trap_emul.c 33.8 KB
Newer Older
1
/*
2 3 4 5 6 7 8 9 10
 * This file is subject to the terms and conditions of the GNU General Public
 * License.  See the file "COPYING" in the main directory of this archive
 * for more details.
 *
 * KVM/MIPS: Deliver/Emulate exceptions to the guest kernel
 *
 * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
 * Authors: Sanjay Lal <sanjayl@kymasys.com>
 */
11 12 13 14

#include <linux/errno.h>
#include <linux/err.h>
#include <linux/kvm_host.h>
15
#include <linux/uaccess.h>
16 17
#include <linux/vmalloc.h>
#include <asm/mmu_context.h>
18
#include <asm/pgalloc.h>
19

20
#include "interrupt.h"
21 22 23 24

static gpa_t kvm_trap_emul_gva_to_gpa_cb(gva_t gva)
{
	gpa_t gpa;
25
	gva_t kseg = KSEGX(gva);
26
	gva_t gkseg = KVM_GUEST_KSEGX(gva);
27 28 29

	if ((kseg == CKSEG0) || (kseg == CKSEG1))
		gpa = CPHYSADDR(gva);
30 31
	else if (gkseg == KVM_GUEST_KSEG0)
		gpa = KVM_GUEST_CPHYSADDR(gva);
32
	else {
33
		kvm_err("%s: cannot find GPA for GVA: %#lx\n", __func__, gva);
34 35 36 37 38 39 40 41 42 43 44
		kvm_mips_dump_host_tlbs();
		gpa = KVM_INVALID_ADDR;
	}

	kvm_debug("%s: gva %#lx, gpa: %#llx\n", __func__, gva, gpa);

	return gpa;
}

static int kvm_trap_emul_handle_cop_unusable(struct kvm_vcpu *vcpu)
{
45
	struct mips_coproc *cop0 = vcpu->arch.cop0;
46
	struct kvm_run *run = vcpu->run;
47
	u32 __user *opc = (u32 __user *) vcpu->arch.pc;
48
	u32 cause = vcpu->arch.host_cp0_cause;
49 50 51
	enum emulation_result er = EMULATE_DONE;
	int ret = RESUME_GUEST;

52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
	if (((cause & CAUSEF_CE) >> CAUSEB_CE) == 1) {
		/* FPU Unusable */
		if (!kvm_mips_guest_has_fpu(&vcpu->arch) ||
		    (kvm_read_c0_guest_status(cop0) & ST0_CU1) == 0) {
			/*
			 * Unusable/no FPU in guest:
			 * deliver guest COP1 Unusable Exception
			 */
			er = kvm_mips_emulate_fpu_exc(cause, opc, run, vcpu);
		} else {
			/* Restore FPU state */
			kvm_own_fpu(vcpu);
			er = EMULATE_DONE;
		}
	} else {
67
		er = kvm_mips_emulate_inst(cause, opc, run, vcpu);
68
	}
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90

	switch (er) {
	case EMULATE_DONE:
		ret = RESUME_GUEST;
		break;

	case EMULATE_FAIL:
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		ret = RESUME_HOST;
		break;

	case EMULATE_WAIT:
		run->exit_reason = KVM_EXIT_INTR;
		ret = RESUME_HOST;
		break;

	default:
		BUG();
	}
	return ret;
}

91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
static int kvm_mips_bad_load(u32 cause, u32 *opc, struct kvm_run *run,
			     struct kvm_vcpu *vcpu)
{
	enum emulation_result er;
	union mips_instruction inst;
	int err;

	/* A code fetch fault doesn't count as an MMIO */
	if (kvm_is_ifetch_fault(&vcpu->arch)) {
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		return RESUME_HOST;
	}

	/* Fetch the instruction. */
	if (cause & CAUSEF_BD)
		opc += 1;
	err = kvm_get_badinstr(opc, vcpu, &inst.word);
	if (err) {
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		return RESUME_HOST;
	}

	/* Emulate the load */
	er = kvm_mips_emulate_load(inst, cause, run, vcpu);
	if (er == EMULATE_FAIL) {
		kvm_err("Emulate load from MMIO space failed\n");
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
	} else {
		run->exit_reason = KVM_EXIT_MMIO;
	}
	return RESUME_HOST;
}

static int kvm_mips_bad_store(u32 cause, u32 *opc, struct kvm_run *run,
			      struct kvm_vcpu *vcpu)
{
	enum emulation_result er;
	union mips_instruction inst;
	int err;

	/* Fetch the instruction. */
	if (cause & CAUSEF_BD)
		opc += 1;
	err = kvm_get_badinstr(opc, vcpu, &inst.word);
	if (err) {
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		return RESUME_HOST;
	}

	/* Emulate the store */
	er = kvm_mips_emulate_store(inst, cause, run, vcpu);
	if (er == EMULATE_FAIL) {
		kvm_err("Emulate store to MMIO space failed\n");
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
	} else {
		run->exit_reason = KVM_EXIT_MMIO;
	}
	return RESUME_HOST;
}

static int kvm_mips_bad_access(u32 cause, u32 *opc, struct kvm_run *run,
			       struct kvm_vcpu *vcpu, bool store)
{
	if (store)
		return kvm_mips_bad_store(cause, opc, run, vcpu);
	else
		return kvm_mips_bad_load(cause, opc, run, vcpu);
}

160 161
static int kvm_trap_emul_handle_tlb_mod(struct kvm_vcpu *vcpu)
{
162
	struct mips_coproc *cop0 = vcpu->arch.cop0;
163
	struct kvm_run *run = vcpu->run;
164
	u32 __user *opc = (u32 __user *) vcpu->arch.pc;
165
	unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
166
	u32 cause = vcpu->arch.host_cp0_cause;
167 168 169
	struct kvm_mips_tlb *tlb;
	unsigned long entryhi;
	int index;
170 171 172

	if (KVM_GUEST_KSEGX(badvaddr) < KVM_GUEST_KSEG0
	    || KVM_GUEST_KSEGX(badvaddr) == KVM_GUEST_KSEG23) {
173 174 175 176 177 178 179 180
		/*
		 * First find the mapping in the guest TLB. If the failure to
		 * write was due to the guest TLB, it should be up to the guest
		 * to handle it.
		 */
		entryhi = (badvaddr & VPN2_MASK) |
			  (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
		index = kvm_mips_guest_tlb_lookup(vcpu, entryhi);
181

