rcar_du_crtc.c 28.6 KB
Newer Older
1 2 3
/*
 * rcar_du_crtc.c  --  R-Car Display Unit CRTCs
 *
4
 * Copyright (C) 2013-2015 Renesas Electronics Corporation
5 6 7 8 9 10 11 12 13 14 15
 *
 * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com)
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 */

#include <linux/clk.h>
#include <linux/mutex.h>
16
#include <linux/sys_soc.h>
17 18

#include <drm/drmP.h>
19 20
#include <drm/drm_atomic.h>
#include <drm/drm_atomic_helper.h>
21 22 23 24
#include <drm/drm_crtc.h>
#include <drm/drm_crtc_helper.h>
#include <drm/drm_fb_cma_helper.h>
#include <drm/drm_gem_cma_helper.h>
25
#include <drm/drm_plane_helper.h>
26 27 28 29 30 31

#include "rcar_du_crtc.h"
#include "rcar_du_drv.h"
#include "rcar_du_kms.h"
#include "rcar_du_plane.h"
#include "rcar_du_regs.h"
32
#include "rcar_du_vsp.h"
33 34 35

static u32 rcar_du_crtc_read(struct rcar_du_crtc *rcrtc, u32 reg)
{
36
	struct rcar_du_device *rcdu = rcrtc->group->dev;
37 38 39 40 41 42

	return rcar_du_read(rcdu, rcrtc->mmio_offset + reg);
}

static void rcar_du_crtc_write(struct rcar_du_crtc *rcrtc, u32 reg, u32 data)
{
43
	struct rcar_du_device *rcdu = rcrtc->group->dev;
44 45 46 47 48 49

	rcar_du_write(rcdu, rcrtc->mmio_offset + reg, data);
}

static void rcar_du_crtc_clr(struct rcar_du_crtc *rcrtc, u32 reg, u32 clr)
{
50
	struct rcar_du_device *rcdu = rcrtc->group->dev;
51 52 53 54 55 56 57

	rcar_du_write(rcdu, rcrtc->mmio_offset + reg,
		      rcar_du_read(rcdu, rcrtc->mmio_offset + reg) & ~clr);
}

static void rcar_du_crtc_set(struct rcar_du_crtc *rcrtc, u32 reg, u32 set)
{
58
	struct rcar_du_device *rcdu = rcrtc->group->dev;
59 60 61 62 63 64 65 66

	rcar_du_write(rcdu, rcrtc->mmio_offset + reg,
		      rcar_du_read(rcdu, rcrtc->mmio_offset + reg) | set);
}

static void rcar_du_crtc_clr_set(struct rcar_du_crtc *rcrtc, u32 reg,
				 u32 clr, u32 set)
{
67
	struct rcar_du_device *rcdu = rcrtc->group->dev;
68 69 70 71 72
	u32 value = rcar_du_read(rcdu, rcrtc->mmio_offset + reg);

	rcar_du_write(rcdu, rcrtc->mmio_offset + reg, (value & ~clr) | set);
}

73 74 75 76 77 78 79 80
static int rcar_du_crtc_get(struct rcar_du_crtc *rcrtc)
{
	int ret;

	ret = clk_prepare_enable(rcrtc->clock);
	if (ret < 0)
		return ret;

81 82 83 84
	ret = clk_prepare_enable(rcrtc->extclock);
	if (ret < 0)
		goto error_clock;

85
	ret = rcar_du_group_get(rcrtc->group);
86
	if (ret < 0)
87 88 89
		goto error_group;

	return 0;
90

91 92 93 94
error_group:
	clk_disable_unprepare(rcrtc->extclock);
error_clock:
	clk_disable_unprepare(rcrtc->clock);
95 96 97 98 99
	return ret;
}

static void rcar_du_crtc_put(struct rcar_du_crtc *rcrtc)
{
100
	rcar_du_group_put(rcrtc->group);
101 102

	clk_disable_unprepare(rcrtc->extclock);
103 104 105
	clk_disable_unprepare(rcrtc->clock);
}

106 107 108 109
/* -----------------------------------------------------------------------------
 * Hardware Setup
 */

K
Koji Matsuoka 已提交
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
struct dpll_info {
	unsigned int output;
	unsigned int fdpll;
	unsigned int n;
	unsigned int m;
};

static void rcar_du_dpll_divider(struct rcar_du_crtc *rcrtc,
				 struct dpll_info *dpll,
				 unsigned long input,
				 unsigned long target)
{
	unsigned long best_diff = (unsigned long)-1;
	unsigned long diff;
	unsigned int fdpll;
	unsigned int m;
	unsigned int n;

