memory-failure.c 48.2 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 * Copyright (C) 2008, 2009 Intel Corporation
 * Authors: Andi Kleen, Fengguang Wu
 *
 * This software may be redistributed and/or modified under the terms of
 * the GNU General Public License ("GPL") version 2 only as published by the
 * Free Software Foundation.
 *
 * High level machine check handler. Handles pages reported by the
10
 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
11
 * failure.
12 13 14
 * 
 * In addition there is a "soft offline" entry point that allows stop using
 * not-yet-corrupted-by-suspicious pages without killing anything.
15 16
 *
 * Handles page cache pages in various states.	The tricky part
17 18 19 20 21 22
 * here is that we can access any page asynchronously in respect to 
 * other VM users, because memory failures could happen anytime and 
 * anywhere. This could violate some of their assumptions. This is why 
 * this code has to be extremely careful. Generally it tries to use 
 * normal locking rules, as in get the standard locks, even if that means 
 * the error handling takes potentially a long time.
23 24 25 26 27 28 29 30
 *
 * It can be very tempting to add handling for obscure cases here.
 * In general any code for handling new cases should only be added iff:
 * - You know how to test it.
 * - You have a test that can be added to mce-test
 *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
 * - The case actually shows up as a frequent (top 10) page state in
 *   tools/vm/page-types when running a real workload.
31 32 33 34 35 36 37
 * 
 * There are several operations here with exponential complexity because
 * of unsuitable VM data structures. For example the operation to map back 
 * from RMAP chains to processes has to walk the complete process list and 
 * has non linear complexity with the number. But since memory corruptions
 * are rare we hope to get away with this. This avoids impacting the core 
 * VM.
38 39 40 41
 */
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/page-flags.h>
W
Wu Fengguang 已提交
42
#include <linux/kernel-page-flags.h>
43
#include <linux/sched/signal.h>
44
#include <linux/sched/task.h>
H
Hugh Dickins 已提交
45
#include <linux/ksm.h>
46
#include <linux/rmap.h>
47
#include <linux/export.h>
48 49 50
#include <linux/pagemap.h>
#include <linux/swap.h>
#include <linux/backing-dev.h>
51 52
#include <linux/migrate.h>
#include <linux/suspend.h>
53
#include <linux/slab.h>
54
#include <linux/swapops.h>
55
#include <linux/hugetlb.h>
56
#include <linux/memory_hotplug.h>
57
#include <linux/mm_inline.h>
58
#include <linux/kfifo.h>
59
#include <linux/ratelimit.h>
60
#include "internal.h"
61
#include "ras/ras_event.h"
62 63 64 65 66

int sysctl_memory_failure_early_kill __read_mostly = 0;

int sysctl_memory_failure_recovery __read_mostly = 1;

67
atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
68

69 70
#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)

71
u32 hwpoison_filter_enable = 0;
W
Wu Fengguang 已提交
72 73
u32 hwpoison_filter_dev_major = ~0U;
u32 hwpoison_filter_dev_minor = ~0U;
W
Wu Fengguang 已提交
74 75
u64 hwpoison_filter_flags_mask;
u64 hwpoison_filter_flags_value;
76
EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
W
Wu Fengguang 已提交
77 78
EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
W
Wu Fengguang 已提交
79 80
EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
W
Wu Fengguang 已提交
81 82 83 84 85 86 87 88 89 90 91

static int hwpoison_filter_dev(struct page *p)
{
	struct address_space *mapping;
	dev_t dev;

	if (hwpoison_filter_dev_major == ~0U &&
	    hwpoison_filter_dev_minor == ~0U)
		return 0;

	/*
92
	 * page_mapping() does not accept slab pages.
W
Wu Fengguang 已提交
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
	 */
	if (PageSlab(p))
		return -EINVAL;

	mapping = page_mapping(p);
	if (mapping == NULL || mapping->host == NULL)
		return -EINVAL;

	dev = mapping->host->i_sb->s_dev;
	if (hwpoison_filter_dev_major != ~0U &&
	    hwpoison_filter_dev_major != MAJOR(dev))
		return -EINVAL;
	if (hwpoison_filter_dev_minor != ~0U &&
	    hwpoison_filter_dev_minor != MINOR(dev))
		return -EINVAL;

	return 0;
}

W
Wu Fengguang 已提交
112 113 114 115 116 117 118 119 120 121 122 123
static int hwpoison_filter_flags(struct page *p)
{
	if (!hwpoison_filter_flags_mask)
		return 0;

	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
				    hwpoison_filter_flags_value)
		return 0;
	else
		return -EINVAL;
}

A
Andi Kleen 已提交
124 125 126 127 128 129 130 131 132 133
/*
 * This allows stress tests to limit test scope to a collection of tasks
 * by putting them under some memcg. This prevents killing unrelated/important
 * processes such as /sbin/init. Note that the target task may share clean
 * pages with init (eg. libc text), which is harmless. If the target task
 * share _dirty_ pages with another task B, the test scheme must make sure B
 * is also included in the memcg. At last, due to race conditions this filter
 * can only guarantee that the page either belongs to the memcg tasks, or is
 * a freed page.
 */
134
#ifdef CONFIG_MEMCG
A
Andi Kleen 已提交
135 136 137 138 139 140 141
u64 hwpoison_filter_memcg;
EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
static int hwpoison_filter_task(struct page *p)
{
	if (!hwpoison_filter_memcg)
		return 0;

142
	if (page_cgroup_ino(p) != hwpoison_filter_memcg)
A
Andi Kleen 已提交
143 144 145 146 147 148 149 150
		return -EINVAL;

	return 0;
}
#else
static int hwpoison_filter_task(struct page *p) { return 0; }
#endif

W
Wu Fengguang 已提交
151 152
int hwpoison_filter(struct page *p)
{
153 154 155
	if (!hwpoison_filter_enable)
		return 0;

W
Wu Fengguang 已提交
156 157 158
	if (hwpoison_filter_dev(p))
		return -EINVAL;

W
Wu Fengguang 已提交
159 160 161
	if (hwpoison_filter_flags(p))
		return -EINVAL;

A
Andi Kleen 已提交
162 163 164
	if (hwpoison_filter_task(p))
		return -EINVAL;

W
Wu Fengguang 已提交
165 166
	return 0;
}
167 168 169 170 171 172 173
#else
int hwpoison_filter(struct page *p)
{
	return 0;
}
#endif

W
Wu Fengguang 已提交
174 175
EXPORT_SYMBOL_GPL(hwpoison_filter);

176
/*
177 178 179
 * Send all the processes who have the page mapped a signal.
 * ``action optional'' if they are not immediately affected by the error
 * ``action required'' if error happened in current execution context
180
 */
181 182
static int kill_proc(struct task_struct *t, unsigned long addr, int trapno,
			unsigned long pfn, struct page *page, int flags)
183 184 185 186
{
	struct siginfo si;
	int ret;

187 188
	pr_err("Memory failure: %#lx: Killing %s:%d due to hardware memory corruption\n",
		pfn, t->comm, t->pid);
189 190 191 192 193 194
	si.si_signo = SIGBUS;
	si.si_errno = 0;
	si.si_addr = (void *)addr;
#ifdef __ARCH_SI_TRAPNO
	si.si_trapno = trapno;
#endif
195
	si.si_addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT;
196

