGER);
}

static inline i915_reg_t guc_send_reg(struct intel_guc *guc, u32 i)
{
	GEM_BUG_ON(!guc->send_regs.base);
	GEM_BUG_ON(!guc->send_regs.count);
	GEM_BUG_ON(i >= guc->send_regs.count);

	return _MMIO(guc->send_regs.base + 4 * i);
}

void intel_guc_init_send_regs(struct intel_guc *guc)
{
	struct drm_i915_private *dev_priv = guc_to_i915(guc);
	enum forcewake_domains fw_domains = 0;
	unsigned int i;

	guc->send_regs.base = i915_mmio_reg_offset(SOFT_SCRATCH(0));
	guc->send_regs.count = SOFT_SCRATCH_COUNT - 1;

	for (i = 0; i < guc->send_regs.count; i++) {
		fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
					guc_send_reg(guc, i),
					FW_REG_READ | FW_REG_WRITE);
	}
	guc->send_regs.fw_domains = fw_domains;
}

void intel_guc_init_early(struct intel_guc *guc)
{
65
	intel_guc_fw_init_early(guc);
66
	intel_guc_ct_init_early(&guc->ct);
67
	intel_guc_log_init_early(&guc->log);
68 69

	mutex_init(&guc->send_mutex);
70
	spin_lock_init(&guc->irq_lock);
71
	guc->send = intel_guc_send_nop;
72
	guc->handler = intel_guc_to_host_event_handler_nop;
73 74 75
	guc->notify = gen8_guc_raise_irq;
}

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
int intel_guc_init_wq(struct intel_guc *guc)
{
	struct drm_i915_private *dev_priv = guc_to_i915(guc);

	/*
	 * GuC log buffer flush work item has to do register access to
	 * send the ack to GuC and this work item, if not synced before
	 * suspend, can potentially get executed after the GFX device is
	 * suspended.
	 * By marking the WQ as freezable, we don't have to bother about
	 * flushing of this work item from the suspend hooks, the pending
	 * work item if any will be either executed before the suspend
	 * or scheduled later on resume. This way the handling of work
	 * item can be kept same between system suspend & rpm suspend.
	 */
91 92 93 94
	guc->log.relay.flush_wq =
		alloc_ordered_workqueue("i915-guc_log",
					WQ_HIGHPRI | WQ_FREEZABLE);
	if (!guc->log.relay.flush_wq) {
95
		DRM_ERROR("Couldn't allocate workqueue for GuC log\n");
96
		return -ENOMEM;
97
	}
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116

	/*
	 * Even though both sending GuC action, and adding a new workitem to
	 * GuC workqueue are serialized (each with its own locking), since
	 * we're using mutliple engines, it's possible that we're going to
	 * issue a preempt request with two (or more - each for different
	 * engine) workitems in GuC queue. In this situation, GuC may submit
	 * all of them, which will make us very confused.
	 * Our preemption contexts may even already be complete - before we
	 * even had the chance to sent the preempt action to GuC!. Rather
	 * than introducing yet another lock, we can just use ordered workqueue
	 * to make sure we're always sending a single preemption request with a
	 * single workitem.
	 */
	if (HAS_LOGICAL_RING_PREEMPTION(dev_priv) &&
	    USES_GUC_SUBMISSION(dev_priv)) {
		guc->preempt_wq = alloc_ordered_workqueue("i915-guc_preempt",
							  WQ_HIGHPRI);
		if (!guc->preempt_wq) {
117
			destroy_workqueue(guc->log.relay.flush_wq);
118 119
			DRM_ERROR("Couldn't allocate workqueue for GuC "
				  "preemption\n");
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
			return -ENOMEM;
		}
	}

	return 0;
}

void intel_guc_fini_wq(struct intel_guc *guc)
{
	struct drm_i915_private *dev_priv = guc_to_i915(guc);

	if (HAS_LOGICAL_RING_PREEMPTION(dev_priv) &&
	    USES_GUC_SUBMISSION(dev_priv))
		destroy_workqueue(guc->preempt_wq);

