arch_topology.c 19.8 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7 8 9
/*
 * Arch specific cpu topology information
 *
 * Copyright (C) 2016, ARM Ltd.
 * Written by: Juri Lelli, ARM Ltd.
 */

#include <linux/acpi.h>
10
#include <linux/cacheinfo.h>
11 12 13 14 15 16
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/device.h>
#include <linux/of.h>
#include <linux/slab.h>
#include <linux/sched/topology.h>
17
#include <linux/cpuset.h>
18 19
#include <linux/cpumask.h>
#include <linux/init.h>
20
#include <linux/rcupdate.h>
21
#include <linux/sched.h>
22

23 24 25
#define CREATE_TRACE_POINTS
#include <trace/events/thermal_pressure.h>

26
static DEFINE_PER_CPU(struct scale_freq_data __rcu *, sft_data);
27 28
static struct cpumask scale_freq_counters_mask;
static bool scale_freq_invariant;
29
static DEFINE_PER_CPU(u32, freq_factor) = 1;
30 31 32 33 34 35

static bool supports_scale_freq_counters(const struct cpumask *cpus)
{
	return cpumask_subset(cpus, &scale_freq_counters_mask);
}

36 37 38
bool topology_scale_freq_invariant(void)
{
	return cpufreq_supports_freq_invariance() ||
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
	       supports_scale_freq_counters(cpu_online_mask);
}

static void update_scale_freq_invariant(bool status)
{
	if (scale_freq_invariant == status)
		return;

	/*
	 * Task scheduler behavior depends on frequency invariance support,
	 * either cpufreq or counter driven. If the support status changes as
	 * a result of counter initialisation and use, retrigger the build of
	 * scheduling domains to ensure the information is propagated properly.
	 */
	if (topology_scale_freq_invariant() == status) {
		scale_freq_invariant = status;
		rebuild_sched_domains_energy();
	}
}

void topology_set_scale_freq_source(struct scale_freq_data *data,
				    const struct cpumask *cpus)
{
	struct scale_freq_data *sfd;
	int cpu;

	/*
	 * Avoid calling rebuild_sched_domains() unnecessarily if FIE is
	 * supported by cpufreq.
	 */
	if (cpumask_empty(&scale_freq_counters_mask))
		scale_freq_invariant = topology_scale_freq_invariant();

72 73
	rcu_read_lock();

74
	for_each_cpu(cpu, cpus) {
75
		sfd = rcu_dereference(*per_cpu_ptr(&sft_data, cpu));
76 77 78

		/* Use ARCH provided counters whenever possible */
		if (!sfd || sfd->source != SCALE_FREQ_SOURCE_ARCH) {
79
			rcu_assign_pointer(per_cpu(sft_data, cpu), data);
80 81 82 83
			cpumask_set_cpu(cpu, &scale_freq_counters_mask);
		}
	}

84 85
	rcu_read_unlock();

86
	update_scale_freq_invariant(true);
87
}
88
EXPORT_SYMBOL_GPL(topology_set_scale_freq_source);
89

90 91
void topology_clear_scale_freq_source(enum scale_freq_source source,
				      const struct cpumask *cpus)
92
{
93 94 95
	struct scale_freq_data *sfd;
	int cpu;

96 97
	rcu_read_lock();

98
	for_each_cpu(cpu, cpus) {
99
		sfd = rcu_dereference(*per_cpu_ptr(&sft_data, cpu));
100 101

		if (sfd && sfd->source == source) {
102
			rcu_assign_pointer(per_cpu(sft_data, cpu), NULL);
103 104 105 106
			cpumask_clear_cpu(cpu, &scale_freq_counters_mask);
		}
	}

107 108 109 110 111 112 113 114
	rcu_read_unlock();

	/*
	 * Make sure all references to previous sft_data are dropped to avoid
	 * use-after-free races.
	 */
	synchronize_rcu();

