arch_topology.c 16.5 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 * Arch specific cpu topology information
 *
 * Copyright (C) 2016, ARM Ltd.
 * Written by: Juri Lelli, ARM Ltd.
 */

#include <linux/acpi.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/device.h>
#include <linux/of.h>
#include <linux/slab.h>
#include <linux/sched/topology.h>
16
#include <linux/cpuset.h>
17 18
#include <linux/cpumask.h>
#include <linux/init.h>
19
#include <linux/rcupdate.h>
20
#include <linux/sched.h>
21

22
static DEFINE_PER_CPU(struct scale_freq_data __rcu *, sft_data);
23 24 25 26 27 28 29 30
static struct cpumask scale_freq_counters_mask;
static bool scale_freq_invariant;

static bool supports_scale_freq_counters(const struct cpumask *cpus)
{
	return cpumask_subset(cpus, &scale_freq_counters_mask);
}

31 32 33
bool topology_scale_freq_invariant(void)
{
	return cpufreq_supports_freq_invariance() ||
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
	       supports_scale_freq_counters(cpu_online_mask);
}

static void update_scale_freq_invariant(bool status)
{
	if (scale_freq_invariant == status)
		return;

	/*
	 * Task scheduler behavior depends on frequency invariance support,
	 * either cpufreq or counter driven. If the support status changes as
	 * a result of counter initialisation and use, retrigger the build of
	 * scheduling domains to ensure the information is propagated properly.
	 */
	if (topology_scale_freq_invariant() == status) {
		scale_freq_invariant = status;
		rebuild_sched_domains_energy();
	}
}

void topology_set_scale_freq_source(struct scale_freq_data *data,
				    const struct cpumask *cpus)
{
	struct scale_freq_data *sfd;
	int cpu;

	/*
	 * Avoid calling rebuild_sched_domains() unnecessarily if FIE is
	 * supported by cpufreq.
	 */
	if (cpumask_empty(&scale_freq_counters_mask))
		scale_freq_invariant = topology_scale_freq_invariant();

67 68
	rcu_read_lock();

69
	for_each_cpu(cpu, cpus) {
70
		sfd = rcu_dereference(*per_cpu_ptr(&sft_data, cpu));
71 72 73

		/* Use ARCH provided counters whenever possible */
		if (!sfd || sfd->source != SCALE_FREQ_SOURCE_ARCH) {
74
			rcu_assign_pointer(per_cpu(sft_data, cpu), data);
75 76 77 78
			cpumask_set_cpu(cpu, &scale_freq_counters_mask);
		}
	}

79 80
	rcu_read_unlock();

81
	update_scale_freq_invariant(true);
82
}
83
EXPORT_SYMBOL_GPL(topology_set_scale_freq_source);
84

85 86
void topology_clear_scale_freq_source(enum scale_freq_source source,
				      const struct cpumask *cpus)
87
{
88 89 90
	struct scale_freq_data *sfd;
	int cpu;

91 92
	rcu_read_lock();

93
	for_each_cpu(cpu, cpus) {
94
		sfd = rcu_dereference(*per_cpu_ptr(&sft_data, cpu));
95 96

		if (sfd && sfd->source == source) {
97
			rcu_assign_pointer(per_cpu(sft_data, cpu), NULL);
98 99 100 101
			cpumask_clear_cpu(cpu, &scale_freq_counters_mask);
		}
	}

102 103 104 105 106 107 108 109
	rcu_read_unlock();

	/*
	 * Make sure all references to previous sft_data are dropped to avoid
	 * use-after-free races.
	 */
	synchronize_rcu();