135
	destroy_workqueue(guc->log.relay.flush_wq);
136 137
}

138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
static int guc_shared_data_create(struct intel_guc *guc)
{
	struct i915_vma *vma;
	void *vaddr;

	vma = intel_guc_allocate_vma(guc, PAGE_SIZE);
	if (IS_ERR(vma))
		return PTR_ERR(vma);

	vaddr = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		i915_vma_unpin_and_release(&vma);
		return PTR_ERR(vaddr);
	}

	guc->shared_data = vma;
	guc->shared_data_vaddr = vaddr;

	return 0;
}

static void guc_shared_data_destroy(struct intel_guc *guc)
{
	i915_gem_object_unpin_map(guc->shared_data->obj);
	i915_vma_unpin_and_release(&guc->shared_data);
}

int intel_guc_init(struct intel_guc *guc)
{
	struct drm_i915_private *dev_priv = guc_to_i915(guc);
	int ret;

	ret = guc_shared_data_create(guc);
	if (ret)
		return ret;
	GEM_BUG_ON(!guc->shared_data);

175
	ret = intel_guc_log_create(&guc->log);
176 177 178 179 180 181 182 183
	if (ret)
		goto err_shared;

	ret = intel_guc_ads_create(guc);
	if (ret)
		goto err_log;
	GEM_BUG_ON(!guc->ads_vma);

184 185 186 187
	/* We need to notify the guc whenever we change the GGTT */
	i915_ggtt_enable_guc(dev_priv);

	return 0;
188 189

err_log:
190
	intel_guc_log_destroy(&guc->log);
191 192 193
err_shared:
	guc_shared_data_destroy(guc);
	return ret;
194 195 196 197 198 199 200
}

void intel_guc_fini(struct intel_guc *guc)
{
	struct drm_i915_private *dev_priv = guc_to_i915(guc);

	i915_ggtt_disable_guc(dev_priv);
201
	intel_guc_ads_destroy(guc);
202
	intel_guc_log_destroy(&guc->log);
203 204 205
	guc_shared_data_destroy(guc);
}

206
static u32 guc_ctl_debug_flags(struct intel_guc *guc)
207
{
208
	u32 level = intel_guc_log_get_level(&guc->log);
209 210 211 212 213
	u32 flags;
	u32 ads;

	ads = intel_guc_ggtt_offset(guc, guc->ads_vma) >> PAGE_SHIFT;
	flags = ads << GUC_ADS_ADDR_SHIFT | GUC_ADS_ENABLED;
214

215
	if (!GUC_LOG_LEVEL_IS_ENABLED(level))
216 217
		flags |= GUC_LOG_DEFAULT_DISABLED;

218
	if (!GUC_LOG_LEVEL_IS_VERBOSE(level))
219 220 221 222
		flags |= GUC_LOG_DISABLED;
	else
		flags |= GUC_LOG_LEVEL_TO_VERBOSITY(level) <<
			 GUC_LOG_VERBOSITY_SHIFT;
223

224
	return flags;
225 226
}

227 228 229 230 231 232 233 234 235 236 237 238 239
static u32 guc_ctl_feature_flags(struct intel_guc *guc)
{
	u32 flags = 0;

	flags |=  GUC_CTL_VCS2_ENABLED;

	if (USES_GUC_SUBMISSION(guc_to_i915(guc)))
		flags |= GUC_CTL_KERNEL_SUBMISSIONS;
	else
		flags |= GUC_CTL_DISABLE_SCHEDULER;

	return flags;
}
240

241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
static u32 guc_ctl_ctxinfo_flags(struct intel_guc *guc)
{
	u32 flags = 0;

	if (USES_GUC_SUBMISSION(guc_to_i915(guc))) {
		u32 ctxnum, base;

		base = intel_guc_ggtt_offset(guc, guc->stage_desc_pool);
		ctxnum = GUC_MAX_STAGE_DESCRIPTORS / 16;

		base >>= PAGE_SHIFT;
		flags |= (base << GUC_CTL_BASE_ADDR_SHIFT) |
			(ctxnum << GUC_CTL_CTXNUM_IN16_SHIFT);
	}
	return flags;
}