115
	update_scale_freq_invariant(false);
116
}
117
EXPORT_SYMBOL_GPL(topology_clear_scale_freq_source);
118 119 120

void topology_scale_freq_tick(void)
{
121
	struct scale_freq_data *sfd = rcu_dereference_sched(*this_cpu_ptr(&sft_data));
122 123 124 125 126

	if (sfd)
		sfd->set_freq_scale();
}

127
DEFINE_PER_CPU(unsigned long, arch_freq_scale) = SCHED_CAPACITY_SCALE;
128
EXPORT_PER_CPU_SYMBOL_GPL(arch_freq_scale);
129

130 131
void topology_set_freq_scale(const struct cpumask *cpus, unsigned long cur_freq,
			     unsigned long max_freq)
132
{
133 134 135
	unsigned long scale;
	int i;

136 137 138
	if (WARN_ON_ONCE(!cur_freq || !max_freq))
		return;

139 140 141 142 143
	/*
	 * If the use of counters for FIE is enabled, just return as we don't
	 * want to update the scale factor with information from CPUFREQ.
	 * Instead the scale factor will be updated from arch_scale_freq_tick.
	 */
144
	if (supports_scale_freq_counters(cpus))
145 146
		return;

147 148 149
	scale = (cur_freq << SCHED_CAPACITY_SHIFT) / max_freq;

	for_each_cpu(i, cpus)
150
		per_cpu(arch_freq_scale, i) = scale;
151 152
}

153
DEFINE_PER_CPU(unsigned long, cpu_scale) = SCHED_CAPACITY_SCALE;
154
EXPORT_PER_CPU_SYMBOL_GPL(cpu_scale);
155

156
void topology_set_cpu_scale(unsigned int cpu, unsigned long capacity)
157 158 159 160
{
	per_cpu(cpu_scale, cpu) = capacity;
}

161 162
DEFINE_PER_CPU(unsigned long, thermal_pressure);

163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
/**
 * topology_update_thermal_pressure() - Update thermal pressure for CPUs
 * @cpus        : The related CPUs for which capacity has been reduced
 * @capped_freq : The maximum allowed frequency that CPUs can run at
 *
 * Update the value of thermal pressure for all @cpus in the mask. The
 * cpumask should include all (online+offline) affected CPUs, to avoid
 * operating on stale data when hot-plug is used for some CPUs. The
 * @capped_freq reflects the currently allowed max CPUs frequency due to
 * thermal capping. It might be also a boost frequency value, which is bigger
 * than the internal 'freq_factor' max frequency. In such case the pressure
 * value should simply be removed, since this is an indication that there is
 * no thermal throttling. The @capped_freq must be provided in kHz.
 */
void topology_update_thermal_pressure(const struct cpumask *cpus,
				      unsigned long capped_freq)
{
180
	unsigned long max_capacity, capacity, th_pressure;
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
	u32 max_freq;
	int cpu;

	cpu = cpumask_first(cpus);
	max_capacity = arch_scale_cpu_capacity(cpu);
	max_freq = per_cpu(freq_factor, cpu);

	/* Convert to MHz scale which is used in 'freq_factor' */
	capped_freq /= 1000;

	/*
	 * Handle properly the boost frequencies, which should simply clean
	 * the thermal pressure value.
	 */
	if (max_freq <= capped_freq)
		capacity = max_capacity;
	else
		capacity = mult_frac(max_capacity, capped_freq, max_freq);

200 201
	th_pressure = max_capacity - capacity;

202 203
	trace_thermal_pressure_update(cpu, th_pressure);

204 205
	for_each_cpu(cpu, cpus)
		WRITE_ONCE(per_cpu(thermal_pressure, cpu), th_pressure);
206 207 208
}
EXPORT_SYMBOL_GPL(topology_update_thermal_pressure);

209 210 211 212 213 214
static ssize_t cpu_capacity_show(struct device *dev,
				 struct device_attribute *attr,
				 char *buf)
{
	struct cpu *cpu = container_of(dev, struct cpu, dev);

215
	return sysfs_emit(buf, "%lu\n", topology_get_cpu_scale(cpu->dev.id));
216 217
}

