free-space-cache.c 91.7 KB
Newer Older
J
Josef Bacik 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * Copyright (C) 2008 Red Hat.  All rights reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */

19
#include <linux/pagemap.h>
J
Josef Bacik 已提交
20
#include <linux/sched.h>
21
#include <linux/slab.h>
22
#include <linux/math64.h>
23
#include <linux/ratelimit.h>
J
Josef Bacik 已提交
24
#include "ctree.h"
25 26
#include "free-space-cache.h"
#include "transaction.h"
27
#include "disk-io.h"
28
#include "extent_io.h"
29
#include "inode-map.h"
30
#include "volumes.h"
31

32
#define BITS_PER_BITMAP		(PAGE_SIZE * 8UL)
33
#define MAX_CACHE_BYTES_PER_GIG	SZ_32K
J
Josef Bacik 已提交
34

35 36 37 38 39 40
struct btrfs_trim_range {
	u64 start;
	u64 bytes;
	struct list_head list;
};

41
static int link_free_space(struct btrfs_free_space_ctl *ctl,
J
Josef Bacik 已提交
42
			   struct btrfs_free_space *info);
43 44
static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
			      struct btrfs_free_space *info);
J
Josef Bacik 已提交
45

46 47 48
static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
					       struct btrfs_path *path,
					       u64 offset)
49 50 51 52 53 54 55 56 57 58
{
	struct btrfs_key key;
	struct btrfs_key location;
	struct btrfs_disk_key disk_key;
	struct btrfs_free_space_header *header;
	struct extent_buffer *leaf;
	struct inode *inode = NULL;
	int ret;

	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
59
	key.offset = offset;
60 61 62 63 64 65
	key.type = 0;

	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		return ERR_PTR(ret);
	if (ret > 0) {
66
		btrfs_release_path(path);
67 68 69 70 71 72 73 74
		return ERR_PTR(-ENOENT);
	}

	leaf = path->nodes[0];
	header = btrfs_item_ptr(leaf, path->slots[0],
				struct btrfs_free_space_header);
	btrfs_free_space_key(leaf, header, &disk_key);
	btrfs_disk_key_to_cpu(&location, &disk_key);
75
	btrfs_release_path(path);
76 77 78 79 80 81 82 83 84 85 86

	inode = btrfs_iget(root->fs_info->sb, &location, root, NULL);
	if (!inode)
		return ERR_PTR(-ENOENT);
	if (IS_ERR(inode))
		return inode;
	if (is_bad_inode(inode)) {
		iput(inode);
		return ERR_PTR(-ENOENT);
	}

A
Al Viro 已提交
87
	mapping_set_gfp_mask(inode->i_mapping,
88 89
			mapping_gfp_constraint(inode->i_mapping,
			~(__GFP_FS | __GFP_HIGHMEM)));
90

91 92 93 94 95 96 97 98
	return inode;
}

struct inode *lookup_free_space_inode(struct btrfs_root *root,
				      struct btrfs_block_group_cache
				      *block_group, struct btrfs_path *path)
{
	struct inode *inode = NULL;
99
	u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
100 101 102 103 104 105 106 107 108 109 110 111 112

	spin_lock(&block_group->lock);
	if (block_group->inode)
		inode = igrab(block_group->inode);
	spin_unlock(&block_group->lock);
	if (inode)
		return inode;

	inode = __lookup_free_space_inode(root, path,
					  block_group->key.objectid);
	if (IS_ERR(inode))
		return inode;

113
	spin_lock(&block_group->lock);
114
	if (!((BTRFS_I(inode)->flags & flags) == flags)) {
115 116
		btrfs_info(root->fs_info,
			"Old style space inode found, converting.");
117 118
		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
			BTRFS_INODE_NODATACOW;
119 120 121
		block_group->disk_cache_state = BTRFS_DC_CLEAR;
	}

122
	if (!block_group->iref) {
123 124 125 126 127 128 129 130
		block_group->inode = igrab(inode);
		block_group->iref = 1;
	}
	spin_unlock(&block_group->lock);

	return inode;
}

131 132 133 134
static int __create_free_space_inode(struct btrfs_root *root,
				     struct btrfs_trans_handle *trans,
				     struct btrfs_path *path,
				     u64 ino, u64 offset)
135 136 137 138 139 140
{
	struct btrfs_key key;
	struct btrfs_disk_key disk_key;
	struct btrfs_free_space_header *header;
	struct btrfs_inode_item *inode_item;
	struct extent_buffer *leaf;
141
	u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC;
142 143
	int ret;

144
	ret = btrfs_insert_empty_inode(trans, root, path, ino);
145 146 147
	if (ret)
		return ret;

148 149 150 151
	/* We inline crc's for the free disk space cache */
	if (ino != BTRFS_FREE_INO_OBJECTID)
		flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;

152 153 154 155 156 157 158 159 160 161 162 163
	leaf = path->nodes[0];
	inode_item = btrfs_item_ptr(leaf, path->slots[0],
				    struct btrfs_inode_item);
	btrfs_item_key(leaf, &disk_key, path->slots[0]);
	memset_extent_buffer(leaf, 0, (unsigned long)inode_item,
			     sizeof(*inode_item));
	btrfs_set_inode_generation(leaf, inode_item, trans->transid);
	btrfs_set_inode_size(leaf, inode_item, 0);
	btrfs_set_inode_nbytes(leaf, inode_item, 0);
	btrfs_set_inode_uid(leaf, inode_item, 0);
	btrfs_set_inode_gid(leaf, inode_item, 0);
	btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
164
	btrfs_set_inode_flags(leaf, inode_item, flags);
165 166
	btrfs_set_inode_nlink(leaf, inode_item, 1);
	btrfs_set_inode_transid(leaf, inode_item, trans->transid);
167
	btrfs_set_inode_block_group(leaf, inode_item, offset);
168
	btrfs_mark_buffer_dirty(leaf);
169
	btrfs_release_path(path);
170 171

	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
172
	key.offset = offset;
173 174 175 176
	key.type = 0;
	ret = btrfs_insert_empty_item(trans, root, path, &key,
				      sizeof(struct btrfs_free_space_header));
	if (ret < 0) {
177
		btrfs_release_path(path);
178 179
		return ret;
	}
180

181 182 183 184 185 186
	leaf = path->nodes[0];
	header = btrfs_item_ptr(leaf, path->slots[0],
				struct btrfs_free_space_header);
	memset_extent_buffer(leaf, 0, (unsigned long)header, sizeof(*header));
	btrfs_set_free_space_key(leaf, header, &disk_key);
	btrfs_mark_buffer_dirty(leaf);
187
	btrfs_release_path(path);
188 189 190 191

	return 0;
}

192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
int create_free_space_inode(struct btrfs_root *root,
			    struct btrfs_trans_handle *trans,
			    struct btrfs_block_group_cache *block_group,
			    struct btrfs_path *path)
{
	int ret;
	u64 ino;

	ret = btrfs_find_free_objectid(root, &ino);
	if (ret < 0)
		return ret;

	return __create_free_space_inode(root, trans, path, ino,
					 block_group->key.objectid);
}

208 209
int btrfs_check_trunc_cache_free_space(struct btrfs_root *root,
				       struct btrfs_block_rsv *rsv)
210
{
211
	u64 needed_bytes;
212
	int ret;
213 214 215 216 217

	/* 1 for slack space, 1 for updating the inode */
	needed_bytes = btrfs_calc_trunc_metadata_size(root, 1) +
		btrfs_calc_trans_metadata_size(root, 1);