197
	if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
198
		si.si_code = BUS_MCEERR_AR;
199
		ret = force_sig_info(SIGBUS, &si, current);
200 201 202 203 204 205 206 207 208 209
	} else {
		/*
		 * Don't use force here, it's convenient if the signal
		 * can be temporarily blocked.
		 * This could cause a loop when the user sets SIGBUS
		 * to SIG_IGN, but hopefully no one will do that?
		 */
		si.si_code = BUS_MCEERR_AO;
		ret = send_sig_info(SIGBUS, &si, t);  /* synchronous? */
	}
210
	if (ret < 0)
211
		pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
212
			t->comm, t->pid, ret);
213 214 215
	return ret;
}

216 217 218 219
/*
 * When a unknown page type is encountered drain as many buffers as possible
 * in the hope to turn the page into a LRU or free page, which we can handle.
 */
220
void shake_page(struct page *p, int access)
221
{
222 223 224
	if (PageHuge(p))
		return;

225 226 227 228
	if (!PageSlab(p)) {
		lru_add_drain_all();
		if (PageLRU(p))
			return;
229
		drain_all_pages(page_zone(p));
230 231 232
		if (PageLRU(p) || is_free_buddy_page(p))
			return;
	}
233

234
	/*
235 236
	 * Only call shrink_node_slabs here (which would also shrink
	 * other caches) if access is not potentially fatal.
237
	 */
238 239
	if (access)
		drop_slab_node(page_to_nid(p));
240 241 242
}
EXPORT_SYMBOL_GPL(shake_page);

243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
/*
 * Kill all processes that have a poisoned page mapped and then isolate
 * the page.
 *
 * General strategy:
 * Find all processes having the page mapped and kill them.
 * But we keep a page reference around so that the page is not
 * actually freed yet.
 * Then stash the page away
 *
 * There's no convenient way to get back to mapped processes
 * from the VMAs. So do a brute-force search over all
 * running processes.
 *
 * Remember that machine checks are not common (or rather
 * if they are common you have other problems), so this shouldn't
 * be a performance issue.
 *
 * Also there are some races possible while we get from the
 * error detection to actually handle it.
 */

struct to_kill {
	struct list_head nd;
	struct task_struct *tsk;
	unsigned long addr;
269
	char addr_valid;
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
};

/*
 * Failure handling: if we can't find or can't kill a process there's
 * not much we can do.	We just print a message and ignore otherwise.
 */

/*
 * Schedule a process for later kill.
 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
 * TBD would GFP_NOIO be enough?
 */
static void add_to_kill(struct task_struct *tsk, struct page *p,
		       struct vm_area_struct *vma,
		       struct list_head *to_kill,
		       struct to_kill **tkc)
{
	struct to_kill *tk;

	if (*tkc) {
		tk = *tkc;
		*tkc = NULL;
	} else {
		tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
		if (!tk) {
295
			pr_err("Memory failure: Out of memory while machine check handling\n");
296 297 298 299 300 301 302 303 304 305 306 307 308
			return;
		}
	}
	tk->addr = page_address_in_vma(p, vma);
	tk->addr_valid = 1;

	/*
	 * In theory we don't have to kill when the page was
	 * munmaped. But it could be also a mremap. Since that's
	 * likely very rare kill anyways just out of paranoia, but use
	 * a SIGKILL because the error is not contained anymore.
	 */
	if (tk->addr == -EFAULT) {
309
		pr_info("Memory failure: Unable to find user space address %lx in %s\n",
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
			page_to_pfn(p), tsk->comm);
		tk->addr_valid = 0;
	}
	get_task_struct(tsk);
	tk->tsk = tsk;
	list_add_tail(&tk->nd, to_kill);
}

/*
 * Kill the processes that have been collected earlier.
 *
 * Only do anything when DOIT is set, otherwise just free the list
 * (this is used for clean pages which do not need killing)
 * Also when FAIL is set do a force kill because something went
 * wrong earlier.
 */
326
static void kill_procs(struct list_head *to_kill, int forcekill, int trapno,
M
Minchan Kim 已提交
327
			  bool fail, struct page *page, unsigned long pfn,
328
			  int flags)
329 330 331 332
{
	struct to_kill *tk, *next;

	list_for_each_entry_safe (tk, next, to_kill, nd) {
333
		if (forcekill) {
334
			/*
335
			 * In case something went wrong with munmapping
336 337 338 339
			 * make sure the process doesn't catch the
			 * signal and then access the memory. Just kill it.
			 */
			if (fail || tk->addr_valid == 0) {
340
				pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
341
				       pfn, tk->tsk->comm, tk->tsk->pid);
342 343 344 345 346 347 348 349 350
				force_sig(SIGKILL, tk->tsk);
			}

			/*
			 * In theory the process could have mapped
			 * something else on the address in-between. We could
			 * check for that, but we need to tell the
			 * process anyways.
			 */
351 352
			else if (kill_proc(tk->tsk, tk->addr, trapno,
					      pfn, page, flags) < 0)
353
				pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
354
				       pfn, tk->tsk->comm, tk->tsk->pid);
355 356 357 358 359 360
		}
		put_task_struct(tk->tsk);
		kfree(tk);
	}
}

361 362 363 364 365 366 367 368 369
/*
 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
 * on behalf of the thread group. Return task_struct of the (first found)
 * dedicated thread if found, and return NULL otherwise.
 *
 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
 * have to call rcu_read_lock/unlock() in this function.
 */
static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
370
{
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
	struct task_struct *t;

	for_each_thread(tsk, t)
		if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
			return t;
	return NULL;
}

/*
 * Determine whether a given process is "early kill" process which expects
 * to be signaled when some page under the process is hwpoisoned.
 * Return task_struct of the dedicated thread (main thread unless explicitly
 * specified) if the process is "early kill," and otherwise returns NULL.
 */
static struct task_struct *task_early_kill(struct task_struct *tsk,
					   int force_early)
{
	struct task_struct *t;
389
	if (!tsk->mm)
390
		return NULL;
391
	if (force_early)
392 393 394 395 396 397 398
		return tsk;
	t = find_early_kill_thread(tsk);
	if (t)
		return t;
	if (sysctl_memory_failure_early_kill)
		return tsk;
	return NULL;
399 400 401 402 403 404
}

/*
 * Collect processes when the error hit an anonymous page.
 */
static void collect_procs_anon(struct page *page, struct list_head *to_kill,
405
			      struct to_kill **tkc, int force_early)
406 407 408 409
{
	struct vm_area_struct *vma;
	struct task_struct *tsk;
	struct anon_vma *av;
410
	pgoff_t pgoff;
411

412
	av = page_lock_anon_vma_read(page);
413
	if (av == NULL)	/* Not actually mapped anymore */
414 415
		return;

416
	pgoff = page_to_pgoff(page);
417
	read_lock(&tasklist_lock);
418
	for_each_process (tsk) {
419
		struct anon_vma_chain *vmac;
420
		struct task_struct *t = task_early_kill(tsk, force_early);
421

422
		if (!t)
423
			continue;
424 425
		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
					       pgoff, pgoff) {
426
			vma = vmac->vma;
427 428
			if (!page_mapped_in_vma(page, vma))
				continue;
429 430
			if (vma->vm_mm == t->mm)
				add_to_kill(t, page, vma, to_kill, tkc);
431 432 433
		}
	}
	read_unlock(&tasklist_lock);
434
	page_unlock_anon_vma_read(av);
435 436 437 438 439 440
}

/*
 * Collect processes when the error hit a file mapped page.
 */
static void collect_procs_file(struct page *page, struct list_head *to_kill,
441
			      struct to_kill **tkc, int force_early)
442 443 444 445 446
{
	struct vm_area_struct *vma;
	struct task_struct *tsk;
	struct address_space *mapping = page->mapping;

