numa.c 43.1 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 * pSeries NUMA support
 *
 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 */
#include <linux/threads.h>
#include <linux/bootmem.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/mmzone.h>
16
#include <linux/export.h>
L
Linus Torvalds 已提交
17 18 19
#include <linux/nodemask.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
Y
Yinghai Lu 已提交
20
#include <linux/memblock.h>
21
#include <linux/of.h>
22
#include <linux/pfn.h>
23 24
#include <linux/cpuset.h>
#include <linux/node.h>
25
#include <linux/stop_machine.h>
26 27 28
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/uaccess.h>
29
#include <linux/slab.h>
30
#include <asm/cputhreads.h>
31
#include <asm/sparsemem.h>
32
#include <asm/prom.h>
P
Paul Mackerras 已提交
33
#include <asm/smp.h>
34 35
#include <asm/cputhreads.h>
#include <asm/topology.h>
36 37
#include <asm/firmware.h>
#include <asm/paca.h>
38
#include <asm/hvcall.h>
39
#include <asm/setup.h>
40
#include <asm/vdso.h>
L
Linus Torvalds 已提交
41 42 43

static int numa_enabled = 1;

44 45
static char *cmdline __initdata;

L
Linus Torvalds 已提交
46 47 48
static int numa_debug;
#define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }

49
int numa_cpu_lookup_table[NR_CPUS];
50
cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
L
Linus Torvalds 已提交
51
struct pglist_data *node_data[MAX_NUMNODES];
52 53

EXPORT_SYMBOL(numa_cpu_lookup_table);
54
EXPORT_SYMBOL(node_to_cpumask_map);
55 56
EXPORT_SYMBOL(node_data);

L
Linus Torvalds 已提交
57
static int min_common_depth;
58
static int n_mem_addr_cells, n_mem_size_cells;
59 60 61 62
static int form1_affinity;

#define MAX_DISTANCE_REF_POINTS 4
static int distance_ref_points_depth;
63
static const __be32 *distance_ref_points;
64
static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS];
L
Linus Torvalds 已提交
65

66 67 68 69
/*
 * Allocate node_to_cpumask_map based on number of available nodes
 * Requires node_possible_map to be valid.
 *
70
 * Note: cpumask_of_node() is not valid until after this is done.
71 72 73
 */
static void __init setup_node_to_cpumask_map(void)
{
74
	unsigned int node;
75 76

	/* setup nr_node_ids if not done yet */
77 78
	if (nr_node_ids == MAX_NUMNODES)
		setup_nr_node_ids();
79 80 81 82 83 84 85 86 87

	/* allocate the map */
	for (node = 0; node < nr_node_ids; node++)
		alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);

	/* cpumask_of_node() will now work */
	dbg("Node to cpumask map for %d nodes\n", nr_node_ids);
}

88
static int __init fake_numa_create_new_node(unsigned long end_pfn,
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
						unsigned int *nid)
{
	unsigned long long mem;
	char *p = cmdline;
	static unsigned int fake_nid;
	static unsigned long long curr_boundary;

	/*
	 * Modify node id, iff we started creating NUMA nodes
	 * We want to continue from where we left of the last time
	 */
	if (fake_nid)
		*nid = fake_nid;
	/*
	 * In case there are no more arguments to parse, the
	 * node_id should be the same as the last fake node id
	 * (we've handled this above).
	 */
	if (!p)
		return 0;

	mem = memparse(p, &p);
	if (!mem)
		return 0;

	if (mem < curr_boundary)
		return 0;

	curr_boundary = mem;

	if ((end_pfn << PAGE_SHIFT) > mem) {
		/*
		 * Skip commas and spaces
		 */
		while (*p == ',' || *p == ' ' || *p == '\t')
			p++;

		cmdline = p;
		fake_nid++;
		*nid = fake_nid;
		dbg("created new fake_node with id %d\n", fake_nid);
		return 1;
	}
	return 0;
}

135
/*
136
 * get_node_active_region - Return active region containing pfn
137
 * Active range returned is empty if none found.
138 139
 * @pfn: The page to return the region for
 * @node_ar: Returned set to the active region containing @pfn
140
 */
141 142
static void __init get_node_active_region(unsigned long pfn,
					  struct node_active_region *node_ar)
143
{
144 145 146 147 148 149 150 151 152 153 154
	unsigned long start_pfn, end_pfn;
	int i, nid;

	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
		if (pfn >= start_pfn && pfn < end_pfn) {
			node_ar->nid = nid;
			node_ar->start_pfn = start_pfn;
			node_ar->end_pfn = end_pfn;
			break;
		}
	}
155 156
}

157 158 159 160 161 162 163 164 165
static void reset_numa_cpu_lookup_table(void)
{
	unsigned int cpu;

	for_each_possible_cpu(cpu)
		numa_cpu_lookup_table[cpu] = -1;
}

static void update_numa_cpu_lookup_table(unsigned int cpu, int node)
L
Linus Torvalds 已提交
166 167
{
	numa_cpu_lookup_table[cpu] = node;
168 169 170 171 172
}

static void map_cpu_to_node(int cpu, int node)
{
	update_numa_cpu_lookup_table(cpu, node);
173

174 175
	dbg("adding cpu %d to node %d\n", cpu, node);

176 177
	if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node])))
		cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
L
Linus Torvalds 已提交
178 179
}

180
#if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
L
Linus Torvalds 已提交
181 182 183 184 185 186
static void unmap_cpu_from_node(unsigned long cpu)
{
	int node = numa_cpu_lookup_table[cpu];

	dbg("removing cpu %lu from node %d\n", cpu, node);

187
	if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) {
188
		cpumask_clear_cpu(cpu, node_to_cpumask_map[node]);
L
Linus Torvalds 已提交
189 190 191 192 193
	} else {
		printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
		       cpu, node);
	}
}
194
#endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
L
Linus Torvalds 已提交
195 196

/* must hold reference to node during call */
197
static const __be32 *of_get_associativity(struct device_node *dev)
L
Linus Torvalds 已提交
198
{
199
	return of_get_property(dev, "ibm,associativity", NULL);
L
Linus Torvalds 已提交
200 201
}

202 203 204 205 206
/*
 * Returns the property linux,drconf-usable-memory if
 * it exists (the property exists only in kexec/kdump kernels,
 * added by kexec-tools)
 */
207
static const __be32 *of_get_usable_memory(struct device_node *memory)
208
{
209
	const __be32 *prop;
210 211 212
	u32 len;
	prop = of_get_property(memory, "linux,drconf-usable-memory", &len);
	if (!prop || len < sizeof(unsigned int))
213
		return NULL;
214 215 216
	return prop;
}

217 218 219 220 221 222
int __node_distance(int a, int b)
{
	int i;
	int distance = LOCAL_DISTANCE;

	if (!form1_affinity)
223
		return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE);
224 225 226 227 228 229 230 231 232 233 234 235 236

	for (i = 0; i < distance_ref_points_depth; i++) {
		if (distance_lookup_table[a][i] == distance_lookup_table[b][i])
			break;

		/* Double the distance for each NUMA level */
		distance *= 2;
	}

	return distance;
}

static void initialize_distance_lookup_table(int nid,
237
		const __be32 *associativity)
238 239 240 241 242 243 244
{
	int i;

	if (!form1_affinity)
		return;

	for (i = 0; i < distance_ref_points_depth; i++) {
245 246 247 248
		const __be32 *entry;

		entry = &associativity[be32_to_cpu(distance_ref_points[i])];
		distance_lookup_table[nid][i] = of_read_number(entry, 1);
249 250 251
	}
}