218 219 220 221 222 223
	spin_lock(&rsv->lock);
	if (rsv->reserved < needed_bytes)
		ret = -ENOSPC;
	else
		ret = 0;
	spin_unlock(&rsv->lock);
224
	return ret;
225 226 227 228
}

int btrfs_truncate_free_space_cache(struct btrfs_root *root,
				    struct btrfs_trans_handle *trans,
229
				    struct btrfs_block_group_cache *block_group,
230 231 232
				    struct inode *inode)
{
	int ret = 0;
233
	struct btrfs_path *path = btrfs_alloc_path();
234
	bool locked = false;
235 236 237 238 239 240 241

	if (!path) {
		ret = -ENOMEM;
		goto fail;
	}

	if (block_group) {
242
		locked = true;
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
		mutex_lock(&trans->transaction->cache_write_mutex);
		if (!list_empty(&block_group->io_list)) {
			list_del_init(&block_group->io_list);

			btrfs_wait_cache_io(root, trans, block_group,
					    &block_group->io_ctl, path,
					    block_group->key.objectid);
			btrfs_put_block_group(block_group);
		}

		/*
		 * now that we've truncated the cache away, its no longer
		 * setup or written
		 */
		spin_lock(&block_group->lock);
		block_group->disk_cache_state = BTRFS_DC_CLEAR;
		spin_unlock(&block_group->lock);
	}
	btrfs_free_path(path);
262 263

	btrfs_i_size_write(inode, 0);
264
	truncate_pagecache(inode, 0);
265 266 267 268

	/*
	 * We don't need an orphan item because truncating the free space cache
	 * will never be split across transactions.
269 270
	 * We don't need to check for -EAGAIN because we're a free space
	 * cache inode
271 272 273
	 */
	ret = btrfs_truncate_inode_items(trans, root, inode,
					 0, BTRFS_EXTENT_DATA_KEY);
274 275
	if (ret)
		goto fail;
276

277
	ret = btrfs_update_inode(trans, root, inode);
278 279

fail:
280 281
	if (locked)
		mutex_unlock(&trans->transaction->cache_write_mutex);
282 283
	if (ret)
		btrfs_abort_transaction(trans, root, ret);
284

285
	return ret;
286 287
}

288 289 290 291 292 293 294 295 296 297
static int readahead_cache(struct inode *inode)
{
	struct file_ra_state *ra;
	unsigned long last_index;

	ra = kzalloc(sizeof(*ra), GFP_NOFS);
	if (!ra)
		return -ENOMEM;

	file_ra_state_init(ra, inode->i_mapping);
298
	last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
299 300 301 302 303 304 305 306

	page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);

	kfree(ra);

	return 0;
}

307
static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode,
308
		       struct btrfs_root *root, int write)
309
{
310 311 312
	int num_pages;
	int check_crcs = 0;

313
	num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
314 315 316 317 318 319

	if (btrfs_ino(inode) != BTRFS_FREE_INO_OBJECTID)
		check_crcs = 1;

	/* Make sure we can fit our crcs into the first page */
	if (write && check_crcs &&
320
	    (num_pages * sizeof(u32)) >= PAGE_SIZE)
321 322
		return -ENOSPC;

323
	memset(io_ctl, 0, sizeof(struct btrfs_io_ctl));
324

325
	io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS);
326 327
	if (!io_ctl->pages)
		return -ENOMEM;
328 329

	io_ctl->num_pages = num_pages;
330
	io_ctl->root = root;
331
	io_ctl->check_crcs = check_crcs;
332
	io_ctl->inode = inode;
333

334 335 336
	return 0;
}

337
static void io_ctl_free(struct btrfs_io_ctl *io_ctl)
338 339
{
	kfree(io_ctl->pages);
340
	io_ctl->pages = NULL;
341 342
}

343
static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl)
344 345 346 347 348 349 350
{
	if (io_ctl->cur) {
		io_ctl->cur = NULL;
		io_ctl->orig = NULL;
	}
}

351
static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear)
352
{
353
	ASSERT(io_ctl->index < io_ctl->num_pages);
354
	io_ctl->page = io_ctl->pages[io_ctl->index++];
355
	io_ctl->cur = page_address(io_ctl->page);
356
	io_ctl->orig = io_ctl->cur;
357
	io_ctl->size = PAGE_SIZE;
358
	if (clear)
359
		memset(io_ctl->cur, 0, PAGE_SIZE);
360 361
}

362
static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl)
363 364 365 366 367 368
{
	int i;

	io_ctl_unmap_page(io_ctl);

	for (i = 0; i < io_ctl->num_pages; i++) {
369 370 371
		if (io_ctl->pages[i]) {
			ClearPageChecked(io_ctl->pages[i]);
			unlock_page(io_ctl->pages[i]);
372
			put_page(io_ctl->pages[i]);
373
		}
374 375 376
	}
}

377
static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, struct inode *inode,
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
				int uptodate)
{
	struct page *page;
	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
	int i;

	for (i = 0; i < io_ctl->num_pages; i++) {
		page = find_or_create_page(inode->i_mapping, i, mask);
		if (!page) {
			io_ctl_drop_pages(io_ctl);
			return -ENOMEM;
		}
		io_ctl->pages[i] = page;
		if (uptodate && !PageUptodate(page)) {
			btrfs_readpage(NULL, page);
			lock_page(page);
			if (!PageUptodate(page)) {
395 396
				btrfs_err(BTRFS_I(inode)->root->fs_info,
					   "error reading free space cache");
397 398 399 400 401 402
				io_ctl_drop_pages(io_ctl);
				return -EIO;
			}
		}
	}

403 404 405 406 407
	for (i = 0; i < io_ctl->num_pages; i++) {
		clear_page_dirty_for_io(io_ctl->pages[i]);
		set_page_extent_mapped(io_ctl->pages[i]);
	}

408 409 410
	return 0;
}

411
static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
412
{
A
Al Viro 已提交
413
	__le64 *val;
414 415 416 417

	io_ctl_map_page(io_ctl, 1);

	/*
418 419
	 * Skip the csum areas.  If we don't check crcs then we just have a
	 * 64bit chunk at the front of the first page.
420
	 */
421 422 423 424 425 426 427
	if (io_ctl->check_crcs) {
		io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
		io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
	} else {
		io_ctl->cur += sizeof(u64);
		io_ctl->size -= sizeof(u64) * 2;
	}
428 429 430 431 432 433

	val = io_ctl->cur;
	*val = cpu_to_le64(generation);
	io_ctl->cur += sizeof(u64);
}

434
static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
435
{
A
Al Viro 已提交
436
	__le64 *gen;
437

438 439 440 441 442 443 444 445 446 447 448 449
	/*
	 * Skip the crc area.  If we don't check crcs then we just have a 64bit
	 * chunk at the front of the first page.
	 */
	if (io_ctl->check_crcs) {
		io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
		io_ctl->size -= sizeof(u64) +
			(sizeof(u32) * io_ctl->num_pages);
	} else {
		io_ctl->cur += sizeof(u64);
		io_ctl->size -= sizeof(u64) * 2;
	}
450 451 452

	gen = io_ctl->cur;
	if (le64_to_cpu(*gen) != generation) {
453 454 455
		btrfs_err_rl(io_ctl->root->fs_info,
			"space cache generation (%llu) does not match inode (%llu)",
				*gen, generation);
456 457 458 459
		io_ctl_unmap_page(io_ctl);
		return -EIO;
	}
	io_ctl->cur += sizeof(u64);
460 461 462
	return 0;
}

