memory-failure.c 47.4 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 * Copyright (C) 2008, 2009 Intel Corporation
 * Authors: Andi Kleen, Fengguang Wu
 *
 * This software may be redistributed and/or modified under the terms of
 * the GNU General Public License ("GPL") version 2 only as published by the
 * Free Software Foundation.
 *
 * High level machine check handler. Handles pages reported by the
10
 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
11
 * failure.
12 13 14
 * 
 * In addition there is a "soft offline" entry point that allows stop using
 * not-yet-corrupted-by-suspicious pages without killing anything.
15 16
 *
 * Handles page cache pages in various states.	The tricky part
17 18 19 20 21 22
 * here is that we can access any page asynchronously in respect to 
 * other VM users, because memory failures could happen anytime and 
 * anywhere. This could violate some of their assumptions. This is why 
 * this code has to be extremely careful. Generally it tries to use 
 * normal locking rules, as in get the standard locks, even if that means 
 * the error handling takes potentially a long time.
23 24 25 26 27 28 29 30
 *
 * It can be very tempting to add handling for obscure cases here.
 * In general any code for handling new cases should only be added iff:
 * - You know how to test it.
 * - You have a test that can be added to mce-test
 *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
 * - The case actually shows up as a frequent (top 10) page state in
 *   tools/vm/page-types when running a real workload.
31 32 33 34 35 36 37
 * 
 * There are several operations here with exponential complexity because
 * of unsuitable VM data structures. For example the operation to map back 
 * from RMAP chains to processes has to walk the complete process list and 
 * has non linear complexity with the number. But since memory corruptions
 * are rare we hope to get away with this. This avoids impacting the core 
 * VM.
38 39 40 41
 */
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/page-flags.h>
W
Wu Fengguang 已提交
42
#include <linux/kernel-page-flags.h>
43
#include <linux/sched/signal.h>
44
#include <linux/sched/task.h>
H
Hugh Dickins 已提交
45
#include <linux/ksm.h>
46
#include <linux/rmap.h>
47
#include <linux/export.h>
48 49 50
#include <linux/pagemap.h>
#include <linux/swap.h>
#include <linux/backing-dev.h>
51 52
#include <linux/migrate.h>
#include <linux/suspend.h>
53
#include <linux/slab.h>
54
#include <linux/swapops.h>
55
#include <linux/hugetlb.h>
56
#include <linux/memory_hotplug.h>
57
#include <linux/mm_inline.h>
58
#include <linux/kfifo.h>
59
#include <linux/ratelimit.h>
60
#include "internal.h"
61
#include "ras/ras_event.h"
62 63 64 65 66

int sysctl_memory_failure_early_kill __read_mostly = 0;

int sysctl_memory_failure_recovery __read_mostly = 1;

67
atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
68

69 70
#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)

71
u32 hwpoison_filter_enable = 0;
W
Wu Fengguang 已提交
72 73
u32 hwpoison_filter_dev_major = ~0U;
u32 hwpoison_filter_dev_minor = ~0U;
W
Wu Fengguang 已提交
74 75
u64 hwpoison_filter_flags_mask;
u64 hwpoison_filter_flags_value;
76
EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
W
Wu Fengguang 已提交
77 78
EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
W
Wu Fengguang 已提交
79 80
EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
W
Wu Fengguang 已提交
81 82 83 84 85 86 87 88 89 90 91

static int hwpoison_filter_dev(struct page *p)
{
	struct address_space *mapping;
	dev_t dev;

	if (hwpoison_filter_dev_major == ~0U &&
	    hwpoison_filter_dev_minor == ~0U)
		return 0;

	/*
92
	 * page_mapping() does not accept slab pages.
W
Wu Fengguang 已提交
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
	 */
	if (PageSlab(p))
		return -EINVAL;

	mapping = page_mapping(p);
	if (mapping == NULL || mapping->host == NULL)
		return -EINVAL;

	dev = mapping->host->i_sb->s_dev;
	if (hwpoison_filter_dev_major != ~0U &&
	    hwpoison_filter_dev_major != MAJOR(dev))
		return -EINVAL;
	if (hwpoison_filter_dev_minor != ~0U &&
	    hwpoison_filter_dev_minor != MINOR(dev))
		return -EINVAL;

	return 0;
}

W
Wu Fengguang 已提交
112 113 114 115 116 117 118 119 120 121 122 123
static int hwpoison_filter_flags(struct page *p)
{
	if (!hwpoison_filter_flags_mask)
		return 0;

	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
				    hwpoison_filter_flags_value)
		return 0;
	else
		return -EINVAL;
}

A
Andi Kleen 已提交
124 125 126 127 128 129 130 131 132 133
/*
 * This allows stress tests to limit test scope to a collection of tasks
 * by putting them under some memcg. This prevents killing unrelated/important
 * processes such as /sbin/init. Note that the target task may share clean
 * pages with init (eg. libc text), which is harmless. If the target task
 * share _dirty_ pages with another task B, the test scheme must make sure B
 * is also included in the memcg. At last, due to race conditions this filter
 * can only guarantee that the page either belongs to the memcg tasks, or is
 * a freed page.
 */
134
#ifdef CONFIG_MEMCG
A
Andi Kleen 已提交
135 136 137 138 139 140 141
u64 hwpoison_filter_memcg;
EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
static int hwpoison_filter_task(struct page *p)
{
	if (!hwpoison_filter_memcg)
		return 0;

142
	if (page_cgroup_ino(p) != hwpoison_filter_memcg)
A
Andi Kleen 已提交
143 144 145 146 147 148 149 150
		return -EINVAL;

	return 0;
}
#else
static int hwpoison_filter_task(struct page *p) { return 0; }
#endif

W
Wu Fengguang 已提交
151 152
int hwpoison_filter(struct page *p)
{
153 154 155
	if (!hwpoison_filter_enable)
		return 0;

W
Wu Fengguang 已提交
156 157 158
	if (hwpoison_filter_dev(p))
		return -EINVAL;

W
Wu Fengguang 已提交
159 160 161
	if (hwpoison_filter_flags(p))
		return -EINVAL;

A
Andi Kleen 已提交
162 163 164
	if (hwpoison_filter_task(p))
		return -EINVAL;

W
Wu Fengguang 已提交
165 166
	return 0;
}
167 168 169 170 171 172 173
#else
int hwpoison_filter(struct page *p)
{
	return 0;
}
#endif

W
Wu Fengguang 已提交
174 175
EXPORT_SYMBOL_GPL(hwpoison_filter);

176
/*
177 178 179
 * Send all the processes who have the page mapped a signal.
 * ``action optional'' if they are not immediately affected by the error
 * ``action required'' if error happened in current execution context
180
 */
181
static int kill_proc(struct task_struct *t, unsigned long addr,
182
			unsigned long pfn, struct page *page, int flags)
183
{
184
	short addr_lsb;
185 186
	int ret;

187 188
	pr_err("Memory failure: %#lx: Killing %s:%d due to hardware memory corruption\n",
		pfn, t->comm, t->pid);
189
	addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT;
190