447
	i_mmap_lock_read(mapping);
448
	read_lock(&tasklist_lock);
449
	for_each_process(tsk) {
450
		pgoff_t pgoff = page_to_pgoff(page);
451
		struct task_struct *t = task_early_kill(tsk, force_early);
452

453
		if (!t)
454
			continue;
455
		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
456 457 458 459 460 461 462 463
				      pgoff) {
			/*
			 * Send early kill signal to tasks where a vma covers
			 * the page but the corrupted page is not necessarily
			 * mapped it in its pte.
			 * Assume applications who requested early kill want
			 * to be informed of all such data corruptions.
			 */
464 465
			if (vma->vm_mm == t->mm)
				add_to_kill(t, page, vma, to_kill, tkc);
466 467 468
		}
	}
	read_unlock(&tasklist_lock);
469
	i_mmap_unlock_read(mapping);
470 471 472 473 474 475 476 477
}

/*
 * Collect the processes who have the corrupted page mapped to kill.
 * This is done in two steps for locking reasons.
 * First preallocate one tokill structure outside the spin locks,
 * so that we can kill at least one process reasonably reliable.
 */
478 479
static void collect_procs(struct page *page, struct list_head *tokill,
				int force_early)
480 481 482 483 484 485 486 487 488 489
{
	struct to_kill *tk;

	if (!page->mapping)
		return;

	tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
	if (!tk)
		return;
	if (PageAnon(page))
490
		collect_procs_anon(page, tokill, &tk, force_early);
491
	else
492
		collect_procs_file(page, tokill, &tk, force_early);
493 494 495 496
	kfree(tk);
}

static const char *action_name[] = {
497 498 499 500
	[MF_IGNORED] = "Ignored",
	[MF_FAILED] = "Failed",
	[MF_DELAYED] = "Delayed",
	[MF_RECOVERED] = "Recovered",
501 502 503
};

static const char * const action_page_types[] = {
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
	[MF_MSG_KERNEL]			= "reserved kernel page",
	[MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page",
	[MF_MSG_SLAB]			= "kernel slab page",
	[MF_MSG_DIFFERENT_COMPOUND]	= "different compound page after locking",
	[MF_MSG_POISONED_HUGE]		= "huge page already hardware poisoned",
	[MF_MSG_HUGE]			= "huge page",
	[MF_MSG_FREE_HUGE]		= "free huge page",
	[MF_MSG_UNMAP_FAILED]		= "unmapping failed page",
	[MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page",
	[MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page",
	[MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page",
	[MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page",
	[MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
	[MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
	[MF_MSG_DIRTY_LRU]		= "dirty LRU page",
	[MF_MSG_CLEAN_LRU]		= "clean LRU page",
	[MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page",
	[MF_MSG_BUDDY]			= "free buddy page",
	[MF_MSG_BUDDY_2ND]		= "free buddy page (2nd try)",
	[MF_MSG_UNKNOWN]		= "unknown page",
524 525
};

526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
/*
 * XXX: It is possible that a page is isolated from LRU cache,
 * and then kept in swap cache or failed to remove from page cache.
 * The page count will stop it from being freed by unpoison.
 * Stress tests should be aware of this memory leak problem.
 */
static int delete_from_lru_cache(struct page *p)
{
	if (!isolate_lru_page(p)) {
		/*
		 * Clear sensible page flags, so that the buddy system won't
		 * complain when the page is unpoison-and-freed.
		 */
		ClearPageActive(p);
		ClearPageUnevictable(p);
541 542 543 544 545 546 547

		/*
		 * Poisoned page might never drop its ref count to 0 so we have
		 * to uncharge it manually from its memcg.
		 */
		mem_cgroup_uncharge(p);

548 549 550
		/*
		 * drop the page count elevated by isolate_lru_page()
		 */
551
		put_page(p);
552 553 554 555 556
		return 0;
	}
	return -EIO;
}

557 558 559 560 561 562 563
/*
 * Error hit kernel page.
 * Do nothing, try to be lucky and not touch this instead. For a few cases we
 * could be more sophisticated.
 */
static int me_kernel(struct page *p, unsigned long pfn)
{
564
	return MF_IGNORED;
565 566 567 568 569 570 571
}

/*
 * Page in unknown state. Do nothing.
 */
static int me_unknown(struct page *p, unsigned long pfn)
{
572
	pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
573
	return MF_FAILED;
574 575 576 577 578 579 580 581
}

/*
 * Clean (or cleaned) page cache page.
 */
static int me_pagecache_clean(struct page *p, unsigned long pfn)
{
	int err;
582
	int ret = MF_FAILED;
583 584
	struct address_space *mapping;

585 586
	delete_from_lru_cache(p);

587 588 589 590 591
	/*
	 * For anonymous pages we're done the only reference left
	 * should be the one m_f() holds.
	 */
	if (PageAnon(p))
592
		return MF_RECOVERED;
593 594 595 596 597 598 599 600 601 602 603 604 605

	/*
	 * Now truncate the page in the page cache. This is really
	 * more like a "temporary hole punch"
	 * Don't do this for block devices when someone else
	 * has a reference, because it could be file system metadata
	 * and that's not safe to truncate.
	 */
	mapping = page_mapping(p);
	if (!mapping) {
		/*
		 * Page has been teared down in the meanwhile
		 */
606
		return MF_FAILED;
607 608 609 610 611 612 613 614 615 616
	}

	/*
	 * Truncation is a bit tricky. Enable it per file system for now.
	 *
	 * Open: to take i_mutex or not for this? Right now we don't.
	 */
	if (mapping->a_ops->error_remove_page) {
		err = mapping->a_ops->error_remove_page(mapping, p);
		if (err != 0) {
617
			pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
618
				pfn, err);
619 620
		} else if (page_has_private(p) &&
				!try_to_release_page(p, GFP_NOIO)) {
621 622
			pr_info("Memory failure: %#lx: failed to release buffers\n",
				pfn);
623
		} else {
624
			ret = MF_RECOVERED;
625 626 627 628 629 630 631
		}
	} else {
		/*
		 * If the file system doesn't support it just invalidate
		 * This fails on dirty or anything with private pages
		 */
		if (invalidate_inode_page(p))
632
			ret = MF_RECOVERED;
633
		else
634 635
			pr_info("Memory failure: %#lx: Failed to invalidate\n",
				pfn);
636 637 638 639 640
	}
	return ret;
}

/*
641
 * Dirty pagecache page
642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
 * Issues: when the error hit a hole page the error is not properly
 * propagated.
 */
static int me_pagecache_dirty(struct page *p, unsigned long pfn)
{
	struct address_space *mapping = page_mapping(p);