463
static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index)
464 465 466 467 468 469 470 471 472 473 474
{
	u32 *tmp;
	u32 crc = ~(u32)0;
	unsigned offset = 0;

	if (!io_ctl->check_crcs) {
		io_ctl_unmap_page(io_ctl);
		return;
	}

	if (index == 0)
475
		offset = sizeof(u32) * io_ctl->num_pages;
476

477
	crc = btrfs_csum_data(io_ctl->orig + offset, crc,
478
			      PAGE_SIZE - offset);
479 480
	btrfs_csum_final(crc, (char *)&crc);
	io_ctl_unmap_page(io_ctl);
481
	tmp = page_address(io_ctl->pages[0]);
482 483 484 485
	tmp += index;
	*tmp = crc;
}

486
static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index)
487 488 489 490 491 492 493 494 495 496 497 498 499
{
	u32 *tmp, val;
	u32 crc = ~(u32)0;
	unsigned offset = 0;

	if (!io_ctl->check_crcs) {
		io_ctl_map_page(io_ctl, 0);
		return 0;
	}

	if (index == 0)
		offset = sizeof(u32) * io_ctl->num_pages;

500
	tmp = page_address(io_ctl->pages[0]);
501 502 503 504
	tmp += index;
	val = *tmp;

	io_ctl_map_page(io_ctl, 0);
505
	crc = btrfs_csum_data(io_ctl->orig + offset, crc,
506
			      PAGE_SIZE - offset);
507 508
	btrfs_csum_final(crc, (char *)&crc);
	if (val != crc) {
509 510
		btrfs_err_rl(io_ctl->root->fs_info,
			"csum mismatch on free space cache");
511 512 513 514
		io_ctl_unmap_page(io_ctl);
		return -EIO;
	}

515 516 517
	return 0;
}

518
static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes,
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
			    void *bitmap)
{
	struct btrfs_free_space_entry *entry;

	if (!io_ctl->cur)
		return -ENOSPC;

	entry = io_ctl->cur;
	entry->offset = cpu_to_le64(offset);
	entry->bytes = cpu_to_le64(bytes);
	entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
		BTRFS_FREE_SPACE_EXTENT;
	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
	io_ctl->size -= sizeof(struct btrfs_free_space_entry);

	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
		return 0;

537
	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
538 539 540 541 542 543 544 545 546 547

	/* No more pages to map */
	if (io_ctl->index >= io_ctl->num_pages)
		return 0;

	/* map the next page */
	io_ctl_map_page(io_ctl, 1);
	return 0;
}

548
static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap)
549 550 551 552 553 554 555 556 557
{
	if (!io_ctl->cur)
		return -ENOSPC;

	/*
	 * If we aren't at the start of the current page, unmap this one and
	 * map the next one if there is any left.
	 */
	if (io_ctl->cur != io_ctl->orig) {
558
		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
559 560 561 562 563
		if (io_ctl->index >= io_ctl->num_pages)
			return -ENOSPC;
		io_ctl_map_page(io_ctl, 0);
	}

564
	memcpy(io_ctl->cur, bitmap, PAGE_SIZE);
565
	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
566 567 568 569 570
	if (io_ctl->index < io_ctl->num_pages)
		io_ctl_map_page(io_ctl, 0);
	return 0;
}

571
static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl)
572
{
573 574 575 576 577 578 579 580
	/*
	 * If we're not on the boundary we know we've modified the page and we
	 * need to crc the page.
	 */
	if (io_ctl->cur != io_ctl->orig)
		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
	else
		io_ctl_unmap_page(io_ctl);
581 582 583

	while (io_ctl->index < io_ctl->num_pages) {
		io_ctl_map_page(io_ctl, 1);
584
		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
585 586 587
	}
}

588
static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl,
589
			    struct btrfs_free_space *entry, u8 *type)
590 591
{
	struct btrfs_free_space_entry *e;
592 593 594 595 596 597 598
	int ret;

	if (!io_ctl->cur) {
		ret = io_ctl_check_crc(io_ctl, io_ctl->index);
		if (ret)
			return ret;
	}
599 600 601 602

	e = io_ctl->cur;
	entry->offset = le64_to_cpu(e->offset);
	entry->bytes = le64_to_cpu(e->bytes);
603
	*type = e->type;
604 605 606 607
	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
	io_ctl->size -= sizeof(struct btrfs_free_space_entry);

	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
608
		return 0;
609 610 611

	io_ctl_unmap_page(io_ctl);

612
	return 0;
613 614
}

615
static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl,
616
			      struct btrfs_free_space *entry)
617
{
618 619 620 621 622 623
	int ret;

	ret = io_ctl_check_crc(io_ctl, io_ctl->index);
	if (ret)
		return ret;

624
	memcpy(entry->bitmap, io_ctl->cur, PAGE_SIZE);
625
	io_ctl_unmap_page(io_ctl);
626 627

	return 0;
628 629
}

630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
/*
 * Since we attach pinned extents after the fact we can have contiguous sections
 * of free space that are split up in entries.  This poses a problem with the
 * tree logging stuff since it could have allocated across what appears to be 2
 * entries since we would have merged the entries when adding the pinned extents
 * back to the free space cache.  So run through the space cache that we just
 * loaded and merge contiguous entries.  This will make the log replay stuff not
 * blow up and it will make for nicer allocator behavior.
 */
static void merge_space_tree(struct btrfs_free_space_ctl *ctl)
{
	struct btrfs_free_space *e, *prev = NULL;
	struct rb_node *n;

again:
	spin_lock(&ctl->tree_lock);
	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
		e = rb_entry(n, struct btrfs_free_space, offset_index);
		if (!prev)
			goto next;
		if (e->bitmap || prev->bitmap)
			goto next;
		if (prev->offset + prev->bytes == e->offset) {
			unlink_free_space(ctl, prev);
			unlink_free_space(ctl, e);
			prev->bytes += e->bytes;
			kmem_cache_free(btrfs_free_space_cachep, e);
			link_free_space(ctl, prev);
			prev = NULL;
			spin_unlock(&ctl->tree_lock);
			goto again;
		}
next:
		prev = e;
	}
	spin_unlock(&ctl->tree_lock);
}

668 669 670
static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
				   struct btrfs_free_space_ctl *ctl,
				   struct btrfs_path *path, u64 offset)
671 672 673
{
	struct btrfs_free_space_header *header;
	struct extent_buffer *leaf;
674
	struct btrfs_io_ctl io_ctl;
675
	struct btrfs_key key;
676
	struct btrfs_free_space *e, *n;
677
	LIST_HEAD(bitmaps);
678 679 680
	u64 num_entries;
	u64 num_bitmaps;
	u64 generation;
681
	u8 type;
682
	int ret = 0;
683 684

	/* Nothing in the space cache, goodbye */
685
	if (!i_size_read(inode))
686
		return 0;
687 688

	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
689
	key.offset = offset;
690 691 692
	key.type = 0;

	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
693
	if (ret < 0)
694
		return 0;
695
	else if (ret > 0) {
696
		btrfs_release_path(path);
697
		return 0;
698 699
	}

700 701
	ret = -1;

702 703 704 705 706 707
	leaf = path->nodes[0];
	header = btrfs_item_ptr(leaf, path->slots[0],
				struct btrfs_free_space_header);
	num_entries = btrfs_free_space_entries(leaf, header);
	num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
	generation = btrfs_free_space_generation(leaf, header);
708
	btrfs_release_path(path);
709

710 711 712 713 714 715 716
	if (!BTRFS_I(inode)->generation) {
		btrfs_info(root->fs_info,
			   "The free space cache file (%llu) is invalid. skip it\n",
			   offset);
		return 0;
	}

717
	if (BTRFS_I(inode)->generation != generation) {
718 719 720
		btrfs_err(root->fs_info,
			"free space inode generation (%llu) "
			"did not match free space cache generation (%llu)",
721
			BTRFS_I(inode)->generation, generation);
722
		return 0;
723 724 725
	}

	if (!num_entries)
726
		return 0;
727

728
	ret = io_ctl_init(&io_ctl, inode, root, 0);
729 730 731
	if (ret)
		return ret;