191
	if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
192 193
		ret = force_sig_mceerr(BUS_MCEERR_AR, (void __user *)addr,
				       addr_lsb, current);
194 195 196 197 198 199 200
	} else {
		/*
		 * Don't use force here, it's convenient if the signal
		 * can be temporarily blocked.
		 * This could cause a loop when the user sets SIGBUS
		 * to SIG_IGN, but hopefully no one will do that?
		 */
201 202
		ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)addr,
				      addr_lsb, t);  /* synchronous? */
203
	}
204
	if (ret < 0)
205
		pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
206
			t->comm, t->pid, ret);
207 208 209
	return ret;
}

210 211 212 213
/*
 * When a unknown page type is encountered drain as many buffers as possible
 * in the hope to turn the page into a LRU or free page, which we can handle.
 */
214
void shake_page(struct page *p, int access)
215
{
216 217 218
	if (PageHuge(p))
		return;

219 220 221 222
	if (!PageSlab(p)) {
		lru_add_drain_all();
		if (PageLRU(p))
			return;
223
		drain_all_pages(page_zone(p));
224 225 226
		if (PageLRU(p) || is_free_buddy_page(p))
			return;
	}
227

228
	/*
229 230
	 * Only call shrink_node_slabs here (which would also shrink
	 * other caches) if access is not potentially fatal.
231
	 */
232 233
	if (access)
		drop_slab_node(page_to_nid(p));
234 235 236
}
EXPORT_SYMBOL_GPL(shake_page);

237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
/*
 * Kill all processes that have a poisoned page mapped and then isolate
 * the page.
 *
 * General strategy:
 * Find all processes having the page mapped and kill them.
 * But we keep a page reference around so that the page is not
 * actually freed yet.
 * Then stash the page away
 *
 * There's no convenient way to get back to mapped processes
 * from the VMAs. So do a brute-force search over all
 * running processes.
 *
 * Remember that machine checks are not common (or rather
 * if they are common you have other problems), so this shouldn't
 * be a performance issue.
 *
 * Also there are some races possible while we get from the
 * error detection to actually handle it.
 */

struct to_kill {
	struct list_head nd;
	struct task_struct *tsk;
	unsigned long addr;
263
	char addr_valid;
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
};

/*
 * Failure handling: if we can't find or can't kill a process there's
 * not much we can do.	We just print a message and ignore otherwise.
 */

/*
 * Schedule a process for later kill.
 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
 * TBD would GFP_NOIO be enough?
 */
static void add_to_kill(struct task_struct *tsk, struct page *p,
		       struct vm_area_struct *vma,
		       struct list_head *to_kill,
		       struct to_kill **tkc)
{
	struct to_kill *tk;

	if (*tkc) {
		tk = *tkc;
		*tkc = NULL;
	} else {
		tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
		if (!tk) {
289
			pr_err("Memory failure: Out of memory while machine check handling\n");
290 291 292 293 294 295 296 297 298 299 300 301 302
			return;
		}
	}
	tk->addr = page_address_in_vma(p, vma);
	tk->addr_valid = 1;

	/*
	 * In theory we don't have to kill when the page was
	 * munmaped. But it could be also a mremap. Since that's
	 * likely very rare kill anyways just out of paranoia, but use
	 * a SIGKILL because the error is not contained anymore.
	 */
	if (tk->addr == -EFAULT) {
303
		pr_info("Memory failure: Unable to find user space address %lx in %s\n",
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
			page_to_pfn(p), tsk->comm);
		tk->addr_valid = 0;
	}
	get_task_struct(tsk);
	tk->tsk = tsk;
	list_add_tail(&tk->nd, to_kill);
}

/*
 * Kill the processes that have been collected earlier.
 *
 * Only do anything when DOIT is set, otherwise just free the list
 * (this is used for clean pages which do not need killing)
 * Also when FAIL is set do a force kill because something went
 * wrong earlier.
 */
320
static void kill_procs(struct list_head *to_kill, int forcekill,
M
Minchan Kim 已提交
321
			  bool fail, struct page *page, unsigned long pfn,
322
			  int flags)
323 324 325 326
{
	struct to_kill *tk, *next;

	list_for_each_entry_safe (tk, next, to_kill, nd) {
327
		if (forcekill) {
328
			/*
329
			 * In case something went wrong with munmapping
330 331 332 333
			 * make sure the process doesn't catch the
			 * signal and then access the memory. Just kill it.
			 */
			if (fail || tk->addr_valid == 0) {
334
				pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
335
				       pfn, tk->tsk->comm, tk->tsk->pid);
336 337 338 339 340 341 342 343 344
				force_sig(SIGKILL, tk->tsk);
			}

			/*
			 * In theory the process could have mapped
			 * something else on the address in-between. We could
			 * check for that, but we need to tell the
			 * process anyways.
			 */
345
			else if (kill_proc(tk->tsk, tk->addr,
346
					      pfn, page, flags) < 0)
347
				pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
348
				       pfn, tk->tsk->comm, tk->tsk->pid);
349 350 351 352 353 354
		}
		put_task_struct(tk->tsk);
		kfree(tk);
	}
}

355 356 357 358 359 360 361 362 363
/*
 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
 * on behalf of the thread group. Return task_struct of the (first found)
 * dedicated thread if found, and return NULL otherwise.
 *
 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
 * have to call rcu_read_lock/unlock() in this function.
 */
static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
364
{
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
	struct task_struct *t;

	for_each_thread(tsk, t)
		if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
			return t;
	return NULL;
}

/*
 * Determine whether a given process is "early kill" process which expects
 * to be signaled when some page under the process is hwpoisoned.
 * Return task_struct of the dedicated thread (main thread unless explicitly
 * specified) if the process is "early kill," and otherwise returns NULL.
 */
static struct task_struct *task_early_kill(struct task_struct *tsk,
					   int force_early)
{
	struct task_struct *t;
383
	if (!tsk->mm)
384
		return NULL;
385
	if (force_early)
386 387 388 389 390 391 392
		return tsk;
	t = find_early_kill_thread(tsk);
	if (t)
		return t;
	if (sysctl_memory_failure_early_kill)
		return tsk;
	return NULL;
393 394 395 396 397 398
}

/*
 * Collect processes when the error hit an anonymous page.
 */
static void collect_procs_anon(struct page *page, struct list_head *to_kill,
399
			      struct to_kill **tkc, int force_early)
400 401 402 403
{
	struct vm_area_struct *vma;
	struct task_struct *tsk;
	struct anon_vma *av;
404
	pgoff_t pgoff;
405

406
	av = page_lock_anon_vma_read(page);
407
	if (av == NULL)	/* Not actually mapped anymore */
408 409
		return;

410
	pgoff = page_to_pgoff(page);
411
	read_lock(&tasklist_lock);
412
	for_each_process (tsk) {
413
		struct anon_vma_chain *vmac;
414
		struct task_struct *t = task_early_kill(tsk, force_early);
415

416
		if (!t)
417
			continue;
418 419
		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
					       pgoff, pgoff) {
420
			vma = vmac->vma;
421 422
			if (!page_mapped_in_vma(page, vma))
				continue;
423 424
			if (vma->vm_mm == t->mm)
				add_to_kill(t, page, vma, to_kill, tkc);
425 426 427
		}
	}
	read_unlock(&tasklist_lock);
428
	page_unlock_anon_vma_read(av);
429 430 431 432 433 434
}

