arch_topology.c 13.6 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/*
 * Arch specific cpu topology information
 *
 * Copyright (C) 2016, ARM Ltd.
 * Written by: Juri Lelli, ARM Ltd.
 */

#include <linux/acpi.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/device.h>
#include <linux/of.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/sched/topology.h>
17
#include <linux/cpuset.h>
18 19 20 21 22
#include <linux/cpumask.h>
#include <linux/init.h>
#include <linux/percpu.h>
#include <linux/sched.h>
#include <linux/smp.h>
23

24 25 26 27
__weak bool arch_freq_counters_available(struct cpumask *cpus)
{
	return false;
}
28
DEFINE_PER_CPU(unsigned long, freq_scale) = SCHED_CAPACITY_SCALE;
29

30 31
void arch_set_freq_scale(struct cpumask *cpus, unsigned long cur_freq,
			 unsigned long max_freq)
32
{
33 34 35
	unsigned long scale;
	int i;

36 37 38 39 40 41 42 43
	/*
	 * If the use of counters for FIE is enabled, just return as we don't
	 * want to update the scale factor with information from CPUFREQ.
	 * Instead the scale factor will be updated from arch_scale_freq_tick.
	 */
	if (arch_freq_counters_available(cpus))
		return;

44 45 46 47
	scale = (cur_freq << SCHED_CAPACITY_SHIFT) / max_freq;

	for_each_cpu(i, cpus)
		per_cpu(freq_scale, i) = scale;
48 49
}

50
DEFINE_PER_CPU(unsigned long, cpu_scale) = SCHED_CAPACITY_SCALE;
51

52
void topology_set_cpu_scale(unsigned int cpu, unsigned long capacity)
53 54 55 56
{
	per_cpu(cpu_scale, cpu) = capacity;
}

57 58 59 60 61 62 63 64 65 66 67
DEFINE_PER_CPU(unsigned long, thermal_pressure);

void topology_set_thermal_pressure(const struct cpumask *cpus,
			       unsigned long th_pressure)
{
	int cpu;

	for_each_cpu(cpu, cpus)
		WRITE_ONCE(per_cpu(thermal_pressure, cpu), th_pressure);
}

68 69 70 71 72 73
static ssize_t cpu_capacity_show(struct device *dev,
				 struct device_attribute *attr,
				 char *buf)
{
	struct cpu *cpu = container_of(dev, struct cpu, dev);

74
	return sprintf(buf, "%lu\n", topology_get_cpu_scale(cpu->dev.id));
75 76
}

77 78 79
static void update_topology_flags_workfn(struct work_struct *work);
static DECLARE_WORK(update_topology_flags_work, update_topology_flags_workfn);

80
static DEVICE_ATTR_RO(cpu_capacity);
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

static int register_cpu_capacity_sysctl(void)
{
	int i;
	struct device *cpu;

	for_each_possible_cpu(i) {
		cpu = get_cpu_device(i);
		if (!cpu) {
			pr_err("%s: too early to get CPU%d device!\n",
			       __func__, i);
			continue;
		}
		device_create_file(cpu, &dev_attr_cpu_capacity);
	}

	return 0;
}
subsys_initcall(register_cpu_capacity_sysctl);

101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
static int update_topology;

int topology_update_cpu_topology(void)
{
	return update_topology;
}

/*
 * Updating the sched_domains can't be done directly from cpufreq callbacks
 * due to locking, so queue the work for later.
 */
static void update_topology_flags_workfn(struct work_struct *work)
{
	update_topology = 1;
	rebuild_sched_domains();
	pr_debug("sched_domain hierarchy rebuilt, flags updated\n");
	update_topology = 0;
}

120
static DEFINE_PER_CPU(u32, freq_factor) = 1;
121
static u32 *raw_capacity;
122

123
static int free_raw_capacity(void)
124 125 126 127 128 129
{
	kfree(raw_capacity);
	raw_capacity = NULL;

	return 0;
}
130

131
void topology_normalize_cpu_scale(void)
132 133
{
	u64 capacity;
134
	u64 capacity_scale;
135 136
	int cpu;

137
	if (!raw_capacity)
138 139
		return;

140
	capacity_scale = 1;
141
	for_each_possible_cpu(cpu) {
142 143 144 145 146 147 148 149 150
		capacity = raw_capacity[cpu] * per_cpu(freq_factor, cpu);
		capacity_scale = max(capacity, capacity_scale);
	}

	pr_debug("cpu_capacity: capacity_scale=%llu\n", capacity_scale);
	for_each_possible_cpu(cpu) {
		capacity = raw_capacity[cpu] * per_cpu(freq_factor, cpu);
		capacity = div64_u64(capacity << SCHED_CAPACITY_SHIFT,
			capacity_scale);
151
		topology_set_cpu_scale(cpu, capacity);
152
		pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu\n",
153
			cpu, topology_get_cpu_scale(cpu));
154 155 156
	}
}