252 253 254
/* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa
 * info is found.
 */
255
static int associativity_to_nid(const __be32 *associativity)
L
Linus Torvalds 已提交
256
{
257
	int nid = -1;
L
Linus Torvalds 已提交
258 259

	if (min_common_depth == -1)
260
		goto out;
L
Linus Torvalds 已提交
261

262 263
	if (of_read_number(associativity, 1) >= min_common_depth)
		nid = of_read_number(&associativity[min_common_depth], 1);
264 265

	/* POWER4 LPAR uses 0xffff as invalid node */
266 267
	if (nid == 0xffff || nid >= MAX_NUMNODES)
		nid = -1;
268

269 270
	if (nid > 0 &&
	    of_read_number(associativity, 1) >= distance_ref_points_depth)
271
		initialize_distance_lookup_table(nid, associativity);
272

273
out:
274
	return nid;
L
Linus Torvalds 已提交
275 276
}

277 278 279 280 281 282
/* Returns the nid associated with the given device tree node,
 * or -1 if not found.
 */
static int of_node_to_nid_single(struct device_node *device)
{
	int nid = -1;
283
	const __be32 *tmp;
284 285 286 287 288 289 290

	tmp = of_get_associativity(device);
	if (tmp)
		nid = associativity_to_nid(tmp);
	return nid;
}

291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
/* Walk the device tree upwards, looking for an associativity id */
int of_node_to_nid(struct device_node *device)
{
	struct device_node *tmp;
	int nid = -1;

	of_node_get(device);
	while (device) {
		nid = of_node_to_nid_single(device);
		if (nid != -1)
			break;

	        tmp = device;
		device = of_get_parent(tmp);
		of_node_put(tmp);
	}
	of_node_put(device);

	return nid;
}
EXPORT_SYMBOL_GPL(of_node_to_nid);

L
Linus Torvalds 已提交
313 314
static int __init find_min_common_depth(void)
{
315
	int depth;
316
	struct device_node *root;
L
Linus Torvalds 已提交
317

318 319 320 321
	if (firmware_has_feature(FW_FEATURE_OPAL))
		root = of_find_node_by_path("/ibm,opal");
	else
		root = of_find_node_by_path("/rtas");
322 323
	if (!root)
		root = of_find_node_by_path("/");
L
Linus Torvalds 已提交
324 325

	/*
326 327 328 329 330 331 332 333 334 335
	 * This property is a set of 32-bit integers, each representing
	 * an index into the ibm,associativity nodes.
	 *
	 * With form 0 affinity the first integer is for an SMP configuration
	 * (should be all 0's) and the second is for a normal NUMA
	 * configuration. We have only one level of NUMA.
	 *
	 * With form 1 affinity the first integer is the most significant
	 * NUMA boundary and the following are progressively less significant
	 * boundaries. There can be more than one level of NUMA.
L
Linus Torvalds 已提交
336
	 */
337
	distance_ref_points = of_get_property(root,
338 339 340 341 342 343 344 345 346
					"ibm,associativity-reference-points",
					&distance_ref_points_depth);

	if (!distance_ref_points) {
		dbg("NUMA: ibm,associativity-reference-points not found.\n");
		goto err;
	}

	distance_ref_points_depth /= sizeof(int);
L
Linus Torvalds 已提交
347

348 349 350
	if (firmware_has_feature(FW_FEATURE_OPAL) ||
	    firmware_has_feature(FW_FEATURE_TYPE1_AFFINITY)) {
		dbg("Using form 1 affinity\n");
351
		form1_affinity = 1;
352 353
	}

354
	if (form1_affinity) {
355
		depth = of_read_number(distance_ref_points, 1);
L
Linus Torvalds 已提交
356
	} else {
357 358 359 360 361 362
		if (distance_ref_points_depth < 2) {
			printk(KERN_WARNING "NUMA: "
				"short ibm,associativity-reference-points\n");
			goto err;
		}

363
		depth = of_read_number(&distance_ref_points[1], 1);
L
Linus Torvalds 已提交
364 365
	}

366 367 368 369 370 371 372 373 374 375
	/*
	 * Warn and cap if the hardware supports more than
	 * MAX_DISTANCE_REF_POINTS domains.
	 */
	if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) {
		printk(KERN_WARNING "NUMA: distance array capped at "
			"%d entries\n", MAX_DISTANCE_REF_POINTS);
		distance_ref_points_depth = MAX_DISTANCE_REF_POINTS;
	}

376
	of_node_put(root);
L
Linus Torvalds 已提交
377
	return depth;
378 379

err:
380
	of_node_put(root);
381
	return -1;
L
Linus Torvalds 已提交
382 383
}

384
static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
L
Linus Torvalds 已提交
385 386 387 388
{
	struct device_node *memory = NULL;

	memory = of_find_node_by_type(memory, "memory");
389
	if (!memory)
390
		panic("numa.c: No memory nodes found!");
391

392
	*n_addr_cells = of_n_addr_cells(memory);
393
	*n_size_cells = of_n_size_cells(memory);
394
	of_node_put(memory);
L
Linus Torvalds 已提交
395 396
}

397
static unsigned long read_n_cells(int n, const __be32 **buf)
L
Linus Torvalds 已提交
398 399 400 401
{
	unsigned long result = 0;

	while (n--) {
402
		result = (result << 32) | of_read_number(*buf, 1);
L
Linus Torvalds 已提交
403 404 405 406 407
		(*buf)++;
	}
	return result;
}

408
/*
Y
Yinghai Lu 已提交
409
 * Read the next memblock list entry from the ibm,dynamic-memory property
410 411
 * and return the information in the provided of_drconf_cell structure.
 */
412
static void read_drconf_cell(struct of_drconf_cell *drmem, const __be32 **cellp)
413
{
414
	const __be32 *cp;
415 416 417 418

	drmem->base_addr = read_n_cells(n_mem_addr_cells, cellp);

	cp = *cellp;
419 420 421 422
	drmem->drc_index = of_read_number(cp, 1);
	drmem->reserved = of_read_number(&cp[1], 1);
	drmem->aa_index = of_read_number(&cp[2], 1);
	drmem->flags = of_read_number(&cp[3], 1);
423 424 425 426 427

	*cellp = cp + 4;
}

/*
L
Lucas De Marchi 已提交
428
 * Retrieve and validate the ibm,dynamic-memory property of the device tree.
429
 *
Y
Yinghai Lu 已提交
430 431
 * The layout of the ibm,dynamic-memory property is a number N of memblock
 * list entries followed by N memblock list entries.  Each memblock list entry
L
Lucas De Marchi 已提交
432
 * contains information as laid out in the of_drconf_cell struct above.
433
 */
434
static int of_get_drconf_memory(struct device_node *memory, const __be32 **dm)
435
{
436
	const __be32 *prop;
437 438 439 440 441 442
	u32 len, entries;

	prop = of_get_property(memory, "ibm,dynamic-memory", &len);
	if (!prop || len < sizeof(unsigned int))
		return 0;

443
	entries = of_read_number(prop++, 1);
444 445 446 447 448 449 450 451 452 453 454 455

	/* Now that we know the number of entries, revalidate the size
	 * of the property read in to ensure we have everything
	 */
	if (len < (entries * (n_mem_addr_cells + 4) + 1) * sizeof(unsigned int))
		return 0;

	*dm = prop;
	return entries;
}

/*
L
Lucas De Marchi 已提交
456
 * Retrieve and validate the ibm,lmb-size property for drconf memory
457 458
 * from the device tree.
 */
459
static u64 of_get_lmb_size(struct device_node *memory)
460
{
461
	const __be32 *prop;
462 463
	u32 len;

464
	prop = of_get_property(memory, "ibm,lmb-size", &len);
465 466 467 468 469 470 471 472 473
	if (!prop || len < sizeof(unsigned int))
		return 0;

	return read_n_cells(n_mem_size_cells, &prop);
}

struct assoc_arrays {
	u32	n_arrays;
	u32	array_sz;
474
	const __be32 *arrays;
475 476 477
};