110
	update_scale_freq_invariant(false);
111
}
112
EXPORT_SYMBOL_GPL(topology_clear_scale_freq_source);
113 114 115

void topology_scale_freq_tick(void)
{
116
	struct scale_freq_data *sfd = rcu_dereference_sched(*this_cpu_ptr(&sft_data));
117 118 119 120 121

	if (sfd)
		sfd->set_freq_scale();
}

122
DEFINE_PER_CPU(unsigned long, arch_freq_scale) = SCHED_CAPACITY_SCALE;
123
EXPORT_PER_CPU_SYMBOL_GPL(arch_freq_scale);
124

125 126
void topology_set_freq_scale(const struct cpumask *cpus, unsigned long cur_freq,
			     unsigned long max_freq)
127
{
128 129 130
	unsigned long scale;
	int i;

131 132 133
	if (WARN_ON_ONCE(!cur_freq || !max_freq))
		return;

134 135 136 137 138
	/*
	 * If the use of counters for FIE is enabled, just return as we don't
	 * want to update the scale factor with information from CPUFREQ.
	 * Instead the scale factor will be updated from arch_scale_freq_tick.
	 */
139
	if (supports_scale_freq_counters(cpus))
140 141
		return;

142 143 144
	scale = (cur_freq << SCHED_CAPACITY_SHIFT) / max_freq;

	for_each_cpu(i, cpus)
145
		per_cpu(arch_freq_scale, i) = scale;
146 147
}

148
DEFINE_PER_CPU(unsigned long, cpu_scale) = SCHED_CAPACITY_SCALE;
149
EXPORT_PER_CPU_SYMBOL_GPL(cpu_scale);
150

151
void topology_set_cpu_scale(unsigned int cpu, unsigned long capacity)
152 153 154 155
{
	per_cpu(cpu_scale, cpu) = capacity;
}

156 157 158 159 160 161 162 163 164 165
DEFINE_PER_CPU(unsigned long, thermal_pressure);

void topology_set_thermal_pressure(const struct cpumask *cpus,
			       unsigned long th_pressure)
{
	int cpu;

	for_each_cpu(cpu, cpus)
		WRITE_ONCE(per_cpu(thermal_pressure, cpu), th_pressure);
}
166
EXPORT_SYMBOL_GPL(topology_set_thermal_pressure);
167

168 169 170 171 172 173
static ssize_t cpu_capacity_show(struct device *dev,
				 struct device_attribute *attr,
				 char *buf)
{
	struct cpu *cpu = container_of(dev, struct cpu, dev);

174
	return sysfs_emit(buf, "%lu\n", topology_get_cpu_scale(cpu->dev.id));
175 176
}

177 178 179
static void update_topology_flags_workfn(struct work_struct *work);
static DECLARE_WORK(update_topology_flags_work, update_topology_flags_workfn);

180
static DEVICE_ATTR_RO(cpu_capacity);
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200

static int register_cpu_capacity_sysctl(void)
{
	int i;
	struct device *cpu;

	for_each_possible_cpu(i) {
		cpu = get_cpu_device(i);
		if (!cpu) {
			pr_err("%s: too early to get CPU%d device!\n",
			       __func__, i);
			continue;
		}
		device_create_file(cpu, &dev_attr_cpu_capacity);
	}

	return 0;
}
subsys_initcall(register_cpu_capacity_sysctl);

201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
static int update_topology;

int topology_update_cpu_topology(void)
{
	return update_topology;
}

/*
 * Updating the sched_domains can't be done directly from cpufreq callbacks
 * due to locking, so queue the work for later.
 */
static void update_topology_flags_workfn(struct work_struct *work)
{
	update_topology = 1;
	rebuild_sched_domains();
	pr_debug("sched_domain hierarchy rebuilt, flags updated\n");
	update_topology = 0;
}

220
static DEFINE_PER_CPU(u32, freq_factor) = 1;
221
static u32 *raw_capacity;
222

223
static int free_raw_capacity(void)
224 225 226 227 228 229
{
	kfree(raw_capacity);
	raw_capacity = NULL;

	return 0;
}
230

231
void topology_normalize_cpu_scale(void)
232 233
{
	u64 capacity;
234
	u64 capacity_scale;
235 236
	int cpu;