258 259 260 261 262
static u32 guc_ctl_log_params_flags(struct intel_guc *guc)
{
	u32 offset = intel_guc_ggtt_offset(guc, guc->log.vma) >> PAGE_SHIFT;
	u32 flags;

263 264 265 266
	#if (((CRASH_BUFFER_SIZE) % SZ_1M) == 0)
	#define UNIT SZ_1M
	#define FLAG GUC_LOG_ALLOC_IN_MEGABYTE
	#else
267
	#define UNIT SZ_4K
268 269
	#define FLAG 0
	#endif
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286

	BUILD_BUG_ON(!CRASH_BUFFER_SIZE);
	BUILD_BUG_ON(!IS_ALIGNED(CRASH_BUFFER_SIZE, UNIT));
	BUILD_BUG_ON(!DPC_BUFFER_SIZE);
	BUILD_BUG_ON(!IS_ALIGNED(DPC_BUFFER_SIZE, UNIT));
	BUILD_BUG_ON(!ISR_BUFFER_SIZE);
	BUILD_BUG_ON(!IS_ALIGNED(ISR_BUFFER_SIZE, UNIT));

	BUILD_BUG_ON((CRASH_BUFFER_SIZE / UNIT - 1) >
			(GUC_LOG_CRASH_MASK >> GUC_LOG_CRASH_SHIFT));
	BUILD_BUG_ON((DPC_BUFFER_SIZE / UNIT - 1) >
			(GUC_LOG_DPC_MASK >> GUC_LOG_DPC_SHIFT));
	BUILD_BUG_ON((ISR_BUFFER_SIZE / UNIT - 1) >
			(GUC_LOG_ISR_MASK >> GUC_LOG_ISR_SHIFT));

	flags = GUC_LOG_VALID |
		GUC_LOG_NOTIFY_ON_HALF_FULL |
287
		FLAG |
288 289 290
		((CRASH_BUFFER_SIZE / UNIT - 1) << GUC_LOG_CRASH_SHIFT) |
		((DPC_BUFFER_SIZE / UNIT - 1) << GUC_LOG_DPC_SHIFT) |
		((ISR_BUFFER_SIZE / UNIT - 1) << GUC_LOG_ISR_SHIFT) |
291 292
		(offset << GUC_LOG_BUF_ADDR_SHIFT);

293
	#undef UNIT
294
	#undef FLAG
295

296 297 298
	return flags;
}

299 300 301 302 303 304 305 306 307 308 309
/*
 * Initialise the GuC parameter block before starting the firmware
 * transfer. These parameters are read by the firmware on startup
 * and cannot be changed thereafter.
 */
void intel_guc_init_params(struct intel_guc *guc)
{
	struct drm_i915_private *dev_priv = guc_to_i915(guc);
	u32 params[GUC_CTL_MAX_DWORDS];
	int i;

310
	memset(params, 0, sizeof(params));
311 312 313 314 315 316 317 318 319 320 321

	/*
	 * GuC ARAT increment is 10 ns. GuC default scheduler quantum is one
	 * second. This ARAR is calculated by:
	 * Scheduler-Quantum-in-ns / ARAT-increment-in-ns = 1000000000 / 10
	 */
	params[GUC_CTL_ARAT_HIGH] = 0;
	params[GUC_CTL_ARAT_LOW] = 100000000;

	params[GUC_CTL_WA] |= GUC_CTL_WA_UK_BY_DRIVER;

322
	params[GUC_CTL_FEATURE] = guc_ctl_feature_flags(guc);
323
	params[GUC_CTL_LOG_PARAMS]  = guc_ctl_log_params_flags(guc);
324
	params[GUC_CTL_DEBUG] = guc_ctl_debug_flags(guc);
325
	params[GUC_CTL_CTXINFO] = guc_ctl_ctxinfo_flags(guc);
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341

	/*
	 * All SOFT_SCRATCH registers are in FORCEWAKE_BLITTER domain and
	 * they are power context saved so it's ok to release forcewake
	 * when we are done here and take it again at xfer time.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_BLITTER);

