trap_emul.c 33.6 KB
Newer Older
1
/*
2 3 4 5 6 7 8 9 10
 * This file is subject to the terms and conditions of the GNU General Public
 * License.  See the file "COPYING" in the main directory of this archive
 * for more details.
 *
 * KVM/MIPS: Deliver/Emulate exceptions to the guest kernel
 *
 * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
 * Authors: Sanjay Lal <sanjayl@kymasys.com>
 */
11 12 13 14

#include <linux/errno.h>
#include <linux/err.h>
#include <linux/kvm_host.h>
15
#include <linux/uaccess.h>
16 17
#include <linux/vmalloc.h>
#include <asm/mmu_context.h>
18
#include <asm/pgalloc.h>
19

20
#include "interrupt.h"
21 22 23 24

static gpa_t kvm_trap_emul_gva_to_gpa_cb(gva_t gva)
{
	gpa_t gpa;
25
	gva_t kseg = KSEGX(gva);
26
	gva_t gkseg = KVM_GUEST_KSEGX(gva);
27 28 29

	if ((kseg == CKSEG0) || (kseg == CKSEG1))
		gpa = CPHYSADDR(gva);
30 31
	else if (gkseg == KVM_GUEST_KSEG0)
		gpa = KVM_GUEST_CPHYSADDR(gva);
32
	else {
33
		kvm_err("%s: cannot find GPA for GVA: %#lx\n", __func__, gva);
34 35 36 37 38 39 40 41 42 43 44
		kvm_mips_dump_host_tlbs();
		gpa = KVM_INVALID_ADDR;
	}

	kvm_debug("%s: gva %#lx, gpa: %#llx\n", __func__, gva, gpa);

	return gpa;
}

static int kvm_trap_emul_handle_cop_unusable(struct kvm_vcpu *vcpu)
{
45
	struct mips_coproc *cop0 = vcpu->arch.cop0;
46
	struct kvm_run *run = vcpu->run;
47
	u32 __user *opc = (u32 __user *) vcpu->arch.pc;
48
	u32 cause = vcpu->arch.host_cp0_cause;
49 50 51
	enum emulation_result er = EMULATE_DONE;
	int ret = RESUME_GUEST;

52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
	if (((cause & CAUSEF_CE) >> CAUSEB_CE) == 1) {
		/* FPU Unusable */
		if (!kvm_mips_guest_has_fpu(&vcpu->arch) ||
		    (kvm_read_c0_guest_status(cop0) & ST0_CU1) == 0) {
			/*
			 * Unusable/no FPU in guest:
			 * deliver guest COP1 Unusable Exception
			 */
			er = kvm_mips_emulate_fpu_exc(cause, opc, run, vcpu);
		} else {
			/* Restore FPU state */
			kvm_own_fpu(vcpu);
			er = EMULATE_DONE;
		}
	} else {
67
		er = kvm_mips_emulate_inst(cause, opc, run, vcpu);
68
	}
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90

	switch (er) {
	case EMULATE_DONE:
		ret = RESUME_GUEST;
		break;

	case EMULATE_FAIL:
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		ret = RESUME_HOST;
		break;

	case EMULATE_WAIT:
		run->exit_reason = KVM_EXIT_INTR;
		ret = RESUME_HOST;
		break;

	default:
		BUG();
	}
	return ret;
}

91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
static int kvm_mips_bad_load(u32 cause, u32 *opc, struct kvm_run *run,
			     struct kvm_vcpu *vcpu)
{
	enum emulation_result er;
	union mips_instruction inst;
	int err;

	/* A code fetch fault doesn't count as an MMIO */
	if (kvm_is_ifetch_fault(&vcpu->arch)) {
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		return RESUME_HOST;
	}

	/* Fetch the instruction. */
	if (cause & CAUSEF_BD)
		opc += 1;
	err = kvm_get_badinstr(opc, vcpu, &inst.word);
	if (err) {
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		return RESUME_HOST;
	}

	/* Emulate the load */
	er = kvm_mips_emulate_load(inst, cause, run, vcpu);
	if (er == EMULATE_FAIL) {
		kvm_err("Emulate load from MMIO space failed\n");
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
	} else {
		run->exit_reason = KVM_EXIT_MMIO;
	}
	return RESUME_HOST;
}

static int kvm_mips_bad_store(u32 cause, u32 *opc, struct kvm_run *run,
			      struct kvm_vcpu *vcpu)
{
	enum emulation_result er;
	union mips_instruction inst;
	int err;

	/* Fetch the instruction. */
	if (cause & CAUSEF_BD)
		opc += 1;
	err = kvm_get_badinstr(opc, vcpu, &inst.word);
	if (err) {
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		return RESUME_HOST;
	}

	/* Emulate the store */
	er = kvm_mips_emulate_store(inst, cause, run, vcpu);
	if (er == EMULATE_FAIL) {
		kvm_err("Emulate store to MMIO space failed\n");
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
	} else {
		run->exit_reason = KVM_EXIT_MMIO;
	}
	return RESUME_HOST;
}

static int kvm_mips_bad_access(u32 cause, u32 *opc, struct kvm_run *run,
			       struct kvm_vcpu *vcpu, bool store)
{
	if (store)
		return kvm_mips_bad_store(cause, opc, run, vcpu);
	else
		return kvm_mips_bad_load(cause, opc, run, vcpu);
}

160 161
static int kvm_trap_emul_handle_tlb_mod(struct kvm_vcpu *vcpu)
{
162
	struct mips_coproc *cop0 = vcpu->arch.cop0;
163
	struct kvm_run *run = vcpu->run;
164
	u32 __user *opc = (u32 __user *) vcpu->arch.pc;
165
	unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
166
	u32 cause = vcpu->arch.host_cp0_cause;
167 168 169
	struct kvm_mips_tlb *tlb;
	unsigned long entryhi;
	int index;
170 171 172

	if (KVM_GUEST_KSEGX(badvaddr) < KVM_GUEST_KSEG0
	    || KVM_GUEST_KSEGX(badvaddr) == KVM_GUEST_KSEG23) {
173 174 175 176 177 178 179 180
		/*
		 * First find the mapping in the guest TLB. If the failure to
		 * write was due to the guest TLB, it should be up to the guest
		 * to handle it.
		 */
		entryhi = (badvaddr & VPN2_MASK) |
			  (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
		index = kvm_mips_guest_tlb_lookup(vcpu, entryhi);
181