182 183 184 185 186
		/*
		 * These should never happen.
		 * They would indicate stale host TLB entries.
		 */
		if (unlikely(index < 0)) {
187
			run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
188
			return RESUME_HOST;
189
		}
190 191 192 193 194 195
		tlb = vcpu->arch.guest_tlb + index;
		if (unlikely(!TLB_IS_VALID(*tlb, badvaddr))) {
			run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
			return RESUME_HOST;
		}

196
		/*
197 198
		 * Guest entry not dirty? That would explain the TLB modified
		 * exception. Relay that on to the guest so it can handle it.
199
		 */
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
		if (!TLB_IS_DIRTY(*tlb, badvaddr)) {
			kvm_mips_emulate_tlbmod(cause, opc, run, vcpu);
			return RESUME_GUEST;
		}

		if (kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb, badvaddr,
							 true))
			/* Not writable, needs handling as MMIO */
			return kvm_mips_bad_store(cause, opc, run, vcpu);
		return RESUME_GUEST;
	} else if (KVM_GUEST_KSEGX(badvaddr) == KVM_GUEST_KSEG0) {
		if (kvm_mips_handle_kseg0_tlb_fault(badvaddr, vcpu, true) < 0)
			/* Not writable, needs handling as MMIO */
			return kvm_mips_bad_store(cause, opc, run, vcpu);
		return RESUME_GUEST;
215
	} else {
216 217
		/* host kernel addresses are all handled as MMIO */
		return kvm_mips_bad_store(cause, opc, run, vcpu);
218 219 220
	}
}

221
static int kvm_trap_emul_handle_tlb_miss(struct kvm_vcpu *vcpu, bool store)
222 223
{
	struct kvm_run *run = vcpu->run;
224
	u32 __user *opc = (u32 __user *) vcpu->arch.pc;
225
	unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
226
	u32 cause = vcpu->arch.host_cp0_cause;
227 228 229 230 231 232 233 234 235 236 237
	enum emulation_result er = EMULATE_DONE;
	int ret = RESUME_GUEST;

	if (((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR)
	    && KVM_GUEST_KERNEL_MODE(vcpu)) {
		if (kvm_mips_handle_commpage_tlb_fault(badvaddr, vcpu) < 0) {
			run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
			ret = RESUME_HOST;
		}
	} else if (KVM_GUEST_KSEGX(badvaddr) < KVM_GUEST_KSEG0
		   || KVM_GUEST_KSEGX(badvaddr) == KVM_GUEST_KSEG23) {
238 239
		kvm_debug("USER ADDR TLB %s fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
			  store ? "ST" : "LD", cause, opc, badvaddr);
240

241 242 243 244 245 246 247 248
		/*
		 * User Address (UA) fault, this could happen if
		 * (1) TLB entry not present/valid in both Guest and shadow host
		 *     TLBs, in this case we pass on the fault to the guest
		 *     kernel and let it handle it.
		 * (2) TLB entry is present in the Guest TLB but not in the
		 *     shadow, in this case we inject the TLB from the Guest TLB
		 *     into the shadow host TLB
249 250
		 */

251
		er = kvm_mips_handle_tlbmiss(cause, opc, run, vcpu, store);
252 253 254 255 256 257 258
		if (er == EMULATE_DONE)
			ret = RESUME_GUEST;
		else {
			run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
			ret = RESUME_HOST;
		}
	} else if (KVM_GUEST_KSEGX(badvaddr) == KVM_GUEST_KSEG0) {
259 260 261 262
		/*
		 * All KSEG0 faults are handled by KVM, as the guest kernel does
		 * not expect to ever get them
		 */
263 264
		if (kvm_mips_handle_kseg0_tlb_fault(badvaddr, vcpu, store) < 0)
			ret = kvm_mips_bad_access(cause, opc, run, vcpu, store);
265 266 267 268 269 270
	} else if (KVM_GUEST_KERNEL_MODE(vcpu)
		   && (KSEGX(badvaddr) == CKSEG0 || KSEGX(badvaddr) == CKSEG1)) {
		/*
		 * With EVA we may get a TLB exception instead of an address
		 * error when the guest performs MMIO to KSeg1 addresses.
		 */
271
		ret = kvm_mips_bad_access(cause, opc, run, vcpu, store);
272
	} else {
273 274
		kvm_err("Illegal TLB %s fault address , cause %#x, PC: %p, BadVaddr: %#lx\n",
			store ? "ST" : "LD", cause, opc, badvaddr);
275 276 277 278 279 280 281 282
		kvm_mips_dump_host_tlbs();
		kvm_arch_vcpu_dump_regs(vcpu);
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		ret = RESUME_HOST;
	}
	return ret;
}

283 284 285 286 287 288 289 290 291 292
static int kvm_trap_emul_handle_tlb_st_miss(struct kvm_vcpu *vcpu)
{
	return kvm_trap_emul_handle_tlb_miss(vcpu, true);
}

static int kvm_trap_emul_handle_tlb_ld_miss(struct kvm_vcpu *vcpu)
{
	return kvm_trap_emul_handle_tlb_miss(vcpu, false);
}

293 294 295
static int kvm_trap_emul_handle_addr_err_st(struct kvm_vcpu *vcpu)
{
	struct kvm_run *run = vcpu->run;
296
	u32 __user *opc = (u32 __user *) vcpu->arch.pc;
297
	unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
298
	u32 cause = vcpu->arch.host_cp0_cause;
299 300 301 302
	int ret = RESUME_GUEST;

	if (KVM_GUEST_KERNEL_MODE(vcpu)
	    && (KSEGX(badvaddr) == CKSEG0 || KSEGX(badvaddr) == CKSEG1)) {
303
		ret = kvm_mips_bad_store(cause, opc, run, vcpu);
304
	} else {
305
		kvm_err("Address Error (STORE): cause %#x, PC: %p, BadVaddr: %#lx\n",
306
			cause, opc, badvaddr);
307 308 309 310 311 312 313 314 315
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		ret = RESUME_HOST;
	}
	return ret;
}

static int kvm_trap_emul_handle_addr_err_ld(struct kvm_vcpu *vcpu)
{
	struct kvm_run *run = vcpu->run;
316
	u32 __user *opc = (u32 __user *) vcpu->arch.pc;
317
	unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
318
	u32 cause = vcpu->arch.host_cp0_cause;
319 320 321
	int ret = RESUME_GUEST;

	if (KSEGX(badvaddr) == CKSEG0 || KSEGX(badvaddr) == CKSEG1) {
322
		ret = kvm_mips_bad_load(cause, opc, run, vcpu);
323
	} else {
324
		kvm_err("Address Error (LOAD): cause %#x, PC: %p, BadVaddr: %#lx\n",
325
			cause, opc, badvaddr);
326 327 328 329 330 331 332 333 334
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		ret = RESUME_HOST;
	}
	return ret;
}