/*
L
Lucas De Marchi 已提交
478
 * Retrieve and validate the list of associativity arrays for drconf
479 480 481 482 483 484 485 486 487 488 489
 * memory from the ibm,associativity-lookup-arrays property of the
 * device tree..
 *
 * The layout of the ibm,associativity-lookup-arrays property is a number N
 * indicating the number of associativity arrays, followed by a number M
 * indicating the size of each associativity array, followed by a list
 * of N associativity arrays.
 */
static int of_get_assoc_arrays(struct device_node *memory,
			       struct assoc_arrays *aa)
{
490
	const __be32 *prop;
491 492 493 494 495 496
	u32 len;

	prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
	if (!prop || len < 2 * sizeof(unsigned int))
		return -1;

497 498
	aa->n_arrays = of_read_number(prop++, 1);
	aa->array_sz = of_read_number(prop++, 1);
499

500
	/* Now that we know the number of arrays and size of each array,
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
	 * revalidate the size of the property read in.
	 */
	if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
		return -1;

	aa->arrays = prop;
	return 0;
}

/*
 * This is like of_node_to_nid_single() for memory represented in the
 * ibm,dynamic-reconfiguration-memory node.
 */
static int of_drconf_to_nid_single(struct of_drconf_cell *drmem,
				   struct assoc_arrays *aa)
{
	int default_nid = 0;
	int nid = default_nid;
	int index;

	if (min_common_depth > 0 && min_common_depth <= aa->array_sz &&
	    !(drmem->flags & DRCONF_MEM_AI_INVALID) &&
	    drmem->aa_index < aa->n_arrays) {
		index = drmem->aa_index * aa->array_sz + min_common_depth - 1;
525
		nid = of_read_number(&aa->arrays[index], 1);
526 527 528 529 530 531 532 533

		if (nid == 0xffff || nid >= MAX_NUMNODES)
			nid = default_nid;
	}

	return nid;
}

L
Linus Torvalds 已提交
534 535 536 537
/*
 * Figure out to which domain a cpu belongs and stick it there.
 * Return the id of the domain used.
 */
538
static int numa_setup_cpu(unsigned long lcpu)
L
Linus Torvalds 已提交
539
{
540 541 542 543 544 545 546 547 548 549 550 551 552 553
	int nid;
	struct device_node *cpu;

	/*
	 * If a valid cpu-to-node mapping is already available, use it
	 * directly instead of querying the firmware, since it represents
	 * the most recent mapping notified to us by the platform (eg: VPHN).
	 */
	if ((nid = numa_cpu_lookup_table[lcpu]) >= 0) {
		map_cpu_to_node(lcpu, nid);
		return nid;
	}

	cpu = of_get_cpu_node(lcpu, NULL);
L
Linus Torvalds 已提交
554 555 556

	if (!cpu) {
		WARN_ON(1);
557
		nid = 0;
L
Linus Torvalds 已提交
558 559 560
		goto out;
	}

561
	nid = of_node_to_nid_single(cpu);
L
Linus Torvalds 已提交
562

563
	if (nid < 0 || !node_online(nid))
564
		nid = first_online_node;
L
Linus Torvalds 已提交
565
out:
566
	map_cpu_to_node(lcpu, nid);
L
Linus Torvalds 已提交
567 568 569

	of_node_put(cpu);

570
	return nid;
L
Linus Torvalds 已提交
571 572
}

573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
static void verify_cpu_node_mapping(int cpu, int node)
{
	int base, sibling, i;

	/* Verify that all the threads in the core belong to the same node */
	base = cpu_first_thread_sibling(cpu);

	for (i = 0; i < threads_per_core; i++) {
		sibling = base + i;

		if (sibling == cpu || cpu_is_offline(sibling))
			continue;

		if (cpu_to_node(sibling) != node) {
			WARN(1, "CPU thread siblings %d and %d don't belong"
				" to the same node!\n", cpu, sibling);
			break;
		}
	}
}

594
static int cpu_numa_callback(struct notifier_block *nfb, unsigned long action,
L
Linus Torvalds 已提交
595 596 597
			     void *hcpu)
{
	unsigned long lcpu = (unsigned long)hcpu;
598
	int ret = NOTIFY_DONE, nid;
L
Linus Torvalds 已提交
599 600 601

	switch (action) {
	case CPU_UP_PREPARE:
602
	case CPU_UP_PREPARE_FROZEN:
603 604
		nid = numa_setup_cpu(lcpu);
		verify_cpu_node_mapping((int)lcpu, nid);
L
Linus Torvalds 已提交
605 606 607 608
		ret = NOTIFY_OK;
		break;
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_DEAD:
609
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
610
	case CPU_UP_CANCELED:
611
	case CPU_UP_CANCELED_FROZEN:
L
Linus Torvalds 已提交
612 613 614 615 616 617 618 619 620 621 622 623 624 625
		unmap_cpu_from_node(lcpu);
		break;
		ret = NOTIFY_OK;
#endif
	}
	return ret;
}

/*
 * Check and possibly modify a memory region to enforce the memory limit.
 *
 * Returns the size the region should have to enforce the memory limit.
 * This will either be the original value of size, a truncated value,
 * or zero. If the returned value of size is 0 the region should be
L
Lucas De Marchi 已提交
626
 * discarded as it lies wholly above the memory limit.
L
Linus Torvalds 已提交
627
 */
628 629
static unsigned long __init numa_enforce_memory_limit(unsigned long start,
						      unsigned long size)
L
Linus Torvalds 已提交
630 631
{
	/*
Y
Yinghai Lu 已提交
632
	 * We use memblock_end_of_DRAM() in here instead of memory_limit because
L
Linus Torvalds 已提交
633
	 * we've already adjusted it for the limit and it takes care of
634 635
	 * having memory holes below the limit.  Also, in the case of
	 * iommu_is_off, memory_limit is not set but is implicitly enforced.
L
Linus Torvalds 已提交
636 637
	 */

Y
Yinghai Lu 已提交
638
	if (start + size <= memblock_end_of_DRAM())
L
Linus Torvalds 已提交
639 640
		return size;

Y
Yinghai Lu 已提交
641
	if (start >= memblock_end_of_DRAM())
L
Linus Torvalds 已提交
642 643
		return 0;

Y
Yinghai Lu 已提交
644
	return memblock_end_of_DRAM() - start;
L
Linus Torvalds 已提交
645 646
}

647 648 649 650
/*
 * Reads the counter for a given entry in
 * linux,drconf-usable-memory property
 */
651
static inline int __init read_usm_ranges(const __be32 **usm)
652 653
{
	/*
654
	 * For each lmb in ibm,dynamic-memory a corresponding
655 656 657 658 659 660 661
	 * entry in linux,drconf-usable-memory property contains
	 * a counter followed by that many (base, size) duple.
	 * read the counter from linux,drconf-usable-memory
	 */
	return read_n_cells(n_mem_size_cells, usm);
}

662 663 664 665 666 667
/*
 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
 * node.  This assumes n_mem_{addr,size}_cells have been set.
 */
static void __init parse_drconf_memory(struct device_node *memory)
{
668
	const __be32 *uninitialized_var(dm), *usm;
669
	unsigned int n, rc, ranges, is_kexec_kdump = 0;
670
	unsigned long lmb_size, base, size, sz;
671
	int nid;
672
	struct assoc_arrays aa = { .arrays = NULL };
673 674 675

	n = of_get_drconf_memory(memory, &dm);
	if (!n)
676 677
		return;

678 679
	lmb_size = of_get_lmb_size(memory);
	if (!lmb_size)
680 681 682 683
		return;

	rc = of_get_assoc_arrays(memory, &aa);
	if (rc)
684 685
		return;