	I915_WRITE(SOFT_SCRATCH(0), 0);

	for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
		I915_WRITE(SOFT_SCRATCH(1 + i), params[i]);

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_BLITTER);
}

342 343
int intel_guc_send_nop(struct intel_guc *guc, const u32 *action, u32 len,
		       u32 *response_buf, u32 response_buf_size)
344 345 346 347 348
{
	WARN(1, "Unexpected send: action=%#x\n", *action);
	return -ENODEV;
}

349 350 351 352 353
void intel_guc_to_host_event_handler_nop(struct intel_guc *guc)
{
	WARN(1, "Unexpected event: no suitable handler\n");
}

354 355 356
/*
 * This function implements the MMIO based host to GuC interface.
 */
357 358
int intel_guc_send_mmio(struct intel_guc *guc, const u32 *action, u32 len,
			u32 *response_buf, u32 response_buf_size)
359 360 361 362 363 364 365 366 367
{
	struct drm_i915_private *dev_priv = guc_to_i915(guc);
	u32 status;
	int i;
	int ret;

	GEM_BUG_ON(!len);
	GEM_BUG_ON(len > guc->send_regs.count);

368 369 370
	/* We expect only action code */
	GEM_BUG_ON(*action & ~INTEL_GUC_MSG_CODE_MASK);

371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
	/* If CT is available, we expect to use MMIO only during init/fini */
	GEM_BUG_ON(HAS_GUC_CT(dev_priv) &&
		*action != INTEL_GUC_ACTION_REGISTER_COMMAND_TRANSPORT_BUFFER &&
		*action != INTEL_GUC_ACTION_DEREGISTER_COMMAND_TRANSPORT_BUFFER);

	mutex_lock(&guc->send_mutex);
	intel_uncore_forcewake_get(dev_priv, guc->send_regs.fw_domains);

	for (i = 0; i < len; i++)
		I915_WRITE(guc_send_reg(guc, i), action[i]);

	POSTING_READ(guc_send_reg(guc, i - 1));

	intel_guc_notify(guc);

	/*
	 * No GuC command should ever take longer than 10ms.
	 * Fast commands should still complete in 10us.
	 */
	ret = __intel_wait_for_register_fw(dev_priv,
					   guc_send_reg(guc, 0),
392 393 394
					   INTEL_GUC_MSG_TYPE_MASK,
					   INTEL_GUC_MSG_TYPE_RESPONSE <<
					   INTEL_GUC_MSG_TYPE_SHIFT,
395
					   10, 10, &status);
396 397 398
	/* If GuC explicitly returned an error, convert it to -EIO */
	if (!ret && !INTEL_GUC_MSG_IS_RESPONSE_SUCCESS(status))
		ret = -EIO;
399

400
	if (ret) {
401 402
		DRM_ERROR("MMIO: GuC action %#x failed with error %d %#x\n",
			  action[0], ret, status);
403
		goto out;
404 405
	}

406 407 408 409 410 411 412 413 414 415 416
	if (response_buf) {
		int count = min(response_buf_size, guc->send_regs.count - 1);

		for (i = 0; i < count; i++)
			response_buf[i] = I915_READ(guc_send_reg(guc, i + 1));
	}

	/* Use data from the GuC response as our return value */
	ret = INTEL_GUC_MSG_TO_DATA(status);

out:
417 418 419 420 421 422
	intel_uncore_forcewake_put(dev_priv, guc->send_regs.fw_domains);
	mutex_unlock(&guc->send_mutex);

	return ret;
}

423
void intel_guc_to_host_event_handler_mmio(struct intel_guc *guc)
424 425
{
	struct drm_i915_private *dev_priv = guc_to_i915(guc);
426
	u32 msg, val;
427 428 429 430 431 432 433 434 435 436 437 438