182 183 184 185 186
		/*
		 * These should never happen.
		 * They would indicate stale host TLB entries.
		 */
		if (unlikely(index < 0)) {
187
			run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
188
			return RESUME_HOST;
189
		}
190 191 192 193 194 195
		tlb = vcpu->arch.guest_tlb + index;
		if (unlikely(!TLB_IS_VALID(*tlb, badvaddr))) {
			run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
			return RESUME_HOST;
		}

196
		/*
197 198
		 * Guest entry not dirty? That would explain the TLB modified
		 * exception. Relay that on to the guest so it can handle it.
199
		 */
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
		if (!TLB_IS_DIRTY(*tlb, badvaddr)) {
			kvm_mips_emulate_tlbmod(cause, opc, run, vcpu);
			return RESUME_GUEST;
		}

		if (kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb, badvaddr,
							 true))
			/* Not writable, needs handling as MMIO */
			return kvm_mips_bad_store(cause, opc, run, vcpu);
		return RESUME_GUEST;
	} else if (KVM_GUEST_KSEGX(badvaddr) == KVM_GUEST_KSEG0) {
		if (kvm_mips_handle_kseg0_tlb_fault(badvaddr, vcpu, true) < 0)
			/* Not writable, needs handling as MMIO */
			return kvm_mips_bad_store(cause, opc, run, vcpu);
		return RESUME_GUEST;
215
	} else {
216 217
		/* host kernel addresses are all handled as MMIO */
		return kvm_mips_bad_store(cause, opc, run, vcpu);
218 219 220
	}
}

221
static int kvm_trap_emul_handle_tlb_miss(struct kvm_vcpu *vcpu, bool store)
222 223
{
	struct kvm_run *run = vcpu->run;
224
	u32 __user *opc = (u32 __user *) vcpu->arch.pc;
225
	unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
226
	u32 cause = vcpu->arch.host_cp0_cause;
227 228 229 230 231 232 233 234 235 236 237
	enum emulation_result er = EMULATE_DONE;
	int ret = RESUME_GUEST;

	if (((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR)
	    && KVM_GUEST_KERNEL_MODE(vcpu)) {
		if (kvm_mips_handle_commpage_tlb_fault(badvaddr, vcpu) < 0) {
			run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
			ret = RESUME_HOST;
		}
	} else if (KVM_GUEST_KSEGX(badvaddr) < KVM_GUEST_KSEG0
		   || KVM_GUEST_KSEGX(badvaddr) == KVM_GUEST_KSEG23) {
238 239
		kvm_debug("USER ADDR TLB %s fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
			  store ? "ST" : "LD", cause, opc, badvaddr);
240

241 242 243 244 245 246 247 248
		/*
		 * User Address (UA) fault, this could happen if
		 * (1) TLB entry not present/valid in both Guest and shadow host
		 *     TLBs, in this case we pass on the fault to the guest
		 *     kernel and let it handle it.
		 * (2) TLB entry is present in the Guest TLB but not in the
		 *     shadow, in this case we inject the TLB from the Guest TLB
		 *     into the shadow host TLB
249 250
		 */

251
		er = kvm_mips_handle_tlbmiss(cause, opc, run, vcpu, store);
252 253 254 255 256 257 258
		if (er == EMULATE_DONE)
			ret = RESUME_GUEST;
		else {
			run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
			ret = RESUME_HOST;
		}
	} else if (KVM_GUEST_KSEGX(badvaddr) == KVM_GUEST_KSEG0) {
259 260 261 262
		/*
		 * All KSEG0 faults are handled by KVM, as the guest kernel does
		 * not expect to ever get them
		 */
263 264
		if (kvm_mips_handle_kseg0_tlb_fault(badvaddr, vcpu, store) < 0)
			ret = kvm_mips_bad_access(cause, opc, run, vcpu, store);
265 266 267 268 269 270
	} else if (KVM_GUEST_KERNEL_MODE(vcpu)
		   && (KSEGX(badvaddr) == CKSEG0 || KSEGX(badvaddr) == CKSEG1)) {
		/*
		 * With EVA we may get a TLB exception instead of an address
		 * error when the guest performs MMIO to KSeg1 addresses.
		 */
271
		ret = kvm_mips_bad_access(cause, opc, run, vcpu, store);
272
	} else {
273 274
		kvm_err("Illegal TLB %s fault address , cause %#x, PC: %p, BadVaddr: %#lx\n",
			store ? "ST" : "LD", cause, opc, badvaddr);
275 276 277 278 279 280 281 282
		kvm_mips_dump_host_tlbs();
		kvm_arch_vcpu_dump_regs(vcpu);
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		ret = RESUME_HOST;
	}
	return ret;
}

283 284 285 286 287 288 289 290 291 292
static int kvm_trap_emul_handle_tlb_st_miss(struct kvm_vcpu *vcpu)
{
	return kvm_trap_emul_handle_tlb_miss(vcpu, true);
}

static int kvm_trap_emul_handle_tlb_ld_miss(struct kvm_vcpu *vcpu)
{
	return kvm_trap_emul_handle_tlb_miss(vcpu, false);
}

293 294 295
static int kvm_trap_emul_handle_addr_err_st(struct kvm_vcpu *vcpu)
{
	struct kvm_run *run = vcpu->run;
296
	u32 __user *opc = (u32 __user *) vcpu->arch.pc;
297
	unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
298
	u32 cause = vcpu->arch.host_cp0_cause;
299 300 301 302
	int ret = RESUME_GUEST;

	if (KVM_GUEST_KERNEL_MODE(vcpu)
	    && (KSEGX(badvaddr) == CKSEG0 || KSEGX(badvaddr) == CKSEG1)) {
303
		ret = kvm_mips_bad_store(cause, opc, run, vcpu);
304
	} else {
305
		kvm_err("Address Error (STORE): cause %#x, PC: %p, BadVaddr: %#lx\n",
306
			cause, opc, badvaddr);
307 308 309 310 311 312 313 314 315
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		ret = RESUME_HOST;
	}
	return ret;
}

static int kvm_trap_emul_handle_addr_err_ld(struct kvm_vcpu *vcpu)
{
	struct kvm_run *run = vcpu->run;
316
	u32 __user *opc = (u32 __user *) vcpu->arch.pc;
317
	unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
318
	u32 cause = vcpu->arch.host_cp0_cause;
319 320 321
	int ret = RESUME_GUEST;