686 687 688 689 690
	/* check if this is a kexec/kdump kernel */
	usm = of_get_usable_memory(memory);
	if (usm != NULL)
		is_kexec_kdump = 1;

691
	for (; n != 0; --n) {
692 693 694 695 696 697 698 699
		struct of_drconf_cell drmem;

		read_drconf_cell(&drmem, &dm);

		/* skip this block if the reserved bit is set in flags (0x80)
		   or if the block is not assigned to this partition (0x8) */
		if ((drmem.flags & DRCONF_MEM_RESERVED)
		    || !(drmem.flags & DRCONF_MEM_ASSIGNED))
700
			continue;
701

702
		base = drmem.base_addr;
703
		size = lmb_size;
704
		ranges = 1;
705

706 707 708 709 710 711 712 713 714 715 716 717 718
		if (is_kexec_kdump) {
			ranges = read_usm_ranges(&usm);
			if (!ranges) /* there are no (base, size) duple */
				continue;
		}
		do {
			if (is_kexec_kdump) {
				base = read_n_cells(n_mem_addr_cells, &usm);
				size = read_n_cells(n_mem_size_cells, &usm);
			}
			nid = of_drconf_to_nid_single(&drmem, &aa);
			fake_numa_create_new_node(
				((base + size) >> PAGE_SHIFT),
719
					   &nid);
720 721 722
			node_set_online(nid);
			sz = numa_enforce_memory_limit(base, size);
			if (sz)
723 724
				memblock_set_node(base, sz,
						  &memblock.memory, nid);
725
		} while (--ranges);
726 727 728
	}
}

L
Linus Torvalds 已提交
729 730
static int __init parse_numa_properties(void)
{
731
	struct device_node *memory;
732
	int default_nid = 0;
L
Linus Torvalds 已提交
733 734 735 736 737 738 739 740 741 742 743 744
	unsigned long i;

	if (numa_enabled == 0) {
		printk(KERN_WARNING "NUMA disabled by user\n");
		return -1;
	}

	min_common_depth = find_min_common_depth();

	if (min_common_depth < 0)
		return min_common_depth;

745 746
	dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);

L
Linus Torvalds 已提交
747
	/*
748 749 750
	 * Even though we connect cpus to numa domains later in SMP
	 * init, we need to know the node ids now. This is because
	 * each node to be onlined must have NODE_DATA etc backing it.
L
Linus Torvalds 已提交
751
	 */
752
	for_each_present_cpu(i) {
A
Anton Blanchard 已提交
753
		struct device_node *cpu;
754
		int nid;
L
Linus Torvalds 已提交
755

756
		cpu = of_get_cpu_node(i, NULL);
757
		BUG_ON(!cpu);
758
		nid = of_node_to_nid_single(cpu);
759
		of_node_put(cpu);
L
Linus Torvalds 已提交
760

761 762 763 764 765 766 767 768
		/*
		 * Don't fall back to default_nid yet -- we will plug
		 * cpus into nodes once the memory scan has discovered
		 * the topology.
		 */
		if (nid < 0)
			continue;
		node_set_online(nid);
L
Linus Torvalds 已提交
769 770
	}

771
	get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
772 773

	for_each_node_by_type(memory, "memory") {
L
Linus Torvalds 已提交
774 775
		unsigned long start;
		unsigned long size;
776
		int nid;
L
Linus Torvalds 已提交
777
		int ranges;
778
		const __be32 *memcell_buf;
L
Linus Torvalds 已提交
779 780
		unsigned int len;

781
		memcell_buf = of_get_property(memory,
782 783
			"linux,usable-memory", &len);
		if (!memcell_buf || len <= 0)
784
			memcell_buf = of_get_property(memory, "reg", &len);
L
Linus Torvalds 已提交
785 786 787
		if (!memcell_buf || len <= 0)
			continue;

788 789
		/* ranges in cell */
		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
L
Linus Torvalds 已提交
790 791
new_range:
		/* these are order-sensitive, and modify the buffer pointer */
792 793
		start = read_n_cells(n_mem_addr_cells, &memcell_buf);
		size = read_n_cells(n_mem_size_cells, &memcell_buf);
L
Linus Torvalds 已提交
794

795 796 797 798 799
		/*
		 * Assumption: either all memory nodes or none will
		 * have associativity properties.  If none, then
		 * everything goes to default_nid.
		 */
800
		nid = of_node_to_nid_single(memory);
801 802
		if (nid < 0)
			nid = default_nid;
803 804

		fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
805
		node_set_online(nid);
L
Linus Torvalds 已提交
806

807
		if (!(size = numa_enforce_memory_limit(start, size))) {
L
Linus Torvalds 已提交
808 809 810 811 812 813
			if (--ranges)
				goto new_range;
			else
				continue;
		}

814
		memblock_set_node(start, size, &memblock.memory, nid);
L
Linus Torvalds 已提交
815 816 817 818 819

		if (--ranges)
			goto new_range;
	}

820
	/*
A
Anton Blanchard 已提交
821 822 823
	 * Now do the same thing for each MEMBLOCK listed in the
	 * ibm,dynamic-memory property in the
	 * ibm,dynamic-reconfiguration-memory node.
824 825 826 827 828
	 */
	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
	if (memory)
		parse_drconf_memory(memory);

L
Linus Torvalds 已提交
829 830 831 832 833
	return 0;
}

static void __init setup_nonnuma(void)
{
Y
Yinghai Lu 已提交
834 835
	unsigned long top_of_ram = memblock_end_of_DRAM();
	unsigned long total_ram = memblock_phys_mem_size();
836
	unsigned long start_pfn, end_pfn;
837 838
	unsigned int nid = 0;
	struct memblock_region *reg;
L
Linus Torvalds 已提交
839

840
	printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
L
Linus Torvalds 已提交
841
	       top_of_ram, total_ram);
842
	printk(KERN_DEBUG "Memory hole size: %ldMB\n",
L
Linus Torvalds 已提交
843 844
	       (top_of_ram - total_ram) >> 20);

845
	for_each_memblock(memory, reg) {
846 847
		start_pfn = memblock_region_memory_base_pfn(reg);
		end_pfn = memblock_region_memory_end_pfn(reg);
848 849

		fake_numa_create_new_node(end_pfn, &nid);
T
Tejun Heo 已提交
850
		memblock_set_node(PFN_PHYS(start_pfn),
851 852
				  PFN_PHYS(end_pfn - start_pfn),
				  &memblock.memory, nid);
853
		node_set_online(nid);
854
	}
L
Linus Torvalds 已提交
855 856
}

857 858 859 860 861 862 863 864 865
void __init dump_numa_cpu_topology(void)
{
	unsigned int node;
	unsigned int cpu, count;

	if (min_common_depth == -1 || !numa_enabled)
		return;

	for_each_online_node(node) {
866
		printk(KERN_DEBUG "Node %d CPUs:", node);
867 868 869 870 871 872

		count = 0;
		/*
		 * If we used a CPU iterator here we would miss printing
		 * the holes in the cpumap.
		 */
873 874 875
		for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
			if (cpumask_test_cpu(cpu,
					node_to_cpumask_map[node])) {
876 877 878 879 880 881 882 883 884 885 886
				if (count == 0)
					printk(" %u", cpu);
				++count;
			} else {
				if (count > 1)
					printk("-%u", cpu - 1);
				count = 0;
			}
		}

		if (count > 1)
887
			printk("-%u", nr_cpu_ids - 1);
888 889 890 891 892
		printk("\n");
	}
}

static void __init dump_numa_memory_topology(void)
L
Linus Torvalds 已提交
893 894 895 896 897 898 899 900 901 902
{
	unsigned int node;
	unsigned int count;

	if (min_common_depth == -1 || !numa_enabled)
		return;

	for_each_online_node(node) {
		unsigned long i;

903
		printk(KERN_DEBUG "Node %d Memory:", node);
L
Linus Torvalds 已提交
904 905 906

		count = 0;