128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
	/*
	 *   fin                                 fvco        fout       fclkout
	 * in --> [1/M] --> |PD| -> [LPF] -> [VCO] -> [1/P] -+-> [1/FDPLL] -> out
	 *              +-> |  |                             |
	 *              |                                    |
	 *              +---------------- [1/N] <------------+
	 *
	 *	fclkout = fvco / P / FDPLL -- (1)
	 *
	 * fin/M = fvco/P/N
	 *
	 *	fvco = fin * P *  N / M -- (2)
	 *
	 * (1) + (2) indicates
	 *
	 *	fclkout = fin * N / M / FDPLL
	 *
	 * NOTES
	 *	N	: (n + 1)
	 *	M	: (m + 1)
	 *	FDPLL	: (fdpll + 1)
	 *	P	: 2
	 *	2kHz < fvco < 4096MHz
	 *
	 * To minimize the jitter,
	 * N : as large as possible
	 * M : as small as possible
	 */
	for (m = 0; m < 4; m++) {
		for (n = 119; n > 38; n--) {
			/*
			 * This code only runs on 64-bit architectures, the
			 * unsigned long type can thus be used for 64-bit
			 * computation. It will still compile without any
			 * warning on 32-bit architectures.
			 *
			 * To optimize calculations, use fout instead of fvco
			 * to verify the VCO frequency constraint.
			 */
			unsigned long fout = input * (n + 1) / (m + 1);

			if (fout < 1000 || fout > 2048 * 1000 * 1000U)
				continue;

K
Koji Matsuoka 已提交
172 173 174
			for (fdpll = 1; fdpll < 32; fdpll++) {
				unsigned long output;

175
				output = fout / (fdpll + 1);
176
				if (output >= 400 * 1000 * 1000)
K
Koji Matsuoka 已提交
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
					continue;

				diff = abs((long)output - (long)target);
				if (best_diff > diff) {
					best_diff = diff;
					dpll->n = n;
					dpll->m = m;
					dpll->fdpll = fdpll;
					dpll->output = output;
				}

				if (diff == 0)
					goto done;
			}
		}
	}

done:
	dev_dbg(rcrtc->group->dev->dev,
		"output:%u, fdpll:%u, n:%u, m:%u, diff:%lu\n",
		 dpll->output, dpll->fdpll, dpll->n, dpll->m,
		 best_diff);
}

201 202 203 204 205
static const struct soc_device_attribute rcar_du_r8a7795_es1[] = {
	{ .soc_id = "r8a7795", .revision = "ES1.*" },
	{ /* sentinel */ }
};

206 207
static void rcar_du_crtc_set_display_timing(struct rcar_du_crtc *rcrtc)
{
208
	const struct drm_display_mode *mode = &rcrtc->crtc.state->adjusted_mode;
K
Koji Matsuoka 已提交
209
	struct rcar_du_device *rcdu = rcrtc->group->dev;
210
	unsigned long mode_clock = mode->clock * 1000;
211 212
	unsigned long clk;
	u32 value;
213
	u32 escr;
214 215
	u32 div;

216 217
	/*
	 * Compute the clock divisor and select the internal or external dot
218 219
	 * clock based on the requested frequency.
	 */
220
	clk = clk_get_rate(rcrtc->clock);
221
	div = DIV_ROUND_CLOSEST(clk, mode_clock);
222
	div = clamp(div, 1U, 64U) - 1;
223 224 225
	escr = div | ESCR_DCLKSEL_CLKS;

	if (rcrtc->extclock) {
K
Koji Matsuoka 已提交
226
		struct dpll_info dpll = { 0 };
227 228 229 230 231 232
		unsigned long extclk;
		unsigned long extrate;
		unsigned long rate;
		u32 extdiv;

		extclk = clk_get_rate(rcrtc->extclock);
K
Koji Matsuoka 已提交
233
		if (rcdu->info->dpll_ch & (1 << rcrtc->index)) {
234 235 236 237 238 239 240 241 242 243 244 245 246 247
			unsigned long target = mode_clock;

			/*
			 * The H3 ES1.x exhibits dot clock duty cycle stability
			 * issues. We can work around them by configuring the
			 * DPLL to twice the desired frequency, coupled with a
			 * /2 post-divider. This isn't needed on other SoCs and
			 * breaks HDMI output on M3-W for a currently unknown
			 * reason, so restrict the workaround to H3 ES1.x.
			 */
			if (soc_device_match(rcar_du_r8a7795_es1))
				target *= 2;

			rcar_du_dpll_divider(rcrtc, &dpll, extclk, target);
K
Koji Matsuoka 已提交
248 249 250
			extclk = dpll.output;
		}

251 252 253 254 255 256 257 258
		extdiv = DIV_ROUND_CLOSEST(extclk, mode_clock);
		extdiv = clamp(extdiv, 1U, 64U) - 1;

		rate = clk / (div + 1);
		extrate = extclk / (extdiv + 1);

		if (abs((long)extrate - (long)mode_clock) <
		    abs((long)rate - (long)mode_clock)) {
K
Koji Matsuoka 已提交
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275

			if (rcdu->info->dpll_ch & (1 << rcrtc->index)) {
				u32 dpllcr = DPLLCR_CODE | DPLLCR_CLKE
					   | DPLLCR_FDPLL(dpll.fdpll)
					   | DPLLCR_N(dpll.n) | DPLLCR_M(dpll.m)
					   | DPLLCR_STBY;

				if (rcrtc->index == 1)
					dpllcr |= DPLLCR_PLCS1
					       |  DPLLCR_INCS_DOTCLKIN1;
				else
					dpllcr |= DPLLCR_PLCS0
					       |  DPLLCR_INCS_DOTCLKIN0;

				rcar_du_group_write(rcrtc->group, DPLLCR,
						    dpllcr);
			}
276 277

			escr = ESCR_DCLKSEL_DCLKIN | extdiv;
278
		}
279 280 281 282

		dev_dbg(rcrtc->group->dev->dev,
			"mode clock %lu extrate %lu rate %lu ESCR 0x%08x\n",
			mode_clock, extrate, rate, escr);
283
	}
284