	if (KSEGX(badvaddr) == CKSEG0 || KSEGX(badvaddr) == CKSEG1) {
322
		ret = kvm_mips_bad_load(cause, opc, run, vcpu);
323
	} else {
324
		kvm_err("Address Error (LOAD): cause %#x, PC: %p, BadVaddr: %#lx\n",
325
			cause, opc, badvaddr);
326 327 328 329 330 331 332 333 334
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		ret = RESUME_HOST;
	}
	return ret;
}

static int kvm_trap_emul_handle_syscall(struct kvm_vcpu *vcpu)
{
	struct kvm_run *run = vcpu->run;
335
	u32 __user *opc = (u32 __user *) vcpu->arch.pc;
336
	u32 cause = vcpu->arch.host_cp0_cause;
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
	enum emulation_result er = EMULATE_DONE;
	int ret = RESUME_GUEST;

	er = kvm_mips_emulate_syscall(cause, opc, run, vcpu);
	if (er == EMULATE_DONE)
		ret = RESUME_GUEST;
	else {
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		ret = RESUME_HOST;
	}
	return ret;
}

static int kvm_trap_emul_handle_res_inst(struct kvm_vcpu *vcpu)
{
	struct kvm_run *run = vcpu->run;
353
	u32 __user *opc = (u32 __user *) vcpu->arch.pc;
354
	u32 cause = vcpu->arch.host_cp0_cause;
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
	enum emulation_result er = EMULATE_DONE;
	int ret = RESUME_GUEST;

	er = kvm_mips_handle_ri(cause, opc, run, vcpu);
	if (er == EMULATE_DONE)
		ret = RESUME_GUEST;
	else {
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		ret = RESUME_HOST;
	}
	return ret;
}

static int kvm_trap_emul_handle_break(struct kvm_vcpu *vcpu)
{
	struct kvm_run *run = vcpu->run;
371
	u32 __user *opc = (u32 __user *) vcpu->arch.pc;
372
	u32 cause = vcpu->arch.host_cp0_cause;
373 374 375 376 377 378 379 380 381 382 383 384 385
	enum emulation_result er = EMULATE_DONE;
	int ret = RESUME_GUEST;

	er = kvm_mips_emulate_bp_exc(cause, opc, run, vcpu);
	if (er == EMULATE_DONE)
		ret = RESUME_GUEST;
	else {
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		ret = RESUME_HOST;
	}
	return ret;
}

386 387 388
static int kvm_trap_emul_handle_trap(struct kvm_vcpu *vcpu)
{
	struct kvm_run *run = vcpu->run;
389
	u32 __user *opc = (u32 __user *)vcpu->arch.pc;
390
	u32 cause = vcpu->arch.host_cp0_cause;
391 392 393 394 395 396 397 398 399 400 401 402 403
	enum emulation_result er = EMULATE_DONE;
	int ret = RESUME_GUEST;

	er = kvm_mips_emulate_trap_exc(cause, opc, run, vcpu);
	if (er == EMULATE_DONE) {
		ret = RESUME_GUEST;
	} else {
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		ret = RESUME_HOST;
	}
	return ret;
}

404 405 406
static int kvm_trap_emul_handle_msa_fpe(struct kvm_vcpu *vcpu)
{
	struct kvm_run *run = vcpu->run;
407
	u32 __user *opc = (u32 __user *)vcpu->arch.pc;
408
	u32 cause = vcpu->arch.host_cp0_cause;
409 410 411 412 413 414 415 416 417 418 419 420 421
	enum emulation_result er = EMULATE_DONE;
	int ret = RESUME_GUEST;

	er = kvm_mips_emulate_msafpe_exc(cause, opc, run, vcpu);
	if (er == EMULATE_DONE) {
		ret = RESUME_GUEST;
	} else {
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		ret = RESUME_HOST;
	}
	return ret;
}

422 423 424
static int kvm_trap_emul_handle_fpe(struct kvm_vcpu *vcpu)
{
	struct kvm_run *run = vcpu->run;
425
	u32 __user *opc = (u32 __user *)vcpu->arch.pc;
426
	u32 cause = vcpu->arch.host_cp0_cause;
427 428 429 430 431 432 433 434 435 436 437 438 439
	enum emulation_result er = EMULATE_DONE;
	int ret = RESUME_GUEST;

	er = kvm_mips_emulate_fpe_exc(cause, opc, run, vcpu);
	if (er == EMULATE_DONE) {
		ret = RESUME_GUEST;
	} else {
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		ret = RESUME_HOST;
	}
	return ret;
}

440 441 442 443 444 445
/**
 * kvm_trap_emul_handle_msa_disabled() - Guest used MSA while disabled in root.
 * @vcpu:	Virtual CPU context.
 *
 * Handle when the guest attempts to use MSA when it is disabled.
 */
446 447
static int kvm_trap_emul_handle_msa_disabled(struct kvm_vcpu *vcpu)
{
448
	struct mips_coproc *cop0 = vcpu->arch.cop0;
449
	struct kvm_run *run = vcpu->run;
450
	u32 __user *opc = (u32 __user *) vcpu->arch.pc;
451
	u32 cause = vcpu->arch.host_cp0_cause;
452 453 454
	enum emulation_result er = EMULATE_DONE;
	int ret = RESUME_GUEST;

455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
	if (!kvm_mips_guest_has_msa(&vcpu->arch) ||
	    (kvm_read_c0_guest_status(cop0) & (ST0_CU1 | ST0_FR)) == ST0_CU1) {
		/*
		 * No MSA in guest, or FPU enabled and not in FR=1 mode,
		 * guest reserved instruction exception
		 */
		er = kvm_mips_emulate_ri_exc(cause, opc, run, vcpu);
	} else if (!(kvm_read_c0_guest_config5(cop0) & MIPS_CONF5_MSAEN)) {
		/* MSA disabled by guest, guest MSA disabled exception */
		er = kvm_mips_emulate_msadis_exc(cause, opc, run, vcpu);
	} else {
		/* Restore MSA/FPU state */
		kvm_own_msa(vcpu);
		er = EMULATE_DONE;
	}
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486

	switch (er) {
	case EMULATE_DONE:
		ret = RESUME_GUEST;
		break;

	case EMULATE_FAIL:
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		ret = RESUME_HOST;
		break;

	default:
		BUG();
	}
	return ret;
}

487 488
static int kvm_trap_emul_vcpu_init(struct kvm_vcpu *vcpu)
{
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
	struct mm_struct *kern_mm = &vcpu->arch.guest_kernel_mm;
	struct mm_struct *user_mm = &vcpu->arch.guest_user_mm;