	SetPageError(p);
	/* TBD: print more information about the file. */
	if (mapping) {
		/*
		 * IO error will be reported by write(), fsync(), etc.
		 * who check the mapping.
		 * This way the application knows that something went
		 * wrong with its dirty file data.
		 *
		 * There's one open issue:
		 *
		 * The EIO will be only reported on the next IO
		 * operation and then cleared through the IO map.
		 * Normally Linux has two mechanisms to pass IO error
		 * first through the AS_EIO flag in the address space
		 * and then through the PageError flag in the page.
		 * Since we drop pages on memory failure handling the
		 * only mechanism open to use is through AS_AIO.
		 *
		 * This has the disadvantage that it gets cleared on
		 * the first operation that returns an error, while
		 * the PageError bit is more sticky and only cleared
		 * when the page is reread or dropped.  If an
		 * application assumes it will always get error on
		 * fsync, but does other operations on the fd before
L
Lucas De Marchi 已提交
674
		 * and the page is dropped between then the error
675 676 677 678 679 680 681 682 683 684 685
		 * will not be properly reported.
		 *
		 * This can already happen even without hwpoisoned
		 * pages: first on metadata IO errors (which only
		 * report through AS_EIO) or when the page is dropped
		 * at the wrong time.
		 *
		 * So right now we assume that the application DTRT on
		 * the first EIO, but we're not worse than other parts
		 * of the kernel.
		 */
686
		mapping_set_error(mapping, -EIO);
687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
	}

	return me_pagecache_clean(p, pfn);
}

/*
 * Clean and dirty swap cache.
 *
 * Dirty swap cache page is tricky to handle. The page could live both in page
 * cache and swap cache(ie. page is freshly swapped in). So it could be
 * referenced concurrently by 2 types of PTEs:
 * normal PTEs and swap PTEs. We try to handle them consistently by calling
 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
 * and then
 *      - clear dirty bit to prevent IO
 *      - remove from LRU
 *      - but keep in the swap cache, so that when we return to it on
 *        a later page fault, we know the application is accessing
 *        corrupted data and shall be killed (we installed simple
 *        interception code in do_swap_page to catch it).
 *
 * Clean swap cache pages can be directly isolated. A later page fault will
 * bring in the known good data from disk.
 */
static int me_swapcache_dirty(struct page *p, unsigned long pfn)
{
	ClearPageDirty(p);
	/* Trigger EIO in shmem: */
	ClearPageUptodate(p);

717
	if (!delete_from_lru_cache(p))
718
		return MF_DELAYED;
719
	else
720
		return MF_FAILED;
721 722 723 724 725
}

static int me_swapcache_clean(struct page *p, unsigned long pfn)
{
	delete_from_swap_cache(p);
726

727
	if (!delete_from_lru_cache(p))
728
		return MF_RECOVERED;
729
	else
730
		return MF_FAILED;
731 732 733 734 735
}

/*
 * Huge pages. Needs work.
 * Issues:
736 737
 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
 *   To narrow down kill region to one page, we need to break up pmd.
738 739 740
 */
static int me_huge_page(struct page *p, unsigned long pfn)
{
741
	int res = 0;
742
	struct page *hpage = compound_head(p);
743 744 745 746

	if (!PageHuge(hpage))
		return MF_DELAYED;

747 748 749 750 751 752 753 754 755
	/*
	 * We can safely recover from error on free or reserved (i.e.
	 * not in-use) hugepage by dequeuing it from freelist.
	 * To check whether a hugepage is in-use or not, we can't use
	 * page->lru because it can be used in other hugepage operations,
	 * such as __unmap_hugepage_range() and gather_surplus_pages().
	 * So instead we use page_mapping() and PageAnon().
	 */
	if (!(page_mapping(hpage) || PageAnon(hpage))) {
756 757
		res = dequeue_hwpoisoned_huge_page(hpage);
		if (!res)
758
			return MF_RECOVERED;
759
	}
760
	return MF_DELAYED;
761 762 763 764 765 766 767 768 769
}

/*
 * Various page states we can handle.
 *
 * A page state is defined by its current page->flags bits.
 * The table matches them in order and calls the right handler.
 *
 * This is quite tricky because we can access page at any time
L
Lucas De Marchi 已提交
770
 * in its live cycle, so all accesses have to be extremely careful.
771 772 773 774 775 776
 *
 * This is not complete. More states could be added.
 * For any missing state don't attempt recovery.
 */

#define dirty		(1UL << PG_dirty)
777
#define sc		((1UL << PG_swapcache) | (1UL << PG_swapbacked))
778 779 780 781 782 783 784 785 786 787 788
#define unevict		(1UL << PG_unevictable)
#define mlock		(1UL << PG_mlocked)
#define writeback	(1UL << PG_writeback)
#define lru		(1UL << PG_lru)
#define head		(1UL << PG_head)
#define slab		(1UL << PG_slab)
#define reserved	(1UL << PG_reserved)

static struct page_state {
	unsigned long mask;
	unsigned long res;
789
	enum mf_action_page_type type;
790 791
	int (*action)(struct page *p, unsigned long pfn);
} error_states[] = {
792
	{ reserved,	reserved,	MF_MSG_KERNEL,	me_kernel },
793 794 795 796
	/*
	 * free pages are specially detected outside this table:
	 * PG_buddy pages only make a small fraction of all free pages.
	 */
797 798 799 800 801 802

	/*
	 * Could in theory check if slab page is free or if we can drop
	 * currently unused objects without touching them. But just
	 * treat it as standard kernel for now.
	 */
803
	{ slab,		slab,		MF_MSG_SLAB,	me_kernel },
804

805
	{ head,		head,		MF_MSG_HUGE,		me_huge_page },
806

807 808
	{ sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
	{ sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
809

810 811
	{ mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
	{ mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
812

813 814
	{ unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
	{ unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
815

816 817
	{ lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty },
	{ lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean },
818 819 820 821

	/*
	 * Catchall entry: must be at end.
	 */
822
	{ 0,		0,		MF_MSG_UNKNOWN,	me_unknown },
823 824
};

825 826 827 828 829 830 831 832 833 834
#undef dirty
#undef sc
#undef unevict
#undef mlock
#undef writeback
#undef lru
#undef head
#undef slab
#undef reserved

835 836 837 838
/*
 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
 */
839 840
static void action_result(unsigned long pfn, enum mf_action_page_type type,
			  enum mf_result result)
841
{
842 843
	trace_memory_failure_event(pfn, type, result);

844
	pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
845
		pfn, action_page_types[type], action_name[result]);
846 847 848
}

static int page_action(struct page_state *ps, struct page *p,
849
			unsigned long pfn)
850 851
{
	int result;
852
	int count;
853 854

	result = ps->action(p, pfn);
855

856
	count = page_count(p) - 1;
857
	if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
858 859
		count--;
	if (count != 0) {
860
		pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
861
		       pfn, action_page_types[ps->type], count);
862
		result = MF_FAILED;
863
	}
864
	action_result(pfn, ps->type, result);
865 866 867 868 869 870

	/* Could do more checks here if page looks ok */
	/*
	 * Could adjust zone counters here to correct for the missing page.
	 */

871
	return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
872 873
}

874 875 876 877 878 879 880 881 882 883 884
/**
 * get_hwpoison_page() - Get refcount for memory error handling:
 * @page:	raw error page (hit by memory error)
 *
 * Return: return 0 if failed to grab the refcount, otherwise true (some
 * non-zero value.)
 */
int get_hwpoison_page(struct page *page)
{
	struct page *head = compound_head(page);

885
	if (!PageHuge(head) && PageTransHuge(head)) {
886 887 888 889 890 891 892
		/*
		 * Non anonymous thp exists only in allocation/free time. We
		 * can't handle such a case correctly, so let's give it up.
		 * This should be better than triggering BUG_ON when kernel
		 * tries to touch the "partially handled" page.
		 */
		if (!PageAnon(head)) {
893
			pr_err("Memory failure: %#lx: non anonymous thp\n",
894 895 896
				page_to_pfn(page));
			return 0;
		}
897 898
	}

899 900 901 902
	if (get_page_unless_zero(head)) {
		if (head == compound_head(page))
			return 1;