218 219 220
static void update_topology_flags_workfn(struct work_struct *work);
static DECLARE_WORK(update_topology_flags_work, update_topology_flags_workfn);

221
static DEVICE_ATTR_RO(cpu_capacity);
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241

static int register_cpu_capacity_sysctl(void)
{
	int i;
	struct device *cpu;

	for_each_possible_cpu(i) {
		cpu = get_cpu_device(i);
		if (!cpu) {
			pr_err("%s: too early to get CPU%d device!\n",
			       __func__, i);
			continue;
		}
		device_create_file(cpu, &dev_attr_cpu_capacity);
	}

	return 0;
}
subsys_initcall(register_cpu_capacity_sysctl);

242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
static int update_topology;

int topology_update_cpu_topology(void)
{
	return update_topology;
}

/*
 * Updating the sched_domains can't be done directly from cpufreq callbacks
 * due to locking, so queue the work for later.
 */
static void update_topology_flags_workfn(struct work_struct *work)
{
	update_topology = 1;
	rebuild_sched_domains();
	pr_debug("sched_domain hierarchy rebuilt, flags updated\n");
	update_topology = 0;
}

261
static u32 *raw_capacity;
262

263
static int free_raw_capacity(void)
264 265 266 267 268 269
{
	kfree(raw_capacity);
	raw_capacity = NULL;

	return 0;
}
270

271
void topology_normalize_cpu_scale(void)
272 273
{
	u64 capacity;
274
	u64 capacity_scale;
275 276
	int cpu;

277
	if (!raw_capacity)
278 279
		return;

280
	capacity_scale = 1;
281
	for_each_possible_cpu(cpu) {
282 283 284 285 286 287 288 289 290
		capacity = raw_capacity[cpu] * per_cpu(freq_factor, cpu);
		capacity_scale = max(capacity, capacity_scale);
	}

	pr_debug("cpu_capacity: capacity_scale=%llu\n", capacity_scale);
	for_each_possible_cpu(cpu) {
		capacity = raw_capacity[cpu] * per_cpu(freq_factor, cpu);
		capacity = div64_u64(capacity << SCHED_CAPACITY_SHIFT,
			capacity_scale);
291
		topology_set_cpu_scale(cpu, capacity);
292
		pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu\n",
293
			cpu, topology_get_cpu_scale(cpu));
294 295 296
	}
}

297
bool __init topology_parse_cpu_capacity(struct device_node *cpu_node, int cpu)
298
{
299
	struct clk *cpu_clk;
300
	static bool cap_parsing_failed;
301
	int ret;
302 303 304
	u32 cpu_capacity;

	if (cap_parsing_failed)
305
		return false;
306

307
	ret = of_property_read_u32(cpu_node, "capacity-dmips-mhz",
308 309 310 311 312 313 314 315
				   &cpu_capacity);
	if (!ret) {
		if (!raw_capacity) {
			raw_capacity = kcalloc(num_possible_cpus(),
					       sizeof(*raw_capacity),
					       GFP_KERNEL);
			if (!raw_capacity) {
				cap_parsing_failed = true;
316
				return false;
317 318 319
			}
		}
		raw_capacity[cpu] = cpu_capacity;
320 321
		pr_debug("cpu_capacity: %pOF cpu_capacity=%u (raw)\n",
			cpu_node, raw_capacity[cpu]);
322 323 324 325 326 327 328 329