732
	ret = readahead_cache(inode);
733
	if (ret)
734 735
		goto out;

736 737 738
	ret = io_ctl_prepare_pages(&io_ctl, inode, 1);
	if (ret)
		goto out;
739

740 741 742 743
	ret = io_ctl_check_crc(&io_ctl, 0);
	if (ret)
		goto free_cache;

744 745 746
	ret = io_ctl_check_generation(&io_ctl, generation);
	if (ret)
		goto free_cache;
747

748 749 750 751
	while (num_entries) {
		e = kmem_cache_zalloc(btrfs_free_space_cachep,
				      GFP_NOFS);
		if (!e)
752 753
			goto free_cache;

754 755 756 757 758 759
		ret = io_ctl_read_entry(&io_ctl, e, &type);
		if (ret) {
			kmem_cache_free(btrfs_free_space_cachep, e);
			goto free_cache;
		}

760 761 762
		if (!e->bytes) {
			kmem_cache_free(btrfs_free_space_cachep, e);
			goto free_cache;
763
		}
764 765 766 767 768 769

		if (type == BTRFS_FREE_SPACE_EXTENT) {
			spin_lock(&ctl->tree_lock);
			ret = link_free_space(ctl, e);
			spin_unlock(&ctl->tree_lock);
			if (ret) {
770 771
				btrfs_err(root->fs_info,
					"Duplicate entries in free space cache, dumping");
772
				kmem_cache_free(btrfs_free_space_cachep, e);
773 774
				goto free_cache;
			}
775
		} else {
776
			ASSERT(num_bitmaps);
777
			num_bitmaps--;
778
			e->bitmap = kzalloc(PAGE_SIZE, GFP_NOFS);
779 780 781
			if (!e->bitmap) {
				kmem_cache_free(
					btrfs_free_space_cachep, e);
782 783
				goto free_cache;
			}
784 785 786 787 788 789
			spin_lock(&ctl->tree_lock);
			ret = link_free_space(ctl, e);
			ctl->total_bitmaps++;
			ctl->op->recalc_thresholds(ctl);
			spin_unlock(&ctl->tree_lock);
			if (ret) {
790 791
				btrfs_err(root->fs_info,
					"Duplicate entries in free space cache, dumping");
792
				kmem_cache_free(btrfs_free_space_cachep, e);
793 794
				goto free_cache;
			}
795
			list_add_tail(&e->list, &bitmaps);
796 797
		}

798 799
		num_entries--;
	}
800

801 802
	io_ctl_unmap_page(&io_ctl);

803 804 805 806 807
	/*
	 * We add the bitmaps at the end of the entries in order that
	 * the bitmap entries are added to the cache.
	 */
	list_for_each_entry_safe(e, n, &bitmaps, list) {
808
		list_del_init(&e->list);
809 810 811
		ret = io_ctl_read_bitmap(&io_ctl, e);
		if (ret)
			goto free_cache;
812 813
	}

814
	io_ctl_drop_pages(&io_ctl);
815
	merge_space_tree(ctl);
816 817
	ret = 1;
out:
818
	io_ctl_free(&io_ctl);
819 820
	return ret;
free_cache:
821
	io_ctl_drop_pages(&io_ctl);
822
	__btrfs_remove_free_space_cache(ctl);
823 824 825
	goto out;
}

826 827
int load_free_space_cache(struct btrfs_fs_info *fs_info,
			  struct btrfs_block_group_cache *block_group)
J
Josef Bacik 已提交
828
{
829
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
830 831 832
	struct btrfs_root *root = fs_info->tree_root;
	struct inode *inode;
	struct btrfs_path *path;
833
	int ret = 0;
834 835 836 837 838 839 840
	bool matched;
	u64 used = btrfs_block_group_used(&block_group->item);

	/*
	 * If this block group has been marked to be cleared for one reason or
	 * another then we can't trust the on disk cache, so just return.
	 */
841
	spin_lock(&block_group->lock);
842 843 844 845
	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
		spin_unlock(&block_group->lock);
		return 0;
	}
846
	spin_unlock(&block_group->lock);
847 848 849 850

	path = btrfs_alloc_path();
	if (!path)
		return 0;
851 852
	path->search_commit_root = 1;
	path->skip_locking = 1;
853 854 855 856 857 858 859

	inode = lookup_free_space_inode(root, block_group, path);
	if (IS_ERR(inode)) {
		btrfs_free_path(path);
		return 0;
	}

860 861 862 863
	/* We may have converted the inode and made the cache invalid. */
	spin_lock(&block_group->lock);
	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
		spin_unlock(&block_group->lock);
864
		btrfs_free_path(path);
865 866 867 868
		goto out;
	}
	spin_unlock(&block_group->lock);

869 870 871 872 873 874 875 876 877 878 879 880 881
	ret = __load_free_space_cache(fs_info->tree_root, inode, ctl,
				      path, block_group->key.objectid);
	btrfs_free_path(path);
	if (ret <= 0)
		goto out;

	spin_lock(&ctl->tree_lock);
	matched = (ctl->free_space == (block_group->key.offset - used -
				       block_group->bytes_super));
	spin_unlock(&ctl->tree_lock);

	if (!matched) {
		__btrfs_remove_free_space_cache(ctl);
882
		btrfs_warn(fs_info, "block group %llu has wrong amount of free space",
883
			block_group->key.objectid);
884 885 886 887 888 889 890 891
		ret = -1;
	}
out:
	if (ret < 0) {
		/* This cache is bogus, make sure it gets cleared */
		spin_lock(&block_group->lock);
		block_group->disk_cache_state = BTRFS_DC_CLEAR;
		spin_unlock(&block_group->lock);
892
		ret = 0;
893

894
		btrfs_warn(fs_info, "failed to load free space cache for block group %llu, rebuilding it now",
895
			block_group->key.objectid);
896 897 898 899
	}

	iput(inode);
	return ret;
900 901
}

902
static noinline_for_stack
903
int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl,
904 905 906 907
			      struct btrfs_free_space_ctl *ctl,
			      struct btrfs_block_group_cache *block_group,
			      int *entries, int *bitmaps,
			      struct list_head *bitmap_list)
J
Josef Bacik 已提交
908
{
909
	int ret;
910
	struct btrfs_free_cluster *cluster = NULL;
911
	struct btrfs_free_cluster *cluster_locked = NULL;
912
	struct rb_node *node = rb_first(&ctl->free_space_offset);
913
	struct btrfs_trim_range *trim_entry;
914

915
	/* Get the cluster for this block_group if it exists */
916
	if (block_group && !list_empty(&block_group->cluster_list)) {
917 918 919
		cluster = list_entry(block_group->cluster_list.next,
				     struct btrfs_free_cluster,
				     block_group_list);
920
	}
921

922
	if (!node && cluster) {
923 924
		cluster_locked = cluster;
		spin_lock(&cluster_locked->lock);
925 926 927 928
		node = rb_first(&cluster->root);
		cluster = NULL;
	}

929 930 931
	/* Write out the extent entries */
	while (node) {
		struct btrfs_free_space *e;
J
Josef Bacik 已提交
932

933
		e = rb_entry(node, struct btrfs_free_space, offset_index);
934
		*entries += 1;
J
Josef Bacik 已提交
935

936
		ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes,
937 938
				       e->bitmap);
		if (ret)
939
			goto fail;
940