static int kvm_trap_emul_handle_syscall(struct kvm_vcpu *vcpu)
{
	struct kvm_run *run = vcpu->run;
335
	u32 __user *opc = (u32 __user *) vcpu->arch.pc;
336
	u32 cause = vcpu->arch.host_cp0_cause;
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
	enum emulation_result er = EMULATE_DONE;
	int ret = RESUME_GUEST;

	er = kvm_mips_emulate_syscall(cause, opc, run, vcpu);
	if (er == EMULATE_DONE)
		ret = RESUME_GUEST;
	else {
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		ret = RESUME_HOST;
	}
	return ret;
}

static int kvm_trap_emul_handle_res_inst(struct kvm_vcpu *vcpu)
{
	struct kvm_run *run = vcpu->run;
353
	u32 __user *opc = (u32 __user *) vcpu->arch.pc;
354
	u32 cause = vcpu->arch.host_cp0_cause;
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
	enum emulation_result er = EMULATE_DONE;
	int ret = RESUME_GUEST;

	er = kvm_mips_handle_ri(cause, opc, run, vcpu);
	if (er == EMULATE_DONE)
		ret = RESUME_GUEST;
	else {
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		ret = RESUME_HOST;
	}
	return ret;
}

static int kvm_trap_emul_handle_break(struct kvm_vcpu *vcpu)
{
	struct kvm_run *run = vcpu->run;
371
	u32 __user *opc = (u32 __user *) vcpu->arch.pc;
372
	u32 cause = vcpu->arch.host_cp0_cause;
373 374 375 376 377 378 379 380 381 382 383 384 385
	enum emulation_result er = EMULATE_DONE;
	int ret = RESUME_GUEST;

	er = kvm_mips_emulate_bp_exc(cause, opc, run, vcpu);
	if (er == EMULATE_DONE)
		ret = RESUME_GUEST;
	else {
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		ret = RESUME_HOST;
	}
	return ret;
}

386 387 388
static int kvm_trap_emul_handle_trap(struct kvm_vcpu *vcpu)
{
	struct kvm_run *run = vcpu->run;
389
	u32 __user *opc = (u32 __user *)vcpu->arch.pc;
390
	u32 cause = vcpu->arch.host_cp0_cause;
391 392 393 394 395 396 397 398 399 400 401 402 403
	enum emulation_result er = EMULATE_DONE;
	int ret = RESUME_GUEST;

	er = kvm_mips_emulate_trap_exc(cause, opc, run, vcpu);
	if (er == EMULATE_DONE) {
		ret = RESUME_GUEST;
	} else {
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		ret = RESUME_HOST;
	}
	return ret;
}

404 405 406
static int kvm_trap_emul_handle_msa_fpe(struct kvm_vcpu *vcpu)
{
	struct kvm_run *run = vcpu->run;
407
	u32 __user *opc = (u32 __user *)vcpu->arch.pc;
408
	u32 cause = vcpu->arch.host_cp0_cause;
409 410 411 412 413 414 415 416 417 418 419 420 421
	enum emulation_result er = EMULATE_DONE;
	int ret = RESUME_GUEST;

	er = kvm_mips_emulate_msafpe_exc(cause, opc, run, vcpu);
	if (er == EMULATE_DONE) {
		ret = RESUME_GUEST;
	} else {
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		ret = RESUME_HOST;
	}
	return ret;
}

422 423 424
static int kvm_trap_emul_handle_fpe(struct kvm_vcpu *vcpu)
{
	struct kvm_run *run = vcpu->run;
425
	u32 __user *opc = (u32 __user *)vcpu->arch.pc;
426
	u32 cause = vcpu->arch.host_cp0_cause;
427 428 429 430 431 432 433 434 435 436 437 438 439
	enum emulation_result er = EMULATE_DONE;
	int ret = RESUME_GUEST;

	er = kvm_mips_emulate_fpe_exc(cause, opc, run, vcpu);
	if (er == EMULATE_DONE) {
		ret = RESUME_GUEST;
	} else {
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		ret = RESUME_HOST;
	}
	return ret;
}

440 441 442 443 444 445
/**
 * kvm_trap_emul_handle_msa_disabled() - Guest used MSA while disabled in root.
 * @vcpu:	Virtual CPU context.
 *
 * Handle when the guest attempts to use MSA when it is disabled.
 */
446 447
static int kvm_trap_emul_handle_msa_disabled(struct kvm_vcpu *vcpu)
{
448
	struct mips_coproc *cop0 = vcpu->arch.cop0;
449
	struct kvm_run *run = vcpu->run;
450
	u32 __user *opc = (u32 __user *) vcpu->arch.pc;
451
	u32 cause = vcpu->arch.host_cp0_cause;
452 453 454
	enum emulation_result er = EMULATE_DONE;
	int ret = RESUME_GUEST;

455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
	if (!kvm_mips_guest_has_msa(&vcpu->arch) ||
	    (kvm_read_c0_guest_status(cop0) & (ST0_CU1 | ST0_FR)) == ST0_CU1) {
		/*
		 * No MSA in guest, or FPU enabled and not in FR=1 mode,
		 * guest reserved instruction exception
		 */
		er = kvm_mips_emulate_ri_exc(cause, opc, run, vcpu);
	} else if (!(kvm_read_c0_guest_config5(cop0) & MIPS_CONF5_MSAEN)) {
		/* MSA disabled by guest, guest MSA disabled exception */
		er = kvm_mips_emulate_msadis_exc(cause, opc, run, vcpu);
	} else {
		/* Restore MSA/FPU state */
		kvm_own_msa(vcpu);
		er = EMULATE_DONE;
	}
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486

	switch (er) {
	case EMULATE_DONE:
		ret = RESUME_GUEST;
		break;

	case EMULATE_FAIL:
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		ret = RESUME_HOST;
		break;

	default:
		BUG();
	}
	return ret;
}

487 488
static int kvm_trap_emul_vcpu_init(struct kvm_vcpu *vcpu)
{
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
	struct mm_struct *kern_mm = &vcpu->arch.guest_kernel_mm;
	struct mm_struct *user_mm = &vcpu->arch.guest_user_mm;