		/*
		 * Update freq_factor for calculating early boot cpu capacities.
		 * For non-clk CPU DVFS mechanism, there's no way to get the
		 * frequency value now, assuming they are running at the same
		 * frequency (by keeping the initial freq_factor value).
		 */
		cpu_clk = of_clk_get(cpu_node, 0);
330
		if (!PTR_ERR_OR_ZERO(cpu_clk)) {
331 332
			per_cpu(freq_factor, cpu) =
				clk_get_rate(cpu_clk) / 1000;
333 334
			clk_put(cpu_clk);
		}
335 336
	} else {
		if (raw_capacity) {
337 338
			pr_err("cpu_capacity: missing %pOF raw capacity\n",
				cpu_node);
339 340 341
			pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n");
		}
		cap_parsing_failed = true;
342
		free_raw_capacity();
343 344 345 346 347
	}

	return !ret;
}

348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
#ifdef CONFIG_ACPI_CPPC_LIB
#include <acpi/cppc_acpi.h>

void topology_init_cpu_capacity_cppc(void)
{
	struct cppc_perf_caps perf_caps;
	int cpu;

	if (likely(acpi_disabled || !acpi_cpc_valid()))
		return;

	raw_capacity = kcalloc(num_possible_cpus(), sizeof(*raw_capacity),
			       GFP_KERNEL);
	if (!raw_capacity)
		return;

	for_each_possible_cpu(cpu) {
		if (!cppc_get_perf_caps(cpu, &perf_caps) &&
		    (perf_caps.highest_perf >= perf_caps.nominal_perf) &&
		    (perf_caps.highest_perf >= perf_caps.lowest_perf)) {
			raw_capacity[cpu] = perf_caps.highest_perf;
			pr_debug("cpu_capacity: CPU%d cpu_capacity=%u (raw).\n",
				 cpu, raw_capacity[cpu]);
			continue;
		}

		pr_err("cpu_capacity: CPU%d missing/invalid highest performance.\n", cpu);
		pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n");
		goto exit;
	}

	topology_normalize_cpu_scale();
	schedule_work(&update_topology_flags_work);
	pr_debug("cpu_capacity: cpu_capacity initialization done\n");

exit:
	free_raw_capacity();
}
#endif

388
#ifdef CONFIG_CPU_FREQ
389 390 391
static cpumask_var_t cpus_to_visit;
static void parsing_done_workfn(struct work_struct *work);
static DECLARE_WORK(parsing_done_work, parsing_done_workfn);
392

393
static int
394 395 396 397 398 399 400
init_cpu_capacity_callback(struct notifier_block *nb,
			   unsigned long val,
			   void *data)
{
	struct cpufreq_policy *policy = data;
	int cpu;

401
	if (!raw_capacity)
402 403
		return 0;

404
	if (val != CPUFREQ_CREATE_POLICY)
405 406 407 408 409 410 411 412
		return 0;

	pr_debug("cpu_capacity: init cpu capacity for CPUs [%*pbl] (to_visit=%*pbl)\n",
		 cpumask_pr_args(policy->related_cpus),
		 cpumask_pr_args(cpus_to_visit));

	cpumask_andnot(cpus_to_visit, cpus_to_visit, policy->related_cpus);

413 414
	for_each_cpu(cpu, policy->related_cpus)
		per_cpu(freq_factor, cpu) = policy->cpuinfo.max_freq / 1000;
415 416 417

	if (cpumask_empty(cpus_to_visit)) {
		topology_normalize_cpu_scale();
418
		schedule_work(&update_topology_flags_work);
419
		free_raw_capacity();
420 421 422 423
		pr_debug("cpu_capacity: parsing done\n");
		schedule_work(&parsing_done_work);
	}

424 425 426
	return 0;
}

427
static struct notifier_block init_cpu_capacity_notifier = {
428 429 430 431 432
	.notifier_call = init_cpu_capacity_callback,
};

static int __init register_cpufreq_notifier(void)
{
433 434
	int ret;

435
	/*
436 437
	 * On ACPI-based systems skip registering cpufreq notifier as cpufreq
	 * information is not needed for cpu capacity initialization.
438
	 */
439
	if (!acpi_disabled || !raw_capacity)
440 441
		return -EINVAL;

442
	if (!alloc_cpumask_var(&cpus_to_visit, GFP_KERNEL))
443 444 445 446
		return -ENOMEM;

	cpumask_copy(cpus_to_visit, cpu_possible_mask);