941
		if (e->bitmap) {
942 943
			list_add_tail(&e->list, bitmap_list);
			*bitmaps += 1;
944
		}
945 946 947
		node = rb_next(node);
		if (!node && cluster) {
			node = rb_first(&cluster->root);
948 949
			cluster_locked = cluster;
			spin_lock(&cluster_locked->lock);
950
			cluster = NULL;
951
		}
952
	}
953 954 955 956
	if (cluster_locked) {
		spin_unlock(&cluster_locked->lock);
		cluster_locked = NULL;
	}
957 958 959 960 961 962 963 964 965 966 967 968 969 970 971

	/*
	 * Make sure we don't miss any range that was removed from our rbtree
	 * because trimming is running. Otherwise after a umount+mount (or crash
	 * after committing the transaction) we would leak free space and get
	 * an inconsistent free space cache report from fsck.
	 */
	list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) {
		ret = io_ctl_add_entry(io_ctl, trim_entry->start,
				       trim_entry->bytes, NULL);
		if (ret)
			goto fail;
		*entries += 1;
	}

972 973
	return 0;
fail:
974 975
	if (cluster_locked)
		spin_unlock(&cluster_locked->lock);
976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
	return -ENOSPC;
}

static noinline_for_stack int
update_cache_item(struct btrfs_trans_handle *trans,
		  struct btrfs_root *root,
		  struct inode *inode,
		  struct btrfs_path *path, u64 offset,
		  int entries, int bitmaps)
{
	struct btrfs_key key;
	struct btrfs_free_space_header *header;
	struct extent_buffer *leaf;
	int ret;

	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
	key.offset = offset;
	key.type = 0;

	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
	if (ret < 0) {
		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
				 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL,
				 GFP_NOFS);
		goto fail;
	}
	leaf = path->nodes[0];
	if (ret > 0) {
		struct btrfs_key found_key;
		ASSERT(path->slots[0]);
		path->slots[0]--;
		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
		if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
		    found_key.offset != offset) {
			clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
					 inode->i_size - 1,
					 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0,
					 NULL, GFP_NOFS);
			btrfs_release_path(path);
			goto fail;
		}
	}

	BTRFS_I(inode)->generation = trans->transid;
	header = btrfs_item_ptr(leaf, path->slots[0],
				struct btrfs_free_space_header);
	btrfs_set_free_space_entries(leaf, header, entries);
	btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
	btrfs_set_free_space_generation(leaf, header, trans->transid);
	btrfs_mark_buffer_dirty(leaf);
	btrfs_release_path(path);

	return 0;

fail:
	return -1;
}

static noinline_for_stack int
1035 1036
write_pinned_extent_entries(struct btrfs_root *root,
			    struct btrfs_block_group_cache *block_group,
1037
			    struct btrfs_io_ctl *io_ctl,
1038
			    int *entries)
1039 1040 1041 1042
{
	u64 start, extent_start, extent_end, len;
	struct extent_io_tree *unpin = NULL;
	int ret;
1043

1044 1045 1046
	if (!block_group)
		return 0;

1047 1048 1049
	/*
	 * We want to add any pinned extents to our free space cache
	 * so we don't leak the space
1050
	 *
1051 1052 1053 1054 1055
	 * We shouldn't have switched the pinned extents yet so this is the
	 * right one
	 */
	unpin = root->fs_info->pinned_extents;

1056
	start = block_group->key.objectid;
1057

1058
	while (start < block_group->key.objectid + block_group->key.offset) {
1059 1060
		ret = find_first_extent_bit(unpin, start,
					    &extent_start, &extent_end,
1061
					    EXTENT_DIRTY, NULL);
1062 1063
		if (ret)
			return 0;
J
Josef Bacik 已提交
1064

1065
		/* This pinned extent is out of our range */
1066
		if (extent_start >= block_group->key.objectid +
1067
		    block_group->key.offset)
1068
			return 0;
1069

1070 1071 1072 1073
		extent_start = max(extent_start, start);
		extent_end = min(block_group->key.objectid +
				 block_group->key.offset, extent_end + 1);
		len = extent_end - extent_start;
J
Josef Bacik 已提交
1074

1075 1076
		*entries += 1;
		ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL);
1077
		if (ret)
1078
			return -ENOSPC;
J
Josef Bacik 已提交
1079

1080
		start = extent_end;
1081
	}
J
Josef Bacik 已提交
1082

1083 1084 1085 1086
	return 0;
}

static noinline_for_stack int
1087
write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list)
1088
{
1089
	struct btrfs_free_space *entry, *next;
1090 1091
	int ret;

J
Josef Bacik 已提交
1092
	/* Write out the bitmaps */
1093
	list_for_each_entry_safe(entry, next, bitmap_list, list) {
1094
		ret = io_ctl_add_bitmap(io_ctl, entry->bitmap);
1095
		if (ret)
1096
			return -ENOSPC;
J
Josef Bacik 已提交
1097
		list_del_init(&entry->list);
1098 1099
	}

1100 1101
	return 0;
}
J
Josef Bacik 已提交
1102

1103 1104 1105
static int flush_dirty_cache(struct inode *inode)
{
	int ret;
1106

1107
	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
1108
	if (ret)
1109 1110 1111
		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
				 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL,
				 GFP_NOFS);
J
Josef Bacik 已提交
1112

1113
	return ret;
1114 1115 1116
}

static void noinline_for_stack
1117
cleanup_bitmap_list(struct list_head *bitmap_list)
1118
{
1119
	struct btrfs_free_space *entry, *next;
1120

1121
	list_for_each_entry_safe(entry, next, bitmap_list, list)
1122
		list_del_init(&entry->list);
1123 1124 1125 1126 1127 1128 1129 1130
}

static void noinline_for_stack
cleanup_write_cache_enospc(struct inode *inode,
			   struct btrfs_io_ctl *io_ctl,
			   struct extent_state **cached_state,
			   struct list_head *bitmap_list)
{
1131 1132 1133 1134 1135
	io_ctl_drop_pages(io_ctl);
	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
			     i_size_read(inode) - 1, cached_state,
			     GFP_NOFS);
}
1136

1137 1138 1139 1140 1141 1142 1143 1144 1145
int btrfs_wait_cache_io(struct btrfs_root *root,
			struct btrfs_trans_handle *trans,
			struct btrfs_block_group_cache *block_group,
			struct btrfs_io_ctl *io_ctl,
			struct btrfs_path *path, u64 offset)
{
	int ret;
	struct inode *inode = io_ctl->inode;

1146 1147 1148
	if (!inode)
		return 0;

C
Chris Mason 已提交
1149 1150
	if (block_group)
		root = root->fs_info->tree_root;
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175

	/* Flush the dirty pages in the cache file. */
	ret = flush_dirty_cache(inode);
	if (ret)
		goto out;

	/* Update the cache item to tell everyone this cache file is valid. */
	ret = update_cache_item(trans, root, inode, path, offset,
				io_ctl->entries, io_ctl->bitmaps);
out:
	io_ctl_free(io_ctl);
	if (ret) {
		invalidate_inode_pages2(inode->i_mapping);
		BTRFS_I(inode)->generation = 0;
		if (block_group) {
#ifdef DEBUG
			btrfs_err(root->fs_info,
				"failed to write free space cache for block group %llu",
				block_group->key.objectid);
#endif
		}
	}
	btrfs_update_inode(trans, root, inode);

	if (block_group) {
1176 1177 1178 1179
		/* the dirty list is protected by the dirty_bgs_lock */
		spin_lock(&trans->transaction->dirty_bgs_lock);

		/* the disk_cache_state is protected by the block group lock */
1180 1181 1182 1183
		spin_lock(&block_group->lock);