	/*
	 * Allocate GVA -> HPA page tables.
	 * MIPS doesn't use the mm_struct pointer argument.
	 */
	kern_mm->pgd = pgd_alloc(kern_mm);
	if (!kern_mm->pgd)
		return -ENOMEM;

	user_mm->pgd = pgd_alloc(user_mm);
	if (!user_mm->pgd) {
		pgd_free(kern_mm, kern_mm->pgd);
		return -ENOMEM;
	}

506 507 508
	return 0;
}

509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
static void kvm_mips_emul_free_gva_pt(pgd_t *pgd)
{
	/* Don't free host kernel page tables copied from init_mm.pgd */
	const unsigned long end = 0x80000000;
	unsigned long pgd_va, pud_va, pmd_va;
	pud_t *pud;
	pmd_t *pmd;
	pte_t *pte;
	int i, j, k;

	for (i = 0; i < USER_PTRS_PER_PGD; i++) {
		if (pgd_none(pgd[i]))
			continue;

		pgd_va = (unsigned long)i << PGDIR_SHIFT;
		if (pgd_va >= end)
			break;
		pud = pud_offset(pgd + i, 0);
		for (j = 0; j < PTRS_PER_PUD; j++) {
			if (pud_none(pud[j]))
				continue;

			pud_va = pgd_va | ((unsigned long)j << PUD_SHIFT);
			if (pud_va >= end)
				break;
			pmd = pmd_offset(pud + j, 0);
			for (k = 0; k < PTRS_PER_PMD; k++) {
				if (pmd_none(pmd[k]))
					continue;

				pmd_va = pud_va | (k << PMD_SHIFT);
				if (pmd_va >= end)
					break;
				pte = pte_offset(pmd + k, 0);
				pte_free_kernel(NULL, pte);
			}
			pmd_free(NULL, pmd);
		}
		pud_free(NULL, pud);
	}
	pgd_free(NULL, pgd);
}

J
James Hogan 已提交
552 553
static void kvm_trap_emul_vcpu_uninit(struct kvm_vcpu *vcpu)
{
554 555
	kvm_mips_emul_free_gva_pt(vcpu->arch.guest_kernel_mm.pgd);
	kvm_mips_emul_free_gva_pt(vcpu->arch.guest_user_mm.pgd);
J
James Hogan 已提交
556 557
}

558 559 560
static int kvm_trap_emul_vcpu_setup(struct kvm_vcpu *vcpu)
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
561
	u32 config, config1;
562 563
	int vcpu_id = vcpu->vcpu_id;

564 565
	/*
	 * Arch specific stuff, set up config registers properly so that the
566
	 * guest will come up as expected
567
	 */
568 569
#ifndef CONFIG_CPU_MIPSR6
	/* r2-r5, simulate a MIPS 24kc */
570
	kvm_write_c0_guest_prid(cop0, 0x00019300);
571 572 573 574
#else
	/* r6+, simulate a generic QEMU machine */
	kvm_write_c0_guest_prid(cop0, 0x00010000);
#endif
575 576 577 578 579 580
	/*
	 * Have config1, Cacheable, noncoherent, write-back, write allocate.
	 * Endianness, arch revision & virtually tagged icache should match
	 * host.
	 */
	config = read_c0_config() & MIPS_CONF_AR;
581
	config |= MIPS_CONF_M | CONF_CM_CACHABLE_NONCOHERENT | MIPS_CONF_MT_TLB;
582 583 584 585 586 587
#ifdef CONFIG_CPU_BIG_ENDIAN
	config |= CONF_BE;
#endif
	if (cpu_has_vtag_icache)
		config |= MIPS_CONF_VI;
	kvm_write_c0_guest_config(cop0, config);
588 589 590 591 592 593 594 595 596

	/* Read the cache characteristics from the host Config1 Register */
	config1 = (read_c0_config1() & ~0x7f);

	/* Set up MMU size */
	config1 &= ~(0x3f << 25);
	config1 |= ((KVM_MIPS_GUEST_TLB_SIZE - 1) << 25);

	/* We unset some bits that we aren't emulating */
597 598
	config1 &= ~(MIPS_CONF1_C2 | MIPS_CONF1_MD | MIPS_CONF1_PC |
		     MIPS_CONF1_WR | MIPS_CONF1_CA);
599 600
	kvm_write_c0_guest_config1(cop0, config1);

601 602 603 604
	/* Have config3, no tertiary/secondary caches implemented */
	kvm_write_c0_guest_config2(cop0, MIPS_CONF_M);
	/* MIPS_CONF_M | (read_c0_config2() & 0xfff) */

605 606 607 608 609 610 611 612
	/* Have config4, UserLocal */
	kvm_write_c0_guest_config3(cop0, MIPS_CONF_M | MIPS_CONF3_ULRI);

	/* Have config5 */
	kvm_write_c0_guest_config4(cop0, MIPS_CONF_M);

	/* No config6 */
	kvm_write_c0_guest_config5(cop0, 0);
613 614 615 616

	/* Set Wait IE/IXMT Ignore in Config7, IAR, AR */
	kvm_write_c0_guest_config7(cop0, (MIPS_CONF7_WII) | (1 << 10));

617
	/*
618
	 * Setup IntCtl defaults, compatibility mode for timer interrupts (HW5)
619
	 */
620 621 622
	kvm_write_c0_guest_intctl(cop0, 0xFC000000);

	/* Put in vcpu id as CPUNum into Ebase Reg to handle SMP Guests */
623 624
	kvm_write_c0_guest_ebase(cop0, KVM_GUEST_KSEG0 |
				       (vcpu_id & MIPS_EBASE_CPUNUM));
625 626 627 628

	return 0;
}

629 630 631 632 633 634 635 636 637 638 639 640
static void kvm_trap_emul_flush_shadow_all(struct kvm *kvm)
{
	/* Flush GVA page tables and invalidate GVA ASIDs on all VCPUs */
	kvm_flush_remote_tlbs(kvm);
}

static void kvm_trap_emul_flush_shadow_memslot(struct kvm *kvm,
					const struct kvm_memory_slot *slot)
{
	kvm_trap_emul_flush_shadow_all(kvm);
}