285
	rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? ESCR2 : ESCR,
286
			    escr);
287
	rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? OTAR2 : OTAR, 0);
288 289

	/* Signal polarities */
290 291
	value = ((mode->flags & DRM_MODE_FLAG_PVSYNC) ? DSMR_VSL : 0)
	      | ((mode->flags & DRM_MODE_FLAG_PHSYNC) ? DSMR_HSL : 0)
292
	      | DSMR_DIPM_DISP | DSMR_CSPM;
293 294 295 296 297 298 299 300 301 302
	rcar_du_crtc_write(rcrtc, DSMR, value);

	/* Display timings */
	rcar_du_crtc_write(rcrtc, HDSR, mode->htotal - mode->hsync_start - 19);
	rcar_du_crtc_write(rcrtc, HDER, mode->htotal - mode->hsync_start +
					mode->hdisplay - 19);
	rcar_du_crtc_write(rcrtc, HSWR, mode->hsync_end -
					mode->hsync_start - 1);
	rcar_du_crtc_write(rcrtc, HCR,  mode->htotal - 1);

303 304 305 306 307 308 309 310 311
	rcar_du_crtc_write(rcrtc, VDSR, mode->crtc_vtotal -
					mode->crtc_vsync_end - 2);
	rcar_du_crtc_write(rcrtc, VDER, mode->crtc_vtotal -
					mode->crtc_vsync_end +
					mode->crtc_vdisplay - 2);
	rcar_du_crtc_write(rcrtc, VSPR, mode->crtc_vtotal -
					mode->crtc_vsync_end +
					mode->crtc_vsync_start - 1);
	rcar_du_crtc_write(rcrtc, VCR,  mode->crtc_vtotal - 1);
312

313
	rcar_du_crtc_write(rcrtc, DESR,  mode->htotal - mode->hsync_start - 1);
314 315 316
	rcar_du_crtc_write(rcrtc, DEWR,  mode->hdisplay);
}

317 318
void rcar_du_crtc_route_output(struct drm_crtc *crtc,
			       enum rcar_du_output output)
319 320
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
321
	struct rcar_du_device *rcdu = rcrtc->group->dev;
322

323 324
	/*
	 * Store the route from the CRTC output to the DU output. The DU will be
325 326
	 * configured when starting the CRTC.
	 */
327
	rcrtc->outputs |= BIT(output);
328

329 330
	/*
	 * Store RGB routing to DPAD0, the hardware will be configured when
331 332 333
	 * starting the CRTC.
	 */
	if (output == RCAR_DU_OUTPUT_DPAD0)
334
		rcdu->dpad0_source = rcrtc->index;
335 336
}

337 338
static unsigned int plane_zpos(struct rcar_du_plane *plane)
{
339
	return plane->plane.state->normalized_zpos;
340 341
}

342 343 344
static const struct rcar_du_format_info *
plane_format(struct rcar_du_plane *plane)
{
345
	return to_rcar_plane_state(plane->plane.state)->format;
346 347
}

348
static void rcar_du_crtc_update_planes(struct rcar_du_crtc *rcrtc)
349 350
{
	struct rcar_du_plane *planes[RCAR_DU_NUM_HW_PLANES];
351
	struct rcar_du_device *rcdu = rcrtc->group->dev;
352
	unsigned int num_planes = 0;
353 354
	unsigned int dptsr_planes;
	unsigned int hwplanes = 0;
355 356 357 358
	unsigned int prio = 0;
	unsigned int i;
	u32 dspr = 0;

359
	for (i = 0; i < rcrtc->group->num_planes; ++i) {
360
		struct rcar_du_plane *plane = &rcrtc->group->planes[i];
361 362
		unsigned int j;

363 364
		if (plane->plane.state->crtc != &rcrtc->crtc ||
		    !plane->plane.state->visible)
365 366 367 368
			continue;

		/* Insert the plane in the sorted planes array. */
		for (j = num_planes++; j > 0; --j) {
369
			if (plane_zpos(planes[j-1]) <= plane_zpos(plane))
370 371 372 373 374
				break;
			planes[j] = planes[j-1];
		}

		planes[j] = plane;
375
		prio += plane_format(plane)->planes * 4;
376 377 378 379
	}

	for (i = 0; i < num_planes; ++i) {
		struct rcar_du_plane *plane = planes[i];
380
		struct drm_plane_state *state = plane->plane.state;
381
		unsigned int index = to_rcar_plane_state(state)->hwindex;
382 383 384

		prio -= 4;
		dspr |= (index + 1) << prio;
385
		hwplanes |= 1 << index;
386

387
		if (plane_format(plane)->planes == 2) {
388 389 390 391
			index = (index + 1) % 8;

			prio -= 4;
			dspr |= (index + 1) << prio;
392
			hwplanes |= 1 << index;
393 394 395
		}
	}

396 397
	/* If VSP+DU integration is enabled the plane assignment is fixed. */
	if (rcar_du_has(rcdu, RCAR_DU_FEATURE_VSP1_SOURCE)) {
398 399 400 401 402 403 404
		if (rcdu->info->gen < 3) {
			dspr = (rcrtc->index % 2) + 1;
			hwplanes = 1 << (rcrtc->index % 2);
		} else {
			dspr = (rcrtc->index % 2) ? 3 : 1;
			hwplanes = 1 << ((rcrtc->index % 2) ? 2 : 0);
		}
405 406
	}