/*
 * Collect processes when the error hit a file mapped page.
 */
static void collect_procs_file(struct page *page, struct list_head *to_kill,
435
			      struct to_kill **tkc, int force_early)
436 437 438 439 440
{
	struct vm_area_struct *vma;
	struct task_struct *tsk;
	struct address_space *mapping = page->mapping;

441
	i_mmap_lock_read(mapping);
442
	read_lock(&tasklist_lock);
443
	for_each_process(tsk) {
444
		pgoff_t pgoff = page_to_pgoff(page);
445
		struct task_struct *t = task_early_kill(tsk, force_early);
446

447
		if (!t)
448
			continue;
449
		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
450 451 452 453 454 455 456 457
				      pgoff) {
			/*
			 * Send early kill signal to tasks where a vma covers
			 * the page but the corrupted page is not necessarily
			 * mapped it in its pte.
			 * Assume applications who requested early kill want
			 * to be informed of all such data corruptions.
			 */
458 459
			if (vma->vm_mm == t->mm)
				add_to_kill(t, page, vma, to_kill, tkc);
460 461 462
		}
	}
	read_unlock(&tasklist_lock);
463
	i_mmap_unlock_read(mapping);
464 465 466 467 468 469 470 471
}

/*
 * Collect the processes who have the corrupted page mapped to kill.
 * This is done in two steps for locking reasons.
 * First preallocate one tokill structure outside the spin locks,
 * so that we can kill at least one process reasonably reliable.
 */
472 473
static void collect_procs(struct page *page, struct list_head *tokill,
				int force_early)
474 475 476 477 478 479 480 481 482 483
{
	struct to_kill *tk;

	if (!page->mapping)
		return;

	tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
	if (!tk)
		return;
	if (PageAnon(page))
484
		collect_procs_anon(page, tokill, &tk, force_early);
485
	else
486
		collect_procs_file(page, tokill, &tk, force_early);
487 488 489 490
	kfree(tk);
}

static const char *action_name[] = {
491 492 493 494
	[MF_IGNORED] = "Ignored",
	[MF_FAILED] = "Failed",
	[MF_DELAYED] = "Delayed",
	[MF_RECOVERED] = "Recovered",
495 496 497
};

static const char * const action_page_types[] = {
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
	[MF_MSG_KERNEL]			= "reserved kernel page",
	[MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page",
	[MF_MSG_SLAB]			= "kernel slab page",
	[MF_MSG_DIFFERENT_COMPOUND]	= "different compound page after locking",
	[MF_MSG_POISONED_HUGE]		= "huge page already hardware poisoned",
	[MF_MSG_HUGE]			= "huge page",
	[MF_MSG_FREE_HUGE]		= "free huge page",
	[MF_MSG_UNMAP_FAILED]		= "unmapping failed page",
	[MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page",
	[MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page",
	[MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page",
	[MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page",
	[MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
	[MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
	[MF_MSG_DIRTY_LRU]		= "dirty LRU page",
	[MF_MSG_CLEAN_LRU]		= "clean LRU page",
	[MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page",
	[MF_MSG_BUDDY]			= "free buddy page",
	[MF_MSG_BUDDY_2ND]		= "free buddy page (2nd try)",
	[MF_MSG_UNKNOWN]		= "unknown page",
518 519
};

520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
/*
 * XXX: It is possible that a page is isolated from LRU cache,
 * and then kept in swap cache or failed to remove from page cache.
 * The page count will stop it from being freed by unpoison.
 * Stress tests should be aware of this memory leak problem.
 */
static int delete_from_lru_cache(struct page *p)
{
	if (!isolate_lru_page(p)) {
		/*
		 * Clear sensible page flags, so that the buddy system won't
		 * complain when the page is unpoison-and-freed.
		 */
		ClearPageActive(p);
		ClearPageUnevictable(p);
535 536 537 538 539 540 541

		/*
		 * Poisoned page might never drop its ref count to 0 so we have
		 * to uncharge it manually from its memcg.
		 */
		mem_cgroup_uncharge(p);

542 543 544
		/*
		 * drop the page count elevated by isolate_lru_page()
		 */
545
		put_page(p);
546 547 548 549 550
		return 0;
	}
	return -EIO;
}

551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
static int truncate_error_page(struct page *p, unsigned long pfn,
				struct address_space *mapping)
{
	int ret = MF_FAILED;

	if (mapping->a_ops->error_remove_page) {
		int err = mapping->a_ops->error_remove_page(mapping, p);

		if (err != 0) {
			pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
				pfn, err);
		} else if (page_has_private(p) &&
			   !try_to_release_page(p, GFP_NOIO)) {
			pr_info("Memory failure: %#lx: failed to release buffers\n",
				pfn);
		} else {
			ret = MF_RECOVERED;
		}
	} else {
		/*
		 * If the file system doesn't support it just invalidate
		 * This fails on dirty or anything with private pages
		 */
		if (invalidate_inode_page(p))
			ret = MF_RECOVERED;
		else
			pr_info("Memory failure: %#lx: Failed to invalidate\n",
				pfn);
	}

	return ret;
}

584 585 586 587 588 589 590
/*
 * Error hit kernel page.
 * Do nothing, try to be lucky and not touch this instead. For a few cases we
 * could be more sophisticated.
 */
static int me_kernel(struct page *p, unsigned long pfn)
{
591
	return MF_IGNORED;
592 593 594 595 596 597 598
}

/*
 * Page in unknown state. Do nothing.
 */
static int me_unknown(struct page *p, unsigned long pfn)
{
599
	pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
600
	return MF_FAILED;
601 602 603 604 605 606 607 608 609
}

/*
 * Clean (or cleaned) page cache page.
 */
static int me_pagecache_clean(struct page *p, unsigned long pfn)
{
	struct address_space *mapping;

610 611
	delete_from_lru_cache(p);

612 613 614 615 616
	/*
	 * For anonymous pages we're done the only reference left
	 * should be the one m_f() holds.
	 */
	if (PageAnon(p))
617
		return MF_RECOVERED;
618 619 620 621 622 623 624 625 626 627 628 629 630

	/*
	 * Now truncate the page in the page cache. This is really
	 * more like a "temporary hole punch"
	 * Don't do this for block devices when someone else
	 * has a reference, because it could be file system metadata
	 * and that's not safe to truncate.
	 */
	mapping = page_mapping(p);
	if (!mapping) {
		/*
		 * Page has been teared down in the meanwhile
		 */
631
		return MF_FAILED;
632 633 634 635 636 637 638
	}

	/*
	 * Truncation is a bit tricky. Enable it per file system for now.
	 *
	 * Open: to take i_mutex or not for this? Right now we don't.
	 */
639
	return truncate_error_page(p, pfn, mapping);
640 641 642
}

/*
643
 * Dirty pagecache page
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
 * Issues: when the error hit a hole page the error is not properly
 * propagated.
 */
static int me_pagecache_dirty(struct page *p, unsigned long pfn)
{
	struct address_space *mapping = page_mapping(p);