	/*
	 * Allocate GVA -> HPA page tables.
	 * MIPS doesn't use the mm_struct pointer argument.
	 */
	kern_mm->pgd = pgd_alloc(kern_mm);
	if (!kern_mm->pgd)
		return -ENOMEM;

	user_mm->pgd = pgd_alloc(user_mm);
	if (!user_mm->pgd) {
		pgd_free(kern_mm, kern_mm->pgd);
		return -ENOMEM;
	}

506 507 508
	return 0;
}

509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
static void kvm_mips_emul_free_gva_pt(pgd_t *pgd)
{
	/* Don't free host kernel page tables copied from init_mm.pgd */
	const unsigned long end = 0x80000000;
	unsigned long pgd_va, pud_va, pmd_va;
	pud_t *pud;
	pmd_t *pmd;
	pte_t *pte;
	int i, j, k;

	for (i = 0; i < USER_PTRS_PER_PGD; i++) {
		if (pgd_none(pgd[i]))
			continue;

		pgd_va = (unsigned long)i << PGDIR_SHIFT;
		if (pgd_va >= end)
			break;
		pud = pud_offset(pgd + i, 0);
		for (j = 0; j < PTRS_PER_PUD; j++) {
			if (pud_none(pud[j]))
				continue;

			pud_va = pgd_va | ((unsigned long)j << PUD_SHIFT);
			if (pud_va >= end)
				break;
			pmd = pmd_offset(pud + j, 0);
			for (k = 0; k < PTRS_PER_PMD; k++) {
				if (pmd_none(pmd[k]))
					continue;

				pmd_va = pud_va | (k << PMD_SHIFT);
				if (pmd_va >= end)
					break;
				pte = pte_offset(pmd + k, 0);
				pte_free_kernel(NULL, pte);
			}
			pmd_free(NULL, pmd);
		}
		pud_free(NULL, pud);
	}
	pgd_free(NULL, pgd);
}

J
James Hogan 已提交
552 553
static void kvm_trap_emul_vcpu_uninit(struct kvm_vcpu *vcpu)
{
554 555
	kvm_mips_emul_free_gva_pt(vcpu->arch.guest_kernel_mm.pgd);
	kvm_mips_emul_free_gva_pt(vcpu->arch.guest_user_mm.pgd);
J
James Hogan 已提交
556 557
}

558 559 560
static int kvm_trap_emul_vcpu_setup(struct kvm_vcpu *vcpu)
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
561
	u32 config, config1;
562 563
	int vcpu_id = vcpu->vcpu_id;

564 565
	/*
	 * Arch specific stuff, set up config registers properly so that the
566
	 * guest will come up as expected
567
	 */
568 569
#ifndef CONFIG_CPU_MIPSR6
	/* r2-r5, simulate a MIPS 24kc */
570
	kvm_write_c0_guest_prid(cop0, 0x00019300);
571 572 573 574
#else
	/* r6+, simulate a generic QEMU machine */
	kvm_write_c0_guest_prid(cop0, 0x00010000);
#endif
575 576 577 578 579 580
	/*
	 * Have config1, Cacheable, noncoherent, write-back, write allocate.
	 * Endianness, arch revision & virtually tagged icache should match
	 * host.
	 */
	config = read_c0_config() & MIPS_CONF_AR;
581
	config |= MIPS_CONF_M | CONF_CM_CACHABLE_NONCOHERENT | MIPS_CONF_MT_TLB;
582 583 584 585 586 587
#ifdef CONFIG_CPU_BIG_ENDIAN
	config |= CONF_BE;
#endif
	if (cpu_has_vtag_icache)
		config |= MIPS_CONF_VI;
	kvm_write_c0_guest_config(cop0, config);
588 589 590 591 592 593 594 595 596

	/* Read the cache characteristics from the host Config1 Register */
	config1 = (read_c0_config1() & ~0x7f);

	/* Set up MMU size */
	config1 &= ~(0x3f << 25);
	config1 |= ((KVM_MIPS_GUEST_TLB_SIZE - 1) << 25);

	/* We unset some bits that we aren't emulating */
597 598
	config1 &= ~(MIPS_CONF1_C2 | MIPS_CONF1_MD | MIPS_CONF1_PC |
		     MIPS_CONF1_WR | MIPS_CONF1_CA);
599 600
	kvm_write_c0_guest_config1(cop0, config1);

601 602 603 604
	/* Have config3, no tertiary/secondary caches implemented */
	kvm_write_c0_guest_config2(cop0, MIPS_CONF_M);
	/* MIPS_CONF_M | (read_c0_config2() & 0xfff) */

605 606 607 608 609 610 611 612
	/* Have config4, UserLocal */
	kvm_write_c0_guest_config3(cop0, MIPS_CONF_M | MIPS_CONF3_ULRI);

	/* Have config5 */
	kvm_write_c0_guest_config4(cop0, MIPS_CONF_M);

	/* No config6 */
	kvm_write_c0_guest_config5(cop0, 0);
613 614 615 616

	/* Set Wait IE/IXMT Ignore in Config7, IAR, AR */
	kvm_write_c0_guest_config7(cop0, (MIPS_CONF7_WII) | (1 << 10));

617 618 619
	/* Status */
	kvm_write_c0_guest_status(cop0, ST0_BEV | ST0_ERL);

620
	/*
621
	 * Setup IntCtl defaults, compatibility mode for timer interrupts (HW5)
622
	 */
623 624 625
	kvm_write_c0_guest_intctl(cop0, 0xFC000000);

	/* Put in vcpu id as CPUNum into Ebase Reg to handle SMP Guests */
626 627
	kvm_write_c0_guest_ebase(cop0, KVM_GUEST_KSEG0 |
				       (vcpu_id & MIPS_EBASE_CPUNUM));
628

629 630 631
	/* Put PC at guest reset vector */
	vcpu->arch.pc = KVM_GUEST_CKSEG1ADDR(0x1fc00000);

632 633 634
	return 0;
}

635 636 637 638 639 640 641 642 643 644 645 646
static void kvm_trap_emul_flush_shadow_all(struct kvm *kvm)
{
	/* Flush GVA page tables and invalidate GVA ASIDs on all VCPUs */
	kvm_flush_remote_tlbs(kvm);
}

static void kvm_trap_emul_flush_shadow_memslot(struct kvm *kvm,
					const struct kvm_memory_slot *slot)
{
	kvm_trap_emul_flush_shadow_all(kvm);
}