407 408
	/*
	 * Update the planes to display timing and dot clock generator
409 410 411 412 413 414
	 * associations.
	 *
	 * Updating the DPTSR register requires restarting the CRTC group,
	 * resulting in visible flicker. To mitigate the issue only update the
	 * association if needed by enabled planes. Planes being disabled will
	 * keep their current association.
415
	 */
416 417 418 419 420 421 422 423 424 425 426 427
	mutex_lock(&rcrtc->group->lock);

	dptsr_planes = rcrtc->index % 2 ? rcrtc->group->dptsr_planes | hwplanes
		     : rcrtc->group->dptsr_planes & ~hwplanes;

	if (dptsr_planes != rcrtc->group->dptsr_planes) {
		rcar_du_group_write(rcrtc->group, DPTSR,
				    (dptsr_planes << 16) | dptsr_planes);
		rcrtc->group->dptsr_planes = dptsr_planes;

		if (rcrtc->group->used_crtcs)
			rcar_du_group_restart(rcrtc->group);
428 429
	}

430 431 432 433
	/* Restart the group if plane sources have changed. */
	if (rcrtc->group->need_restart)
		rcar_du_group_restart(rcrtc->group);

434 435
	mutex_unlock(&rcrtc->group->lock);

436 437
	rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR,
			    dspr);
438 439
}

440 441 442 443
/* -----------------------------------------------------------------------------
 * Page Flip
 */

444
void rcar_du_crtc_finish_page_flip(struct rcar_du_crtc *rcrtc)
445 446 447 448 449 450 451 452 453 454 455 456 457 458
{
	struct drm_pending_vblank_event *event;
	struct drm_device *dev = rcrtc->crtc.dev;
	unsigned long flags;

	spin_lock_irqsave(&dev->event_lock, flags);
	event = rcrtc->event;
	rcrtc->event = NULL;
	spin_unlock_irqrestore(&dev->event_lock, flags);

	if (event == NULL)
		return;

	spin_lock_irqsave(&dev->event_lock, flags);
459
	drm_crtc_send_vblank_event(&rcrtc->crtc, event);
460
	wake_up(&rcrtc->flip_wait);
461 462
	spin_unlock_irqrestore(&dev->event_lock, flags);

463
	drm_crtc_vblank_put(&rcrtc->crtc);
464 465
}

466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
static bool rcar_du_crtc_page_flip_pending(struct rcar_du_crtc *rcrtc)
{
	struct drm_device *dev = rcrtc->crtc.dev;
	unsigned long flags;
	bool pending;

	spin_lock_irqsave(&dev->event_lock, flags);
	pending = rcrtc->event != NULL;
	spin_unlock_irqrestore(&dev->event_lock, flags);

	return pending;
}

static void rcar_du_crtc_wait_page_flip(struct rcar_du_crtc *rcrtc)
{
	struct rcar_du_device *rcdu = rcrtc->group->dev;

	if (wait_event_timeout(rcrtc->flip_wait,
			       !rcar_du_crtc_page_flip_pending(rcrtc),
			       msecs_to_jiffies(50)))
		return;

	dev_warn(rcdu->dev, "page flip timeout\n");

	rcar_du_crtc_finish_page_flip(rcrtc);
}

493 494 495 496
/* -----------------------------------------------------------------------------
 * Start/Stop and Suspend/Resume
 */

497
static void rcar_du_crtc_setup(struct rcar_du_crtc *rcrtc)
498 499 500 501 502 503 504
{
	/* Set display off and background to black */
	rcar_du_crtc_write(rcrtc, DOOR, DOOR_RGB(0, 0, 0));
	rcar_du_crtc_write(rcrtc, BPOR, BPOR_RGB(0, 0, 0));

	/* Configure display timings and output routing */
	rcar_du_crtc_set_display_timing(rcrtc);
505
	rcar_du_group_set_routing(rcrtc->group);
506

507 508
	/* Start with all planes disabled. */
	rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR, 0);
509

510 511 512 513 514 515 516 517 518 519 520 521
	/* Enable the VSP compositor. */
	if (rcar_du_has(rcrtc->group->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
		rcar_du_vsp_enable(rcrtc);

	/* Turn vertical blanking interrupt reporting on. */
	drm_crtc_vblank_on(&rcrtc->crtc);
}

static void rcar_du_crtc_start(struct rcar_du_crtc *rcrtc)
{
	bool interlaced;

522 523
	/*
	 * Select master sync mode. This enables display operation in master
524 525 526
	 * sync mode (with the HSYNC and VSYNC signals configured as outputs and
	 * actively driven).
	 */
527 528 529 530
	interlaced = rcrtc->crtc.mode.flags & DRM_MODE_FLAG_INTERLACE;
	rcar_du_crtc_clr_set(rcrtc, DSYSR, DSYSR_TVM_MASK | DSYSR_SCM_MASK,
			     (interlaced ? DSYSR_SCM_INT_VIDEO : 0) |
			     DSYSR_TVM_MASTER);
531

532
	rcar_du_group_start_stop(rcrtc->group, true);
533 534
}

535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
static void rcar_du_crtc_disable_planes(struct rcar_du_crtc *rcrtc)
{
	struct rcar_du_device *rcdu = rcrtc->group->dev;
	struct drm_crtc *crtc = &rcrtc->crtc;
	u32 status;