	SetPageError(p);
	/* TBD: print more information about the file. */
	if (mapping) {
		/*
		 * IO error will be reported by write(), fsync(), etc.
		 * who check the mapping.
		 * This way the application knows that something went
		 * wrong with its dirty file data.
		 *
		 * There's one open issue:
		 *
		 * The EIO will be only reported on the next IO
		 * operation and then cleared through the IO map.
		 * Normally Linux has two mechanisms to pass IO error
		 * first through the AS_EIO flag in the address space
		 * and then through the PageError flag in the page.
		 * Since we drop pages on memory failure handling the
		 * only mechanism open to use is through AS_AIO.
		 *
		 * This has the disadvantage that it gets cleared on
		 * the first operation that returns an error, while
		 * the PageError bit is more sticky and only cleared
		 * when the page is reread or dropped.  If an
		 * application assumes it will always get error on
		 * fsync, but does other operations on the fd before
L
Lucas De Marchi 已提交
676
		 * and the page is dropped between then the error
677 678 679 680 681 682 683 684 685 686 687
		 * will not be properly reported.
		 *
		 * This can already happen even without hwpoisoned
		 * pages: first on metadata IO errors (which only
		 * report through AS_EIO) or when the page is dropped
		 * at the wrong time.
		 *
		 * So right now we assume that the application DTRT on
		 * the first EIO, but we're not worse than other parts
		 * of the kernel.
		 */
688
		mapping_set_error(mapping, -EIO);
689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
	}

	return me_pagecache_clean(p, pfn);
}

/*
 * Clean and dirty swap cache.
 *
 * Dirty swap cache page is tricky to handle. The page could live both in page
 * cache and swap cache(ie. page is freshly swapped in). So it could be
 * referenced concurrently by 2 types of PTEs:
 * normal PTEs and swap PTEs. We try to handle them consistently by calling
 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
 * and then
 *      - clear dirty bit to prevent IO
 *      - remove from LRU
 *      - but keep in the swap cache, so that when we return to it on
 *        a later page fault, we know the application is accessing
 *        corrupted data and shall be killed (we installed simple
 *        interception code in do_swap_page to catch it).
 *
 * Clean swap cache pages can be directly isolated. A later page fault will
 * bring in the known good data from disk.
 */
static int me_swapcache_dirty(struct page *p, unsigned long pfn)
{
	ClearPageDirty(p);
	/* Trigger EIO in shmem: */
	ClearPageUptodate(p);

719
	if (!delete_from_lru_cache(p))
720
		return MF_DELAYED;
721
	else
722
		return MF_FAILED;
723 724 725 726 727
}

static int me_swapcache_clean(struct page *p, unsigned long pfn)
{
	delete_from_swap_cache(p);
728

729
	if (!delete_from_lru_cache(p))
730
		return MF_RECOVERED;
731
	else
732
		return MF_FAILED;
733 734 735 736 737
}

/*
 * Huge pages. Needs work.
 * Issues:
738 739
 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
 *   To narrow down kill region to one page, we need to break up pmd.
740 741 742
 */
static int me_huge_page(struct page *p, unsigned long pfn)
{
743
	int res = 0;
744
	struct page *hpage = compound_head(p);
745
	struct address_space *mapping;
746 747 748 749

	if (!PageHuge(hpage))
		return MF_DELAYED;

750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
	mapping = page_mapping(hpage);
	if (mapping) {
		res = truncate_error_page(hpage, pfn, mapping);
	} else {
		unlock_page(hpage);
		/*
		 * migration entry prevents later access on error anonymous
		 * hugepage, so we can free and dissolve it into buddy to
		 * save healthy subpages.
		 */
		if (PageAnon(hpage))
			put_page(hpage);
		dissolve_free_huge_page(p);
		res = MF_RECOVERED;
		lock_page(hpage);
765
	}
766 767

	return res;
768 769 770 771 772 773 774 775 776
}

/*
 * Various page states we can handle.
 *
 * A page state is defined by its current page->flags bits.
 * The table matches them in order and calls the right handler.
 *
 * This is quite tricky because we can access page at any time
L
Lucas De Marchi 已提交
777
 * in its live cycle, so all accesses have to be extremely careful.
778 779 780 781 782 783
 *
 * This is not complete. More states could be added.
 * For any missing state don't attempt recovery.
 */

#define dirty		(1UL << PG_dirty)
784
#define sc		((1UL << PG_swapcache) | (1UL << PG_swapbacked))
785 786 787 788 789 790 791 792 793 794 795
#define unevict		(1UL << PG_unevictable)
#define mlock		(1UL << PG_mlocked)
#define writeback	(1UL << PG_writeback)
#define lru		(1UL << PG_lru)
#define head		(1UL << PG_head)
#define slab		(1UL << PG_slab)
#define reserved	(1UL << PG_reserved)

static struct page_state {
	unsigned long mask;
	unsigned long res;
796
	enum mf_action_page_type type;
797 798
	int (*action)(struct page *p, unsigned long pfn);
} error_states[] = {
799
	{ reserved,	reserved,	MF_MSG_KERNEL,	me_kernel },
800 801 802 803
	/*
	 * free pages are specially detected outside this table:
	 * PG_buddy pages only make a small fraction of all free pages.
	 */
804 805 806 807 808 809

	/*
	 * Could in theory check if slab page is free or if we can drop
	 * currently unused objects without touching them. But just
	 * treat it as standard kernel for now.
	 */
810
	{ slab,		slab,		MF_MSG_SLAB,	me_kernel },
811

812
	{ head,		head,		MF_MSG_HUGE,		me_huge_page },
813

814 815
	{ sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
	{ sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
816

817 818
	{ mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
	{ mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
819

820 821
	{ unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
	{ unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
822

823 824
	{ lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty },
	{ lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean },
825 826 827 828

	/*
	 * Catchall entry: must be at end.
	 */
829
	{ 0,		0,		MF_MSG_UNKNOWN,	me_unknown },
830 831
};

832 833 834 835 836 837 838 839 840 841
#undef dirty
#undef sc
#undef unevict
#undef mlock
#undef writeback
#undef lru
#undef head
#undef slab
#undef reserved

842 843 844 845
/*
 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
 */
846 847
static void action_result(unsigned long pfn, enum mf_action_page_type type,
			  enum mf_result result)
848
{
849 850
	trace_memory_failure_event(pfn, type, result);

851
	pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
852
		pfn, action_page_types[type], action_name[result]);
853 854 855
}

static int page_action(struct page_state *ps, struct page *p,
856
			unsigned long pfn)
857 858
{
	int result;
859
	int count;
860 861

	result = ps->action(p, pfn);
862

863
	count = page_count(p) - 1;
864
	if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
865
		count--;
866
	if (count > 0) {
867
		pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
868
		       pfn, action_page_types[ps->type], count);
869
		result = MF_FAILED;
870
	}
871
	action_result(pfn, ps->type, result);
872 873 874 875 876 877

	/* Could do more checks here if page looks ok */
	/*
	 * Could adjust zone counters here to correct for the missing page.
	 */

878
	return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
879 880
}

881 882 883 884 885 886 887 888 889 890 891
/**
 * get_hwpoison_page() - Get refcount for memory error handling:
 * @page:	raw error page (hit by memory error)
 *
 * Return: return 0 if failed to grab the refcount, otherwise true (some
 * non-zero value.)
 */
int get_hwpoison_page(struct page *page)
{
	struct page *head = compound_head(page);