237
	if (!raw_capacity)
238 239
		return;

240
	capacity_scale = 1;
241
	for_each_possible_cpu(cpu) {
242 243 244 245 246 247 248 249 250
		capacity = raw_capacity[cpu] * per_cpu(freq_factor, cpu);
		capacity_scale = max(capacity, capacity_scale);
	}

	pr_debug("cpu_capacity: capacity_scale=%llu\n", capacity_scale);
	for_each_possible_cpu(cpu) {
		capacity = raw_capacity[cpu] * per_cpu(freq_factor, cpu);
		capacity = div64_u64(capacity << SCHED_CAPACITY_SHIFT,
			capacity_scale);
251
		topology_set_cpu_scale(cpu, capacity);
252
		pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu\n",
253
			cpu, topology_get_cpu_scale(cpu));
254 255 256
	}
}

257
bool __init topology_parse_cpu_capacity(struct device_node *cpu_node, int cpu)
258
{
259
	struct clk *cpu_clk;
260
	static bool cap_parsing_failed;
261
	int ret;
262 263 264
	u32 cpu_capacity;

	if (cap_parsing_failed)
265
		return false;
266

267
	ret = of_property_read_u32(cpu_node, "capacity-dmips-mhz",
268 269 270 271 272 273 274 275
				   &cpu_capacity);
	if (!ret) {
		if (!raw_capacity) {
			raw_capacity = kcalloc(num_possible_cpus(),
					       sizeof(*raw_capacity),
					       GFP_KERNEL);
			if (!raw_capacity) {
				cap_parsing_failed = true;
276
				return false;
277 278 279
			}
		}
		raw_capacity[cpu] = cpu_capacity;
280 281
		pr_debug("cpu_capacity: %pOF cpu_capacity=%u (raw)\n",
			cpu_node, raw_capacity[cpu]);
282 283 284 285 286 287 288 289

		/*
		 * Update freq_factor for calculating early boot cpu capacities.
		 * For non-clk CPU DVFS mechanism, there's no way to get the
		 * frequency value now, assuming they are running at the same
		 * frequency (by keeping the initial freq_factor value).
		 */
		cpu_clk = of_clk_get(cpu_node, 0);
290
		if (!PTR_ERR_OR_ZERO(cpu_clk)) {
291 292
			per_cpu(freq_factor, cpu) =
				clk_get_rate(cpu_clk) / 1000;
293 294
			clk_put(cpu_clk);
		}
295 296
	} else {
		if (raw_capacity) {
297 298
			pr_err("cpu_capacity: missing %pOF raw capacity\n",
				cpu_node);
299 300 301
			pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n");
		}
		cap_parsing_failed = true;
302
		free_raw_capacity();
303 304 305 306 307 308
	}

	return !ret;
}

#ifdef CONFIG_CPU_FREQ
309 310 311
static cpumask_var_t cpus_to_visit;
static void parsing_done_workfn(struct work_struct *work);
static DECLARE_WORK(parsing_done_work, parsing_done_workfn);
312

313
static int
314 315 316 317 318 319 320
init_cpu_capacity_callback(struct notifier_block *nb,
			   unsigned long val,
			   void *data)
{
	struct cpufreq_policy *policy = data;
	int cpu;

321
	if (!raw_capacity)
322 323
		return 0;

324
	if (val != CPUFREQ_CREATE_POLICY)
325 326 327 328 329 330 331 332
		return 0;

	pr_debug("cpu_capacity: init cpu capacity for CPUs [%*pbl] (to_visit=%*pbl)\n",
		 cpumask_pr_args(policy->related_cpus),
		 cpumask_pr_args(cpus_to_visit));

	cpumask_andnot(cpus_to_visit, cpus_to_visit, policy->related_cpus);