	/*
	 * Sample the log buffer flush related bits & clear them out now
	 * itself from the message identity register to minimize the
	 * probability of losing a flush interrupt, when there are back
	 * to back flush interrupts.
	 * There can be a new flush interrupt, for different log buffer
	 * type (like for ISR), whilst Host is handling one (for DPC).
	 * Since same bit is used in message register for ISR & DPC, it
	 * could happen that GuC sets the bit for 2nd interrupt but Host
	 * clears out the bit on handling the 1st interrupt.
	 */
439 440 441 442 443 444
	spin_lock(&guc->irq_lock);
	val = I915_READ(SOFT_SCRATCH(15));
	msg = val & guc->msg_enabled_mask;
	I915_WRITE(SOFT_SCRATCH(15), val & ~msg);
	spin_unlock(&guc->irq_lock);

445 446 447 448 449 450 451 452
	intel_guc_to_host_process_recv_msg(guc, msg);
}

void intel_guc_to_host_process_recv_msg(struct intel_guc *guc, u32 msg)
{
	/* Make sure to handle only enabled messages */
	msg &= guc->msg_enabled_mask;

453
	if (msg & (INTEL_GUC_RECV_MSG_FLUSH_LOG_BUFFER |
454
		   INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED))
455
		intel_guc_log_handle_flush_event(&guc->log);
456 457
}

458 459 460 461 462 463
int intel_guc_sample_forcewake(struct intel_guc *guc)
{
	struct drm_i915_private *dev_priv = guc_to_i915(guc);
	u32 action[2];

	action[0] = INTEL_GUC_ACTION_SAMPLE_FORCEWAKE;
464
	/* WaRsDisableCoarsePowerGating:skl,cnl */
465
	if (!HAS_RC6(dev_priv) || NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
		action[1] = 0;
	else
		/* bit 0 and 1 are for Render and Media domain separately */
		action[1] = GUC_FORCEWAKE_RENDER | GUC_FORCEWAKE_MEDIA;

	return intel_guc_send(guc, action, ARRAY_SIZE(action));
}

/**
 * intel_guc_auth_huc() - Send action to GuC to authenticate HuC ucode
 * @guc: intel_guc structure
 * @rsa_offset: rsa offset w.r.t ggtt base of huc vma
 *
 * Triggers a HuC firmware authentication request to the GuC via intel_guc_send
 * INTEL_GUC_ACTION_AUTHENTICATE_HUC interface. This function is invoked by
 * intel_huc_auth().
 *
 * Return:	non-zero code on error
 */
int intel_guc_auth_huc(struct intel_guc *guc, u32 rsa_offset)
{
	u32 action[] = {
		INTEL_GUC_ACTION_AUTHENTICATE_HUC,
		rsa_offset
	};

	return intel_guc_send(guc, action, ARRAY_SIZE(action));
}

/**
 * intel_guc_suspend() - notify GuC entering suspend state
497
 * @guc:	the guc
498
 */
499
int intel_guc_suspend(struct intel_guc *guc)
500
{
501 502 503
	u32 data[] = {
		INTEL_GUC_ACTION_ENTER_S_STATE,
		GUC_POWER_D1, /* any value greater than GUC_POWER_D0 */
504
		intel_guc_ggtt_offset(guc, guc->shared_data)
505
	};
506 507 508 509

	return intel_guc_send(guc, data, ARRAY_SIZE(data));
}

510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
/**
 * intel_guc_reset_engine() - ask GuC to reset an engine
 * @guc:	intel_guc structure
 * @engine:	engine to be reset
 */
int intel_guc_reset_engine(struct intel_guc *guc,
			   struct intel_engine_cs *engine)
{
	u32 data[7];

	GEM_BUG_ON(!guc->execbuf_client);

	data[0] = INTEL_GUC_ACTION_REQUEST_ENGINE_RESET;
	data[1] = engine->guc_id;
	data[2] = 0;
	data[3] = 0;
	data[4] = 0;
	data[5] = guc->execbuf_client->stage_id;
528
	data[6] = intel_guc_ggtt_offset(guc, guc->shared_data);
529 530 531 532

	return intel_guc_send(guc, data, ARRAY_SIZE(data));
}

533 534
/**
 * intel_guc_resume() - notify GuC resuming from suspend state
535
 * @guc:	the guc
536
 */
537
int intel_guc_resume(struct intel_guc *guc)
538
{
539 540 541
	u32 data[] = {
		INTEL_GUC_ACTION_EXIT_S_STATE,
		GUC_POWER_D0,
542
		intel_guc_ggtt_offset(guc, guc->shared_data)
543
	};
544 545 546 547