641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
static u64 kvm_trap_emul_get_one_regs[] = {
	KVM_REG_MIPS_CP0_INDEX,
	KVM_REG_MIPS_CP0_CONTEXT,
	KVM_REG_MIPS_CP0_USERLOCAL,
	KVM_REG_MIPS_CP0_PAGEMASK,
	KVM_REG_MIPS_CP0_WIRED,
	KVM_REG_MIPS_CP0_HWRENA,
	KVM_REG_MIPS_CP0_BADVADDR,
	KVM_REG_MIPS_CP0_COUNT,
	KVM_REG_MIPS_CP0_ENTRYHI,
	KVM_REG_MIPS_CP0_COMPARE,
	KVM_REG_MIPS_CP0_STATUS,
	KVM_REG_MIPS_CP0_CAUSE,
	KVM_REG_MIPS_CP0_EPC,
	KVM_REG_MIPS_CP0_PRID,
656
	KVM_REG_MIPS_CP0_EBASE,
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
	KVM_REG_MIPS_CP0_CONFIG,
	KVM_REG_MIPS_CP0_CONFIG1,
	KVM_REG_MIPS_CP0_CONFIG2,
	KVM_REG_MIPS_CP0_CONFIG3,
	KVM_REG_MIPS_CP0_CONFIG4,
	KVM_REG_MIPS_CP0_CONFIG5,
	KVM_REG_MIPS_CP0_CONFIG7,
	KVM_REG_MIPS_CP0_ERROREPC,
	KVM_REG_MIPS_CP0_KSCRATCH1,
	KVM_REG_MIPS_CP0_KSCRATCH2,
	KVM_REG_MIPS_CP0_KSCRATCH3,
	KVM_REG_MIPS_CP0_KSCRATCH4,
	KVM_REG_MIPS_CP0_KSCRATCH5,
	KVM_REG_MIPS_CP0_KSCRATCH6,

	KVM_REG_MIPS_COUNT_CTL,
	KVM_REG_MIPS_COUNT_RESUME,
	KVM_REG_MIPS_COUNT_HZ,
};

677 678
static unsigned long kvm_trap_emul_num_regs(struct kvm_vcpu *vcpu)
{
679
	return ARRAY_SIZE(kvm_trap_emul_get_one_regs);
680 681 682 683 684
}

static int kvm_trap_emul_copy_reg_indices(struct kvm_vcpu *vcpu,
					  u64 __user *indices)
{
685 686 687 688 689
	if (copy_to_user(indices, kvm_trap_emul_get_one_regs,
			 sizeof(kvm_trap_emul_get_one_regs)))
		return -EFAULT;
	indices += ARRAY_SIZE(kvm_trap_emul_get_one_regs);

690 691 692
	return 0;
}

693 694 695 696
static int kvm_trap_emul_get_one_reg(struct kvm_vcpu *vcpu,
				     const struct kvm_one_reg *reg,
				     s64 *v)
{
697 698
	struct mips_coproc *cop0 = vcpu->arch.cop0;

699
	switch (reg->id) {
700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
	case KVM_REG_MIPS_CP0_INDEX:
		*v = (long)kvm_read_c0_guest_index(cop0);
		break;
	case KVM_REG_MIPS_CP0_CONTEXT:
		*v = (long)kvm_read_c0_guest_context(cop0);
		break;
	case KVM_REG_MIPS_CP0_USERLOCAL:
		*v = (long)kvm_read_c0_guest_userlocal(cop0);
		break;
	case KVM_REG_MIPS_CP0_PAGEMASK:
		*v = (long)kvm_read_c0_guest_pagemask(cop0);
		break;
	case KVM_REG_MIPS_CP0_WIRED:
		*v = (long)kvm_read_c0_guest_wired(cop0);
		break;
	case KVM_REG_MIPS_CP0_HWRENA:
		*v = (long)kvm_read_c0_guest_hwrena(cop0);
		break;
	case KVM_REG_MIPS_CP0_BADVADDR:
		*v = (long)kvm_read_c0_guest_badvaddr(cop0);
		break;
	case KVM_REG_MIPS_CP0_ENTRYHI:
		*v = (long)kvm_read_c0_guest_entryhi(cop0);
		break;
	case KVM_REG_MIPS_CP0_COMPARE:
		*v = (long)kvm_read_c0_guest_compare(cop0);
		break;
	case KVM_REG_MIPS_CP0_STATUS:
		*v = (long)kvm_read_c0_guest_status(cop0);
		break;
	case KVM_REG_MIPS_CP0_CAUSE:
		*v = (long)kvm_read_c0_guest_cause(cop0);
		break;
	case KVM_REG_MIPS_CP0_EPC:
		*v = (long)kvm_read_c0_guest_epc(cop0);
		break;
	case KVM_REG_MIPS_CP0_PRID:
		*v = (long)kvm_read_c0_guest_prid(cop0);
		break;
739 740 741
	case KVM_REG_MIPS_CP0_EBASE:
		*v = (long)kvm_read_c0_guest_ebase(cop0);
		break;
742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
	case KVM_REG_MIPS_CP0_CONFIG:
		*v = (long)kvm_read_c0_guest_config(cop0);
		break;
	case KVM_REG_MIPS_CP0_CONFIG1:
		*v = (long)kvm_read_c0_guest_config1(cop0);
		break;
	case KVM_REG_MIPS_CP0_CONFIG2:
		*v = (long)kvm_read_c0_guest_config2(cop0);
		break;
	case KVM_REG_MIPS_CP0_CONFIG3:
		*v = (long)kvm_read_c0_guest_config3(cop0);
		break;
	case KVM_REG_MIPS_CP0_CONFIG4:
		*v = (long)kvm_read_c0_guest_config4(cop0);
		break;
	case KVM_REG_MIPS_CP0_CONFIG5:
		*v = (long)kvm_read_c0_guest_config5(cop0);
		break;
	case KVM_REG_MIPS_CP0_CONFIG7:
		*v = (long)kvm_read_c0_guest_config7(cop0);
		break;
763
	case KVM_REG_MIPS_CP0_COUNT:
764
		*v = kvm_mips_read_count(vcpu);
765
		break;
766 767 768 769 770 771
	case KVM_REG_MIPS_COUNT_CTL:
		*v = vcpu->arch.count_ctl;
		break;
	case KVM_REG_MIPS_COUNT_RESUME:
		*v = ktime_to_ns(vcpu->arch.count_resume);
		break;
772 773 774
	case KVM_REG_MIPS_COUNT_HZ:
		*v = vcpu->arch.count_hz;
		break;
775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
	case KVM_REG_MIPS_CP0_ERROREPC:
		*v = (long)kvm_read_c0_guest_errorepc(cop0);
		break;
	case KVM_REG_MIPS_CP0_KSCRATCH1:
		*v = (long)kvm_read_c0_guest_kscratch1(cop0);
		break;
	case KVM_REG_MIPS_CP0_KSCRATCH2:
		*v = (long)kvm_read_c0_guest_kscratch2(cop0);
		break;
	case KVM_REG_MIPS_CP0_KSCRATCH3:
		*v = (long)kvm_read_c0_guest_kscratch3(cop0);
		break;
	case KVM_REG_MIPS_CP0_KSCRATCH4:
		*v = (long)kvm_read_c0_guest_kscratch4(cop0);
		break;
	case KVM_REG_MIPS_CP0_KSCRATCH5:
		*v = (long)kvm_read_c0_guest_kscratch5(cop0);
		break;
	case KVM_REG_MIPS_CP0_KSCRATCH6:
		*v = (long)kvm_read_c0_guest_kscratch6(cop0);
		break;
796 797 798 799 800 801 802 803 804 805 806
	default:
		return -EINVAL;
	}
	return 0;
}