447 448 449 450 451 452 453
	ret = cpufreq_register_notifier(&init_cpu_capacity_notifier,
					CPUFREQ_POLICY_NOTIFIER);

	if (ret)
		free_cpumask_var(cpus_to_visit);

	return ret;
454 455 456
}
core_initcall(register_cpufreq_notifier);

457
static void parsing_done_workfn(struct work_struct *work)
458 459 460
{
	cpufreq_unregister_notifier(&init_cpu_capacity_notifier,
					 CPUFREQ_POLICY_NOTIFIER);
461
	free_cpumask_var(cpus_to_visit);
462 463 464 465 466
}

#else
core_initcall(free_raw_capacity);
#endif
467 468

#if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
469 470 471 472 473 474 475 476 477 478
/*
 * This function returns the logic cpu number of the node.
 * There are basically three kinds of return values:
 * (1) logic cpu number which is > 0.
 * (2) -ENODEV when the device tree(DT) node is valid and found in the DT but
 * there is no possible logical CPU in the kernel to match. This happens
 * when CONFIG_NR_CPUS is configure to be smaller than the number of
 * CPU nodes in DT. We need to just ignore this case.
 * (3) -1 if the node does not exist in the device tree
 */
479 480 481 482 483 484 485 486 487 488 489 490 491
static int __init get_cpu_for_node(struct device_node *node)
{
	struct device_node *cpu_node;
	int cpu;

	cpu_node = of_parse_phandle(node, "cpu", 0);
	if (!cpu_node)
		return -1;

	cpu = of_cpu_node_to_id(cpu_node);
	if (cpu >= 0)
		topology_parse_cpu_capacity(cpu_node, cpu);
	else
492 493
		pr_info("CPU node for %pOF exist but the possible cpu range is :%*pbl\n",
			cpu_node, cpumask_pr_args(cpu_possible_mask));
494 495 496 497 498 499 500 501

	of_node_put(cpu_node);
	return cpu;
}

static int __init parse_core(struct device_node *core, int package_id,
			     int core_id)
{
502
	char name[20];
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
	bool leaf = true;
	int i = 0;
	int cpu;
	struct device_node *t;

	do {
		snprintf(name, sizeof(name), "thread%d", i);
		t = of_get_child_by_name(core, name);
		if (t) {
			leaf = false;
			cpu = get_cpu_for_node(t);
			if (cpu >= 0) {
				cpu_topology[cpu].package_id = package_id;
				cpu_topology[cpu].core_id = core_id;
				cpu_topology[cpu].thread_id = i;
518 519
			} else if (cpu != -ENODEV) {
				pr_err("%pOF: Can't get CPU for thread\n", t);
520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
				of_node_put(t);
				return -EINVAL;
			}
			of_node_put(t);
		}
		i++;
	} while (t);

	cpu = get_cpu_for_node(core);
	if (cpu >= 0) {
		if (!leaf) {
			pr_err("%pOF: Core has both threads and CPU\n",
			       core);
			return -EINVAL;
		}

		cpu_topology[cpu].package_id = package_id;
		cpu_topology[cpu].core_id = core_id;
538
	} else if (leaf && cpu != -ENODEV) {
539 540 541 542 543 544 545 546 547
		pr_err("%pOF: Can't get CPU for leaf core\n", core);
		return -EINVAL;
	}

	return 0;
}

static int __init parse_cluster(struct device_node *cluster, int depth)
{
548
	char name[20];
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
	bool leaf = true;
	bool has_cores = false;
	struct device_node *c;
	int core_id = 0;
	int i, ret;

	/*
	 * First check for child clusters; we currently ignore any
	 * information about the nesting of clusters and present the
	 * scheduler with a flat list of them.
	 */
	i = 0;
	do {
		snprintf(name, sizeof(name), "cluster%d", i);
		c = of_get_child_by_name(cluster, name);
		if (c) {
			leaf = false;
			ret = parse_cluster(c, depth + 1);
			of_node_put(c);
			if (ret != 0)
				return ret;
		}
		i++;
	} while (c);