Y
Yinghai Lu 已提交
907
		for (i = 0; i < memblock_end_of_DRAM();
908 909
		     i += (1 << SECTION_SIZE_BITS)) {
			if (early_pfn_to_nid(i >> PAGE_SHIFT) == node) {
L
Linus Torvalds 已提交
910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926
				if (count == 0)
					printk(" 0x%lx", i);
				++count;
			} else {
				if (count > 0)
					printk("-0x%lx", i);
				count = 0;
			}
		}

		if (count > 0)
			printk("-0x%lx", i);
		printk("\n");
	}
}

/*
Y
Yinghai Lu 已提交
927
 * Allocate some memory, satisfying the memblock or bootmem allocator where
L
Linus Torvalds 已提交
928 929 930
 * required. nid is the preferred node and end is the physical address of
 * the highest address in the node.
 *
931
 * Returns the virtual address of the memory.
L
Linus Torvalds 已提交
932
 */
933
static void __init *careful_zallocation(int nid, unsigned long size,
934 935
				       unsigned long align,
				       unsigned long end_pfn)
L
Linus Torvalds 已提交
936
{
937
	void *ret;
938
	int new_nid;
939 940
	unsigned long ret_paddr;

Y
Yinghai Lu 已提交
941
	ret_paddr = __memblock_alloc_base(size, align, end_pfn << PAGE_SHIFT);
L
Linus Torvalds 已提交
942 943

	/* retry over all memory */
944
	if (!ret_paddr)
Y
Yinghai Lu 已提交
945
		ret_paddr = __memblock_alloc_base(size, align, memblock_end_of_DRAM());
L
Linus Torvalds 已提交
946

947
	if (!ret_paddr)
948
		panic("numa.c: cannot allocate %lu bytes for node %d",
L
Linus Torvalds 已提交
949 950
		      size, nid);

951 952
	ret = __va(ret_paddr);

L
Linus Torvalds 已提交
953
	/*
954
	 * We initialize the nodes in numeric order: 0, 1, 2...
Y
Yinghai Lu 已提交
955
	 * and hand over control from the MEMBLOCK allocator to the
956 957
	 * bootmem allocator.  If this function is called for
	 * node 5, then we know that all nodes <5 are using the
Y
Yinghai Lu 已提交
958
	 * bootmem allocator instead of the MEMBLOCK allocator.
959 960 961
	 *
	 * So, check the nid from which this allocation came
	 * and double check to see if we need to use bootmem
Y
Yinghai Lu 已提交
962
	 * instead of the MEMBLOCK.  We don't free the MEMBLOCK memory
963
	 * since it would be useless.
L
Linus Torvalds 已提交
964
	 */
965
	new_nid = early_pfn_to_nid(ret_paddr >> PAGE_SHIFT);
966
	if (new_nid < nid) {
967
		ret = __alloc_bootmem_node(NODE_DATA(new_nid),
L
Linus Torvalds 已提交
968 969
				size, align, 0);

970
		dbg("alloc_bootmem %p %lx\n", ret, size);
L
Linus Torvalds 已提交
971 972
	}

973
	memset(ret, 0, size);
974
	return ret;
L
Linus Torvalds 已提交
975 976
}

977
static struct notifier_block ppc64_numa_nb = {
978 979 980 981
	.notifier_call = cpu_numa_callback,
	.priority = 1 /* Must run before sched domains notifier. */
};

982
static void __init mark_reserved_regions_for_nid(int nid)
983 984
{
	struct pglist_data *node = NODE_DATA(nid);
985
	struct memblock_region *reg;
986

987 988 989
	for_each_memblock(reserved, reg) {
		unsigned long physbase = reg->base;
		unsigned long size = reg->size;
990
		unsigned long start_pfn = physbase >> PAGE_SHIFT;
991
		unsigned long end_pfn = PFN_UP(physbase + size);
992
		struct node_active_region node_ar;
993
		unsigned long node_end_pfn = pgdat_end_pfn(node);
994 995

		/*
Y
Yinghai Lu 已提交
996
		 * Check to make sure that this memblock.reserved area is
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
		 * within the bounds of the node that we care about.
		 * Checking the nid of the start and end points is not
		 * sufficient because the reserved area could span the
		 * entire node.
		 */
		if (end_pfn <= node->node_start_pfn ||
		    start_pfn >= node_end_pfn)
			continue;

		get_node_active_region(start_pfn, &node_ar);
		while (start_pfn < end_pfn &&
			node_ar.start_pfn < node_ar.end_pfn) {
			unsigned long reserve_size = size;
			/*
			 * if reserved region extends past active region
			 * then trim size to active region
			 */
			if (end_pfn > node_ar.end_pfn)
				reserve_size = (node_ar.end_pfn << PAGE_SHIFT)
1016
					- physbase;
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
			/*
			 * Only worry about *this* node, others may not
			 * yet have valid NODE_DATA().
			 */
			if (node_ar.nid == nid) {
				dbg("reserve_bootmem %lx %lx nid=%d\n",
					physbase, reserve_size, node_ar.nid);
				reserve_bootmem_node(NODE_DATA(node_ar.nid),
						physbase, reserve_size,
						BOOTMEM_DEFAULT);
			}
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
			/*
			 * if reserved region is contained in the active region
			 * then done.
			 */
			if (end_pfn <= node_ar.end_pfn)
				break;

			/*
			 * reserved region extends past the active region
			 *   get next active region that contains this
			 *   reserved region
			 */
			start_pfn = node_ar.end_pfn;
			physbase = start_pfn << PAGE_SHIFT;
			size = size - reserve_size;
			get_node_active_region(start_pfn, &node_ar);
		}
	}
}


L
Linus Torvalds 已提交
1049 1050 1051 1052 1053
void __init do_init_bootmem(void)
{
	int nid;

	min_low_pfn = 0;
Y
Yinghai Lu 已提交
1054
	max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
L
Linus Torvalds 已提交
1055 1056 1057 1058 1059
	max_pfn = max_low_pfn;

	if (parse_numa_properties())
		setup_nonnuma();
	else
1060
		dump_numa_memory_topology();
L
Linus Torvalds 已提交
1061 1062

	for_each_online_node(nid) {
1063
		unsigned long start_pfn, end_pfn;
1064
		void *bootmem_vaddr;
L
Linus Torvalds 已提交
1065 1066
		unsigned long bootmap_pages;

1067
		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
L
Linus Torvalds 已提交
1068

1069 1070 1071 1072 1073 1074 1075
		/*
		 * Allocate the node structure node local if possible
		 *
		 * Be careful moving this around, as it relies on all
		 * previous nodes' bootmem to be initialized and have
		 * all reserved areas marked.
		 */
1076
		NODE_DATA(nid) = careful_zallocation(nid,
L
Linus Torvalds 已提交
1077
					sizeof(struct pglist_data),
1078
					SMP_CACHE_BYTES, end_pfn);
L
Linus Torvalds 已提交
1079 1080 1081 1082

  		dbg("node %d\n", nid);
		dbg("NODE_DATA() = %p\n", NODE_DATA(nid));

1083
		NODE_DATA(nid)->bdata = &bootmem_node_data[nid];
1084 1085
		NODE_DATA(nid)->node_start_pfn = start_pfn;
		NODE_DATA(nid)->node_spanned_pages = end_pfn - start_pfn;
L
Linus Torvalds 已提交
1086 1087 1088 1089

		if (NODE_DATA(nid)->node_spanned_pages == 0)
  			continue;

1090 1091
  		dbg("start_paddr = %lx\n", start_pfn << PAGE_SHIFT);
  		dbg("end_paddr = %lx\n", end_pfn << PAGE_SHIFT);
L
Linus Torvalds 已提交
1092