333 334
	for_each_cpu(cpu, policy->related_cpus)
		per_cpu(freq_factor, cpu) = policy->cpuinfo.max_freq / 1000;
335 336 337

	if (cpumask_empty(cpus_to_visit)) {
		topology_normalize_cpu_scale();
338
		schedule_work(&update_topology_flags_work);
339
		free_raw_capacity();
340 341 342 343
		pr_debug("cpu_capacity: parsing done\n");
		schedule_work(&parsing_done_work);
	}

344 345 346
	return 0;
}

347
static struct notifier_block init_cpu_capacity_notifier = {
348 349 350 351 352
	.notifier_call = init_cpu_capacity_callback,
};

static int __init register_cpufreq_notifier(void)
{
353 354
	int ret;

355 356 357 358 359
	/*
	 * on ACPI-based systems we need to use the default cpu capacity
	 * until we have the necessary code to parse the cpu capacity, so
	 * skip registering cpufreq notifier.
	 */
360
	if (!acpi_disabled || !raw_capacity)
361 362
		return -EINVAL;

363
	if (!alloc_cpumask_var(&cpus_to_visit, GFP_KERNEL))
364 365 366 367
		return -ENOMEM;

	cpumask_copy(cpus_to_visit, cpu_possible_mask);

368 369 370 371 372 373 374
	ret = cpufreq_register_notifier(&init_cpu_capacity_notifier,
					CPUFREQ_POLICY_NOTIFIER);

	if (ret)
		free_cpumask_var(cpus_to_visit);

	return ret;
375 376 377
}
core_initcall(register_cpufreq_notifier);

378
static void parsing_done_workfn(struct work_struct *work)
379 380 381
{
	cpufreq_unregister_notifier(&init_cpu_capacity_notifier,
					 CPUFREQ_POLICY_NOTIFIER);
382
	free_cpumask_var(cpus_to_visit);
383 384 385 386 387
}

#else
core_initcall(free_raw_capacity);
#endif
388 389

#if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
390 391 392 393 394 395 396 397 398 399
/*
 * This function returns the logic cpu number of the node.
 * There are basically three kinds of return values:
 * (1) logic cpu number which is > 0.
 * (2) -ENODEV when the device tree(DT) node is valid and found in the DT but
 * there is no possible logical CPU in the kernel to match. This happens
 * when CONFIG_NR_CPUS is configure to be smaller than the number of
 * CPU nodes in DT. We need to just ignore this case.
 * (3) -1 if the node does not exist in the device tree
 */
400 401 402 403 404 405 406 407 408 409 410 411 412
static int __init get_cpu_for_node(struct device_node *node)
{
	struct device_node *cpu_node;
	int cpu;

	cpu_node = of_parse_phandle(node, "cpu", 0);
	if (!cpu_node)
		return -1;

	cpu = of_cpu_node_to_id(cpu_node);
	if (cpu >= 0)
		topology_parse_cpu_capacity(cpu_node, cpu);
	else
413 414
		pr_info("CPU node for %pOF exist but the possible cpu range is :%*pbl\n",
			cpu_node, cpumask_pr_args(cpu_possible_mask));
415 416 417 418 419 420 421 422

	of_node_put(cpu_node);
	return cpu;
}

static int __init parse_core(struct device_node *core, int package_id,
			     int core_id)
{
423
	char name[20];
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
	bool leaf = true;
	int i = 0;
	int cpu;
	struct device_node *t;

	do {
		snprintf(name, sizeof(name), "thread%d", i);
		t = of_get_child_by_name(core, name);
		if (t) {
			leaf = false;
			cpu = get_cpu_for_node(t);
			if (cpu >= 0) {
				cpu_topology[cpu].package_id = package_id;
				cpu_topology[cpu].core_id = core_id;
				cpu_topology[cpu].thread_id = i;
439 440
			} else if (cpu != -ENODEV) {
				pr_err("%pOF: Can't get CPU for thread\n", t);
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
				of_node_put(t);
				return -EINVAL;
			}
			of_node_put(t);
		}
		i++;
	} while (t);