892
	if (!PageHuge(head) && PageTransHuge(head)) {
893 894 895 896 897 898 899
		/*
		 * Non anonymous thp exists only in allocation/free time. We
		 * can't handle such a case correctly, so let's give it up.
		 * This should be better than triggering BUG_ON when kernel
		 * tries to touch the "partially handled" page.
		 */
		if (!PageAnon(head)) {
900
			pr_err("Memory failure: %#lx: non anonymous thp\n",
901 902 903
				page_to_pfn(page));
			return 0;
		}
904 905
	}

906 907 908 909
	if (get_page_unless_zero(head)) {
		if (head == compound_head(page))
			return 1;

910 911
		pr_info("Memory failure: %#lx cannot catch tail\n",
			page_to_pfn(page));
912 913 914 915
		put_page(head);
	}

	return 0;
916 917 918
}
EXPORT_SYMBOL_GPL(get_hwpoison_page);

919 920 921 922
/*
 * Do all that is necessary to remove user space mappings. Unmap
 * the pages and send SIGBUS to the processes if the data was dirty.
 */
M
Minchan Kim 已提交
923
static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
924
				  int flags, struct page **hpagep)
925
{
S
Shaohua Li 已提交
926
	enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
927 928
	struct address_space *mapping;
	LIST_HEAD(tokill);
M
Minchan Kim 已提交
929
	bool unmap_success;
930
	int kill = 1, forcekill;
931
	struct page *hpage = *hpagep;
932
	bool mlocked = PageMlocked(hpage);
933

934 935 936 937 938
	/*
	 * Here we are interested only in user-mapped pages, so skip any
	 * other types of pages.
	 */
	if (PageReserved(p) || PageSlab(p))
M
Minchan Kim 已提交
939
		return true;
940
	if (!(PageLRU(hpage) || PageHuge(p)))
M
Minchan Kim 已提交
941
		return true;
942 943 944 945 946

	/*
	 * This check implies we don't kill processes if their pages
	 * are in the swap cache early. Those are always late kills.
	 */
947
	if (!page_mapped(hpage))
M
Minchan Kim 已提交
948
		return true;
W
Wu Fengguang 已提交
949

950
	if (PageKsm(p)) {
951
		pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
M
Minchan Kim 已提交
952
		return false;
953
	}
954 955

	if (PageSwapCache(p)) {
956 957
		pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
			pfn);
958 959 960 961 962 963
		ttu |= TTU_IGNORE_HWPOISON;
	}

	/*
	 * Propagate the dirty bit from PTEs to struct page first, because we
	 * need this to decide if we should kill or just drop the page.
964 965
	 * XXX: the dirty test could be racy: set_page_dirty() may not always
	 * be called inside page lock (it's recommended but not enforced).
966
	 */
967
	mapping = page_mapping(hpage);
968
	if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
969 970 971
	    mapping_cap_writeback_dirty(mapping)) {
		if (page_mkclean(hpage)) {
			SetPageDirty(hpage);
972 973 974
		} else {
			kill = 0;
			ttu |= TTU_IGNORE_HWPOISON;
975
			pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
976 977 978 979 980 981 982 983 984 985 986 987 988
				pfn);
		}
	}

	/*
	 * First collect all the processes that have the page
	 * mapped in dirty form.  This has to be done before try_to_unmap,
	 * because ttu takes the rmap data structures down.
	 *
	 * Error handling: We ignore errors here because
	 * there's nothing that can be done.
	 */
	if (kill)
989
		collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
990

M
Minchan Kim 已提交
991 992
	unmap_success = try_to_unmap(hpage, ttu);
	if (!unmap_success)
993
		pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
994
		       pfn, page_mapcount(hpage));
995

996 997 998 999 1000 1001 1002
	/*
	 * try_to_unmap() might put mlocked page in lru cache, so call
	 * shake_page() again to ensure that it's flushed.
	 */
	if (mlocked)
		shake_page(hpage, 0);

1003 1004 1005 1006
	/*
	 * Now that the dirty bit has been propagated to the
	 * struct page and all unmaps done we can decide if
	 * killing is needed or not.  Only kill when the page
1007 1008
	 * was dirty or the process is not restartable,
	 * otherwise the tokill list is merely
1009 1010 1011 1012
	 * freed.  When there was a problem unmapping earlier
	 * use a more force-full uncatchable kill to prevent
	 * any accesses to the poisoned memory.
	 */
1013
	forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1014
	kill_procs(&tokill, forcekill, !unmap_success, p, pfn, flags);
W
Wu Fengguang 已提交
1015

M
Minchan Kim 已提交
1016
	return unmap_success;
1017 1018
}

1019 1020
static int identify_page_state(unsigned long pfn, struct page *p,
				unsigned long page_flags)
1021 1022
{
	struct page_state *ps;
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041

	/*
	 * The first check uses the current page flags which may not have any
	 * relevant information. The second check with the saved page flags is
	 * carried out only if the first check can't determine the page status.
	 */
	for (ps = error_states;; ps++)
		if ((p->flags & ps->mask) == ps->res)
			break;

	page_flags |= (p->flags & (1UL << PG_dirty));

	if (!ps->mask)
		for (ps = error_states;; ps++)
			if ((page_flags & ps->mask) == ps->res)
				break;
	return page_action(ps, p, pfn);
}

1042
static int memory_failure_hugetlb(unsigned long pfn, int flags)
1043
{
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
	struct page *p = pfn_to_page(pfn);
	struct page *head = compound_head(p);
	int res;
	unsigned long page_flags;

	if (TestSetPageHWPoison(head)) {
		pr_err("Memory failure: %#lx: already hardware poisoned\n",
		       pfn);
		return 0;
	}

	num_poisoned_pages_inc();

	if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
		/*
		 * Check "filter hit" and "race with other subpage."
		 */
		lock_page(head);
		if (PageHWPoison(head)) {
			if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
			    || (p != head && TestSetPageHWPoison(head))) {
				num_poisoned_pages_dec();
				unlock_page(head);
				return 0;
			}
		}
		unlock_page(head);
		dissolve_free_huge_page(p);
		action_result(pfn, MF_MSG_FREE_HUGE, MF_DELAYED);
		return 0;
	}

	lock_page(head);
	page_flags = head->flags;

	if (!PageHWPoison(head)) {
		pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
		num_poisoned_pages_dec();
		unlock_page(head);
		put_hwpoison_page(head);
		return 0;
	}

1087
	if (!hwpoison_user_mappings(p, pfn, flags, &head)) {
1088 1089 1090 1091 1092
		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
		res = -EBUSY;
		goto out;
	}

1093
	res = identify_page_state(pfn, p, page_flags);
1094 1095 1096 1097 1098
out:
	unlock_page(head);
	return res;
}