	/* Make sure vblank interrupts are enabled. */
	drm_crtc_vblank_get(crtc);

	/*
	 * Disable planes and calculate how many vertical blanking interrupts we
	 * have to wait for. If a vertical blanking interrupt has been triggered
	 * but not processed yet, we don't know whether it occurred before or
	 * after the planes got disabled. We thus have to wait for two vblank
	 * interrupts in that case.
	 */
	spin_lock_irq(&rcrtc->vblank_lock);
	rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR, 0);
	status = rcar_du_crtc_read(rcrtc, DSSR);
	rcrtc->vblank_count = status & DSSR_VBK ? 2 : 1;
	spin_unlock_irq(&rcrtc->vblank_lock);

	if (!wait_event_timeout(rcrtc->vblank_wait, rcrtc->vblank_count == 0,
				msecs_to_jiffies(100)))
		dev_warn(rcdu->dev, "vertical blanking timeout\n");

	drm_crtc_vblank_put(crtc);
}

564 565 566 567
static void rcar_du_crtc_stop(struct rcar_du_crtc *rcrtc)
{
	struct drm_crtc *crtc = &rcrtc->crtc;

568 569
	/*
	 * Disable all planes and wait for the change to take effect. This is
570 571 572 573
	 * required as the plane enable registers are updated on vblank, and no
	 * vblank will occur once the CRTC is stopped. Disabling planes when
	 * starting the CRTC thus wouldn't be enough as it would start scanning
	 * out immediately from old frame buffers until the next vblank.
574 575 576 577 578
	 *
	 * This increases the CRTC stop delay, especially when multiple CRTCs
	 * are stopped in one operation as we now wait for one vblank per CRTC.
	 * Whether this can be improved needs to be researched.
	 */
579
	rcar_du_crtc_disable_planes(rcrtc);
580

581 582
	/*
	 * Disable vertical blanking interrupt reporting. We first need to wait
583 584
	 * for page flip completion before stopping the CRTC as userspace
	 * expects page flips to eventually complete.
585 586
	 */
	rcar_du_crtc_wait_page_flip(rcrtc);
587
	drm_crtc_vblank_off(crtc);
588

589 590 591 592
	/* Disable the VSP compositor. */
	if (rcar_du_has(rcrtc->group->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
		rcar_du_vsp_disable(rcrtc);

593 594
	/*
	 * Select switch sync mode. This stops display operation and configures
595 596 597 598
	 * the HSYNC and VSYNC signals as inputs.
	 */
	rcar_du_crtc_clr_set(rcrtc, DSYSR, DSYSR_TVM_MASK, DSYSR_TVM_SWITCH);

599
	rcar_du_group_start_stop(rcrtc->group, false);
600 601
}

602 603 604 605
/* -----------------------------------------------------------------------------
 * CRTC Functions
 */

606 607
static void rcar_du_crtc_atomic_enable(struct drm_crtc *crtc,
				       struct drm_crtc_state *old_state)
608 609 610
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);

611 612 613 614 615 616 617 618 619 620
	/*
	 * If the CRTC has already been setup by the .atomic_begin() handler we
	 * can skip the setup stage.
	 */
	if (!rcrtc->initialized) {
		rcar_du_crtc_get(rcrtc);
		rcar_du_crtc_setup(rcrtc);
		rcrtc->initialized = true;
	}

621 622 623
	rcar_du_crtc_start(rcrtc);
}

624 625
static void rcar_du_crtc_atomic_disable(struct drm_crtc *crtc,
					struct drm_crtc_state *old_state)
626 627
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
628

629 630
	rcar_du_crtc_stop(rcrtc);
	rcar_du_crtc_put(rcrtc);
631

632 633 634 635 636 637 638
	spin_lock_irq(&crtc->dev->event_lock);
	if (crtc->state->event) {
		drm_crtc_send_vblank_event(crtc, crtc->state->event);
		crtc->state->event = NULL;
	}
	spin_unlock_irq(&crtc->dev->event_lock);

639
	rcrtc->initialized = false;
640
	rcrtc->outputs = 0;
641 642
}

643 644
static void rcar_du_crtc_atomic_begin(struct drm_crtc *crtc,
				      struct drm_crtc_state *old_crtc_state)
645 646
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
647

648 649 650 651 652 653 654 655 656 657 658 659 660
	WARN_ON(!crtc->state->enable);

	/*
	 * If a mode set is in progress we can be called with the CRTC disabled.
	 * We then need to first setup the CRTC in order to configure planes.
	 * The .atomic_enable() handler will notice and skip the CRTC setup.
	 */
	if (!rcrtc->initialized) {
		rcar_du_crtc_get(rcrtc);
		rcar_du_crtc_setup(rcrtc);
		rcrtc->initialized = true;
	}

661 662
	if (rcar_du_has(rcrtc->group->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
		rcar_du_vsp_atomic_begin(rcrtc);
663 664
}

665 666
static void rcar_du_crtc_atomic_flush(struct drm_crtc *crtc,
				      struct drm_crtc_state *old_crtc_state)
667 668
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
669 670
	struct drm_device *dev = rcrtc->crtc.dev;
	unsigned long flags;
671