	return intel_guc_send(guc, data, ARRAY_SIZE(data));
}

548 549 550
/**
 * DOC: GuC Address Space
 *
551
 * The layout of GuC address space is shown below:
552
 *
553
 * ::
554
 *
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
 *     +==============> +====================+ <== GUC_GGTT_TOP
 *     ^                |                    |
 *     |                |                    |
 *     |                |        DRAM        |
 *     |                |       Memory       |
 *     |                |                    |
 *    GuC               |                    |
 *  Address  +========> +====================+ <== WOPCM Top
 *   Space   ^          |   HW contexts RSVD |
 *     |     |          |        WOPCM       |
 *     |     |     +==> +--------------------+ <== GuC WOPCM Top
 *     |    GuC    ^    |                    |
 *     |    GGTT   |    |                    |
 *     |    Pin   GuC   |        GuC         |
 *     |    Bias WOPCM  |       WOPCM        |
 *     |     |    Size  |                    |
 *     |     |     |    |                    |
 *     v     v     v    |                    |
 *     +=====+=====+==> +====================+ <== GuC WOPCM Base
 *                      |   Non-GuC WOPCM    |
 *                      |   (HuC/Reserved)   |
 *                      +====================+ <== WOPCM Base
 *
 * The lower part of GuC Address Space [0, ggtt_pin_bias) is mapped to WOPCM
 * while upper part of GuC Address Space [ggtt_pin_bias, GUC_GGTT_TOP) is mapped
 * to DRAM. The value of the GuC ggtt_pin_bias is determined by WOPCM size and
 * actual GuC WOPCM size.
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
 */

/**
 * intel_guc_init_ggtt_pin_bias() - Initialize the GuC ggtt_pin_bias value.
 * @guc: intel_guc structure.
 *
 * This function will calculate and initialize the ggtt_pin_bias value based on
 * overall WOPCM size and GuC WOPCM size.
 */
void intel_guc_init_ggtt_pin_bias(struct intel_guc *guc)
{
	struct drm_i915_private *i915 = guc_to_i915(guc);

	GEM_BUG_ON(!i915->wopcm.size);
	GEM_BUG_ON(i915->wopcm.size < i915->wopcm.guc.base);

	guc->ggtt_pin_bias = i915->wopcm.size - i915->wopcm.guc.base;
}

601 602 603 604 605 606 607 608
/**
 * intel_guc_allocate_vma() - Allocate a GGTT VMA for GuC usage
 * @guc:	the guc
 * @size:	size of area to allocate (both virtual space and memory)
 *
 * This is a wrapper to create an object for use with the GuC. In order to
 * use it inside the GuC, an object needs to be pinned lifetime, so we allocate
 * both some backing storage and a range inside the Global GTT. We must pin
609
 * it in the GGTT somewhere other than than [0, GUC ggtt_pin_bias) because that
610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
 * range is reserved inside GuC.
 *
 * Return:	A i915_vma if successful, otherwise an ERR_PTR.
 */
struct i915_vma *intel_guc_allocate_vma(struct intel_guc *guc, u32 size)
{
	struct drm_i915_private *dev_priv = guc_to_i915(guc);
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int ret;

	obj = i915_gem_object_create(dev_priv, size);
	if (IS_ERR(obj))
		return ERR_CAST(obj);

625
	vma = i915_vma_instance(obj, &dev_priv->ggtt.vm, NULL);
626 627 628 629
	if (IS_ERR(vma))
		goto err;

	ret = i915_vma_pin(vma, 0, PAGE_SIZE,
630
			   PIN_GLOBAL | PIN_OFFSET_BIAS | guc->ggtt_pin_bias);
631 632 633 634 635 636 637 638 639 640 641
	if (ret) {
		vma = ERR_PTR(ret);
		goto err;
	}

	return vma;

err:
	i915_gem_object_put(obj);
	return vma;
}