1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
/**
 * memory_failure - Handle memory failure of a page.
 * @pfn: Page Number of the corrupted page
 * @flags: fine tune action taken
 *
 * This function is called by the low level machine check code
 * of an architecture when it detects hardware memory corruption
 * of a page. It tries its best to recover, which includes
 * dropping pages, killing processes etc.
 *
 * The function is primarily of use for corruptions that
 * happen outside the current execution context (e.g. when
 * detected by a background scrubber)
 *
 * Must run in process context (e.g. a work queue) with interrupts
 * enabled and no spinlocks hold.
 */
1116
int memory_failure(unsigned long pfn, int flags)
1117 1118
{
	struct page *p;
1119
	struct page *hpage;
1120
	struct page *orig_head;
1121
	int res;
1122
	unsigned long page_flags;
1123 1124

	if (!sysctl_memory_failure_recovery)
1125
		panic("Memory failure on page %lx", pfn);
1126 1127

	if (!pfn_valid(pfn)) {
1128 1129
		pr_err("Memory failure: %#lx: memory outside kernel control\n",
			pfn);
1130
		return -ENXIO;
1131 1132 1133
	}

	p = pfn_to_page(pfn);
1134
	if (PageHuge(p))
1135
		return memory_failure_hugetlb(pfn, flags);
1136
	if (TestSetPageHWPoison(p)) {
1137 1138
		pr_err("Memory failure: %#lx: already hardware poisoned\n",
			pfn);
1139 1140 1141
		return 0;
	}

1142 1143
	arch_unmap_kpfn(pfn);

1144
	orig_head = hpage = compound_head(p);
1145
	num_poisoned_pages_inc();
1146 1147 1148 1149 1150

	/*
	 * We need/can do nothing about count=0 pages.
	 * 1) it's a free page, and therefore in safe hand:
	 *    prep_new_page() will be the gate keeper.
1151
	 * 2) it's part of a non-compound high order page.
1152 1153 1154 1155 1156 1157
	 *    Implies some kernel user: cannot stop them from
	 *    R/W the page; let's pray that the page has been
	 *    used and will be freed some time later.
	 * In fact it's dangerous to directly bump up page count from 0,
	 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
	 */
1158
	if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1159
		if (is_free_buddy_page(p)) {
1160
			action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1161 1162
			return 0;
		} else {
1163
			action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1164 1165
			return -EBUSY;
		}
1166 1167
	}

1168
	if (PageTransHuge(hpage)) {
1169 1170 1171 1172
		lock_page(p);
		if (!PageAnon(p) || unlikely(split_huge_page(p))) {
			unlock_page(p);
			if (!PageAnon(p))
1173 1174
				pr_err("Memory failure: %#lx: non anonymous thp\n",
					pfn);
1175
			else
1176 1177
				pr_err("Memory failure: %#lx: thp split failed\n",
					pfn);
1178
			if (TestClearPageHWPoison(p))
1179
				num_poisoned_pages_dec();
1180
			put_hwpoison_page(p);
1181 1182
			return -EBUSY;
		}
1183
		unlock_page(p);
1184 1185 1186 1187
		VM_BUG_ON_PAGE(!page_count(p), p);
		hpage = compound_head(p);
	}

1188 1189 1190
	/*
	 * We ignore non-LRU pages for good reasons.
	 * - PG_locked is only well defined for LRU pages and a few others
1191
	 * - to avoid races with __SetPageLocked()
1192 1193 1194 1195
	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
	 * The check (unnecessarily) ignores LRU pages being isolated and
	 * walked by the page reclaim code, however that's not a big loss.
	 */
1196 1197 1198 1199 1200 1201 1202 1203
	shake_page(p, 0);
	/* shake_page could have turned it free. */
	if (!PageLRU(p) && is_free_buddy_page(p)) {
		if (flags & MF_COUNT_INCREASED)
			action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
		else
			action_result(pfn, MF_MSG_BUDDY_2ND, MF_DELAYED);
		return 0;
1204 1205
	}

1206
	lock_page(p);
W
Wu Fengguang 已提交
1207

1208 1209 1210 1211
	/*
	 * The page could have changed compound pages during the locking.
	 * If this happens just bail out.
	 */
1212
	if (PageCompound(p) && compound_head(p) != orig_head) {
1213
		action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1214 1215 1216 1217
		res = -EBUSY;
		goto out;
	}

1218 1219 1220 1221 1222 1223 1224
	/*
	 * We use page flags to determine what action should be taken, but
	 * the flags can be modified by the error containment action.  One
	 * example is an mlocked page, where PG_mlocked is cleared by
	 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
	 * correctly, we save a copy of the page flags at this time.
	 */
1225 1226 1227 1228
	if (PageHuge(p))
		page_flags = hpage->flags;
	else
		page_flags = p->flags;
1229

W
Wu Fengguang 已提交
1230 1231 1232 1233
	/*
	 * unpoison always clear PG_hwpoison inside page lock
	 */
	if (!PageHWPoison(p)) {
1234
		pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1235
		num_poisoned_pages_dec();
1236 1237
		unlock_page(p);
		put_hwpoison_page(p);
1238
		return 0;
W
Wu Fengguang 已提交
1239
	}
W
Wu Fengguang 已提交
1240 1241
	if (hwpoison_filter(p)) {
		if (TestClearPageHWPoison(p))
1242
			num_poisoned_pages_dec();
1243 1244
		unlock_page(p);
		put_hwpoison_page(p);
W
Wu Fengguang 已提交
1245 1246
		return 0;
	}
W
Wu Fengguang 已提交
1247

1248
	if (!PageTransTail(p) && !PageLRU(p))
1249 1250
		goto identify_page_state;

1251 1252 1253 1254
	/*
	 * It's very difficult to mess with pages currently under IO
	 * and in many cases impossible, so we just avoid it here.
	 */
1255 1256 1257 1258
	wait_on_page_writeback(p);

	/*
	 * Now take care of user space mappings.
1259
	 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1260 1261 1262
	 *
	 * When the raw error page is thp tail page, hpage points to the raw
	 * page after thp split.
1263
	 */
1264
	if (!hwpoison_user_mappings(p, pfn, flags, &hpage)) {
1265
		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
W
Wu Fengguang 已提交
1266 1267 1268
		res = -EBUSY;
		goto out;
	}
1269 1270 1271 1272

	/*
	 * Torn down by someone else?
	 */
1273
	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1274
		action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1275
		res = -EBUSY;
1276 1277 1278
		goto out;
	}

1279
identify_page_state:
1280
	res = identify_page_state(pfn, p, page_flags);
1281
out:
1282
	unlock_page(p);
1283 1284
	return res;
}
1285
EXPORT_SYMBOL_GPL(memory_failure);
W
Wu Fengguang 已提交
1286

1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
#define MEMORY_FAILURE_FIFO_ORDER	4
#define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)

struct memory_failure_entry {
	unsigned long pfn;
	int flags;
};

struct memory_failure_cpu {
	DECLARE_KFIFO(fifo, struct memory_failure_entry,
		      MEMORY_FAILURE_FIFO_SIZE);
	spinlock_t lock;
	struct work_struct work;
};

static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);

/**
 * memory_failure_queue - Schedule handling memory failure of a page.
 * @pfn: Page Number of the corrupted page
 * @flags: Flags for memory failure handling
 *
 * This function is called by the low level hardware error handler
 * when it detects hardware memory corruption of a page. It schedules
 * the recovering of error page, including dropping pages, killing
 * processes etc.
 *
 * The function is primarily of use for corruptions that
 * happen outside the current execution context (e.g. when
 * detected by a background scrubber)
 *
 * Can run in IRQ context.
 */
1320
void memory_failure_queue(unsigned long pfn, int flags)
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
{
	struct memory_failure_cpu *mf_cpu;
	unsigned long proc_flags;
	struct memory_failure_entry entry = {
		.pfn =		pfn,
		.flags =	flags,
	};

	mf_cpu = &get_cpu_var(memory_failure_cpu);
	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
S
Stefani Seibold 已提交
1331
	if (kfifo_put(&mf_cpu->fifo, entry))
1332 1333
		schedule_work_on(smp_processor_id(), &mf_cpu->work);
	else
J
Joe Perches 已提交
1334
		pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
		       pfn);
	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
	put_cpu_var(memory_failure_cpu);
}
EXPORT_SYMBOL_GPL(memory_failure_queue);

static void memory_failure_work_func(struct work_struct *work)
{
	struct memory_failure_cpu *mf_cpu;
	struct memory_failure_entry entry = { 0, };
	unsigned long proc_flags;
	int gotten;