1093
		bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
1094
		bootmem_vaddr = careful_zallocation(nid,
1095 1096
					bootmap_pages << PAGE_SHIFT,
					PAGE_SIZE, end_pfn);
L
Linus Torvalds 已提交
1097

1098
		dbg("bootmap_vaddr = %p\n", bootmem_vaddr);
L
Linus Torvalds 已提交
1099

1100 1101
		init_bootmem_node(NODE_DATA(nid),
				  __pa(bootmem_vaddr) >> PAGE_SHIFT,
1102
				  start_pfn, end_pfn);
L
Linus Torvalds 已提交
1103

1104
		free_bootmem_with_active_regions(nid, end_pfn);
1105 1106
		/*
		 * Be very careful about moving this around.  Future
1107
		 * calls to careful_zallocation() depend on this getting
1108 1109 1110
		 * done correctly.
		 */
		mark_reserved_regions_for_nid(nid);
1111
		sparse_memory_present_with_active_regions(nid);
1112
	}
1113 1114

	init_bootmem_done = 1;
1115 1116 1117 1118 1119 1120 1121

	/*
	 * Now bootmem is initialised we can create the node to cpumask
	 * lookup tables and setup the cpu callback to populate them.
	 */
	setup_node_to_cpumask_map();

1122
	reset_numa_cpu_lookup_table();
1123 1124 1125
	register_cpu_notifier(&ppc64_numa_nb);
	cpu_numa_callback(&ppc64_numa_nb, CPU_UP_PREPARE,
			  (void *)(unsigned long)boot_cpuid);
L
Linus Torvalds 已提交
1126 1127 1128 1129
}

void __init paging_init(void)
{
1130 1131
	unsigned long max_zone_pfns[MAX_NR_ZONES];
	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
Y
Yinghai Lu 已提交
1132
	max_zone_pfns[ZONE_DMA] = memblock_end_of_DRAM() >> PAGE_SHIFT;
1133
	free_area_init_nodes(max_zone_pfns);
L
Linus Torvalds 已提交
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
}

static int __init early_numa(char *p)
{
	if (!p)
		return 0;

	if (strstr(p, "off"))
		numa_enabled = 0;

	if (strstr(p, "debug"))
		numa_debug = 1;

1147 1148 1149 1150
	p = strstr(p, "fake=");
	if (p)
		cmdline = p + strlen("fake=");

L
Linus Torvalds 已提交
1151 1152 1153
	return 0;
}
early_param("numa", early_numa);
1154 1155

#ifdef CONFIG_MEMORY_HOTPLUG
1156
/*
1157 1158 1159
 * Find the node associated with a hot added memory section for
 * memory represented in the device tree by the property
 * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
1160 1161 1162 1163
 */
static int hot_add_drconf_scn_to_nid(struct device_node *memory,
				     unsigned long scn_addr)
{
1164
	const __be32 *dm;
1165
	unsigned int drconf_cell_cnt, rc;
1166
	unsigned long lmb_size;
1167
	struct assoc_arrays aa;
1168
	int nid = -1;
1169

1170 1171 1172
	drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
	if (!drconf_cell_cnt)
		return -1;
1173

1174 1175
	lmb_size = of_get_lmb_size(memory);
	if (!lmb_size)
1176
		return -1;
1177 1178 1179

	rc = of_get_assoc_arrays(memory, &aa);
	if (rc)
1180
		return -1;
1181

1182
	for (; drconf_cell_cnt != 0; --drconf_cell_cnt) {
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
		struct of_drconf_cell drmem;

		read_drconf_cell(&drmem, &dm);

		/* skip this block if it is reserved or not assigned to
		 * this partition */
		if ((drmem.flags & DRCONF_MEM_RESERVED)
		    || !(drmem.flags & DRCONF_MEM_ASSIGNED))
			continue;

1193
		if ((scn_addr < drmem.base_addr)
1194
		    || (scn_addr >= (drmem.base_addr + lmb_size)))
1195 1196
			continue;

1197
		nid = of_drconf_to_nid_single(&drmem, &aa);
1198 1199 1200 1201 1202 1203 1204 1205 1206
		break;
	}

	return nid;
}

/*
 * Find the node associated with a hot added memory section for memory
 * represented in the device tree as a node (i.e. memory@XXXX) for
Y
Yinghai Lu 已提交
1207
 * each memblock.
1208
 */
1209
static int hot_add_node_scn_to_nid(unsigned long scn_addr)
1210
{
1211
	struct device_node *memory;
1212 1213
	int nid = -1;

1214
	for_each_node_by_type(memory, "memory") {
1215 1216
		unsigned long start, size;
		int ranges;
1217
		const __be32 *memcell_buf;
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
		unsigned int len;

		memcell_buf = of_get_property(memory, "reg", &len);
		if (!memcell_buf || len <= 0)
			continue;

		/* ranges in cell */
		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);

		while (ranges--) {
			start = read_n_cells(n_mem_addr_cells, &memcell_buf);
			size = read_n_cells(n_mem_size_cells, &memcell_buf);

			if ((scn_addr < start) || (scn_addr >= (start + size)))
				continue;

			nid = of_node_to_nid_single(memory);
			break;
		}
1237

1238 1239
		if (nid >= 0)
			break;
1240 1241
	}

1242 1243
	of_node_put(memory);

1244
	return nid;
1245 1246
}

1247 1248
/*
 * Find the node associated with a hot added memory section.  Section
Y
Yinghai Lu 已提交
1249 1250
 * corresponds to a SPARSEMEM section, not an MEMBLOCK.  It is assumed that
 * sections are fully contained within a single MEMBLOCK.
1251 1252 1253 1254
 */
int hot_add_scn_to_nid(unsigned long scn_addr)
{
	struct device_node *memory = NULL;
1255
	int nid, found = 0;
1256 1257

	if (!numa_enabled || (min_common_depth < 0))
1258
		return first_online_node;
1259 1260 1261 1262 1263

	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
	if (memory) {
		nid = hot_add_drconf_scn_to_nid(memory, scn_addr);
		of_node_put(memory);
1264 1265
	} else {
		nid = hot_add_node_scn_to_nid(scn_addr);
1266
	}
1267

1268
	if (nid < 0 || !node_online(nid))
1269
		nid = first_online_node;
1270

1271 1272
	if (NODE_DATA(nid)->node_spanned_pages)
		return nid;
1273

1274 1275 1276 1277
	for_each_online_node(nid) {
		if (NODE_DATA(nid)->node_spanned_pages) {
			found = 1;
			break;
1278 1279
		}
	}
1280 1281 1282

	BUG_ON(!found);
	return nid;
1283
}
1284

1285 1286 1287 1288 1289
static u64 hot_add_drconf_memory_max(void)
{
        struct device_node *memory = NULL;
        unsigned int drconf_cell_cnt = 0;
        u64 lmb_size = 0;
1290
	const __be32 *dm = NULL;
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310

        memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
        if (memory) {
                drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
                lmb_size = of_get_lmb_size(memory);
                of_node_put(memory);
        }
        return lmb_size * drconf_cell_cnt;
}

/*
 * memory_hotplug_max - return max address of memory that may be added
 *
 * This is currently only used on systems that support drconfig memory
 * hotplug.
 */
u64 memory_hotplug_max(void)
{
        return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
}
1311
#endif /* CONFIG_MEMORY_HOTPLUG */
1312

1313
/* Virtual Processor Home Node (VPHN) support */
1314
#ifdef CONFIG_PPC_SPLPAR
1315 1316 1317 1318 1319 1320 1321
struct topology_update_data {
	struct topology_update_data *next;
	unsigned int cpu;
	int old_nid;
	int new_nid;
};