static int kvm_trap_emul_set_one_reg(struct kvm_vcpu *vcpu,
				     const struct kvm_one_reg *reg,
				     s64 v)
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
807
	int ret = 0;
808
	unsigned int cur, change;
809 810

	switch (reg->id) {
811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
	case KVM_REG_MIPS_CP0_INDEX:
		kvm_write_c0_guest_index(cop0, v);
		break;
	case KVM_REG_MIPS_CP0_CONTEXT:
		kvm_write_c0_guest_context(cop0, v);
		break;
	case KVM_REG_MIPS_CP0_USERLOCAL:
		kvm_write_c0_guest_userlocal(cop0, v);
		break;
	case KVM_REG_MIPS_CP0_PAGEMASK:
		kvm_write_c0_guest_pagemask(cop0, v);
		break;
	case KVM_REG_MIPS_CP0_WIRED:
		kvm_write_c0_guest_wired(cop0, v);
		break;
	case KVM_REG_MIPS_CP0_HWRENA:
		kvm_write_c0_guest_hwrena(cop0, v);
		break;
	case KVM_REG_MIPS_CP0_BADVADDR:
		kvm_write_c0_guest_badvaddr(cop0, v);
		break;
	case KVM_REG_MIPS_CP0_ENTRYHI:
		kvm_write_c0_guest_entryhi(cop0, v);
		break;
	case KVM_REG_MIPS_CP0_STATUS:
		kvm_write_c0_guest_status(cop0, v);
		break;
	case KVM_REG_MIPS_CP0_EPC:
		kvm_write_c0_guest_epc(cop0, v);
		break;
	case KVM_REG_MIPS_CP0_PRID:
		kvm_write_c0_guest_prid(cop0, v);
		break;
844 845 846 847 848 849 850 851
	case KVM_REG_MIPS_CP0_EBASE:
		/*
		 * Allow core number to be written, but the exception base must
		 * remain in guest KSeg0.
		 */
		kvm_change_c0_guest_ebase(cop0, 0x1ffff000 | MIPS_EBASE_CPUNUM,
					  v);
		break;
852
	case KVM_REG_MIPS_CP0_COUNT:
853
		kvm_mips_write_count(vcpu, v);
854 855
		break;
	case KVM_REG_MIPS_CP0_COMPARE:
856
		kvm_mips_write_compare(vcpu, v, false);
857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876
		break;
	case KVM_REG_MIPS_CP0_CAUSE:
		/*
		 * If the timer is stopped or started (DC bit) it must look
		 * atomic with changes to the interrupt pending bits (TI, IRQ5).
		 * A timer interrupt should not happen in between.
		 */
		if ((kvm_read_c0_guest_cause(cop0) ^ v) & CAUSEF_DC) {
			if (v & CAUSEF_DC) {
				/* disable timer first */
				kvm_mips_count_disable_cause(vcpu);
				kvm_change_c0_guest_cause(cop0, ~CAUSEF_DC, v);
			} else {
				/* enable timer last */
				kvm_change_c0_guest_cause(cop0, ~CAUSEF_DC, v);
				kvm_mips_count_enable_cause(vcpu);
			}
		} else {
			kvm_write_c0_guest_cause(cop0, v);
		}
877
		break;
878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
	case KVM_REG_MIPS_CP0_CONFIG:
		/* read-only for now */
		break;
	case KVM_REG_MIPS_CP0_CONFIG1:
		cur = kvm_read_c0_guest_config1(cop0);
		change = (cur ^ v) & kvm_mips_config1_wrmask(vcpu);
		if (change) {
			v = cur ^ change;
			kvm_write_c0_guest_config1(cop0, v);
		}
		break;
	case KVM_REG_MIPS_CP0_CONFIG2:
		/* read-only for now */
		break;
	case KVM_REG_MIPS_CP0_CONFIG3:
		cur = kvm_read_c0_guest_config3(cop0);
		change = (cur ^ v) & kvm_mips_config3_wrmask(vcpu);
		if (change) {
			v = cur ^ change;
			kvm_write_c0_guest_config3(cop0, v);
		}
		break;
	case KVM_REG_MIPS_CP0_CONFIG4:
		cur = kvm_read_c0_guest_config4(cop0);
		change = (cur ^ v) & kvm_mips_config4_wrmask(vcpu);
		if (change) {
			v = cur ^ change;
			kvm_write_c0_guest_config4(cop0, v);
		}
		break;
	case KVM_REG_MIPS_CP0_CONFIG5:
		cur = kvm_read_c0_guest_config5(cop0);
		change = (cur ^ v) & kvm_mips_config5_wrmask(vcpu);
		if (change) {
			v = cur ^ change;
			kvm_write_c0_guest_config5(cop0, v);
		}
		break;
916 917 918
	case KVM_REG_MIPS_CP0_CONFIG7:
		/* writes ignored */
		break;
919 920 921 922 923 924
	case KVM_REG_MIPS_COUNT_CTL:
		ret = kvm_mips_set_count_ctl(vcpu, v);
		break;
	case KVM_REG_MIPS_COUNT_RESUME:
		ret = kvm_mips_set_count_resume(vcpu, v);
		break;
925 926 927
	case KVM_REG_MIPS_COUNT_HZ:
		ret = kvm_mips_set_count_hz(vcpu, v);
		break;
928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948
	case KVM_REG_MIPS_CP0_ERROREPC:
		kvm_write_c0_guest_errorepc(cop0, v);
		break;
	case KVM_REG_MIPS_CP0_KSCRATCH1:
		kvm_write_c0_guest_kscratch1(cop0, v);
		break;
	case KVM_REG_MIPS_CP0_KSCRATCH2:
		kvm_write_c0_guest_kscratch2(cop0, v);
		break;
	case KVM_REG_MIPS_CP0_KSCRATCH3:
		kvm_write_c0_guest_kscratch3(cop0, v);
		break;
	case KVM_REG_MIPS_CP0_KSCRATCH4:
		kvm_write_c0_guest_kscratch4(cop0, v);
		break;
	case KVM_REG_MIPS_CP0_KSCRATCH5:
		kvm_write_c0_guest_kscratch5(cop0, v);
		break;
	case KVM_REG_MIPS_CP0_KSCRATCH6:
		kvm_write_c0_guest_kscratch6(cop0, v);
		break;
949 950 951
	default:
		return -EINVAL;
	}
952
	return ret;
953 954
}