903 904
		pr_info("Memory failure: %#lx cannot catch tail\n",
			page_to_pfn(page));
905 906 907 908
		put_page(head);
	}

	return 0;
909 910 911
}
EXPORT_SYMBOL_GPL(get_hwpoison_page);

912 913 914 915
/*
 * Do all that is necessary to remove user space mappings. Unmap
 * the pages and send SIGBUS to the processes if the data was dirty.
 */
M
Minchan Kim 已提交
916
static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
917
				  int trapno, int flags, struct page **hpagep)
918
{
S
Shaohua Li 已提交
919
	enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
920 921
	struct address_space *mapping;
	LIST_HEAD(tokill);
M
Minchan Kim 已提交
922
	bool unmap_success;
923
	int kill = 1, forcekill;
924
	struct page *hpage = *hpagep;
925
	bool mlocked = PageMlocked(hpage);
926

927 928 929 930 931
	/*
	 * Here we are interested only in user-mapped pages, so skip any
	 * other types of pages.
	 */
	if (PageReserved(p) || PageSlab(p))
M
Minchan Kim 已提交
932
		return true;
933
	if (!(PageLRU(hpage) || PageHuge(p)))
M
Minchan Kim 已提交
934
		return true;
935 936 937 938 939

	/*
	 * This check implies we don't kill processes if their pages
	 * are in the swap cache early. Those are always late kills.
	 */
940
	if (!page_mapped(hpage))
M
Minchan Kim 已提交
941
		return true;
W
Wu Fengguang 已提交
942

943
	if (PageKsm(p)) {
944
		pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
M
Minchan Kim 已提交
945
		return false;
946
	}
947 948

	if (PageSwapCache(p)) {
949 950
		pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
			pfn);
951 952 953 954 955 956
		ttu |= TTU_IGNORE_HWPOISON;
	}

	/*
	 * Propagate the dirty bit from PTEs to struct page first, because we
	 * need this to decide if we should kill or just drop the page.
957 958
	 * XXX: the dirty test could be racy: set_page_dirty() may not always
	 * be called inside page lock (it's recommended but not enforced).
959
	 */
960
	mapping = page_mapping(hpage);
961
	if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
962 963 964
	    mapping_cap_writeback_dirty(mapping)) {
		if (page_mkclean(hpage)) {
			SetPageDirty(hpage);
965 966 967
		} else {
			kill = 0;
			ttu |= TTU_IGNORE_HWPOISON;
968
			pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
969 970 971 972 973 974 975 976 977 978 979 980 981
				pfn);
		}
	}

	/*
	 * First collect all the processes that have the page
	 * mapped in dirty form.  This has to be done before try_to_unmap,
	 * because ttu takes the rmap data structures down.
	 *
	 * Error handling: We ignore errors here because
	 * there's nothing that can be done.
	 */
	if (kill)
982
		collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
983

M
Minchan Kim 已提交
984 985
	unmap_success = try_to_unmap(hpage, ttu);
	if (!unmap_success)
986
		pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
987
		       pfn, page_mapcount(hpage));
988

989 990 991 992 993 994 995
	/*
	 * try_to_unmap() might put mlocked page in lru cache, so call
	 * shake_page() again to ensure that it's flushed.
	 */
	if (mlocked)
		shake_page(hpage, 0);

996 997 998 999
	/*
	 * Now that the dirty bit has been propagated to the
	 * struct page and all unmaps done we can decide if
	 * killing is needed or not.  Only kill when the page
1000 1001
	 * was dirty or the process is not restartable,
	 * otherwise the tokill list is merely
1002 1003 1004 1005
	 * freed.  When there was a problem unmapping earlier
	 * use a more force-full uncatchable kill to prevent
	 * any accesses to the poisoned memory.
	 */
1006
	forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
M
Minchan Kim 已提交
1007
	kill_procs(&tokill, forcekill, trapno, !unmap_success, p, pfn, flags);
W
Wu Fengguang 已提交
1008

M
Minchan Kim 已提交
1009
	return unmap_success;
1010 1011
}

1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
/**
 * memory_failure - Handle memory failure of a page.
 * @pfn: Page Number of the corrupted page
 * @trapno: Trap number reported in the signal to user space.
 * @flags: fine tune action taken
 *
 * This function is called by the low level machine check code
 * of an architecture when it detects hardware memory corruption
 * of a page. It tries its best to recover, which includes
 * dropping pages, killing processes etc.
 *
 * The function is primarily of use for corruptions that
 * happen outside the current execution context (e.g. when
 * detected by a background scrubber)
 *
 * Must run in process context (e.g. a work queue) with interrupts
 * enabled and no spinlocks hold.
 */
int memory_failure(unsigned long pfn, int trapno, int flags)
1031 1032 1033
{
	struct page_state *ps;
	struct page *p;
1034
	struct page *hpage;
1035
	struct page *orig_head;
1036
	int res;
1037
	unsigned long page_flags;
1038 1039 1040 1041 1042

	if (!sysctl_memory_failure_recovery)
		panic("Memory failure from trap %d on page %lx", trapno, pfn);

	if (!pfn_valid(pfn)) {
1043 1044
		pr_err("Memory failure: %#lx: memory outside kernel control\n",
			pfn);
1045
		return -ENXIO;
1046 1047 1048
	}

	p = pfn_to_page(pfn);
1049
	orig_head = hpage = compound_head(p);
1050 1051 1052 1053 1054 1055 1056 1057 1058

	/* tmporary check code, to be updated in later patches */
	if (PageHuge(p)) {
		if (TestSetPageHWPoison(hpage)) {
			pr_err("Memory failure: %#lx: already hardware poisoned\n", pfn);
			return 0;
		}
		goto tmp;
	}
1059
	if (TestSetPageHWPoison(p)) {
1060 1061
		pr_err("Memory failure: %#lx: already hardware poisoned\n",
			pfn);
1062 1063 1064
		return 0;
	}

1065 1066
tmp:
	num_poisoned_pages_inc();
1067 1068 1069 1070 1071

	/*
	 * We need/can do nothing about count=0 pages.
	 * 1) it's a free page, and therefore in safe hand:
	 *    prep_new_page() will be the gate keeper.
1072 1073 1074 1075
	 * 2) it's a free hugepage, which is also safe:
	 *    an affected hugepage will be dequeued from hugepage freelist,
	 *    so there's no concern about reusing it ever after.
	 * 3) it's part of a non-compound high order page.
1076 1077 1078 1079 1080 1081
	 *    Implies some kernel user: cannot stop them from
	 *    R/W the page; let's pray that the page has been
	 *    used and will be freed some time later.
	 * In fact it's dangerous to directly bump up page count from 0,
	 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
	 */
1082
	if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1083
		if (is_free_buddy_page(p)) {
1084
			action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1085
			return 0;
1086 1087
		} else if (PageHuge(hpage)) {
			/*
1088
			 * Check "filter hit" and "race with other subpage."
1089
			 */
J
Jens Axboe 已提交
1090
			lock_page(hpage);
1091 1092 1093
			if (PageHWPoison(hpage)) {
				if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
				    || (p != hpage && TestSetPageHWPoison(hpage))) {
1094
					num_poisoned_pages_dec();
1095 1096 1097
					unlock_page(hpage);
					return 0;
				}
1098 1099
			}
			res = dequeue_hwpoisoned_huge_page(hpage);
1100 1101
			action_result(pfn, MF_MSG_FREE_HUGE,
				      res ? MF_IGNORED : MF_DELAYED);
1102 1103
			unlock_page(hpage);
			return res;
1104
		} else {
1105
			action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1106 1107
			return -EBUSY;
		}
1108 1109
	}