		/*
		 * only mark this as written if we didn't get put back on
1184 1185
		 * the dirty list while waiting for IO.   Otherwise our
		 * cache state won't be right, and we won't get written again
1186 1187 1188 1189 1190 1191 1192
		 */
		if (!ret && list_empty(&block_group->dirty_list))
			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
		else if (ret)
			block_group->disk_cache_state = BTRFS_DC_ERROR;

		spin_unlock(&block_group->lock);
1193
		spin_unlock(&trans->transaction->dirty_bgs_lock);
1194 1195 1196 1197 1198 1199 1200 1201
		io_ctl->inode = NULL;
		iput(inode);
	}

	return ret;

}

1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
/**
 * __btrfs_write_out_cache - write out cached info to an inode
 * @root - the root the inode belongs to
 * @ctl - the free space cache we are going to write out
 * @block_group - the block_group for this cache if it belongs to a block_group
 * @trans - the trans handle
 * @path - the path to use
 * @offset - the offset for the key we'll insert
 *
 * This function writes out a free space cache struct to disk for quick recovery
G
Geliang Tang 已提交
1212
 * on mount.  This will return 0 if it was successful in writing the cache out,
1213
 * or an errno if it was not.
1214 1215 1216 1217
 */
static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
				   struct btrfs_free_space_ctl *ctl,
				   struct btrfs_block_group_cache *block_group,
1218
				   struct btrfs_io_ctl *io_ctl,
1219 1220 1221 1222
				   struct btrfs_trans_handle *trans,
				   struct btrfs_path *path, u64 offset)
{
	struct extent_state *cached_state = NULL;
1223
	LIST_HEAD(bitmap_list);
1224 1225 1226
	int entries = 0;
	int bitmaps = 0;
	int ret;
1227
	int must_iput = 0;
1228 1229

	if (!i_size_read(inode))
1230
		return -EIO;
1231

1232 1233
	WARN_ON(io_ctl->pages);
	ret = io_ctl_init(io_ctl, inode, root, 1);
1234
	if (ret)
1235
		return ret;
1236

1237 1238 1239 1240 1241 1242 1243 1244 1245
	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) {
		down_write(&block_group->data_rwsem);
		spin_lock(&block_group->lock);
		if (block_group->delalloc_bytes) {
			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
			spin_unlock(&block_group->lock);
			up_write(&block_group->data_rwsem);
			BTRFS_I(inode)->generation = 0;
			ret = 0;
1246
			must_iput = 1;
1247 1248 1249 1250 1251
			goto out;
		}
		spin_unlock(&block_group->lock);
	}

1252
	/* Lock all pages first so we can lock the extent safely. */
1253 1254 1255
	ret = io_ctl_prepare_pages(io_ctl, inode, 0);
	if (ret)
		goto out;
1256 1257

	lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1258
			 &cached_state);
1259

1260
	io_ctl_set_generation(io_ctl, trans->transid);
1261

1262
	mutex_lock(&ctl->cache_writeout_mutex);
1263
	/* Write out the extent entries in the free space cache */
1264
	spin_lock(&ctl->tree_lock);
1265
	ret = write_cache_extent_entries(io_ctl, ctl,
1266 1267
					 block_group, &entries, &bitmaps,
					 &bitmap_list);
1268 1269
	if (ret)
		goto out_nospc_locked;
1270

1271 1272 1273 1274
	/*
	 * Some spaces that are freed in the current transaction are pinned,
	 * they will be added into free space cache after the transaction is
	 * committed, we shouldn't lose them.
1275 1276 1277
	 *
	 * If this changes while we are working we'll get added back to
	 * the dirty list and redo it.  No locking needed
1278
	 */
1279
	ret = write_pinned_extent_entries(root, block_group, io_ctl, &entries);
1280 1281
	if (ret)
		goto out_nospc_locked;
1282

1283 1284 1285 1286 1287
	/*
	 * At last, we write out all the bitmaps and keep cache_writeout_mutex
	 * locked while doing it because a concurrent trim can be manipulating
	 * or freeing the bitmap.
	 */
1288
	ret = write_bitmap_entries(io_ctl, &bitmap_list);
1289
	spin_unlock(&ctl->tree_lock);
1290
	mutex_unlock(&ctl->cache_writeout_mutex);
1291 1292 1293 1294
	if (ret)
		goto out_nospc;

	/* Zero out the rest of the pages just to make sure */
1295
	io_ctl_zero_remaining_pages(io_ctl);
1296

1297
	/* Everything is written out, now we dirty the pages in the file. */
1298
	ret = btrfs_dirty_pages(root, inode, io_ctl->pages, io_ctl->num_pages,
1299 1300
				0, i_size_read(inode), &cached_state);
	if (ret)
1301
		goto out_nospc;
1302

1303 1304
	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
		up_write(&block_group->data_rwsem);
1305 1306 1307 1308
	/*
	 * Release the pages and unlock the extent, we will flush
	 * them out later
	 */
1309
	io_ctl_drop_pages(io_ctl);
1310 1311 1312 1313

	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
			     i_size_read(inode) - 1, &cached_state, GFP_NOFS);

1314 1315 1316 1317 1318 1319 1320 1321 1322
	/*
	 * at this point the pages are under IO and we're happy,
	 * The caller is responsible for waiting on them and updating the
	 * the cache and the inode
	 */
	io_ctl->entries = entries;
	io_ctl->bitmaps = bitmaps;

	ret = btrfs_fdatawrite_range(inode, 0, (u64)-1);
1323
	if (ret)
1324 1325
		goto out;

1326 1327
	return 0;

1328
out:
1329 1330
	io_ctl->inode = NULL;
	io_ctl_free(io_ctl);
1331
	if (ret) {
1332
		invalidate_inode_pages2(inode->i_mapping);
J
Josef Bacik 已提交
1333 1334 1335
		BTRFS_I(inode)->generation = 0;
	}
	btrfs_update_inode(trans, root, inode);
1336 1337
	if (must_iput)
		iput(inode);
1338
	return ret;
1339

1340 1341 1342 1343 1344
out_nospc_locked:
	cleanup_bitmap_list(&bitmap_list);
	spin_unlock(&ctl->tree_lock);
	mutex_unlock(&ctl->cache_writeout_mutex);

1345
out_nospc:
1346
	cleanup_write_cache_enospc(inode, io_ctl, &cached_state, &bitmap_list);
1347 1348 1349 1350

	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
		up_write(&block_group->data_rwsem);

1351
	goto out;
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
}

int btrfs_write_out_cache(struct btrfs_root *root,
			  struct btrfs_trans_handle *trans,
			  struct btrfs_block_group_cache *block_group,
			  struct btrfs_path *path)
{
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
	struct inode *inode;
	int ret = 0;

	root = root->fs_info->tree_root;

	spin_lock(&block_group->lock);
	if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
		spin_unlock(&block_group->lock);
1368 1369
		return 0;
	}
1370 1371 1372 1373 1374 1375
	spin_unlock(&block_group->lock);

	inode = lookup_free_space_inode(root, block_group, path);
	if (IS_ERR(inode))
		return 0;

1376 1377
	ret = __btrfs_write_out_cache(root, inode, ctl, block_group,
				      &block_group->io_ctl, trans,
1378
				      path, block_group->key.objectid);
1379 1380
	if (ret) {
#ifdef DEBUG
1381 1382 1383
		btrfs_err(root->fs_info,
			"failed to write free space cache for block group %llu",
			block_group->key.objectid);
1384
#endif
1385 1386 1387 1388 1389 1390
		spin_lock(&block_group->lock);
		block_group->disk_cache_state = BTRFS_DC_ERROR;
		spin_unlock(&block_group->lock);

		block_group->io_ctl.inode = NULL;
		iput(inode);
1391 1392
	}

1393 1394 1395 1396 1397
	/*
	 * if ret == 0 the caller is expected to call btrfs_wait_cache_io
	 * to wait for IO and put the inode
	 */