1322
static u8 vphn_cpu_change_counts[NR_CPUS][MAX_DISTANCE_REF_POINTS];
1323 1324
static cpumask_t cpu_associativity_changes_mask;
static int vphn_enabled;
1325 1326
static int prrn_enabled;
static void reset_topology_timer(void);
1327 1328 1329 1330 1331 1332 1333

/*
 * Store the current values of the associativity change counters in the
 * hypervisor.
 */
static void setup_cpu_associativity_change_counters(void)
{
1334
	int cpu;
1335

1336 1337 1338
	/* The VPHN feature supports a maximum of 8 reference points */
	BUILD_BUG_ON(MAX_DISTANCE_REF_POINTS > 8);

1339
	for_each_possible_cpu(cpu) {
1340
		int i;
1341 1342 1343
		u8 *counts = vphn_cpu_change_counts[cpu];
		volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;

1344
		for (i = 0; i < distance_ref_points_depth; i++)
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
			counts[i] = hypervisor_counts[i];
	}
}

/*
 * The hypervisor maintains a set of 8 associativity change counters in
 * the VPA of each cpu that correspond to the associativity levels in the
 * ibm,associativity-reference-points property. When an associativity
 * level changes, the corresponding counter is incremented.
 *
 * Set a bit in cpu_associativity_changes_mask for each cpu whose home
 * node associativity levels have changed.
 *
 * Returns the number of cpus with unhandled associativity changes.
 */
static int update_cpu_associativity_changes_mask(void)
{
1362
	int cpu;
1363 1364 1365 1366 1367 1368 1369
	cpumask_t *changes = &cpu_associativity_changes_mask;

	for_each_possible_cpu(cpu) {
		int i, changed = 0;
		u8 *counts = vphn_cpu_change_counts[cpu];
		volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;

1370
		for (i = 0; i < distance_ref_points_depth; i++) {
1371
			if (hypervisor_counts[i] != counts[i]) {
1372 1373 1374 1375 1376
				counts[i] = hypervisor_counts[i];
				changed = 1;
			}
		}
		if (changed) {
1377 1378
			cpumask_or(changes, changes, cpu_sibling_mask(cpu));
			cpu = cpu_last_thread_sibling(cpu);
1379 1380 1381
		}
	}

1382
	return cpumask_weight(changes);
1383 1384
}

1385 1386 1387 1388 1389
/*
 * 6 64-bit registers unpacked into 12 32-bit associativity values. To form
 * the complete property we have to add the length in the first cell.
 */
#define VPHN_ASSOC_BUFSIZE (6*sizeof(u64)/sizeof(u32) + 1)
1390 1391 1392 1393 1394

/*
 * Convert the associativity domain numbers returned from the hypervisor
 * to the sequence they would appear in the ibm,associativity property.
 */
1395
static int vphn_unpack_associativity(const long *packed, __be32 *unpacked)
1396
{
1397
	int i, nr_assoc_doms = 0;
1398
	const __be16 *field = (const __be16 *) packed;
1399 1400 1401 1402 1403

#define VPHN_FIELD_UNUSED	(0xffff)
#define VPHN_FIELD_MSB		(0x8000)
#define VPHN_FIELD_MASK		(~VPHN_FIELD_MSB)

1404
	for (i = 1; i < VPHN_ASSOC_BUFSIZE; i++) {
1405
		if (be16_to_cpup(field) == VPHN_FIELD_UNUSED) {
1406 1407 1408 1409
			/* All significant fields processed, and remaining
			 * fields contain the reserved value of all 1's.
			 * Just store them.
			 */
1410
			unpacked[i] = *((__be32 *)field);
1411
			field += 2;
1412
		} else if (be16_to_cpup(field) & VPHN_FIELD_MSB) {
1413
			/* Data is in the lower 15 bits of this field */
1414 1415
			unpacked[i] = cpu_to_be32(
				be16_to_cpup(field) & VPHN_FIELD_MASK);
1416 1417
			field++;
			nr_assoc_doms++;
1418
		} else {
1419 1420 1421
			/* Data is in the lower 15 bits of this field
			 * concatenated with the next 16 bit field
			 */
1422
			unpacked[i] = *((__be32 *)field);
1423 1424 1425 1426 1427
			field += 2;
			nr_assoc_doms++;
		}
	}

1428
	/* The first cell contains the length of the property */
1429
	unpacked[0] = cpu_to_be32(nr_assoc_doms);
1430

1431 1432 1433 1434 1435 1436 1437
	return nr_assoc_doms;
}

/*
 * Retrieve the new associativity information for a virtual processor's
 * home node.
 */
1438
static long hcall_vphn(unsigned long cpu, __be32 *associativity)
1439
{
1440
	long rc;
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
	long retbuf[PLPAR_HCALL9_BUFSIZE] = {0};
	u64 flags = 1;
	int hwcpu = get_hard_smp_processor_id(cpu);

	rc = plpar_hcall9(H_HOME_NODE_ASSOCIATIVITY, retbuf, flags, hwcpu);
	vphn_unpack_associativity(retbuf, associativity);

	return rc;
}

static long vphn_get_associativity(unsigned long cpu,
1452
					__be32 *associativity)
1453
{
1454
	long rc;
1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473

	rc = hcall_vphn(cpu, associativity);

	switch (rc) {
	case H_FUNCTION:
		printk(KERN_INFO
			"VPHN is not supported. Disabling polling...\n");
		stop_topology_update();
		break;
	case H_HARDWARE:
		printk(KERN_ERR
			"hcall_vphn() experienced a hardware fault "
			"preventing VPHN. Disabling polling...\n");
		stop_topology_update();
	}

	return rc;
}

1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
/*
 * Update the CPU maps and sysfs entries for a single CPU when its NUMA
 * characteristics change. This function doesn't perform any locking and is
 * only safe to call from stop_machine().
 */
static int update_cpu_topology(void *data)
{
	struct topology_update_data *update;
	unsigned long cpu;

	if (!data)
		return -EINVAL;

1487
	cpu = smp_processor_id();
1488 1489 1490 1491 1492 1493 1494

	for (update = data; update; update = update->next) {
		if (cpu != update->cpu)
			continue;

		unmap_cpu_from_node(update->cpu);
		map_cpu_to_node(update->cpu, update->new_nid);
1495
		vdso_getcpu_init();
1496 1497 1498 1499 1500
	}

	return 0;
}

1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
static int update_lookup_table(void *data)
{
	struct topology_update_data *update;

	if (!data)
		return -EINVAL;

	/*
	 * Upon topology update, the numa-cpu lookup table needs to be updated
	 * for all threads in the core, including offline CPUs, to ensure that
	 * future hotplug operations respect the cpu-to-node associativity
	 * properly.
	 */
	for (update = data; update; update = update->next) {
		int nid, base, j;

		nid = update->new_nid;
		base = cpu_first_thread_sibling(update->cpu);

		for (j = 0; j < threads_per_core; j++) {
			update_numa_cpu_lookup_table(base + j, nid);
		}
	}

	return 0;
}

1528 1529
/*
 * Update the node maps and sysfs entries for each cpu whose home node
1530
 * has changed. Returns 1 when the topology has changed, and 0 otherwise.
1531 1532 1533
 */
int arch_update_cpu_topology(void)
{
1534
	unsigned int cpu, sibling, changed = 0;
1535
	struct topology_update_data *updates, *ud;
1536
	__be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
1537
	cpumask_t updated_cpus;
1538
	struct device *dev;
1539
	int weight, new_nid, i = 0;
1540

1541 1542 1543 1544 1545 1546 1547
	weight = cpumask_weight(&cpu_associativity_changes_mask);
	if (!weight)
		return 0;

	updates = kzalloc(weight * (sizeof(*updates)), GFP_KERNEL);
	if (!updates)
		return 0;
1548

1549 1550
	cpumask_clear(&updated_cpus);