1348
	mf_cpu = this_cpu_ptr(&memory_failure_cpu);
1349 1350 1351 1352 1353 1354
	for (;;) {
		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
		gotten = kfifo_get(&mf_cpu->fifo, &entry);
		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
		if (!gotten)
			break;
1355 1356 1357
		if (entry.flags & MF_SOFT_OFFLINE)
			soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
		else
1358
			memory_failure(entry.pfn, entry.flags);
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
	}
}

static int __init memory_failure_init(void)
{
	struct memory_failure_cpu *mf_cpu;
	int cpu;

	for_each_possible_cpu(cpu) {
		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
		spin_lock_init(&mf_cpu->lock);
		INIT_KFIFO(mf_cpu->fifo);
		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
	}

	return 0;
}
core_initcall(memory_failure_init);

1378 1379 1380 1381 1382 1383
#define unpoison_pr_info(fmt, pfn, rs)			\
({							\
	if (__ratelimit(rs))				\
		pr_info(fmt, pfn);			\
})

W
Wu Fengguang 已提交
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
/**
 * unpoison_memory - Unpoison a previously poisoned page
 * @pfn: Page number of the to be unpoisoned page
 *
 * Software-unpoison a page that has been poisoned by
 * memory_failure() earlier.
 *
 * This is only done on the software-level, so it only works
 * for linux injected failures, not real hardware failures
 *
 * Returns 0 for success, otherwise -errno.
 */
int unpoison_memory(unsigned long pfn)
{
	struct page *page;
	struct page *p;
	int freeit = 0;
1401 1402
	static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
					DEFAULT_RATELIMIT_BURST);
W
Wu Fengguang 已提交
1403 1404 1405 1406 1407 1408 1409 1410

	if (!pfn_valid(pfn))
		return -ENXIO;

	p = pfn_to_page(pfn);
	page = compound_head(p);

	if (!PageHWPoison(p)) {
1411
		unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
1412
				 pfn, &unpoison_rs);
W
Wu Fengguang 已提交
1413 1414 1415
		return 0;
	}

1416
	if (page_count(page) > 1) {
1417
		unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
1418
				 pfn, &unpoison_rs);
1419 1420 1421 1422
		return 0;
	}

	if (page_mapped(page)) {
1423
		unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
1424
				 pfn, &unpoison_rs);
1425 1426 1427 1428
		return 0;
	}

	if (page_mapping(page)) {
1429
		unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
1430
				 pfn, &unpoison_rs);
1431 1432 1433
		return 0;
	}

1434 1435 1436 1437 1438
	/*
	 * unpoison_memory() can encounter thp only when the thp is being
	 * worked by memory_failure() and the page lock is not held yet.
	 * In such case, we yield to memory_failure() and make unpoison fail.
	 */
1439
	if (!PageHuge(page) && PageTransHuge(page)) {
1440
		unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
1441
				 pfn, &unpoison_rs);
1442
		return 0;
1443 1444
	}

1445
	if (!get_hwpoison_page(p)) {
W
Wu Fengguang 已提交
1446
		if (TestClearPageHWPoison(p))
1447
			num_poisoned_pages_dec();
1448
		unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
1449
				 pfn, &unpoison_rs);
W
Wu Fengguang 已提交
1450 1451 1452
		return 0;
	}

J
Jens Axboe 已提交
1453
	lock_page(page);
W
Wu Fengguang 已提交
1454 1455 1456 1457 1458 1459
	/*
	 * This test is racy because PG_hwpoison is set outside of page lock.
	 * That's acceptable because that won't trigger kernel panic. Instead,
	 * the PG_hwpoison page will be caught and isolated on the entrance to
	 * the free buddy page pool.
	 */
1460
	if (TestClearPageHWPoison(page)) {
1461
		unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
1462
				 pfn, &unpoison_rs);
1463
		num_poisoned_pages_dec();
W
Wu Fengguang 已提交
1464 1465 1466 1467
		freeit = 1;
	}
	unlock_page(page);

1468
	put_hwpoison_page(page);
1469
	if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1470
		put_hwpoison_page(page);
W
Wu Fengguang 已提交
1471 1472 1473 1474

	return 0;
}
EXPORT_SYMBOL(unpoison_memory);
1475 1476 1477

static struct page *new_page(struct page *p, unsigned long private, int **x)
{
1478
	int nid = page_to_nid(p);
1479

1480
	return new_page_nodemask(p, nid, &node_states[N_MEMORY]);
1481 1482 1483 1484 1485 1486 1487 1488
}

/*
 * Safely get reference count of an arbitrary page.
 * Returns 0 for a free page, -EIO for a zero refcount page
 * that is not free, and 1 for any other page type.
 * For 1 the page is returned with increased page count, otherwise not.
 */
1489
static int __get_any_page(struct page *p, unsigned long pfn, int flags)
1490 1491 1492 1493 1494 1495
{
	int ret;

	if (flags & MF_COUNT_INCREASED)
		return 1;

1496 1497 1498 1499
	/*
	 * When the target page is a free hugepage, just remove it
	 * from free hugepage list.
	 */
1500
	if (!get_hwpoison_page(p)) {
1501
		if (PageHuge(p)) {
1502
			pr_info("%s: %#lx free huge page\n", __func__, pfn);
1503
			ret = 0;
1504
		} else if (is_free_buddy_page(p)) {
1505
			pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1506 1507
			ret = 0;
		} else {
1508 1509
			pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
				__func__, pfn, p->flags);
1510 1511 1512 1513 1514 1515 1516 1517 1518
			ret = -EIO;
		}
	} else {
		/* Not a free page */
		ret = 1;
	}
	return ret;
}

1519 1520 1521 1522
static int get_any_page(struct page *page, unsigned long pfn, int flags)
{
	int ret = __get_any_page(page, pfn, flags);

1523 1524
	if (ret == 1 && !PageHuge(page) &&
	    !PageLRU(page) && !__PageMovable(page)) {
1525 1526 1527
		/*
		 * Try to free it.
		 */
1528
		put_hwpoison_page(page);
1529 1530 1531 1532 1533 1534
		shake_page(page, 1);

		/*
		 * Did it turn free?
		 */
		ret = __get_any_page(page, pfn, 0);
1535
		if (ret == 1 && !PageLRU(page)) {
1536
			/* Drop page reference which is from __get_any_page() */
1537
			put_hwpoison_page(page);
1538 1539
			pr_info("soft_offline: %#lx: unknown non LRU page type %lx (%pGp)\n",
				pfn, page->flags, &page->flags);
1540 1541 1542 1543 1544 1545
			return -EIO;
		}
	}
	return ret;
}