	/* Now check for cores */
	i = 0;
	do {
		snprintf(name, sizeof(name), "core%d", i);
		c = of_get_child_by_name(cluster, name);
		if (c) {
			has_cores = true;

			if (depth == 0) {
				pr_err("%pOF: cpu-map children should be clusters\n",
				       c);
				of_node_put(c);
				return -EINVAL;
			}

			if (leaf) {
590
				ret = parse_core(c, 0, core_id++);
591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
			} else {
				pr_err("%pOF: Non-leaf cluster with core %s\n",
				       cluster, name);
				ret = -EINVAL;
			}

			of_node_put(c);
			if (ret != 0)
				return ret;
		}
		i++;
	} while (c);

	if (leaf && !has_cores)
		pr_warn("%pOF: empty cluster\n", cluster);

	return 0;
}

static int __init parse_dt_topology(void)
{
	struct device_node *cn, *map;
	int ret = 0;
	int cpu;

	cn = of_find_node_by_path("/cpus");
	if (!cn) {
		pr_err("No CPU information found in DT\n");
		return 0;
	}

	/*
	 * When topology is provided cpu-map is essentially a root
	 * cluster with restricted subnodes.
	 */
	map = of_get_child_by_name(cn, "cpu-map");
	if (!map)
		goto out;

	ret = parse_cluster(map, 0);
	if (ret != 0)
		goto out_map;

	topology_normalize_cpu_scale();

	/*
	 * Check that all cores are in the topology; the SMP code will
	 * only mark cores described in the DT as possible.
	 */
	for_each_possible_cpu(cpu)
641
		if (cpu_topology[cpu].package_id < 0) {
642
			ret = -EINVAL;
643 644
			break;
		}
645 646 647 648 649 650 651

out_map:
	of_node_put(map);
out:
	of_node_put(cn);
	return ret;
}
652
#endif
653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668

/*
 * cpu topology table
 */
struct cpu_topology cpu_topology[NR_CPUS];
EXPORT_SYMBOL_GPL(cpu_topology);

const struct cpumask *cpu_coregroup_mask(int cpu)
{
	const cpumask_t *core_mask = cpumask_of_node(cpu_to_node(cpu));

	/* Find the smaller of NUMA, core or LLC siblings */
	if (cpumask_subset(&cpu_topology[cpu].core_sibling, core_mask)) {
		/* not numa in package, lets use the package siblings */
		core_mask = &cpu_topology[cpu].core_sibling;
	}
669 670

	if (last_level_cache_is_valid(cpu)) {
671 672 673 674
		if (cpumask_subset(&cpu_topology[cpu].llc_sibling, core_mask))
			core_mask = &cpu_topology[cpu].llc_sibling;
	}

675 676 677 678 679 680 681 682 683
	/*
	 * For systems with no shared cpu-side LLC but with clusters defined,
	 * extend core_mask to cluster_siblings. The sched domain builder will
	 * then remove MC as redundant with CLS if SCHED_CLUSTER is enabled.
	 */
	if (IS_ENABLED(CONFIG_SCHED_CLUSTER) &&
	    cpumask_subset(core_mask, &cpu_topology[cpu].cluster_sibling))
		core_mask = &cpu_topology[cpu].cluster_sibling;

684 685 686
	return core_mask;
}

687 688
const struct cpumask *cpu_clustergroup_mask(int cpu)
{
689 690 691 692 693 694 695 696
	/*
	 * Forbid cpu_clustergroup_mask() to span more or the same CPUs as
	 * cpu_coregroup_mask().
	 */
	if (cpumask_subset(cpu_coregroup_mask(cpu),
			   &cpu_topology[cpu].cluster_sibling))
		return get_cpu_mask(cpu);

697 698 699
	return &cpu_topology[cpu].cluster_sibling;
}

700 701 702 703 704 705 706 707 708
void update_siblings_masks(unsigned int cpuid)
{
	struct cpu_topology *cpu_topo, *cpuid_topo = &cpu_topology[cpuid];
	int cpu;