1110
	if (!PageHuge(p) && PageTransHuge(hpage)) {
1111 1112 1113 1114
		lock_page(p);
		if (!PageAnon(p) || unlikely(split_huge_page(p))) {
			unlock_page(p);
			if (!PageAnon(p))
1115 1116
				pr_err("Memory failure: %#lx: non anonymous thp\n",
					pfn);
1117
			else
1118 1119
				pr_err("Memory failure: %#lx: thp split failed\n",
					pfn);
1120
			if (TestClearPageHWPoison(p))
1121
				num_poisoned_pages_dec();
1122
			put_hwpoison_page(p);
1123 1124
			return -EBUSY;
		}
1125
		unlock_page(p);
1126 1127 1128 1129
		VM_BUG_ON_PAGE(!page_count(p), p);
		hpage = compound_head(p);
	}

1130 1131 1132
	/*
	 * We ignore non-LRU pages for good reasons.
	 * - PG_locked is only well defined for LRU pages and a few others
1133
	 * - to avoid races with __SetPageLocked()
1134 1135 1136 1137
	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
	 * The check (unnecessarily) ignores LRU pages being isolated and
	 * walked by the page reclaim code, however that's not a big loss.
	 */
1138 1139 1140 1141 1142 1143 1144 1145
	shake_page(p, 0);
	/* shake_page could have turned it free. */
	if (!PageLRU(p) && is_free_buddy_page(p)) {
		if (flags & MF_COUNT_INCREASED)
			action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
		else
			action_result(pfn, MF_MSG_BUDDY_2ND, MF_DELAYED);
		return 0;
1146 1147
	}

J
Jens Axboe 已提交
1148
	lock_page(hpage);
W
Wu Fengguang 已提交
1149

1150 1151 1152 1153
	/*
	 * The page could have changed compound pages during the locking.
	 * If this happens just bail out.
	 */
1154
	if (PageCompound(p) && compound_head(p) != orig_head) {
1155
		action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1156 1157 1158 1159
		res = -EBUSY;
		goto out;
	}

1160 1161 1162 1163 1164 1165 1166
	/*
	 * We use page flags to determine what action should be taken, but
	 * the flags can be modified by the error containment action.  One
	 * example is an mlocked page, where PG_mlocked is cleared by
	 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
	 * correctly, we save a copy of the page flags at this time.
	 */
1167 1168 1169 1170
	if (PageHuge(p))
		page_flags = hpage->flags;
	else
		page_flags = p->flags;
1171

W
Wu Fengguang 已提交
1172 1173 1174 1175
	/*
	 * unpoison always clear PG_hwpoison inside page lock
	 */
	if (!PageHWPoison(p)) {
1176
		pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1177
		num_poisoned_pages_dec();
1178
		unlock_page(hpage);
1179
		put_hwpoison_page(hpage);
1180
		return 0;
W
Wu Fengguang 已提交
1181
	}
W
Wu Fengguang 已提交
1182 1183
	if (hwpoison_filter(p)) {
		if (TestClearPageHWPoison(p))
1184
			num_poisoned_pages_dec();
1185
		unlock_page(hpage);
1186
		put_hwpoison_page(hpage);
W
Wu Fengguang 已提交
1187 1188
		return 0;
	}
W
Wu Fengguang 已提交
1189

1190 1191 1192
	if (!PageHuge(p) && !PageTransTail(p) && !PageLRU(p))
		goto identify_page_state;

1193 1194 1195 1196
	/*
	 * For error on the tail page, we should set PG_hwpoison
	 * on the head page to show that the hugepage is hwpoisoned
	 */
1197
	if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
1198
		action_result(pfn, MF_MSG_POISONED_HUGE, MF_IGNORED);
1199
		unlock_page(hpage);
1200
		put_hwpoison_page(hpage);
1201 1202 1203
		return 0;
	}

1204 1205 1206 1207
	/*
	 * It's very difficult to mess with pages currently under IO
	 * and in many cases impossible, so we just avoid it here.
	 */
1208 1209 1210 1211
	wait_on_page_writeback(p);

	/*
	 * Now take care of user space mappings.
1212
	 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1213 1214 1215
	 *
	 * When the raw error page is thp tail page, hpage points to the raw
	 * page after thp split.
1216
	 */
M
Minchan Kim 已提交
1217
	if (!hwpoison_user_mappings(p, pfn, trapno, flags, &hpage)) {
1218
		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
W
Wu Fengguang 已提交
1219 1220 1221
		res = -EBUSY;
		goto out;
	}
1222 1223 1224 1225

	/*
	 * Torn down by someone else?
	 */
1226
	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1227
		action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1228
		res = -EBUSY;
1229 1230 1231
		goto out;
	}

1232
identify_page_state:
1233
	res = -EBUSY;
1234 1235 1236 1237 1238 1239 1240
	/*
	 * The first check uses the current page flags which may not have any
	 * relevant information. The second check with the saved page flagss is
	 * carried out only if the first check can't determine the page status.
	 */
	for (ps = error_states;; ps++)
		if ((p->flags & ps->mask) == ps->res)
1241
			break;
1242 1243 1244

	page_flags |= (p->flags & (1UL << PG_dirty));

1245 1246 1247 1248 1249
	if (!ps->mask)
		for (ps = error_states;; ps++)
			if ((page_flags & ps->mask) == ps->res)
				break;
	res = page_action(ps, p, pfn);
1250
out:
1251
	unlock_page(hpage);
1252 1253
	return res;
}
1254
EXPORT_SYMBOL_GPL(memory_failure);
W
Wu Fengguang 已提交
1255

1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
#define MEMORY_FAILURE_FIFO_ORDER	4
#define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)

struct memory_failure_entry {
	unsigned long pfn;
	int trapno;
	int flags;
};

struct memory_failure_cpu {
	DECLARE_KFIFO(fifo, struct memory_failure_entry,
		      MEMORY_FAILURE_FIFO_SIZE);
	spinlock_t lock;
	struct work_struct work;
};

static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);

/**
 * memory_failure_queue - Schedule handling memory failure of a page.
 * @pfn: Page Number of the corrupted page
 * @trapno: Trap number reported in the signal to user space.
 * @flags: Flags for memory failure handling
 *
 * This function is called by the low level hardware error handler
 * when it detects hardware memory corruption of a page. It schedules
 * the recovering of error page, including dropping pages, killing
 * processes etc.
 *
 * The function is primarily of use for corruptions that
 * happen outside the current execution context (e.g. when
 * detected by a background scrubber)
 *
 * Can run in IRQ context.
 */
void memory_failure_queue(unsigned long pfn, int trapno, int flags)
{
	struct memory_failure_cpu *mf_cpu;
	unsigned long proc_flags;
	struct memory_failure_entry entry = {
		.pfn =		pfn,
		.trapno =	trapno,
		.flags =	flags,
	};

	mf_cpu = &get_cpu_var(memory_failure_cpu);
	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
S
Stefani Seibold 已提交
1303
	if (kfifo_put(&mf_cpu->fifo, entry))
1304 1305
		schedule_work_on(smp_processor_id(), &mf_cpu->work);
	else
J
Joe Perches 已提交
1306
		pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
		       pfn);
	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
	put_cpu_var(memory_failure_cpu);
}
EXPORT_SYMBOL_GPL(memory_failure_queue);

static void memory_failure_work_func(struct work_struct *work)
{
	struct memory_failure_cpu *mf_cpu;
	struct memory_failure_entry entry = { 0, };
	unsigned long proc_flags;
	int gotten;