	cpu = get_cpu_for_node(core);
	if (cpu >= 0) {
		if (!leaf) {
			pr_err("%pOF: Core has both threads and CPU\n",
			       core);
			return -EINVAL;
		}

		cpu_topology[cpu].package_id = package_id;
		cpu_topology[cpu].core_id = core_id;
459
	} else if (leaf && cpu != -ENODEV) {
460 461 462 463 464 465 466 467 468
		pr_err("%pOF: Can't get CPU for leaf core\n", core);
		return -EINVAL;
	}

	return 0;
}

static int __init parse_cluster(struct device_node *cluster, int depth)
{
469
	char name[20];
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
	bool leaf = true;
	bool has_cores = false;
	struct device_node *c;
	static int package_id __initdata;
	int core_id = 0;
	int i, ret;

	/*
	 * First check for child clusters; we currently ignore any
	 * information about the nesting of clusters and present the
	 * scheduler with a flat list of them.
	 */
	i = 0;
	do {
		snprintf(name, sizeof(name), "cluster%d", i);
		c = of_get_child_by_name(cluster, name);
		if (c) {
			leaf = false;
			ret = parse_cluster(c, depth + 1);
			of_node_put(c);
			if (ret != 0)
				return ret;
		}
		i++;
	} while (c);

	/* Now check for cores */
	i = 0;
	do {
		snprintf(name, sizeof(name), "core%d", i);
		c = of_get_child_by_name(cluster, name);
		if (c) {
			has_cores = true;

			if (depth == 0) {
				pr_err("%pOF: cpu-map children should be clusters\n",
				       c);
				of_node_put(c);
				return -EINVAL;
			}

			if (leaf) {
				ret = parse_core(c, package_id, core_id++);
			} else {
				pr_err("%pOF: Non-leaf cluster with core %s\n",
				       cluster, name);
				ret = -EINVAL;
			}

			of_node_put(c);
			if (ret != 0)
				return ret;
		}
		i++;
	} while (c);

	if (leaf && !has_cores)
		pr_warn("%pOF: empty cluster\n", cluster);

	if (leaf)
		package_id++;

	return 0;
}

static int __init parse_dt_topology(void)
{
	struct device_node *cn, *map;
	int ret = 0;
	int cpu;

	cn = of_find_node_by_path("/cpus");
	if (!cn) {
		pr_err("No CPU information found in DT\n");
		return 0;
	}

	/*
	 * When topology is provided cpu-map is essentially a root
	 * cluster with restricted subnodes.
	 */
	map = of_get_child_by_name(cn, "cpu-map");
	if (!map)
		goto out;

	ret = parse_cluster(map, 0);
	if (ret != 0)
		goto out_map;

	topology_normalize_cpu_scale();

	/*
	 * Check that all cores are in the topology; the SMP code will
	 * only mark cores described in the DT as possible.
	 */
	for_each_possible_cpu(cpu)
		if (cpu_topology[cpu].package_id == -1)
			ret = -EINVAL;

out_map:
	of_node_put(map);
out:
	of_node_put(cn);
	return ret;
}
575
#endif
576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599

/*
 * cpu topology table
 */
struct cpu_topology cpu_topology[NR_CPUS];
EXPORT_SYMBOL_GPL(cpu_topology);

const struct cpumask *cpu_coregroup_mask(int cpu)
{
	const cpumask_t *core_mask = cpumask_of_node(cpu_to_node(cpu));