672
	rcar_du_crtc_update_planes(rcrtc);
673

674 675 676 677 678 679 680 681 682
	if (crtc->state->event) {
		WARN_ON(drm_crtc_vblank_get(crtc) != 0);

		spin_lock_irqsave(&dev->event_lock, flags);
		rcrtc->event = crtc->state->event;
		crtc->state->event = NULL;
		spin_unlock_irqrestore(&dev->event_lock, flags);
	}

683 684
	if (rcar_du_has(rcrtc->group->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
		rcar_du_vsp_atomic_flush(rcrtc);
685 686
}

687
static const struct drm_crtc_helper_funcs crtc_helper_funcs = {
688 689
	.atomic_begin = rcar_du_crtc_atomic_begin,
	.atomic_flush = rcar_du_crtc_atomic_flush,
690
	.atomic_enable = rcar_du_crtc_atomic_enable,
691
	.atomic_disable = rcar_du_crtc_atomic_disable,
692 693
};

694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
static void rcar_du_crtc_crc_init(struct rcar_du_crtc *rcrtc)
{
	struct rcar_du_device *rcdu = rcrtc->group->dev;
	const char **sources;
	unsigned int count;
	int i = -1;

	/* CRC available only on Gen3 HW. */
	if (rcdu->info->gen < 3)
		return;

	/* Reserve 1 for "auto" source. */
	count = rcrtc->vsp->num_planes + 1;

	sources = kmalloc_array(count, sizeof(*sources), GFP_KERNEL);
	if (!sources)
		return;

	sources[0] = kstrdup("auto", GFP_KERNEL);
	if (!sources[0])
		goto error;

	for (i = 0; i < rcrtc->vsp->num_planes; ++i) {
		struct drm_plane *plane = &rcrtc->vsp->planes[i].plane;
		char name[16];

		sprintf(name, "plane%u", plane->base.id);
		sources[i + 1] = kstrdup(name, GFP_KERNEL);
		if (!sources[i + 1])
			goto error;
	}

	rcrtc->sources = sources;
	rcrtc->sources_count = count;
	return;

error:
	while (i >= 0) {
		kfree(sources[i]);
		i--;
	}
	kfree(sources);
}

static void rcar_du_crtc_crc_cleanup(struct rcar_du_crtc *rcrtc)
{
	unsigned int i;

	if (!rcrtc->sources)
		return;

	for (i = 0; i < rcrtc->sources_count; i++)
		kfree(rcrtc->sources[i]);
	kfree(rcrtc->sources);

	rcrtc->sources = NULL;
	rcrtc->sources_count = 0;
}

753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
static struct drm_crtc_state *
rcar_du_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
{
	struct rcar_du_crtc_state *state;
	struct rcar_du_crtc_state *copy;

	if (WARN_ON(!crtc->state))
		return NULL;

	state = to_rcar_crtc_state(crtc->state);
	copy = kmemdup(state, sizeof(*state), GFP_KERNEL);
	if (copy == NULL)
		return NULL;

	__drm_atomic_helper_crtc_duplicate_state(crtc, &copy->state);

	return &copy->state;
}

static void rcar_du_crtc_atomic_destroy_state(struct drm_crtc *crtc,
					      struct drm_crtc_state *state)
{
	__drm_atomic_helper_crtc_destroy_state(state);
	kfree(to_rcar_crtc_state(state));
}

779 780 781 782 783 784 785 786 787
static void rcar_du_crtc_cleanup(struct drm_crtc *crtc)
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);

	rcar_du_crtc_crc_cleanup(rcrtc);

	return drm_crtc_cleanup(crtc);
}

788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
static void rcar_du_crtc_reset(struct drm_crtc *crtc)
{
	struct rcar_du_crtc_state *state;

	if (crtc->state) {
		rcar_du_crtc_atomic_destroy_state(crtc, crtc->state);
		crtc->state = NULL;
	}

	state = kzalloc(sizeof(*state), GFP_KERNEL);
	if (state == NULL)
		return;

	state->crc.source = VSP1_DU_CRC_NONE;
	state->crc.index = 0;

	crtc->state = &state->state;
	crtc->state->crtc = crtc;
}

808 809 810 811 812 813
static int rcar_du_crtc_enable_vblank(struct drm_crtc *crtc)
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);

	rcar_du_crtc_write(rcrtc, DSRCR, DSRCR_VBCL);
	rcar_du_crtc_set(rcrtc, DIER, DIER_VBE);
814
	rcrtc->vblank_enable = true;
815 816 817 818 819 820 821 822 823

	return 0;
}

static void rcar_du_crtc_disable_vblank(struct drm_crtc *crtc)
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);

	rcar_du_crtc_clr(rcrtc, DIER, DIER_VBE);
824
	rcrtc->vblank_enable = false;
825 826
}

827 828 829
static int rcar_du_crtc_parse_crc_source(struct rcar_du_crtc *rcrtc,
					 const char *source_name,
					 enum vsp1_du_crc_source *source)
830
{
831
	unsigned int index;
832 833 834 835 836 837 838
	int ret;

	/*
	 * Parse the source name. Supported values are "plane%u" to compute the
	 * CRC on an input plane (%u is the plane ID), and "auto" to compute the
	 * CRC on the composer (VSP) output.
	 */
839