1320
	mf_cpu = this_cpu_ptr(&memory_failure_cpu);
1321 1322 1323 1324 1325 1326
	for (;;) {
		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
		gotten = kfifo_get(&mf_cpu->fifo, &entry);
		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
		if (!gotten)
			break;
1327 1328 1329 1330
		if (entry.flags & MF_SOFT_OFFLINE)
			soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
		else
			memory_failure(entry.pfn, entry.trapno, entry.flags);
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
	}
}

static int __init memory_failure_init(void)
{
	struct memory_failure_cpu *mf_cpu;
	int cpu;

	for_each_possible_cpu(cpu) {
		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
		spin_lock_init(&mf_cpu->lock);
		INIT_KFIFO(mf_cpu->fifo);
		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
	}

	return 0;
}
core_initcall(memory_failure_init);

1350 1351 1352 1353 1354 1355
#define unpoison_pr_info(fmt, pfn, rs)			\
({							\
	if (__ratelimit(rs))				\
		pr_info(fmt, pfn);			\
})

W
Wu Fengguang 已提交
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
/**
 * unpoison_memory - Unpoison a previously poisoned page
 * @pfn: Page number of the to be unpoisoned page
 *
 * Software-unpoison a page that has been poisoned by
 * memory_failure() earlier.
 *
 * This is only done on the software-level, so it only works
 * for linux injected failures, not real hardware failures
 *
 * Returns 0 for success, otherwise -errno.
 */
int unpoison_memory(unsigned long pfn)
{
	struct page *page;
	struct page *p;
	int freeit = 0;
1373 1374
	static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
					DEFAULT_RATELIMIT_BURST);
W
Wu Fengguang 已提交
1375 1376 1377 1378 1379 1380 1381 1382

	if (!pfn_valid(pfn))
		return -ENXIO;

	p = pfn_to_page(pfn);
	page = compound_head(p);

	if (!PageHWPoison(p)) {
1383
		unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
1384
				 pfn, &unpoison_rs);
W
Wu Fengguang 已提交
1385 1386 1387
		return 0;
	}

1388
	if (page_count(page) > 1) {
1389
		unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
1390
				 pfn, &unpoison_rs);
1391 1392 1393 1394
		return 0;
	}

	if (page_mapped(page)) {
1395
		unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
1396
				 pfn, &unpoison_rs);
1397 1398 1399 1400
		return 0;
	}

	if (page_mapping(page)) {
1401
		unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
1402
				 pfn, &unpoison_rs);
1403 1404 1405
		return 0;
	}

1406 1407 1408 1409 1410
	/*
	 * unpoison_memory() can encounter thp only when the thp is being
	 * worked by memory_failure() and the page lock is not held yet.
	 * In such case, we yield to memory_failure() and make unpoison fail.
	 */
1411
	if (!PageHuge(page) && PageTransHuge(page)) {
1412
		unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
1413
				 pfn, &unpoison_rs);
1414
		return 0;
1415 1416
	}

1417
	if (!get_hwpoison_page(p)) {
1418 1419 1420 1421 1422 1423 1424
		/*
		 * Since HWPoisoned hugepage should have non-zero refcount,
		 * race between memory failure and unpoison seems to happen.
		 * In such case unpoison fails and memory failure runs
		 * to the end.
		 */
		if (PageHuge(page)) {
1425
			unpoison_pr_info("Unpoison: Memory failure is now running on free hugepage %#lx\n",
1426
					 pfn, &unpoison_rs);
1427 1428
			return 0;
		}
W
Wu Fengguang 已提交
1429
		if (TestClearPageHWPoison(p))
1430
			num_poisoned_pages_dec();
1431
		unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
1432
				 pfn, &unpoison_rs);
W
Wu Fengguang 已提交
1433 1434 1435
		return 0;
	}

J
Jens Axboe 已提交
1436
	lock_page(page);
W
Wu Fengguang 已提交
1437 1438 1439 1440 1441 1442
	/*
	 * This test is racy because PG_hwpoison is set outside of page lock.
	 * That's acceptable because that won't trigger kernel panic. Instead,
	 * the PG_hwpoison page will be caught and isolated on the entrance to
	 * the free buddy page pool.
	 */
1443
	if (TestClearPageHWPoison(page)) {
1444
		unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
1445
				 pfn, &unpoison_rs);
1446
		num_poisoned_pages_dec();
W
Wu Fengguang 已提交
1447 1448 1449 1450
		freeit = 1;
	}
	unlock_page(page);

1451
	put_hwpoison_page(page);
1452
	if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1453
		put_hwpoison_page(page);
W
Wu Fengguang 已提交
1454 1455 1456 1457

	return 0;
}
EXPORT_SYMBOL(unpoison_memory);
1458 1459 1460

static struct page *new_page(struct page *p, unsigned long private, int **x)
{
1461
	int nid = page_to_nid(p);
1462 1463 1464 1465 1466 1467 1468 1469
	if (PageHuge(p)) {
		struct hstate *hstate = page_hstate(compound_head(p));

		if (hstate_is_gigantic(hstate))
			return alloc_huge_page_node(hstate, NUMA_NO_NODE);

		return alloc_huge_page_node(hstate, nid);
	} else {
1470
		return __alloc_pages_node(nid, GFP_HIGHUSER_MOVABLE, 0);
1471
	}
1472 1473 1474 1475 1476 1477 1478 1479
}

/*
 * Safely get reference count of an arbitrary page.
 * Returns 0 for a free page, -EIO for a zero refcount page
 * that is not free, and 1 for any other page type.
 * For 1 the page is returned with increased page count, otherwise not.
 */
1480
static int __get_any_page(struct page *p, unsigned long pfn, int flags)
1481 1482 1483 1484 1485 1486
{
	int ret;

	if (flags & MF_COUNT_INCREASED)
		return 1;

1487 1488 1489 1490
	/*
	 * When the target page is a free hugepage, just remove it
	 * from free hugepage list.
	 */
1491
	if (!get_hwpoison_page(p)) {
1492
		if (PageHuge(p)) {
1493
			pr_info("%s: %#lx free huge page\n", __func__, pfn);
1494
			ret = 0;
1495
		} else if (is_free_buddy_page(p)) {
1496
			pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1497 1498
			ret = 0;
		} else {
1499 1500
			pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
				__func__, pfn, p->flags);
1501 1502 1503 1504 1505 1506 1507 1508 1509
			ret = -EIO;
		}
	} else {
		/* Not a free page */
		ret = 1;
	}
	return ret;
}

1510 1511 1512 1513
static int get_any_page(struct page *page, unsigned long pfn, int flags)
{
	int ret = __get_any_page(page, pfn, flags);

1514 1515
	if (ret == 1 && !PageHuge(page) &&
	    !PageLRU(page) && !__PageMovable(page)) {
1516 1517 1518
		/*
		 * Try to free it.
		 */
1519
		put_hwpoison_page(page);
1520 1521 1522 1523 1524 1525
		shake_page(page, 1);

		/*
		 * Did it turn free?
		 */
		ret = __get_any_page(page, pfn, 0);
1526
		if (ret == 1 && !PageLRU(page)) {
1527
			/* Drop page reference which is from __get_any_page() */
1528
			put_hwpoison_page(page);
1529 1530
			pr_info("soft_offline: %#lx: unknown non LRU page type %lx (%pGp)\n",
				pfn, page->flags, &page->flags);
1531 1532 1533 1534 1535 1536
			return -EIO;
		}
	}
	return ret;
}