157
bool __init topology_parse_cpu_capacity(struct device_node *cpu_node, int cpu)
158
{
159
	struct clk *cpu_clk;
160
	static bool cap_parsing_failed;
161
	int ret;
162 163 164
	u32 cpu_capacity;

	if (cap_parsing_failed)
165
		return false;
166

167
	ret = of_property_read_u32(cpu_node, "capacity-dmips-mhz",
168 169 170 171 172 173 174 175
				   &cpu_capacity);
	if (!ret) {
		if (!raw_capacity) {
			raw_capacity = kcalloc(num_possible_cpus(),
					       sizeof(*raw_capacity),
					       GFP_KERNEL);
			if (!raw_capacity) {
				cap_parsing_failed = true;
176
				return false;
177 178 179
			}
		}
		raw_capacity[cpu] = cpu_capacity;
180 181
		pr_debug("cpu_capacity: %pOF cpu_capacity=%u (raw)\n",
			cpu_node, raw_capacity[cpu]);
182 183 184 185 186 187 188 189

		/*
		 * Update freq_factor for calculating early boot cpu capacities.
		 * For non-clk CPU DVFS mechanism, there's no way to get the
		 * frequency value now, assuming they are running at the same
		 * frequency (by keeping the initial freq_factor value).
		 */
		cpu_clk = of_clk_get(cpu_node, 0);
190
		if (!PTR_ERR_OR_ZERO(cpu_clk)) {
191 192
			per_cpu(freq_factor, cpu) =
				clk_get_rate(cpu_clk) / 1000;
193 194
			clk_put(cpu_clk);
		}
195 196
	} else {
		if (raw_capacity) {
197 198
			pr_err("cpu_capacity: missing %pOF raw capacity\n",
				cpu_node);
199 200 201
			pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n");
		}
		cap_parsing_failed = true;
202
		free_raw_capacity();
203 204 205 206 207 208
	}

	return !ret;
}

#ifdef CONFIG_CPU_FREQ
209 210 211
static cpumask_var_t cpus_to_visit;
static void parsing_done_workfn(struct work_struct *work);
static DECLARE_WORK(parsing_done_work, parsing_done_workfn);
212

213
static int
214 215 216 217 218 219 220
init_cpu_capacity_callback(struct notifier_block *nb,
			   unsigned long val,
			   void *data)
{
	struct cpufreq_policy *policy = data;
	int cpu;

221
	if (!raw_capacity)
222 223
		return 0;

224
	if (val != CPUFREQ_CREATE_POLICY)
225 226 227 228 229 230 231 232
		return 0;

	pr_debug("cpu_capacity: init cpu capacity for CPUs [%*pbl] (to_visit=%*pbl)\n",
		 cpumask_pr_args(policy->related_cpus),
		 cpumask_pr_args(cpus_to_visit));

	cpumask_andnot(cpus_to_visit, cpus_to_visit, policy->related_cpus);

233 234
	for_each_cpu(cpu, policy->related_cpus)
		per_cpu(freq_factor, cpu) = policy->cpuinfo.max_freq / 1000;
235 236 237

	if (cpumask_empty(cpus_to_visit)) {
		topology_normalize_cpu_scale();
238
		schedule_work(&update_topology_flags_work);
239
		free_raw_capacity();
240 241 242 243
		pr_debug("cpu_capacity: parsing done\n");
		schedule_work(&parsing_done_work);
	}

244 245 246
	return 0;
}

247
static struct notifier_block init_cpu_capacity_notifier = {
248 249 250 251 252
	.notifier_call = init_cpu_capacity_callback,
};

static int __init register_cpufreq_notifier(void)
{
253 254
	int ret;

255 256 257 258 259
	/*
	 * on ACPI-based systems we need to use the default cpu capacity
	 * until we have the necessary code to parse the cpu capacity, so
	 * skip registering cpufreq notifier.
	 */
260
	if (!acpi_disabled || !raw_capacity)
261 262
		return -EINVAL;

263
	if (!alloc_cpumask_var(&cpus_to_visit, GFP_KERNEL))
264 265 266 267
		return -ENOMEM;

	cpumask_copy(cpus_to_visit, cpu_possible_mask);

268 269 270 271 272 273 274
	ret = cpufreq_register_notifier(&init_cpu_capacity_notifier,
					CPUFREQ_POLICY_NOTIFIER);

	if (ret)
		free_cpumask_var(cpus_to_visit);

	return ret;
275 276 277
}
core_initcall(register_cpufreq_notifier);