840
	if (!source_name) {
841 842
		*source = VSP1_DU_CRC_NONE;
		return 0;
843
	} else if (!strcmp(source_name, "auto")) {
844 845
		*source = VSP1_DU_CRC_OUTPUT;
		return 0;
846
	} else if (strstarts(source_name, "plane")) {
847 848 849
		unsigned int i;

		*source = VSP1_DU_CRC_PLANE;
850 851 852 853 854 855

		ret = kstrtouint(source_name + strlen("plane"), 10, &index);
		if (ret < 0)
			return ret;

		for (i = 0; i < rcrtc->vsp->num_planes; ++i) {
856 857
			if (index == rcrtc->vsp->planes[i].plane.base.id)
				return i;
858
		}
859
	}
860

861 862 863 864 865 866 867 868 869 870 871 872
	return -EINVAL;
}

static int rcar_du_crtc_verify_crc_source(struct drm_crtc *crtc,
					  const char *source_name,
					  size_t *values_cnt)
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
	enum vsp1_du_crc_source source;

	if (rcar_du_crtc_parse_crc_source(rcrtc, source_name, &source) < 0) {
		DRM_DEBUG_DRIVER("unknown source %s\n", source_name);
873 874 875
		return -EINVAL;
	}

876 877 878 879
	*values_cnt = 1;
	return 0;
}

880 881 882 883 884 885 886 887 888
const char *const *rcar_du_crtc_get_crc_sources(struct drm_crtc *crtc,
						size_t *count)
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);

	*count = rcrtc->sources_count;
	return rcrtc->sources;
}

889
static int rcar_du_crtc_set_crc_source(struct drm_crtc *crtc,
890
				       const char *source_name)
891 892 893 894 895 896 897 898 899 900 901 902 903 904
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
	struct drm_modeset_acquire_ctx ctx;
	struct drm_crtc_state *crtc_state;
	struct drm_atomic_state *state;
	enum vsp1_du_crc_source source;
	unsigned int index;
	int ret;

	ret = rcar_du_crtc_parse_crc_source(rcrtc, source_name, &source);
	if (ret < 0)
		return ret;

	index = ret;
905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958

	/* Perform an atomic commit to set the CRC source. */
	drm_modeset_acquire_init(&ctx, 0);

	state = drm_atomic_state_alloc(crtc->dev);
	if (!state) {
		ret = -ENOMEM;
		goto unlock;
	}

	state->acquire_ctx = &ctx;

retry:
	crtc_state = drm_atomic_get_crtc_state(state, crtc);
	if (!IS_ERR(crtc_state)) {
		struct rcar_du_crtc_state *rcrtc_state;

		rcrtc_state = to_rcar_crtc_state(crtc_state);
		rcrtc_state->crc.source = source;
		rcrtc_state->crc.index = index;

		ret = drm_atomic_commit(state);
	} else {
		ret = PTR_ERR(crtc_state);
	}

	if (ret == -EDEADLK) {
		drm_atomic_state_clear(state);
		drm_modeset_backoff(&ctx);
		goto retry;
	}

	drm_atomic_state_put(state);

unlock:
	drm_modeset_drop_locks(&ctx);
	drm_modeset_acquire_fini(&ctx);

	return 0;
}

static const struct drm_crtc_funcs crtc_funcs_gen2 = {
	.reset = rcar_du_crtc_reset,
	.destroy = drm_crtc_cleanup,
	.set_config = drm_atomic_helper_set_config,
	.page_flip = drm_atomic_helper_page_flip,
	.atomic_duplicate_state = rcar_du_crtc_atomic_duplicate_state,
	.atomic_destroy_state = rcar_du_crtc_atomic_destroy_state,
	.enable_vblank = rcar_du_crtc_enable_vblank,
	.disable_vblank = rcar_du_crtc_disable_vblank,
};

static const struct drm_crtc_funcs crtc_funcs_gen3 = {
	.reset = rcar_du_crtc_reset,
959
	.destroy = rcar_du_crtc_cleanup,
960
	.set_config = drm_atomic_helper_set_config,
961
	.page_flip = drm_atomic_helper_page_flip,
962 963
	.atomic_duplicate_state = rcar_du_crtc_atomic_duplicate_state,
	.atomic_destroy_state = rcar_du_crtc_atomic_destroy_state,
964 965
	.enable_vblank = rcar_du_crtc_enable_vblank,
	.disable_vblank = rcar_du_crtc_disable_vblank,
966
	.set_crc_source = rcar_du_crtc_set_crc_source,
967
	.verify_crc_source = rcar_du_crtc_verify_crc_source,
968
	.get_crc_sources = rcar_du_crtc_get_crc_sources,
969 970
};

971 972 973 974 975 976 977
/* -----------------------------------------------------------------------------
 * Interrupt Handling
 */

static irqreturn_t rcar_du_crtc_irq(int irq, void *arg)
{
	struct rcar_du_crtc *rcrtc = arg;
978
	struct rcar_du_device *rcdu = rcrtc->group->dev;
979 980 981
	irqreturn_t ret = IRQ_NONE;
	u32 status;

982 983
	spin_lock(&rcrtc->vblank_lock);

984 985 986
	status = rcar_du_crtc_read(rcrtc, DSSR);
	rcar_du_crtc_write(rcrtc, DSRCR, status & DSRCR_MASK);