1537 1538 1539 1540 1541
static int soft_offline_huge_page(struct page *page, int flags)
{
	int ret;
	unsigned long pfn = page_to_pfn(page);
	struct page *hpage = compound_head(page);
1542
	LIST_HEAD(pagelist);
1543

1544 1545 1546 1547 1548
	/*
	 * This double-check of PageHWPoison is to avoid the race with
	 * memory_failure(). See also comment in __soft_offline_page().
	 */
	lock_page(hpage);
1549
	if (PageHWPoison(hpage)) {
1550
		unlock_page(hpage);
1551
		put_hwpoison_page(hpage);
1552
		pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1553
		return -EBUSY;
1554
	}
1555
	unlock_page(hpage);
1556

1557
	ret = isolate_huge_page(hpage, &pagelist);
1558 1559 1560 1561
	/*
	 * get_any_page() and isolate_huge_page() takes a refcount each,
	 * so need to drop one here.
	 */
1562
	put_hwpoison_page(hpage);
1563
	if (!ret) {
1564 1565 1566 1567
		pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
		return -EBUSY;
	}

1568
	ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1569
				MIGRATE_SYNC, MR_MEMORY_FAILURE);
1570
	if (ret) {
1571 1572
		pr_info("soft offline: %#lx: migration failed %d, type %lx (%pGp)\n",
			pfn, ret, page->flags, &page->flags);
1573 1574
		if (!list_empty(&pagelist))
			putback_movable_pages(&pagelist);
1575 1576
		if (ret > 0)
			ret = -EIO;
1577
	} else {
1578
		/* overcommit hugetlb page will be freed to buddy */
1579 1580
		SetPageHWPoison(page);
		if (PageHuge(page))
1581
			dequeue_hwpoisoned_huge_page(hpage);
1582
		num_poisoned_pages_inc();
1583 1584 1585 1586
	}
	return ret;
}

1587 1588 1589 1590
static int __soft_offline_page(struct page *page, int flags)
{
	int ret;
	unsigned long pfn = page_to_pfn(page);
1591 1592

	/*
1593 1594 1595 1596
	 * Check PageHWPoison again inside page lock because PageHWPoison
	 * is set by memory_failure() outside page lock. Note that
	 * memory_failure() also double-checks PageHWPoison inside page lock,
	 * so there's no race between soft_offline_page() and memory_failure().
1597
	 */
1598 1599
	lock_page(page);
	wait_on_page_writeback(page);
1600 1601
	if (PageHWPoison(page)) {
		unlock_page(page);
1602
		put_hwpoison_page(page);
1603 1604 1605
		pr_info("soft offline: %#lx page already poisoned\n", pfn);
		return -EBUSY;
	}
1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
	/*
	 * Try to invalidate first. This should work for
	 * non dirty unmapped page cache pages.
	 */
	ret = invalidate_inode_page(page);
	unlock_page(page);
	/*
	 * RED-PEN would be better to keep it isolated here, but we
	 * would need to fix isolation locking first.
	 */
	if (ret == 1) {
1617
		put_hwpoison_page(page);
1618
		pr_info("soft_offline: %#lx: invalidated\n", pfn);
1619
		SetPageHWPoison(page);
1620
		num_poisoned_pages_inc();
1621
		return 0;
1622 1623 1624 1625 1626 1627 1628
	}

	/*
	 * Simple invalidation didn't work.
	 * Try to migrate to a new page instead. migrate.c
	 * handles a large number of cases for us.
	 */
1629 1630 1631 1632
	if (PageLRU(page))
		ret = isolate_lru_page(page);
	else
		ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1633 1634 1635 1636
	/*
	 * Drop page reference which is came from get_any_page()
	 * successful isolate_lru_page() already took another one.
	 */
1637
	put_hwpoison_page(page);
1638 1639
	if (!ret) {
		LIST_HEAD(pagelist);
1640 1641 1642 1643 1644 1645 1646 1647
		/*
		 * After isolated lru page, the PageLRU will be cleared,
		 * so use !__PageMovable instead for LRU page's mapping
		 * cannot have PAGE_MAPPING_MOVABLE.
		 */
		if (!__PageMovable(page))
			inc_node_page_state(page, NR_ISOLATED_ANON +
						page_is_file_cache(page));
1648
		list_add(&page->lru, &pagelist);
1649
		ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1650
					MIGRATE_SYNC, MR_MEMORY_FAILURE);
1651
		if (ret) {
1652 1653
			if (!list_empty(&pagelist))
				putback_movable_pages(&pagelist);
1654

1655 1656
			pr_info("soft offline: %#lx: migration failed %d, type %lx (%pGp)\n",
				pfn, ret, page->flags, &page->flags);
1657 1658 1659 1660
			if (ret > 0)
				ret = -EIO;
		}
	} else {
1661 1662
		pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx (%pGp)\n",
			pfn, ret, page_count(page), page->flags, &page->flags);
1663 1664 1665
	}
	return ret;
}
1666

1667 1668 1669 1670 1671 1672 1673
static int soft_offline_in_use_page(struct page *page, int flags)
{
	int ret;
	struct page *hpage = compound_head(page);

	if (!PageHuge(page) && PageTransHuge(hpage)) {
		lock_page(hpage);
1674 1675 1676 1677 1678 1679 1680
		if (!PageAnon(hpage) || unlikely(split_huge_page(hpage))) {
			unlock_page(hpage);
			if (!PageAnon(hpage))
				pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page));
			else
				pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page));
			put_hwpoison_page(hpage);
1681 1682
			return -EBUSY;
		}
1683
		unlock_page(hpage);
1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
		get_hwpoison_page(page);
		put_hwpoison_page(hpage);
	}

	if (PageHuge(page))
		ret = soft_offline_huge_page(page, flags);
	else
		ret = __soft_offline_page(page, flags);

	return ret;
}

static void soft_offline_free_page(struct page *page)
{
1698
	struct page *head = compound_head(page);
1699

1700 1701 1702 1703
	if (!TestSetPageHWPoison(head)) {
		num_poisoned_pages_inc();
		if (PageHuge(head))
			dequeue_hwpoisoned_huge_page(head);
1704 1705 1706
	}
}

1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
/**
 * soft_offline_page - Soft offline a page.
 * @page: page to offline
 * @flags: flags. Same as memory_failure().
 *
 * Returns 0 on success, otherwise negated errno.
 *
 * Soft offline a page, by migration or invalidation,
 * without killing anything. This is for the case when
 * a page is not corrupted yet (so it's still valid to access),
 * but has had a number of corrected errors and is better taken
 * out.
 *
 * The actual policy on when to do that is maintained by
 * user space.
 *
 * This should never impact any application or cause data loss,
 * however it might take some time.
 *
 * This is not a 100% solution for all memory, but tries to be
 * ``good enough'' for the majority of memory.
 */
int soft_offline_page(struct page *page, int flags)
{
	int ret;
	unsigned long pfn = page_to_pfn(page);

	if (PageHWPoison(page)) {
		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1736
		if (flags & MF_COUNT_INCREASED)
1737
			put_hwpoison_page(page);
1738 1739 1740
		return -EBUSY;
	}

1741
	get_online_mems();
1742
	ret = get_any_page(page, pfn, flags);
1743
	put_online_mems();
1744

1745 1746 1747 1748
	if (ret > 0)
		ret = soft_offline_in_use_page(page, flags);
	else if (ret == 0)
		soft_offline_free_page(page);
1749

1750 1751
	return ret;
}