J
Josef Bacik 已提交
1398 1399 1400
	return ret;
}

1401
static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1402
					  u64 offset)
J
Josef Bacik 已提交
1403
{
1404
	ASSERT(offset >= bitmap_start);
1405
	offset -= bitmap_start;
1406
	return (unsigned long)(div_u64(offset, unit));
1407
}
J
Josef Bacik 已提交
1408

1409
static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1410
{
1411
	return (unsigned long)(div_u64(bytes, unit));
1412
}
J
Josef Bacik 已提交
1413

1414
static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1415 1416 1417
				   u64 offset)
{
	u64 bitmap_start;
1418
	u64 bytes_per_bitmap;
J
Josef Bacik 已提交
1419

1420 1421
	bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
	bitmap_start = offset - ctl->start;
1422
	bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
1423
	bitmap_start *= bytes_per_bitmap;
1424
	bitmap_start += ctl->start;
J
Josef Bacik 已提交
1425

1426
	return bitmap_start;
J
Josef Bacik 已提交
1427 1428
}

1429 1430
static int tree_insert_offset(struct rb_root *root, u64 offset,
			      struct rb_node *node, int bitmap)
J
Josef Bacik 已提交
1431 1432 1433 1434 1435 1436 1437
{
	struct rb_node **p = &root->rb_node;
	struct rb_node *parent = NULL;
	struct btrfs_free_space *info;

	while (*p) {
		parent = *p;
1438
		info = rb_entry(parent, struct btrfs_free_space, offset_index);
J
Josef Bacik 已提交
1439

1440
		if (offset < info->offset) {
J
Josef Bacik 已提交
1441
			p = &(*p)->rb_left;
1442
		} else if (offset > info->offset) {
J
Josef Bacik 已提交
1443
			p = &(*p)->rb_right;
1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
		} else {
			/*
			 * we could have a bitmap entry and an extent entry
			 * share the same offset.  If this is the case, we want
			 * the extent entry to always be found first if we do a
			 * linear search through the tree, since we want to have
			 * the quickest allocation time, and allocating from an
			 * extent is faster than allocating from a bitmap.  So
			 * if we're inserting a bitmap and we find an entry at
			 * this offset, we want to go right, or after this entry
			 * logically.  If we are inserting an extent and we've
			 * found a bitmap, we want to go left, or before
			 * logically.
			 */
			if (bitmap) {
1459 1460 1461 1462
				if (info->bitmap) {
					WARN_ON_ONCE(1);
					return -EEXIST;
				}
1463 1464
				p = &(*p)->rb_right;
			} else {
1465 1466 1467 1468
				if (!info->bitmap) {
					WARN_ON_ONCE(1);
					return -EEXIST;
				}
1469 1470 1471
				p = &(*p)->rb_left;
			}
		}
J
Josef Bacik 已提交
1472 1473 1474 1475 1476 1477 1478 1479 1480
	}

	rb_link_node(node, parent, p);
	rb_insert_color(node, root);

	return 0;
}

/*
J
Josef Bacik 已提交
1481 1482
 * searches the tree for the given offset.
 *
1483 1484 1485
 * fuzzy - If this is set, then we are trying to make an allocation, and we just
 * want a section that has at least bytes size and comes at or after the given
 * offset.
J
Josef Bacik 已提交
1486
 */
1487
static struct btrfs_free_space *
1488
tree_search_offset(struct btrfs_free_space_ctl *ctl,
1489
		   u64 offset, int bitmap_only, int fuzzy)
J
Josef Bacik 已提交
1490
{
1491
	struct rb_node *n = ctl->free_space_offset.rb_node;
1492 1493 1494 1495 1496 1497 1498 1499
	struct btrfs_free_space *entry, *prev = NULL;

	/* find entry that is closest to the 'offset' */
	while (1) {
		if (!n) {
			entry = NULL;
			break;
		}
J
Josef Bacik 已提交
1500 1501

		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1502
		prev = entry;
J
Josef Bacik 已提交
1503

1504
		if (offset < entry->offset)
J
Josef Bacik 已提交
1505
			n = n->rb_left;
1506
		else if (offset > entry->offset)
J
Josef Bacik 已提交
1507
			n = n->rb_right;
1508
		else
J
Josef Bacik 已提交
1509 1510 1511
			break;
	}

1512 1513 1514 1515 1516
	if (bitmap_only) {
		if (!entry)
			return NULL;
		if (entry->bitmap)
			return entry;
J
Josef Bacik 已提交
1517

1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
		/*
		 * bitmap entry and extent entry may share same offset,
		 * in that case, bitmap entry comes after extent entry.
		 */
		n = rb_next(n);
		if (!n)
			return NULL;
		entry = rb_entry(n, struct btrfs_free_space, offset_index);
		if (entry->offset != offset)
			return NULL;
J
Josef Bacik 已提交
1528

1529 1530 1531 1532
		WARN_ON(!entry->bitmap);
		return entry;
	} else if (entry) {
		if (entry->bitmap) {
J
Josef Bacik 已提交
1533
			/*
1534 1535
			 * if previous extent entry covers the offset,
			 * we should return it instead of the bitmap entry
J
Josef Bacik 已提交
1536
			 */
1537 1538
			n = rb_prev(&entry->offset_index);
			if (n) {
1539 1540
				prev = rb_entry(n, struct btrfs_free_space,
						offset_index);
1541 1542 1543
				if (!prev->bitmap &&
				    prev->offset + prev->bytes > offset)
					entry = prev;
J
Josef Bacik 已提交
1544
			}
1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
		}
		return entry;
	}

	if (!prev)
		return NULL;

	/* find last entry before the 'offset' */
	entry = prev;
	if (entry->offset > offset) {
		n = rb_prev(&entry->offset_index);
		if (n) {
			entry = rb_entry(n, struct btrfs_free_space,
					offset_index);
1559
			ASSERT(entry->offset <= offset);
J
Josef Bacik 已提交
1560
		} else {
1561 1562 1563 1564
			if (fuzzy)
				return entry;
			else
				return NULL;
J
Josef Bacik 已提交
1565 1566 1567
		}
	}

1568
	if (entry->bitmap) {
1569 1570
		n = rb_prev(&entry->offset_index);
		if (n) {
1571 1572
			prev = rb_entry(n, struct btrfs_free_space,
					offset_index);
1573 1574 1575
			if (!prev->bitmap &&
			    prev->offset + prev->bytes > offset)
				return prev;
1576
		}
1577
		if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
			return entry;
	} else if (entry->offset + entry->bytes > offset)
		return entry;

	if (!fuzzy)
		return NULL;

	while (1) {
		if (entry->bitmap) {
			if (entry->offset + BITS_PER_BITMAP *
1588
			    ctl->unit > offset)
1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
				break;
		} else {
			if (entry->offset + entry->bytes > offset)
				break;
		}

		n = rb_next(&entry->offset_index);
		if (!n)
			return NULL;
		entry = rb_entry(n, struct btrfs_free_space, offset_index);
	}
	return entry;
J
Josef Bacik 已提交
1601 1602
}

1603
static inline void
1604
__unlink_free_space(struct btrfs_free_space_ctl *ctl,
1605
		    struct btrfs_free_space *info)
J
Josef Bacik 已提交
1606
{
1607 1608
	rb_erase(&info->offset_index, &ctl->free_space_offset);
	ctl->free_extents--;
1609 1610
}

1611
static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1612 1613
			      struct btrfs_free_space *info)
{
1614 1615
	__unlink_free_space(ctl, info);
	ctl->free_space -= info->bytes;
J
Josef Bacik 已提交
1616 1617
}