647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
static u64 kvm_trap_emul_get_one_regs[] = {
	KVM_REG_MIPS_CP0_INDEX,
	KVM_REG_MIPS_CP0_CONTEXT,
	KVM_REG_MIPS_CP0_USERLOCAL,
	KVM_REG_MIPS_CP0_PAGEMASK,
	KVM_REG_MIPS_CP0_WIRED,
	KVM_REG_MIPS_CP0_HWRENA,
	KVM_REG_MIPS_CP0_BADVADDR,
	KVM_REG_MIPS_CP0_COUNT,
	KVM_REG_MIPS_CP0_ENTRYHI,
	KVM_REG_MIPS_CP0_COMPARE,
	KVM_REG_MIPS_CP0_STATUS,
	KVM_REG_MIPS_CP0_CAUSE,
	KVM_REG_MIPS_CP0_EPC,
	KVM_REG_MIPS_CP0_PRID,
662
	KVM_REG_MIPS_CP0_EBASE,
663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
	KVM_REG_MIPS_CP0_CONFIG,
	KVM_REG_MIPS_CP0_CONFIG1,
	KVM_REG_MIPS_CP0_CONFIG2,
	KVM_REG_MIPS_CP0_CONFIG3,
	KVM_REG_MIPS_CP0_CONFIG4,
	KVM_REG_MIPS_CP0_CONFIG5,
	KVM_REG_MIPS_CP0_CONFIG7,
	KVM_REG_MIPS_CP0_ERROREPC,
	KVM_REG_MIPS_CP0_KSCRATCH1,
	KVM_REG_MIPS_CP0_KSCRATCH2,
	KVM_REG_MIPS_CP0_KSCRATCH3,
	KVM_REG_MIPS_CP0_KSCRATCH4,
	KVM_REG_MIPS_CP0_KSCRATCH5,
	KVM_REG_MIPS_CP0_KSCRATCH6,

	KVM_REG_MIPS_COUNT_CTL,
	KVM_REG_MIPS_COUNT_RESUME,
	KVM_REG_MIPS_COUNT_HZ,
};

683 684
static unsigned long kvm_trap_emul_num_regs(struct kvm_vcpu *vcpu)
{
685
	return ARRAY_SIZE(kvm_trap_emul_get_one_regs);
686 687 688 689 690
}

static int kvm_trap_emul_copy_reg_indices(struct kvm_vcpu *vcpu,
					  u64 __user *indices)
{
691 692 693 694 695
	if (copy_to_user(indices, kvm_trap_emul_get_one_regs,
			 sizeof(kvm_trap_emul_get_one_regs)))
		return -EFAULT;
	indices += ARRAY_SIZE(kvm_trap_emul_get_one_regs);

696 697 698
	return 0;
}

699 700 701 702
static int kvm_trap_emul_get_one_reg(struct kvm_vcpu *vcpu,
				     const struct kvm_one_reg *reg,
				     s64 *v)
{
703 704
	struct mips_coproc *cop0 = vcpu->arch.cop0;

705
	switch (reg->id) {
706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
	case KVM_REG_MIPS_CP0_INDEX:
		*v = (long)kvm_read_c0_guest_index(cop0);
		break;
	case KVM_REG_MIPS_CP0_CONTEXT:
		*v = (long)kvm_read_c0_guest_context(cop0);
		break;
	case KVM_REG_MIPS_CP0_USERLOCAL:
		*v = (long)kvm_read_c0_guest_userlocal(cop0);
		break;
	case KVM_REG_MIPS_CP0_PAGEMASK:
		*v = (long)kvm_read_c0_guest_pagemask(cop0);
		break;
	case KVM_REG_MIPS_CP0_WIRED:
		*v = (long)kvm_read_c0_guest_wired(cop0);
		break;
	case KVM_REG_MIPS_CP0_HWRENA:
		*v = (long)kvm_read_c0_guest_hwrena(cop0);
		break;
	case KVM_REG_MIPS_CP0_BADVADDR:
		*v = (long)kvm_read_c0_guest_badvaddr(cop0);
		break;
	case KVM_REG_MIPS_CP0_ENTRYHI:
		*v = (long)kvm_read_c0_guest_entryhi(cop0);
		break;
	case KVM_REG_MIPS_CP0_COMPARE:
		*v = (long)kvm_read_c0_guest_compare(cop0);
		break;
	case KVM_REG_MIPS_CP0_STATUS:
		*v = (long)kvm_read_c0_guest_status(cop0);
		break;
	case KVM_REG_MIPS_CP0_CAUSE:
		*v = (long)kvm_read_c0_guest_cause(cop0);
		break;
	case KVM_REG_MIPS_CP0_EPC:
		*v = (long)kvm_read_c0_guest_epc(cop0);
		break;
	case KVM_REG_MIPS_CP0_PRID:
		*v = (long)kvm_read_c0_guest_prid(cop0);
		break;
745 746 747
	case KVM_REG_MIPS_CP0_EBASE:
		*v = (long)kvm_read_c0_guest_ebase(cop0);
		break;
748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
	case KVM_REG_MIPS_CP0_CONFIG:
		*v = (long)kvm_read_c0_guest_config(cop0);
		break;
	case KVM_REG_MIPS_CP0_CONFIG1:
		*v = (long)kvm_read_c0_guest_config1(cop0);
		break;
	case KVM_REG_MIPS_CP0_CONFIG2:
		*v = (long)kvm_read_c0_guest_config2(cop0);
		break;
	case KVM_REG_MIPS_CP0_CONFIG3:
		*v = (long)kvm_read_c0_guest_config3(cop0);
		break;
	case KVM_REG_MIPS_CP0_CONFIG4:
		*v = (long)kvm_read_c0_guest_config4(cop0);
		break;
	case KVM_REG_MIPS_CP0_CONFIG5:
		*v = (long)kvm_read_c0_guest_config5(cop0);
		break;
	case KVM_REG_MIPS_CP0_CONFIG7:
		*v = (long)kvm_read_c0_guest_config7(cop0);
		break;
769
	case KVM_REG_MIPS_CP0_COUNT:
770
		*v = kvm_mips_read_count(vcpu);
771
		break;
772 773 774 775 776 777
	case KVM_REG_MIPS_COUNT_CTL:
		*v = vcpu->arch.count_ctl;
		break;
	case KVM_REG_MIPS_COUNT_RESUME:
		*v = ktime_to_ns(vcpu->arch.count_resume);
		break;
778 779 780
	case KVM_REG_MIPS_COUNT_HZ:
		*v = vcpu->arch.count_hz;
		break;
781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
	case KVM_REG_MIPS_CP0_ERROREPC:
		*v = (long)kvm_read_c0_guest_errorepc(cop0);
		break;
	case KVM_REG_MIPS_CP0_KSCRATCH1:
		*v = (long)kvm_read_c0_guest_kscratch1(cop0);
		break;
	case KVM_REG_MIPS_CP0_KSCRATCH2:
		*v = (long)kvm_read_c0_guest_kscratch2(cop0);
		break;
	case KVM_REG_MIPS_CP0_KSCRATCH3:
		*v = (long)kvm_read_c0_guest_kscratch3(cop0);
		break;
	case KVM_REG_MIPS_CP0_KSCRATCH4:
		*v = (long)kvm_read_c0_guest_kscratch4(cop0);
		break;
	case KVM_REG_MIPS_CP0_KSCRATCH5:
		*v = (long)kvm_read_c0_guest_kscratch5(cop0);
		break;
	case KVM_REG_MIPS_CP0_KSCRATCH6:
		*v = (long)kvm_read_c0_guest_kscratch6(cop0);
		break;
802 803 804 805 806 807 808 809 810 811 812
	default:
		return -EINVAL;
	}
	return 0;
}