987 988 989 990 991 992 993 994 995 996 997 998 999 1000
	if (status & DSSR_VBK) {
		/*
		 * Wake up the vblank wait if the counter reaches 0. This must
		 * be protected by the vblank_lock to avoid races in
		 * rcar_du_crtc_disable_planes().
		 */
		if (rcrtc->vblank_count) {
			if (--rcrtc->vblank_count == 0)
				wake_up(&rcrtc->vblank_wait);
		}
	}

	spin_unlock(&rcrtc->vblank_lock);

1001
	if (status & DSSR_VBK) {
1002 1003
		if (rcdu->info->gen < 3) {
			drm_crtc_handle_vblank(&rcrtc->crtc);
1004
			rcar_du_crtc_finish_page_flip(rcrtc);
1005
		}
1006

1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
		ret = IRQ_HANDLED;
	}

	return ret;
}

/* -----------------------------------------------------------------------------
 * Initialization
 */

1017 1018
int rcar_du_crtc_create(struct rcar_du_group *rgrp, unsigned int swindex,
			unsigned int hwindex)
1019
{
1020
	static const unsigned int mmio_offsets[] = {
1021
		DU0_REG_OFFSET, DU1_REG_OFFSET, DU2_REG_OFFSET, DU3_REG_OFFSET
1022 1023
	};

1024
	struct rcar_du_device *rcdu = rgrp->dev;
1025
	struct platform_device *pdev = to_platform_device(rcdu->dev);
1026
	struct rcar_du_crtc *rcrtc = &rcdu->crtcs[swindex];
1027
	struct drm_crtc *crtc = &rcrtc->crtc;
1028
	struct drm_plane *primary;
1029
	unsigned int irqflags;
1030 1031
	struct clk *clk;
	char clk_name[9];
1032 1033
	char *name;
	int irq;
1034 1035
	int ret;

1036
	/* Get the CRTC clock and the optional external clock. */
1037
	if (rcar_du_has(rcdu, RCAR_DU_FEATURE_CRTC_IRQ_CLOCK)) {
1038
		sprintf(clk_name, "du.%u", hwindex);
1039 1040 1041 1042 1043 1044 1045
		name = clk_name;
	} else {
		name = NULL;
	}

	rcrtc->clock = devm_clk_get(rcdu->dev, name);
	if (IS_ERR(rcrtc->clock)) {
1046
		dev_err(rcdu->dev, "no clock for DU channel %u\n", hwindex);
1047 1048 1049
		return PTR_ERR(rcrtc->clock);
	}

1050
	sprintf(clk_name, "dclkin.%u", hwindex);
1051 1052 1053 1054
	clk = devm_clk_get(rcdu->dev, clk_name);
	if (!IS_ERR(clk)) {
		rcrtc->extclock = clk;
	} else if (PTR_ERR(rcrtc->clock) == -EPROBE_DEFER) {
1055
		dev_info(rcdu->dev, "can't get external clock %u\n", hwindex);
1056 1057 1058
		return -EPROBE_DEFER;
	}

1059
	init_waitqueue_head(&rcrtc->flip_wait);
1060 1061
	init_waitqueue_head(&rcrtc->vblank_wait);
	spin_lock_init(&rcrtc->vblank_lock);
1062

1063
	rcrtc->group = rgrp;
1064 1065
	rcrtc->mmio_offset = mmio_offsets[hwindex];
	rcrtc->index = hwindex;
1066

1067
	if (rcar_du_has(rcdu, RCAR_DU_FEATURE_VSP1_SOURCE))
1068
		primary = &rcrtc->vsp->planes[rcrtc->vsp_pipe].plane;
1069
	else
1070
		primary = &rgrp->planes[swindex % 2].plane;
1071

1072 1073 1074 1075
	ret = drm_crtc_init_with_planes(rcdu->ddev, crtc, primary, NULL,
					rcdu->info->gen <= 2 ?
					&crtc_funcs_gen2 : &crtc_funcs_gen3,
					NULL);
1076 1077 1078 1079 1080
	if (ret < 0)
		return ret;

	drm_crtc_helper_add(crtc, &crtc_helper_funcs);

1081 1082 1083
	/* Start with vertical blanking interrupt reporting disabled. */
	drm_crtc_vblank_off(crtc);

1084 1085
	/* Register the interrupt handler. */
	if (rcar_du_has(rcdu, RCAR_DU_FEATURE_CRTC_IRQ_CLOCK)) {
1086 1087
		/* The IRQ's are associated with the CRTC (sw)index. */
		irq = platform_get_irq(pdev, swindex);
1088 1089 1090 1091 1092 1093 1094
		irqflags = 0;
	} else {
		irq = platform_get_irq(pdev, 0);
		irqflags = IRQF_SHARED;
	}

	if (irq < 0) {
1095
		dev_err(rcdu->dev, "no IRQ for CRTC %u\n", swindex);
J
Julia Lawall 已提交
1096
		return irq;
1097 1098 1099 1100 1101 1102
	}

	ret = devm_request_irq(rcdu->dev, irq, rcar_du_crtc_irq, irqflags,
			       dev_name(rcdu->dev), rcrtc);
	if (ret < 0) {
		dev_err(rcdu->dev,
1103
			"failed to register IRQ for CRTC %u\n", swindex);
1104 1105 1106
		return ret;
	}

1107 1108
	rcar_du_crtc_crc_init(rcrtc);

1109 1110
	return 0;
}