1551
	for_each_cpu(cpu, &cpu_associativity_changes_mask) {
1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
		/*
		 * If siblings aren't flagged for changes, updates list
		 * will be too short. Skip on this update and set for next
		 * update.
		 */
		if (!cpumask_subset(cpu_sibling_mask(cpu),
					&cpu_associativity_changes_mask)) {
			pr_info("Sibling bits not set for associativity "
					"change, cpu%d\n", cpu);
			cpumask_or(&cpu_associativity_changes_mask,
					&cpu_associativity_changes_mask,
					cpu_sibling_mask(cpu));
			cpu = cpu_last_thread_sibling(cpu);
			continue;
		}
1567

1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
		/* Use associativity from first thread for all siblings */
		vphn_get_associativity(cpu, associativity);
		new_nid = associativity_to_nid(associativity);
		if (new_nid < 0 || !node_online(new_nid))
			new_nid = first_online_node;

		if (new_nid == numa_cpu_lookup_table[cpu]) {
			cpumask_andnot(&cpu_associativity_changes_mask,
					&cpu_associativity_changes_mask,
					cpu_sibling_mask(cpu));
			cpu = cpu_last_thread_sibling(cpu);
			continue;
		}
1581

1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
		for_each_cpu(sibling, cpu_sibling_mask(cpu)) {
			ud = &updates[i++];
			ud->cpu = sibling;
			ud->new_nid = new_nid;
			ud->old_nid = numa_cpu_lookup_table[sibling];
			cpumask_set_cpu(sibling, &updated_cpus);
			if (i < weight)
				ud->next = &updates[i];
		}
		cpu = cpu_last_thread_sibling(cpu);
1592 1593
	}

1594
	stop_machine(update_cpu_topology, &updates[0], &updated_cpus);
1595

1596 1597 1598 1599 1600 1601 1602 1603
	/*
	 * Update the numa-cpu lookup table with the new mappings, even for
	 * offline CPUs. It is best to perform this update from the stop-
	 * machine context.
	 */
	stop_machine(update_lookup_table, &updates[0],
					cpumask_of(raw_smp_processor_id()));

1604
	for (ud = &updates[0]; ud; ud = ud->next) {
1605 1606 1607
		unregister_cpu_under_node(ud->cpu, ud->old_nid);
		register_cpu_under_node(ud->cpu, ud->new_nid);

1608
		dev = get_cpu_device(ud->cpu);
1609 1610
		if (dev)
			kobject_uevent(&dev->kobj, KOBJ_CHANGE);
1611
		cpumask_clear_cpu(ud->cpu, &cpu_associativity_changes_mask);
1612
		changed = 1;
1613 1614
	}

1615
	kfree(updates);
1616
	return changed;
1617 1618 1619 1620 1621 1622 1623 1624
}

static void topology_work_fn(struct work_struct *work)
{
	rebuild_sched_domains();
}
static DECLARE_WORK(topology_work, topology_work_fn);

1625
static void topology_schedule_update(void)
1626 1627 1628 1629 1630 1631
{
	schedule_work(&topology_work);
}

static void topology_timer_fn(unsigned long ignored)
{
1632
	if (prrn_enabled && cpumask_weight(&cpu_associativity_changes_mask))
1633
		topology_schedule_update();
1634 1635 1636 1637 1638
	else if (vphn_enabled) {
		if (update_cpu_associativity_changes_mask() > 0)
			topology_schedule_update();
		reset_topology_timer();
	}
1639 1640 1641 1642
}
static struct timer_list topology_timer =
	TIMER_INITIALIZER(topology_timer_fn, 0, 0);

1643
static void reset_topology_timer(void)
1644 1645 1646
{
	topology_timer.data = 0;
	topology_timer.expires = jiffies + 60 * HZ;
1647
	mod_timer(&topology_timer, topology_timer.expires);
1648 1649
}

1650 1651
#ifdef CONFIG_SMP

1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
static void stage_topology_update(int core_id)
{
	cpumask_or(&cpu_associativity_changes_mask,
		&cpu_associativity_changes_mask, cpu_sibling_mask(core_id));
	reset_topology_timer();
}

static int dt_update_callback(struct notifier_block *nb,
				unsigned long action, void *data)
{
	struct of_prop_reconfig *update;
	int rc = NOTIFY_DONE;

	switch (action) {
	case OF_RECONFIG_UPDATE_PROPERTY:
		update = (struct of_prop_reconfig *)data;
1668 1669
		if (!of_prop_cmp(update->dn->type, "cpu") &&
		    !of_prop_cmp(update->prop->name, "ibm,associativity")) {
1670 1671 1672 1673 1674 1675 1676 1677 1678
			u32 core_id;
			of_property_read_u32(update->dn, "reg", &core_id);
			stage_topology_update(core_id);
			rc = NOTIFY_OK;
		}
		break;
	}

	return rc;
1679 1680
}

1681 1682 1683 1684
static struct notifier_block dt_update_nb = {
	.notifier_call = dt_update_callback,
};

1685 1686
#endif

1687
/*
1688
 * Start polling for associativity changes.
1689 1690 1691 1692 1693
 */
int start_topology_update(void)
{
	int rc = 0;

1694 1695 1696 1697
	if (firmware_has_feature(FW_FEATURE_PRRN)) {
		if (!prrn_enabled) {
			prrn_enabled = 1;
			vphn_enabled = 0;
1698
#ifdef CONFIG_SMP
1699
			rc = of_reconfig_notifier_register(&dt_update_nb);
1700
#endif
1701
		}
1702
	} else if (firmware_has_feature(FW_FEATURE_VPHN) &&
1703
		   lppaca_shared_proc(get_lppaca())) {
1704 1705 1706 1707 1708 1709 1710
		if (!vphn_enabled) {
			prrn_enabled = 0;
			vphn_enabled = 1;
			setup_cpu_associativity_change_counters();
			init_timer_deferrable(&topology_timer);
			reset_topology_timer();
		}
1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
	}

	return rc;
}

/*
 * Disable polling for VPHN associativity changes.
 */
int stop_topology_update(void)
{
1721 1722 1723 1724
	int rc = 0;

	if (prrn_enabled) {
		prrn_enabled = 0;
1725
#ifdef CONFIG_SMP
1726
		rc = of_reconfig_notifier_unregister(&dt_update_nb);
1727
#endif
1728 1729 1730 1731 1732 1733
	} else if (vphn_enabled) {
		vphn_enabled = 0;
		rc = del_timer_sync(&topology_timer);
	}

	return rc;
1734
}
1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790

int prrn_is_enabled(void)
{
	return prrn_enabled;
}

static int topology_read(struct seq_file *file, void *v)
{
	if (vphn_enabled || prrn_enabled)
		seq_puts(file, "on\n");
	else
		seq_puts(file, "off\n");

	return 0;
}

static int topology_open(struct inode *inode, struct file *file)
{
	return single_open(file, topology_read, NULL);
}

static ssize_t topology_write(struct file *file, const char __user *buf,
			      size_t count, loff_t *off)
{
	char kbuf[4]; /* "on" or "off" plus null. */
	int read_len;

	read_len = count < 3 ? count : 3;
	if (copy_from_user(kbuf, buf, read_len))
		return -EINVAL;

	kbuf[read_len] = '\0';

	if (!strncmp(kbuf, "on", 2))
		start_topology_update();
	else if (!strncmp(kbuf, "off", 3))
		stop_topology_update();
	else
		return -EINVAL;

	return count;
}

static const struct file_operations topology_ops = {
	.read = seq_read,
	.write = topology_write,
	.open = topology_open,
	.release = single_release
};

static int topology_update_init(void)
{
	start_topology_update();
	proc_create("powerpc/topology_updates", 644, NULL, &topology_ops);

	return 0;
1791
}
1792
device_initcall(topology_update_init);
1793
#endif /* CONFIG_PPC_SPLPAR */