static int kvm_trap_emul_set_one_reg(struct kvm_vcpu *vcpu,
				     const struct kvm_one_reg *reg,
				     s64 v)
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
813
	int ret = 0;
814
	unsigned int cur, change;
815 816

	switch (reg->id) {
817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
	case KVM_REG_MIPS_CP0_INDEX:
		kvm_write_c0_guest_index(cop0, v);
		break;
	case KVM_REG_MIPS_CP0_CONTEXT:
		kvm_write_c0_guest_context(cop0, v);
		break;
	case KVM_REG_MIPS_CP0_USERLOCAL:
		kvm_write_c0_guest_userlocal(cop0, v);
		break;
	case KVM_REG_MIPS_CP0_PAGEMASK:
		kvm_write_c0_guest_pagemask(cop0, v);
		break;
	case KVM_REG_MIPS_CP0_WIRED:
		kvm_write_c0_guest_wired(cop0, v);
		break;
	case KVM_REG_MIPS_CP0_HWRENA:
		kvm_write_c0_guest_hwrena(cop0, v);
		break;
	case KVM_REG_MIPS_CP0_BADVADDR:
		kvm_write_c0_guest_badvaddr(cop0, v);
		break;
	case KVM_REG_MIPS_CP0_ENTRYHI:
		kvm_write_c0_guest_entryhi(cop0, v);
		break;
	case KVM_REG_MIPS_CP0_STATUS:
		kvm_write_c0_guest_status(cop0, v);
		break;
	case KVM_REG_MIPS_CP0_EPC:
		kvm_write_c0_guest_epc(cop0, v);
		break;
	case KVM_REG_MIPS_CP0_PRID:
		kvm_write_c0_guest_prid(cop0, v);
		break;
850 851 852 853 854 855 856 857
	case KVM_REG_MIPS_CP0_EBASE:
		/*
		 * Allow core number to be written, but the exception base must
		 * remain in guest KSeg0.
		 */
		kvm_change_c0_guest_ebase(cop0, 0x1ffff000 | MIPS_EBASE_CPUNUM,
					  v);
		break;
858
	case KVM_REG_MIPS_CP0_COUNT:
859
		kvm_mips_write_count(vcpu, v);
860 861
		break;
	case KVM_REG_MIPS_CP0_COMPARE:
862
		kvm_mips_write_compare(vcpu, v, false);
863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
		break;
	case KVM_REG_MIPS_CP0_CAUSE:
		/*
		 * If the timer is stopped or started (DC bit) it must look
		 * atomic with changes to the interrupt pending bits (TI, IRQ5).
		 * A timer interrupt should not happen in between.
		 */
		if ((kvm_read_c0_guest_cause(cop0) ^ v) & CAUSEF_DC) {
			if (v & CAUSEF_DC) {
				/* disable timer first */
				kvm_mips_count_disable_cause(vcpu);
				kvm_change_c0_guest_cause(cop0, ~CAUSEF_DC, v);
			} else {
				/* enable timer last */
				kvm_change_c0_guest_cause(cop0, ~CAUSEF_DC, v);
				kvm_mips_count_enable_cause(vcpu);
			}
		} else {
			kvm_write_c0_guest_cause(cop0, v);
		}
883
		break;
884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921
	case KVM_REG_MIPS_CP0_CONFIG:
		/* read-only for now */
		break;
	case KVM_REG_MIPS_CP0_CONFIG1:
		cur = kvm_read_c0_guest_config1(cop0);
		change = (cur ^ v) & kvm_mips_config1_wrmask(vcpu);
		if (change) {
			v = cur ^ change;
			kvm_write_c0_guest_config1(cop0, v);
		}
		break;
	case KVM_REG_MIPS_CP0_CONFIG2:
		/* read-only for now */
		break;
	case KVM_REG_MIPS_CP0_CONFIG3:
		cur = kvm_read_c0_guest_config3(cop0);
		change = (cur ^ v) & kvm_mips_config3_wrmask(vcpu);
		if (change) {
			v = cur ^ change;
			kvm_write_c0_guest_config3(cop0, v);
		}
		break;
	case KVM_REG_MIPS_CP0_CONFIG4:
		cur = kvm_read_c0_guest_config4(cop0);
		change = (cur ^ v) & kvm_mips_config4_wrmask(vcpu);
		if (change) {
			v = cur ^ change;
			kvm_write_c0_guest_config4(cop0, v);
		}
		break;
	case KVM_REG_MIPS_CP0_CONFIG5:
		cur = kvm_read_c0_guest_config5(cop0);
		change = (cur ^ v) & kvm_mips_config5_wrmask(vcpu);
		if (change) {
			v = cur ^ change;
			kvm_write_c0_guest_config5(cop0, v);
		}
		break;
922 923 924
	case KVM_REG_MIPS_CP0_CONFIG7:
		/* writes ignored */
		break;
925 926 927 928 929 930
	case KVM_REG_MIPS_COUNT_CTL:
		ret = kvm_mips_set_count_ctl(vcpu, v);
		break;
	case KVM_REG_MIPS_COUNT_RESUME:
		ret = kvm_mips_set_count_resume(vcpu, v);
		break;
931 932 933
	case KVM_REG_MIPS_COUNT_HZ:
		ret = kvm_mips_set_count_hz(vcpu, v);
		break;
934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
	case KVM_REG_MIPS_CP0_ERROREPC:
		kvm_write_c0_guest_errorepc(cop0, v);
		break;
	case KVM_REG_MIPS_CP0_KSCRATCH1:
		kvm_write_c0_guest_kscratch1(cop0, v);
		break;
	case KVM_REG_MIPS_CP0_KSCRATCH2:
		kvm_write_c0_guest_kscratch2(cop0, v);
		break;
	case KVM_REG_MIPS_CP0_KSCRATCH3:
		kvm_write_c0_guest_kscratch3(cop0, v);
		break;
	case KVM_REG_MIPS_CP0_KSCRATCH4:
		kvm_write_c0_guest_kscratch4(cop0, v);
		break;
	case KVM_REG_MIPS_CP0_KSCRATCH5:
		kvm_write_c0_guest_kscratch5(cop0, v);
		break;
	case KVM_REG_MIPS_CP0_KSCRATCH6:
		kvm_write_c0_guest_kscratch6(cop0, v);
		break;
955 956 957
	default:
		return -EINVAL;
	}
958
	return ret;
959 960
}