	/* Find the smaller of NUMA, core or LLC siblings */
	if (cpumask_subset(&cpu_topology[cpu].core_sibling, core_mask)) {
		/* not numa in package, lets use the package siblings */
		core_mask = &cpu_topology[cpu].core_sibling;
	}
	if (cpu_topology[cpu].llc_id != -1) {
		if (cpumask_subset(&cpu_topology[cpu].llc_sibling, core_mask))
			core_mask = &cpu_topology[cpu].llc_sibling;
	}

	return core_mask;
}

600 601 602 603 604
const struct cpumask *cpu_clustergroup_mask(int cpu)
{
	return &cpu_topology[cpu].cluster_sibling;
}

605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
void update_siblings_masks(unsigned int cpuid)
{
	struct cpu_topology *cpu_topo, *cpuid_topo = &cpu_topology[cpuid];
	int cpu;

	/* update core and thread sibling masks */
	for_each_online_cpu(cpu) {
		cpu_topo = &cpu_topology[cpu];

		if (cpuid_topo->llc_id == cpu_topo->llc_id) {
			cpumask_set_cpu(cpu, &cpuid_topo->llc_sibling);
			cpumask_set_cpu(cpuid, &cpu_topo->llc_sibling);
		}

		if (cpuid_topo->package_id != cpu_topo->package_id)
			continue;

622 623 624 625 626 627
		if (cpuid_topo->cluster_id == cpu_topo->cluster_id &&
		    cpuid_topo->cluster_id != -1) {
			cpumask_set_cpu(cpu, &cpuid_topo->cluster_sibling);
			cpumask_set_cpu(cpuid, &cpu_topo->cluster_sibling);
		}

628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
		cpumask_set_cpu(cpuid, &cpu_topo->core_sibling);
		cpumask_set_cpu(cpu, &cpuid_topo->core_sibling);

		if (cpuid_topo->core_id != cpu_topo->core_id)
			continue;

		cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling);
		cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling);
	}
}

static void clear_cpu_topology(int cpu)
{
	struct cpu_topology *cpu_topo = &cpu_topology[cpu];

	cpumask_clear(&cpu_topo->llc_sibling);
	cpumask_set_cpu(cpu, &cpu_topo->llc_sibling);

646 647 648
	cpumask_clear(&cpu_topo->cluster_sibling);
	cpumask_set_cpu(cpu, &cpu_topo->cluster_sibling);

649 650 651 652 653 654
	cpumask_clear(&cpu_topo->core_sibling);
	cpumask_set_cpu(cpu, &cpu_topo->core_sibling);
	cpumask_clear(&cpu_topo->thread_sibling);
	cpumask_set_cpu(cpu, &cpu_topo->thread_sibling);
}

655
void __init reset_cpu_topology(void)
656 657 658 659 660 661 662 663
{
	unsigned int cpu;

	for_each_possible_cpu(cpu) {
		struct cpu_topology *cpu_topo = &cpu_topology[cpu];

		cpu_topo->thread_id = -1;
		cpu_topo->core_id = -1;
664
		cpu_topo->cluster_id = -1;
665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
		cpu_topo->package_id = -1;
		cpu_topo->llc_id = -1;

		clear_cpu_topology(cpu);
	}
}

void remove_cpu_topology(unsigned int cpu)
{
	int sibling;

	for_each_cpu(sibling, topology_core_cpumask(cpu))
		cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
	for_each_cpu(sibling, topology_sibling_cpumask(cpu))
		cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
	for_each_cpu(sibling, topology_llc_cpumask(cpu))
		cpumask_clear_cpu(cpu, topology_llc_cpumask(sibling));

	clear_cpu_topology(cpu);
}

__weak int __init parse_acpi_topology(void)
{
	return 0;
}

691
#if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
692 693 694 695 696 697 698 699 700 701 702 703 704 705
void __init init_cpu_topology(void)
{
	reset_cpu_topology();

	/*
	 * Discard anything that was parsed if we hit an error so we
	 * don't use partial information.
	 */
	if (parse_acpi_topology())
		reset_cpu_topology();
	else if (of_have_populated_dt() && parse_dt_topology())
		reset_cpu_topology();
}
#endif