278
static void parsing_done_workfn(struct work_struct *work)
279 280 281
{
	cpufreq_unregister_notifier(&init_cpu_capacity_notifier,
					 CPUFREQ_POLICY_NOTIFIER);
282
	free_cpumask_var(cpus_to_visit);
283 284 285 286 287
}

#else
core_initcall(free_raw_capacity);
#endif
288 289

#if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
290 291 292 293 294 295 296 297 298 299
/*
 * This function returns the logic cpu number of the node.
 * There are basically three kinds of return values:
 * (1) logic cpu number which is > 0.
 * (2) -ENODEV when the device tree(DT) node is valid and found in the DT but
 * there is no possible logical CPU in the kernel to match. This happens
 * when CONFIG_NR_CPUS is configure to be smaller than the number of
 * CPU nodes in DT. We need to just ignore this case.
 * (3) -1 if the node does not exist in the device tree
 */
300 301 302 303 304 305 306 307 308 309 310 311 312
static int __init get_cpu_for_node(struct device_node *node)
{
	struct device_node *cpu_node;
	int cpu;

	cpu_node = of_parse_phandle(node, "cpu", 0);
	if (!cpu_node)
		return -1;

	cpu = of_cpu_node_to_id(cpu_node);
	if (cpu >= 0)
		topology_parse_cpu_capacity(cpu_node, cpu);
	else
313 314
		pr_info("CPU node for %pOF exist but the possible cpu range is :%*pbl\n",
			cpu_node, cpumask_pr_args(cpu_possible_mask));
315 316 317 318 319 320 321 322

	of_node_put(cpu_node);
	return cpu;
}

static int __init parse_core(struct device_node *core, int package_id,
			     int core_id)
{
323
	char name[20];
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
	bool leaf = true;
	int i = 0;
	int cpu;
	struct device_node *t;

	do {
		snprintf(name, sizeof(name), "thread%d", i);
		t = of_get_child_by_name(core, name);
		if (t) {
			leaf = false;
			cpu = get_cpu_for_node(t);
			if (cpu >= 0) {
				cpu_topology[cpu].package_id = package_id;
				cpu_topology[cpu].core_id = core_id;
				cpu_topology[cpu].thread_id = i;
339 340
			} else if (cpu != -ENODEV) {
				pr_err("%pOF: Can't get CPU for thread\n", t);
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
				of_node_put(t);
				return -EINVAL;
			}
			of_node_put(t);
		}
		i++;
	} while (t);

	cpu = get_cpu_for_node(core);
	if (cpu >= 0) {
		if (!leaf) {
			pr_err("%pOF: Core has both threads and CPU\n",
			       core);
			return -EINVAL;
		}

		cpu_topology[cpu].package_id = package_id;
		cpu_topology[cpu].core_id = core_id;
359
	} else if (leaf && cpu != -ENODEV) {
360 361 362 363 364 365 366 367 368
		pr_err("%pOF: Can't get CPU for leaf core\n", core);
		return -EINVAL;
	}

	return 0;
}

static int __init parse_cluster(struct device_node *cluster, int depth)
{
369
	char name[20];
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
	bool leaf = true;
	bool has_cores = false;
	struct device_node *c;
	static int package_id __initdata;
	int core_id = 0;
	int i, ret;

	/*
	 * First check for child clusters; we currently ignore any
	 * information about the nesting of clusters and present the
	 * scheduler with a flat list of them.
	 */
	i = 0;
	do {
		snprintf(name, sizeof(name), "cluster%d", i);
		c = of_get_child_by_name(cluster, name);
		if (c) {
			leaf = false;
			ret = parse_cluster(c, depth + 1);
			of_node_put(c);
			if (ret != 0)
				return ret;
		}
		i++;
	} while (c);

	/* Now check for cores */
	i = 0;
	do {
		snprintf(name, sizeof(name), "core%d", i);
		c = of_get_child_by_name(cluster, name);
		if (c) {
			has_cores = true;

			if (depth == 0) {
				pr_err("%pOF: cpu-map children should be clusters\n",
				       c);
				of_node_put(c);
				return -EINVAL;
			}

			if (leaf) {
				ret = parse_core(c, package_id, core_id++);
			} else {
				pr_err("%pOF: Non-leaf cluster with core %s\n",
				       cluster, name);
				ret = -EINVAL;
			}

			of_node_put(c);
			if (ret != 0)
				return ret;
		}
		i++;
	} while (c);

	if (leaf && !has_cores)
		pr_warn("%pOF: empty cluster\n", cluster);

	if (leaf)
		package_id++;

	return 0;
}

static int __init parse_dt_topology(void)
{
	struct device_node *cn, *map;
	int ret = 0;
	int cpu;

	cn = of_find_node_by_path("/cpus");
	if (!cn) {
		pr_err("No CPU information found in DT\n");
		return 0;
	}