961
static int kvm_trap_emul_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
962
{
963 964
	struct mm_struct *kern_mm = &vcpu->arch.guest_kernel_mm;
	struct mm_struct *user_mm = &vcpu->arch.guest_user_mm;
965
	struct mm_struct *mm;
966 967

	/*
968 969
	 * Were we in guest context? If so, restore the appropriate ASID based
	 * on the mode of the Guest (Kernel/User).
970 971
	 */
	if (current->flags & PF_VCPU) {
972
		mm = KVM_GUEST_KERNEL_MODE(vcpu) ? kern_mm : user_mm;
973 974 975
		if ((cpu_context(cpu, mm) ^ asid_cache(cpu)) &
		    asid_version_mask(cpu))
			get_new_mmu_context(mm, cpu);
976 977
		write_c0_entryhi(cpu_asid(cpu, mm));
		TLBMISS_HANDLER_SETUP_PGD(mm->pgd);
978
		kvm_mips_suspend_mm(cpu);
979 980 981
		ehb();
	}

982 983 984
	return 0;
}

985
static int kvm_trap_emul_vcpu_put(struct kvm_vcpu *vcpu, int cpu)
986
{
987 988
	kvm_lose_fpu(vcpu);

989 990 991
	if (current->flags & PF_VCPU) {
		/* Restore normal Linux process memory map */
		if (((cpu_context(cpu, current->mm) ^ asid_cache(cpu)) &
992
		     asid_version_mask(cpu)))
993 994
			get_new_mmu_context(current->mm, cpu);
		write_c0_entryhi(cpu_asid(cpu, current->mm));
995
		TLBMISS_HANDLER_SETUP_PGD(current->mm->pgd);
996
		kvm_mips_resume_mm(cpu);
997
		ehb();
998 999
	}

1000 1001 1002
	return 0;
}

1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
static void kvm_trap_emul_check_requests(struct kvm_vcpu *vcpu, int cpu,
					 bool reload_asid)
{
	struct mm_struct *kern_mm = &vcpu->arch.guest_kernel_mm;
	struct mm_struct *user_mm = &vcpu->arch.guest_user_mm;
	struct mm_struct *mm;
	int i;

	if (likely(!vcpu->requests))
		return;

	if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
		/*
		 * Both kernel & user GVA mappings must be invalidated. The
		 * caller is just about to check whether the ASID is stale
		 * anyway so no need to reload it here.
		 */
		kvm_mips_flush_gva_pt(kern_mm->pgd, KMF_GPA | KMF_KERN);
		kvm_mips_flush_gva_pt(user_mm->pgd, KMF_GPA | KMF_USER);
		for_each_possible_cpu(i) {
			cpu_context(i, kern_mm) = 0;
			cpu_context(i, user_mm) = 0;
		}

		/* Generate new ASID for current mode */
		if (reload_asid) {
			mm = KVM_GUEST_KERNEL_MODE(vcpu) ? kern_mm : user_mm;
			get_new_mmu_context(mm, cpu);
			htw_stop();
			write_c0_entryhi(cpu_asid(cpu, mm));
			TLBMISS_HANDLER_SETUP_PGD(mm->pgd);
			htw_start();
		}
	}
}

1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
/**
 * kvm_trap_emul_gva_lockless_begin() - Begin lockless access to GVA space.
 * @vcpu:	VCPU pointer.
 *
 * Call before a GVA space access outside of guest mode, to ensure that
 * asynchronous TLB flush requests are handled or delayed until completion of
 * the GVA access (as indicated by a matching kvm_trap_emul_gva_lockless_end()).
 *
 * Should be called with IRQs already enabled.
 */
void kvm_trap_emul_gva_lockless_begin(struct kvm_vcpu *vcpu)
{
	/* We re-enable IRQs in kvm_trap_emul_gva_lockless_end() */
	WARN_ON_ONCE(irqs_disabled());

	/*
	 * The caller is about to access the GVA space, so we set the mode to
	 * force TLB flush requests to send an IPI, and also disable IRQs to
	 * delay IPI handling until kvm_trap_emul_gva_lockless_end().
	 */
	local_irq_disable();

	/*
	 * Make sure the read of VCPU requests is not reordered ahead of the
	 * write to vcpu->mode, or we could miss a TLB flush request while
	 * the requester sees the VCPU as outside of guest mode and not needing
	 * an IPI.
	 */
	smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);

	/*
	 * If a TLB flush has been requested (potentially while
	 * OUTSIDE_GUEST_MODE and assumed immediately effective), perform it
	 * before accessing the GVA space, and be sure to reload the ASID if
	 * necessary as it'll be immediately used.
	 *
	 * TLB flush requests after this check will trigger an IPI due to the
	 * mode change above, which will be delayed due to IRQs disabled.
	 */
	kvm_trap_emul_check_requests(vcpu, smp_processor_id(), true);
}

/**
 * kvm_trap_emul_gva_lockless_end() - End lockless access to GVA space.
 * @vcpu:	VCPU pointer.
 *
 * Called after a GVA space access outside of guest mode. Should have a matching
 * call to kvm_trap_emul_gva_lockless_begin().
 */
void kvm_trap_emul_gva_lockless_end(struct kvm_vcpu *vcpu)
{
	/*
	 * Make sure the write to vcpu->mode is not reordered in front of GVA
	 * accesses, or a TLB flush requester may not think it necessary to send
	 * an IPI.
	 */
	smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);

	/*
	 * Now that the access to GVA space is complete, its safe for pending
	 * TLB flush request IPIs to be handled (which indicates completion).
	 */
	local_irq_enable();
}