1546 1547 1548 1549 1550
static int soft_offline_huge_page(struct page *page, int flags)
{
	int ret;
	unsigned long pfn = page_to_pfn(page);
	struct page *hpage = compound_head(page);
1551
	LIST_HEAD(pagelist);
1552

1553 1554 1555 1556 1557
	/*
	 * This double-check of PageHWPoison is to avoid the race with
	 * memory_failure(). See also comment in __soft_offline_page().
	 */
	lock_page(hpage);
1558
	if (PageHWPoison(hpage)) {
1559
		unlock_page(hpage);
1560
		put_hwpoison_page(hpage);
1561
		pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1562
		return -EBUSY;
1563
	}
1564
	unlock_page(hpage);
1565

1566
	ret = isolate_huge_page(hpage, &pagelist);
1567 1568 1569 1570
	/*
	 * get_any_page() and isolate_huge_page() takes a refcount each,
	 * so need to drop one here.
	 */
1571
	put_hwpoison_page(hpage);
1572
	if (!ret) {
1573 1574 1575 1576
		pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
		return -EBUSY;
	}

1577
	ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1578
				MIGRATE_SYNC, MR_MEMORY_FAILURE);
1579
	if (ret) {
1580
		pr_info("soft offline: %#lx: hugepage migration failed %d, type %lx (%pGp)\n",
1581
			pfn, ret, page->flags, &page->flags);
1582 1583
		if (!list_empty(&pagelist))
			putback_movable_pages(&pagelist);
1584 1585
		if (ret > 0)
			ret = -EIO;
1586
	} else {
1587
		if (PageHuge(page))
1588
			dissolve_free_huge_page(page);
1589 1590 1591 1592
	}
	return ret;
}

1593 1594 1595 1596
static int __soft_offline_page(struct page *page, int flags)
{
	int ret;
	unsigned long pfn = page_to_pfn(page);
1597 1598

	/*
1599 1600 1601 1602
	 * Check PageHWPoison again inside page lock because PageHWPoison
	 * is set by memory_failure() outside page lock. Note that
	 * memory_failure() also double-checks PageHWPoison inside page lock,
	 * so there's no race between soft_offline_page() and memory_failure().
1603
	 */
1604 1605
	lock_page(page);
	wait_on_page_writeback(page);
1606 1607
	if (PageHWPoison(page)) {
		unlock_page(page);
1608
		put_hwpoison_page(page);
1609 1610 1611
		pr_info("soft offline: %#lx page already poisoned\n", pfn);
		return -EBUSY;
	}
1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
	/*
	 * Try to invalidate first. This should work for
	 * non dirty unmapped page cache pages.
	 */
	ret = invalidate_inode_page(page);
	unlock_page(page);
	/*
	 * RED-PEN would be better to keep it isolated here, but we
	 * would need to fix isolation locking first.
	 */
	if (ret == 1) {
1623
		put_hwpoison_page(page);
1624
		pr_info("soft_offline: %#lx: invalidated\n", pfn);
1625
		SetPageHWPoison(page);
1626
		num_poisoned_pages_inc();
1627
		return 0;
1628 1629 1630 1631 1632 1633 1634
	}

	/*
	 * Simple invalidation didn't work.
	 * Try to migrate to a new page instead. migrate.c
	 * handles a large number of cases for us.
	 */
1635 1636 1637 1638
	if (PageLRU(page))
		ret = isolate_lru_page(page);
	else
		ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1639 1640 1641 1642
	/*
	 * Drop page reference which is came from get_any_page()
	 * successful isolate_lru_page() already took another one.
	 */
1643
	put_hwpoison_page(page);
1644 1645
	if (!ret) {
		LIST_HEAD(pagelist);
1646 1647 1648 1649 1650 1651 1652 1653
		/*
		 * After isolated lru page, the PageLRU will be cleared,
		 * so use !__PageMovable instead for LRU page's mapping
		 * cannot have PAGE_MAPPING_MOVABLE.
		 */
		if (!__PageMovable(page))
			inc_node_page_state(page, NR_ISOLATED_ANON +
						page_is_file_cache(page));
1654
		list_add(&page->lru, &pagelist);
1655
		ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1656
					MIGRATE_SYNC, MR_MEMORY_FAILURE);
1657
		if (ret) {
1658 1659
			if (!list_empty(&pagelist))
				putback_movable_pages(&pagelist);
1660

1661 1662
			pr_info("soft offline: %#lx: migration failed %d, type %lx (%pGp)\n",
				pfn, ret, page->flags, &page->flags);
1663 1664 1665 1666
			if (ret > 0)
				ret = -EIO;
		}
	} else {
1667 1668
		pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx (%pGp)\n",
			pfn, ret, page_count(page), page->flags, &page->flags);
1669 1670 1671
	}
	return ret;
}
1672

1673 1674 1675 1676 1677 1678 1679
static int soft_offline_in_use_page(struct page *page, int flags)
{
	int ret;
	struct page *hpage = compound_head(page);

	if (!PageHuge(page) && PageTransHuge(hpage)) {
		lock_page(hpage);
1680 1681 1682 1683 1684 1685 1686
		if (!PageAnon(hpage) || unlikely(split_huge_page(hpage))) {
			unlock_page(hpage);
			if (!PageAnon(hpage))
				pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page));
			else
				pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page));
			put_hwpoison_page(hpage);
1687 1688
			return -EBUSY;
		}
1689
		unlock_page(hpage);
1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
		get_hwpoison_page(page);
		put_hwpoison_page(hpage);
	}

	if (PageHuge(page))
		ret = soft_offline_huge_page(page, flags);
	else
		ret = __soft_offline_page(page, flags);

	return ret;
}

static void soft_offline_free_page(struct page *page)
{
1704
	struct page *head = compound_head(page);
1705

1706 1707 1708
	if (!TestSetPageHWPoison(head)) {
		num_poisoned_pages_inc();
		if (PageHuge(head))
1709
			dissolve_free_huge_page(page);
1710 1711 1712
	}
}

1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
/**
 * soft_offline_page - Soft offline a page.
 * @page: page to offline
 * @flags: flags. Same as memory_failure().
 *
 * Returns 0 on success, otherwise negated errno.
 *
 * Soft offline a page, by migration or invalidation,
 * without killing anything. This is for the case when
 * a page is not corrupted yet (so it's still valid to access),
 * but has had a number of corrected errors and is better taken
 * out.
 *
 * The actual policy on when to do that is maintained by
 * user space.
 *
 * This should never impact any application or cause data loss,
 * however it might take some time.
 *
 * This is not a 100% solution for all memory, but tries to be
 * ``good enough'' for the majority of memory.
 */
int soft_offline_page(struct page *page, int flags)
{
	int ret;
	unsigned long pfn = page_to_pfn(page);

	if (PageHWPoison(page)) {
		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1742
		if (flags & MF_COUNT_INCREASED)
1743
			put_hwpoison_page(page);
1744 1745 1746
		return -EBUSY;
	}

1747
	get_online_mems();
1748
	ret = get_any_page(page, pfn, flags);
1749
	put_online_mems();
1750

1751 1752 1753 1754
	if (ret > 0)
		ret = soft_offline_in_use_page(page, flags);
	else if (ret == 0)
		soft_offline_free_page(page);
1755

1756 1757
	return ret;
}