	/*
	 * When topology is provided cpu-map is essentially a root
	 * cluster with restricted subnodes.
	 */
	map = of_get_child_by_name(cn, "cpu-map");
	if (!map)
		goto out;

	ret = parse_cluster(map, 0);
	if (ret != 0)
		goto out_map;

	topology_normalize_cpu_scale();

	/*
	 * Check that all cores are in the topology; the SMP code will
	 * only mark cores described in the DT as possible.
	 */
	for_each_possible_cpu(cpu)
		if (cpu_topology[cpu].package_id == -1)
			ret = -EINVAL;

out_map:
	of_node_put(map);
out:
	of_node_put(cn);
	return ret;
}
475
#endif
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540

/*
 * cpu topology table
 */
struct cpu_topology cpu_topology[NR_CPUS];
EXPORT_SYMBOL_GPL(cpu_topology);

const struct cpumask *cpu_coregroup_mask(int cpu)
{
	const cpumask_t *core_mask = cpumask_of_node(cpu_to_node(cpu));

	/* Find the smaller of NUMA, core or LLC siblings */
	if (cpumask_subset(&cpu_topology[cpu].core_sibling, core_mask)) {
		/* not numa in package, lets use the package siblings */
		core_mask = &cpu_topology[cpu].core_sibling;
	}
	if (cpu_topology[cpu].llc_id != -1) {
		if (cpumask_subset(&cpu_topology[cpu].llc_sibling, core_mask))
			core_mask = &cpu_topology[cpu].llc_sibling;
	}

	return core_mask;
}

void update_siblings_masks(unsigned int cpuid)
{
	struct cpu_topology *cpu_topo, *cpuid_topo = &cpu_topology[cpuid];
	int cpu;

	/* update core and thread sibling masks */
	for_each_online_cpu(cpu) {
		cpu_topo = &cpu_topology[cpu];

		if (cpuid_topo->llc_id == cpu_topo->llc_id) {
			cpumask_set_cpu(cpu, &cpuid_topo->llc_sibling);
			cpumask_set_cpu(cpuid, &cpu_topo->llc_sibling);
		}

		if (cpuid_topo->package_id != cpu_topo->package_id)
			continue;

		cpumask_set_cpu(cpuid, &cpu_topo->core_sibling);
		cpumask_set_cpu(cpu, &cpuid_topo->core_sibling);

		if (cpuid_topo->core_id != cpu_topo->core_id)
			continue;

		cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling);
		cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling);
	}
}

static void clear_cpu_topology(int cpu)
{
	struct cpu_topology *cpu_topo = &cpu_topology[cpu];

	cpumask_clear(&cpu_topo->llc_sibling);
	cpumask_set_cpu(cpu, &cpu_topo->llc_sibling);

	cpumask_clear(&cpu_topo->core_sibling);
	cpumask_set_cpu(cpu, &cpu_topo->core_sibling);
	cpumask_clear(&cpu_topo->thread_sibling);
	cpumask_set_cpu(cpu, &cpu_topo->thread_sibling);
}

541
void __init reset_cpu_topology(void)
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
{
	unsigned int cpu;

	for_each_possible_cpu(cpu) {
		struct cpu_topology *cpu_topo = &cpu_topology[cpu];

		cpu_topo->thread_id = -1;
		cpu_topo->core_id = -1;
		cpu_topo->package_id = -1;
		cpu_topo->llc_id = -1;

		clear_cpu_topology(cpu);
	}
}

void remove_cpu_topology(unsigned int cpu)
{
	int sibling;

	for_each_cpu(sibling, topology_core_cpumask(cpu))
		cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
	for_each_cpu(sibling, topology_sibling_cpumask(cpu))
		cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
	for_each_cpu(sibling, topology_llc_cpumask(cpu))
		cpumask_clear_cpu(cpu, topology_llc_cpumask(sibling));

	clear_cpu_topology(cpu);
}

__weak int __init parse_acpi_topology(void)
{
	return 0;
}

576
#if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
577 578 579 580 581 582 583 584 585 586 587 588 589 590
void __init init_cpu_topology(void)
{
	reset_cpu_topology();

	/*
	 * Discard anything that was parsed if we hit an error so we
	 * don't use partial information.
	 */
	if (parse_acpi_topology())
		reset_cpu_topology();
	else if (of_have_populated_dt() && parse_dt_topology())
		reset_cpu_topology();
}
#endif