955
static int kvm_trap_emul_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
956
{
957 958
	struct mm_struct *kern_mm = &vcpu->arch.guest_kernel_mm;
	struct mm_struct *user_mm = &vcpu->arch.guest_user_mm;
959
	struct mm_struct *mm;
960 961

	/*
962 963
	 * Were we in guest context? If so, restore the appropriate ASID based
	 * on the mode of the Guest (Kernel/User).
964 965
	 */
	if (current->flags & PF_VCPU) {
966
		mm = KVM_GUEST_KERNEL_MODE(vcpu) ? kern_mm : user_mm;
967 968 969
		if ((cpu_context(cpu, mm) ^ asid_cache(cpu)) &
		    asid_version_mask(cpu))
			get_new_mmu_context(mm, cpu);
970 971
		write_c0_entryhi(cpu_asid(cpu, mm));
		TLBMISS_HANDLER_SETUP_PGD(mm->pgd);
972
		kvm_mips_suspend_mm(cpu);
973 974 975
		ehb();
	}

976 977 978
	return 0;
}

979
static int kvm_trap_emul_vcpu_put(struct kvm_vcpu *vcpu, int cpu)
980
{
981 982
	kvm_lose_fpu(vcpu);

983 984 985
	if (current->flags & PF_VCPU) {
		/* Restore normal Linux process memory map */
		if (((cpu_context(cpu, current->mm) ^ asid_cache(cpu)) &
986
		     asid_version_mask(cpu)))
987 988
			get_new_mmu_context(current->mm, cpu);
		write_c0_entryhi(cpu_asid(cpu, current->mm));
989
		TLBMISS_HANDLER_SETUP_PGD(current->mm->pgd);
990
		kvm_mips_resume_mm(cpu);
991
		ehb();
992 993
	}

994 995 996
	return 0;
}

997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
static void kvm_trap_emul_check_requests(struct kvm_vcpu *vcpu, int cpu,
					 bool reload_asid)
{
	struct mm_struct *kern_mm = &vcpu->arch.guest_kernel_mm;
	struct mm_struct *user_mm = &vcpu->arch.guest_user_mm;
	struct mm_struct *mm;
	int i;

	if (likely(!vcpu->requests))
		return;

	if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
		/*
		 * Both kernel & user GVA mappings must be invalidated. The
		 * caller is just about to check whether the ASID is stale
		 * anyway so no need to reload it here.
		 */
		kvm_mips_flush_gva_pt(kern_mm->pgd, KMF_GPA | KMF_KERN);
		kvm_mips_flush_gva_pt(user_mm->pgd, KMF_GPA | KMF_USER);
		for_each_possible_cpu(i) {
			cpu_context(i, kern_mm) = 0;
			cpu_context(i, user_mm) = 0;
		}

		/* Generate new ASID for current mode */
		if (reload_asid) {
			mm = KVM_GUEST_KERNEL_MODE(vcpu) ? kern_mm : user_mm;
			get_new_mmu_context(mm, cpu);
			htw_stop();
			write_c0_entryhi(cpu_asid(cpu, mm));
			TLBMISS_HANDLER_SETUP_PGD(mm->pgd);
			htw_start();
		}
	}
}

1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
/**
 * kvm_trap_emul_gva_lockless_begin() - Begin lockless access to GVA space.
 * @vcpu:	VCPU pointer.
 *
 * Call before a GVA space access outside of guest mode, to ensure that
 * asynchronous TLB flush requests are handled or delayed until completion of
 * the GVA access (as indicated by a matching kvm_trap_emul_gva_lockless_end()).
 *
 * Should be called with IRQs already enabled.
 */
void kvm_trap_emul_gva_lockless_begin(struct kvm_vcpu *vcpu)
{
	/* We re-enable IRQs in kvm_trap_emul_gva_lockless_end() */
	WARN_ON_ONCE(irqs_disabled());

	/*
	 * The caller is about to access the GVA space, so we set the mode to
	 * force TLB flush requests to send an IPI, and also disable IRQs to
	 * delay IPI handling until kvm_trap_emul_gva_lockless_end().
	 */
	local_irq_disable();

	/*
	 * Make sure the read of VCPU requests is not reordered ahead of the
	 * write to vcpu->mode, or we could miss a TLB flush request while
	 * the requester sees the VCPU as outside of guest mode and not needing
	 * an IPI.
	 */
	smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);

	/*
	 * If a TLB flush has been requested (potentially while
	 * OUTSIDE_GUEST_MODE and assumed immediately effective), perform it
	 * before accessing the GVA space, and be sure to reload the ASID if
	 * necessary as it'll be immediately used.
	 *
	 * TLB flush requests after this check will trigger an IPI due to the
	 * mode change above, which will be delayed due to IRQs disabled.
	 */
	kvm_trap_emul_check_requests(vcpu, smp_processor_id(), true);
}

/**
 * kvm_trap_emul_gva_lockless_end() - End lockless access to GVA space.
 * @vcpu:	VCPU pointer.
 *
 * Called after a GVA space access outside of guest mode. Should have a matching
 * call to kvm_trap_emul_gva_lockless_begin().
 */
void kvm_trap_emul_gva_lockless_end(struct kvm_vcpu *vcpu)
{
	/*
	 * Make sure the write to vcpu->mode is not reordered in front of GVA
	 * accesses, or a TLB flush requester may not think it necessary to send
	 * an IPI.
	 */
	smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);

	/*
	 * Now that the access to GVA space is complete, its safe for pending
	 * TLB flush request IPIs to be handled (which indicates completion).
	 */
	local_irq_enable();
}

1098 1099 1100
static void kvm_trap_emul_vcpu_reenter(struct kvm_run *run,
				       struct kvm_vcpu *vcpu)
{
1101
	struct mm_struct *kern_mm = &vcpu->arch.guest_kernel_mm;
1102
	struct mm_struct *user_mm = &vcpu->arch.guest_user_mm;
1103
	struct mm_struct *mm;
1104 1105 1106 1107 1108
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	int i, cpu = smp_processor_id();
	unsigned int gasid;