1104 1105 1106
static void kvm_trap_emul_vcpu_reenter(struct kvm_run *run,
				       struct kvm_vcpu *vcpu)
{
1107
	struct mm_struct *kern_mm = &vcpu->arch.guest_kernel_mm;
1108
	struct mm_struct *user_mm = &vcpu->arch.guest_user_mm;
1109
	struct mm_struct *mm;
1110 1111 1112 1113 1114
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	int i, cpu = smp_processor_id();
	unsigned int gasid;

	/*
1115 1116 1117
	 * No need to reload ASID, IRQs are disabled already so there's no rush,
	 * and we'll check if we need to regenerate below anyway before
	 * re-entering the guest.
1118
	 */
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
	kvm_trap_emul_check_requests(vcpu, cpu, false);

	if (KVM_GUEST_KERNEL_MODE(vcpu)) {
		mm = kern_mm;
	} else {
		mm = user_mm;

		/*
		 * Lazy host ASID regeneration / PT flush for guest user mode.
		 * If the guest ASID has changed since the last guest usermode
		 * execution, invalidate the stale TLB entries and flush GVA PT
		 * entries too.
		 */
1132 1133
		gasid = kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID;
		if (gasid != vcpu->arch.last_user_gasid) {
1134
			kvm_mips_flush_gva_pt(user_mm->pgd, KMF_USER);
1135
			for_each_possible_cpu(i)
1136
				cpu_context(i, user_mm) = 0;
1137 1138 1139
			vcpu->arch.last_user_gasid = gasid;
		}
	}
1140 1141 1142 1143 1144 1145 1146 1147

	/*
	 * Check if ASID is stale. This may happen due to a TLB flush request or
	 * a lazy user MM invalidation.
	 */
	if ((cpu_context(cpu, mm) ^ asid_cache(cpu)) &
	    asid_version_mask(cpu))
		get_new_mmu_context(mm, cpu);
1148 1149 1150 1151
}

static int kvm_trap_emul_vcpu_run(struct kvm_run *run, struct kvm_vcpu *vcpu)
{
1152
	int cpu = smp_processor_id();
1153 1154 1155 1156 1157 1158 1159 1160
	int r;

	/* Check if we have any exceptions/interrupts pending */
	kvm_mips_deliver_interrupts(vcpu,
				    kvm_read_c0_guest_cause(vcpu->arch.cop0));

	kvm_trap_emul_vcpu_reenter(run, vcpu);

1161 1162 1163 1164 1165 1166
	/*
	 * We use user accessors to access guest memory, but we don't want to
	 * invoke Linux page faulting.
	 */
	pagefault_disable();

1167 1168 1169
	/* Disable hardware page table walking while in guest */
	htw_stop();

1170 1171 1172 1173 1174 1175 1176
	/*
	 * While in guest context we're in the guest's address space, not the
	 * host process address space, so we need to be careful not to confuse
	 * e.g. cache management IPIs.
	 */
	kvm_mips_suspend_mm(cpu);

1177 1178
	r = vcpu->arch.vcpu_run(run, vcpu);

1179 1180 1181 1182 1183 1184 1185 1186
	/* We may have migrated while handling guest exits */
	cpu = smp_processor_id();

	/* Restore normal Linux process memory map */
	if (((cpu_context(cpu, current->mm) ^ asid_cache(cpu)) &
	     asid_version_mask(cpu)))
		get_new_mmu_context(current->mm, cpu);
	write_c0_entryhi(cpu_asid(cpu, current->mm));
1187
	TLBMISS_HANDLER_SETUP_PGD(current->mm->pgd);
1188
	kvm_mips_resume_mm(cpu);
1189

1190 1191
	htw_start();

1192 1193
	pagefault_enable();

1194 1195 1196
	return r;
}

1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
static struct kvm_mips_callbacks kvm_trap_emul_callbacks = {
	/* exit handlers */
	.handle_cop_unusable = kvm_trap_emul_handle_cop_unusable,
	.handle_tlb_mod = kvm_trap_emul_handle_tlb_mod,
	.handle_tlb_st_miss = kvm_trap_emul_handle_tlb_st_miss,
	.handle_tlb_ld_miss = kvm_trap_emul_handle_tlb_ld_miss,
	.handle_addr_err_st = kvm_trap_emul_handle_addr_err_st,
	.handle_addr_err_ld = kvm_trap_emul_handle_addr_err_ld,
	.handle_syscall = kvm_trap_emul_handle_syscall,
	.handle_res_inst = kvm_trap_emul_handle_res_inst,
	.handle_break = kvm_trap_emul_handle_break,
1208
	.handle_trap = kvm_trap_emul_handle_trap,
1209
	.handle_msa_fpe = kvm_trap_emul_handle_msa_fpe,
1210
	.handle_fpe = kvm_trap_emul_handle_fpe,
1211
	.handle_msa_disabled = kvm_trap_emul_handle_msa_disabled,
1212 1213

	.vcpu_init = kvm_trap_emul_vcpu_init,
J
James Hogan 已提交
1214
	.vcpu_uninit = kvm_trap_emul_vcpu_uninit,
1215
	.vcpu_setup = kvm_trap_emul_vcpu_setup,
1216 1217
	.flush_shadow_all = kvm_trap_emul_flush_shadow_all,
	.flush_shadow_memslot = kvm_trap_emul_flush_shadow_memslot,
1218 1219 1220 1221 1222 1223 1224
	.gva_to_gpa = kvm_trap_emul_gva_to_gpa_cb,
	.queue_timer_int = kvm_mips_queue_timer_int_cb,
	.dequeue_timer_int = kvm_mips_dequeue_timer_int_cb,
	.queue_io_int = kvm_mips_queue_io_int_cb,
	.dequeue_io_int = kvm_mips_dequeue_io_int_cb,
	.irq_deliver = kvm_mips_irq_deliver_cb,
	.irq_clear = kvm_mips_irq_clear_cb,
1225 1226
	.num_regs = kvm_trap_emul_num_regs,
	.copy_reg_indices = kvm_trap_emul_copy_reg_indices,
1227 1228
	.get_one_reg = kvm_trap_emul_get_one_reg,
	.set_one_reg = kvm_trap_emul_set_one_reg,
1229 1230
	.vcpu_load = kvm_trap_emul_vcpu_load,
	.vcpu_put = kvm_trap_emul_vcpu_put,
1231 1232
	.vcpu_run = kvm_trap_emul_vcpu_run,
	.vcpu_reenter = kvm_trap_emul_vcpu_reenter,
1233 1234 1235 1236 1237 1238 1239
};

int kvm_mips_emulation_init(struct kvm_mips_callbacks **install_callbacks)
{
	*install_callbacks = &kvm_trap_emul_callbacks;
	return 0;
}