	/* update core and thread sibling masks */
	for_each_online_cpu(cpu) {
		cpu_topo = &cpu_topology[cpu];

709
		if (last_level_cache_is_shared(cpu, cpuid)) {
710 711 712 713 714 715 716
			cpumask_set_cpu(cpu, &cpuid_topo->llc_sibling);
			cpumask_set_cpu(cpuid, &cpu_topo->llc_sibling);
		}

		if (cpuid_topo->package_id != cpu_topo->package_id)
			continue;

717 718 719 720 721 722
		cpumask_set_cpu(cpuid, &cpu_topo->core_sibling);
		cpumask_set_cpu(cpu, &cpuid_topo->core_sibling);

		if (cpuid_topo->cluster_id != cpu_topo->cluster_id)
			continue;

723
		if (cpuid_topo->cluster_id >= 0) {
724 725 726 727
			cpumask_set_cpu(cpu, &cpuid_topo->cluster_sibling);
			cpumask_set_cpu(cpuid, &cpu_topo->cluster_sibling);
		}

728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
		if (cpuid_topo->core_id != cpu_topo->core_id)
			continue;

		cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling);
		cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling);
	}
}

static void clear_cpu_topology(int cpu)
{
	struct cpu_topology *cpu_topo = &cpu_topology[cpu];

	cpumask_clear(&cpu_topo->llc_sibling);
	cpumask_set_cpu(cpu, &cpu_topo->llc_sibling);

743 744 745
	cpumask_clear(&cpu_topo->cluster_sibling);
	cpumask_set_cpu(cpu, &cpu_topo->cluster_sibling);

746 747 748 749 750 751
	cpumask_clear(&cpu_topo->core_sibling);
	cpumask_set_cpu(cpu, &cpu_topo->core_sibling);
	cpumask_clear(&cpu_topo->thread_sibling);
	cpumask_set_cpu(cpu, &cpu_topo->thread_sibling);
}

752
void __init reset_cpu_topology(void)
753 754 755 756 757 758 759 760
{
	unsigned int cpu;

	for_each_possible_cpu(cpu) {
		struct cpu_topology *cpu_topo = &cpu_topology[cpu];

		cpu_topo->thread_id = -1;
		cpu_topo->core_id = -1;
761
		cpu_topo->cluster_id = -1;
762 763 764 765 766 767 768 769 770 771 772 773 774 775
		cpu_topo->package_id = -1;

		clear_cpu_topology(cpu);
	}
}

void remove_cpu_topology(unsigned int cpu)
{
	int sibling;

	for_each_cpu(sibling, topology_core_cpumask(cpu))
		cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
	for_each_cpu(sibling, topology_sibling_cpumask(cpu))
		cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
776 777
	for_each_cpu(sibling, topology_cluster_cpumask(cpu))
		cpumask_clear_cpu(cpu, topology_cluster_cpumask(sibling));
778 779 780 781 782 783 784 785 786 787 788
	for_each_cpu(sibling, topology_llc_cpumask(cpu))
		cpumask_clear_cpu(cpu, topology_llc_cpumask(sibling));

	clear_cpu_topology(cpu);
}

__weak int __init parse_acpi_topology(void)
{
	return 0;
}

789
#if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
790 791
void __init init_cpu_topology(void)
{
792 793
	int ret, cpu;

794
	reset_cpu_topology();
795 796 797
	ret = parse_acpi_topology();
	if (!ret)
		ret = of_have_populated_dt() && parse_dt_topology();
798

799 800 801 802 803
	if (ret) {
		/*
		 * Discard anything that was parsed if we hit an error so we
		 * don't use partial information.
		 */
804
		reset_cpu_topology();
805 806 807 808 809 810 811 812 813 814
		return;
	}

	for_each_possible_cpu(cpu) {
		ret = detect_cache_attributes(cpu);
		if (ret) {
			pr_info("Early cacheinfo failed, ret = %d\n", ret);
			break;
		}
	}
815 816
}
#endif