	/*
1109 1110 1111
	 * No need to reload ASID, IRQs are disabled already so there's no rush,
	 * and we'll check if we need to regenerate below anyway before
	 * re-entering the guest.
1112
	 */
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
	kvm_trap_emul_check_requests(vcpu, cpu, false);

	if (KVM_GUEST_KERNEL_MODE(vcpu)) {
		mm = kern_mm;
	} else {
		mm = user_mm;

		/*
		 * Lazy host ASID regeneration / PT flush for guest user mode.
		 * If the guest ASID has changed since the last guest usermode
		 * execution, invalidate the stale TLB entries and flush GVA PT
		 * entries too.
		 */
1126 1127
		gasid = kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID;
		if (gasid != vcpu->arch.last_user_gasid) {
1128
			kvm_mips_flush_gva_pt(user_mm->pgd, KMF_USER);
1129
			for_each_possible_cpu(i)
1130
				cpu_context(i, user_mm) = 0;
1131 1132 1133
			vcpu->arch.last_user_gasid = gasid;
		}
	}
1134 1135 1136 1137 1138 1139 1140 1141

	/*
	 * Check if ASID is stale. This may happen due to a TLB flush request or
	 * a lazy user MM invalidation.
	 */
	if ((cpu_context(cpu, mm) ^ asid_cache(cpu)) &
	    asid_version_mask(cpu))
		get_new_mmu_context(mm, cpu);
1142 1143 1144 1145
}

static int kvm_trap_emul_vcpu_run(struct kvm_run *run, struct kvm_vcpu *vcpu)
{
1146
	int cpu = smp_processor_id();
1147 1148 1149 1150 1151 1152 1153 1154
	int r;

	/* Check if we have any exceptions/interrupts pending */
	kvm_mips_deliver_interrupts(vcpu,
				    kvm_read_c0_guest_cause(vcpu->arch.cop0));

	kvm_trap_emul_vcpu_reenter(run, vcpu);

1155 1156 1157 1158 1159 1160
	/*
	 * We use user accessors to access guest memory, but we don't want to
	 * invoke Linux page faulting.
	 */
	pagefault_disable();

1161 1162 1163
	/* Disable hardware page table walking while in guest */
	htw_stop();

1164 1165 1166 1167 1168 1169 1170
	/*
	 * While in guest context we're in the guest's address space, not the
	 * host process address space, so we need to be careful not to confuse
	 * e.g. cache management IPIs.
	 */
	kvm_mips_suspend_mm(cpu);

1171 1172
	r = vcpu->arch.vcpu_run(run, vcpu);

1173 1174 1175 1176 1177 1178 1179 1180
	/* We may have migrated while handling guest exits */
	cpu = smp_processor_id();

	/* Restore normal Linux process memory map */
	if (((cpu_context(cpu, current->mm) ^ asid_cache(cpu)) &
	     asid_version_mask(cpu)))
		get_new_mmu_context(current->mm, cpu);
	write_c0_entryhi(cpu_asid(cpu, current->mm));
1181
	TLBMISS_HANDLER_SETUP_PGD(current->mm->pgd);
1182
	kvm_mips_resume_mm(cpu);
1183

1184 1185
	htw_start();

1186 1187
	pagefault_enable();

1188 1189 1190
	return r;
}

1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
static struct kvm_mips_callbacks kvm_trap_emul_callbacks = {
	/* exit handlers */
	.handle_cop_unusable = kvm_trap_emul_handle_cop_unusable,
	.handle_tlb_mod = kvm_trap_emul_handle_tlb_mod,
	.handle_tlb_st_miss = kvm_trap_emul_handle_tlb_st_miss,
	.handle_tlb_ld_miss = kvm_trap_emul_handle_tlb_ld_miss,
	.handle_addr_err_st = kvm_trap_emul_handle_addr_err_st,
	.handle_addr_err_ld = kvm_trap_emul_handle_addr_err_ld,
	.handle_syscall = kvm_trap_emul_handle_syscall,
	.handle_res_inst = kvm_trap_emul_handle_res_inst,
	.handle_break = kvm_trap_emul_handle_break,
1202
	.handle_trap = kvm_trap_emul_handle_trap,
1203
	.handle_msa_fpe = kvm_trap_emul_handle_msa_fpe,
1204
	.handle_fpe = kvm_trap_emul_handle_fpe,
1205
	.handle_msa_disabled = kvm_trap_emul_handle_msa_disabled,
1206 1207

	.vcpu_init = kvm_trap_emul_vcpu_init,
J
James Hogan 已提交
1208
	.vcpu_uninit = kvm_trap_emul_vcpu_uninit,
1209
	.vcpu_setup = kvm_trap_emul_vcpu_setup,
1210 1211
	.flush_shadow_all = kvm_trap_emul_flush_shadow_all,
	.flush_shadow_memslot = kvm_trap_emul_flush_shadow_memslot,
1212 1213 1214 1215 1216 1217 1218
	.gva_to_gpa = kvm_trap_emul_gva_to_gpa_cb,
	.queue_timer_int = kvm_mips_queue_timer_int_cb,
	.dequeue_timer_int = kvm_mips_dequeue_timer_int_cb,
	.queue_io_int = kvm_mips_queue_io_int_cb,
	.dequeue_io_int = kvm_mips_dequeue_io_int_cb,
	.irq_deliver = kvm_mips_irq_deliver_cb,
	.irq_clear = kvm_mips_irq_clear_cb,
1219 1220
	.num_regs = kvm_trap_emul_num_regs,
	.copy_reg_indices = kvm_trap_emul_copy_reg_indices,
1221 1222
	.get_one_reg = kvm_trap_emul_get_one_reg,
	.set_one_reg = kvm_trap_emul_set_one_reg,
1223 1224
	.vcpu_load = kvm_trap_emul_vcpu_load,
	.vcpu_put = kvm_trap_emul_vcpu_put,
1225 1226
	.vcpu_run = kvm_trap_emul_vcpu_run,
	.vcpu_reenter = kvm_trap_emul_vcpu_reenter,
1227 1228 1229 1230 1231 1232 1233
};

int kvm_mips_emulation_init(struct kvm_mips_callbacks **install_callbacks)
{
	*install_callbacks = &kvm_trap_emul_callbacks;
	return 0;
}