1618
static int link_free_space(struct btrfs_free_space_ctl *ctl,
J
Josef Bacik 已提交
1619 1620 1621 1622
			   struct btrfs_free_space *info)
{
	int ret = 0;

1623
	ASSERT(info->bytes || info->bitmap);
1624
	ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
1625
				 &info->offset_index, (info->bitmap != NULL));
J
Josef Bacik 已提交
1626 1627 1628
	if (ret)
		return ret;

1629 1630
	ctl->free_space += info->bytes;
	ctl->free_extents++;
1631 1632 1633
	return ret;
}

1634
static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
1635
{
1636
	struct btrfs_block_group_cache *block_group = ctl->private;
1637 1638 1639
	u64 max_bytes;
	u64 bitmap_bytes;
	u64 extent_bytes;
1640
	u64 size = block_group->key.offset;
1641 1642
	u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
	u64 max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
1643

1644
	max_bitmaps = max_t(u64, max_bitmaps, 1);
1645

1646
	ASSERT(ctl->total_bitmaps <= max_bitmaps);
1647 1648 1649 1650 1651 1652

	/*
	 * The goal is to keep the total amount of memory used per 1gb of space
	 * at or below 32k, so we need to adjust how much memory we allow to be
	 * used by extent based free space tracking
	 */
1653
	if (size < SZ_1G)
1654 1655
		max_bytes = MAX_CACHE_BYTES_PER_GIG;
	else
1656
		max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(size, SZ_1G);
1657

1658 1659 1660 1661 1662
	/*
	 * we want to account for 1 more bitmap than what we have so we can make
	 * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
	 * we add more bitmaps.
	 */
1663
	bitmap_bytes = (ctl->total_bitmaps + 1) * ctl->unit;
1664

1665
	if (bitmap_bytes >= max_bytes) {
1666
		ctl->extents_thresh = 0;
1667 1668
		return;
	}
1669

1670
	/*
1671
	 * we want the extent entry threshold to always be at most 1/2 the max
1672 1673 1674
	 * bytes we can have, or whatever is less than that.
	 */
	extent_bytes = max_bytes - bitmap_bytes;
1675
	extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1);
1676

1677
	ctl->extents_thresh =
1678
		div_u64(extent_bytes, sizeof(struct btrfs_free_space));
1679 1680
}

1681 1682 1683
static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
				       struct btrfs_free_space *info,
				       u64 offset, u64 bytes)
1684
{
L
Li Zefan 已提交
1685
	unsigned long start, count;
1686

1687 1688
	start = offset_to_bit(info->offset, ctl->unit, offset);
	count = bytes_to_bits(bytes, ctl->unit);
1689
	ASSERT(start + count <= BITS_PER_BITMAP);
1690

L
Li Zefan 已提交
1691
	bitmap_clear(info->bitmap, start, count);
1692 1693

	info->bytes -= bytes;
1694 1695 1696 1697 1698 1699 1700
}

static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
			      struct btrfs_free_space *info, u64 offset,
			      u64 bytes)
{
	__bitmap_clear_bits(ctl, info, offset, bytes);
1701
	ctl->free_space -= bytes;
1702 1703
}

1704
static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
J
Josef Bacik 已提交
1705 1706
			    struct btrfs_free_space *info, u64 offset,
			    u64 bytes)
1707
{
L
Li Zefan 已提交
1708
	unsigned long start, count;
1709

1710 1711
	start = offset_to_bit(info->offset, ctl->unit, offset);
	count = bytes_to_bits(bytes, ctl->unit);
1712
	ASSERT(start + count <= BITS_PER_BITMAP);
1713

L
Li Zefan 已提交
1714
	bitmap_set(info->bitmap, start, count);
1715 1716

	info->bytes += bytes;
1717
	ctl->free_space += bytes;
1718 1719
}

1720 1721 1722 1723
/*
 * If we can not find suitable extent, we will use bytes to record
 * the size of the max extent.
 */
1724
static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1725
			 struct btrfs_free_space *bitmap_info, u64 *offset,
1726
			 u64 *bytes, bool for_alloc)
1727 1728
{
	unsigned long found_bits = 0;
1729
	unsigned long max_bits = 0;
1730 1731
	unsigned long bits, i;
	unsigned long next_zero;
1732
	unsigned long extent_bits;
1733

1734 1735 1736 1737
	/*
	 * Skip searching the bitmap if we don't have a contiguous section that
	 * is large enough for this allocation.
	 */
1738 1739
	if (for_alloc &&
	    bitmap_info->max_extent_size &&
1740 1741 1742 1743 1744
	    bitmap_info->max_extent_size < *bytes) {
		*bytes = bitmap_info->max_extent_size;
		return -1;
	}

1745
	i = offset_to_bit(bitmap_info->offset, ctl->unit,
1746
			  max_t(u64, *offset, bitmap_info->offset));
1747
	bits = bytes_to_bits(*bytes, ctl->unit);
1748

1749
	for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
1750 1751 1752 1753
		if (for_alloc && bits == 1) {
			found_bits = 1;
			break;
		}
1754 1755
		next_zero = find_next_zero_bit(bitmap_info->bitmap,
					       BITS_PER_BITMAP, i);
1756 1757 1758
		extent_bits = next_zero - i;
		if (extent_bits >= bits) {
			found_bits = extent_bits;
1759
			break;
1760 1761
		} else if (extent_bits > max_bits) {
			max_bits = extent_bits;
1762 1763 1764 1765 1766
		}
		i = next_zero;
	}

	if (found_bits) {
1767 1768
		*offset = (u64)(i * ctl->unit) + bitmap_info->offset;
		*bytes = (u64)(found_bits) * ctl->unit;
1769 1770 1771
		return 0;
	}

1772
	*bytes = (u64)(max_bits) * ctl->unit;
1773
	bitmap_info->max_extent_size = *bytes;
1774 1775 1776
	return -1;
}

1777
/* Cache the size of the max extent in bytes */
1778
static struct btrfs_free_space *
D
David Woodhouse 已提交
1779
find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
1780
		unsigned long align, u64 *max_extent_size)
1781 1782 1783
{
	struct btrfs_free_space *entry;
	struct rb_node *node;
D
David Woodhouse 已提交
1784 1785
	u64 tmp;
	u64 align_off;
1786 1787
	int ret;

1788
	if (!ctl->free_space_offset.rb_node)
1789
		goto out;
1790

1791
	entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
1792
	if (!entry)
1793
		goto out;
1794 1795 1796

	for (node = &entry->offset_index; node; node = rb_next(node)) {
		entry = rb_entry(node, struct btrfs_free_space, offset_index);
1797 1798 1799
		if (entry->bytes < *bytes) {
			if (entry->bytes > *max_extent_size)
				*max_extent_size = entry->bytes;
1800
			continue;
1801
		}
1802

D
David Woodhouse 已提交
1803 1804 1805 1806
		/* make sure the space returned is big enough
		 * to match our requested alignment
		 */
		if (*bytes >= align) {
1807
			tmp = entry->offset - ctl->start + align - 1;
1808
			tmp = div64_u64(tmp, align);
D
David Woodhouse 已提交
1809 1810 1811 1812 1813 1814 1815
			tmp = tmp * align + ctl->start;
			align_off = tmp - entry->offset;
		} else {
			align_off = 0;
			tmp = entry->offset;
		}

1816 1817 1818
		if (entry->bytes < *bytes + align_off) {
			if (entry->bytes > *max_extent_size)
				*max_extent_size = entry->bytes;
D
David Woodhouse 已提交
1819
			continue;
1820
		}
D
David Woodhouse 已提交
1821

1822
		if (entry->bitmap) {
1823 1824
			u64 size = *bytes;

1825
			ret = search_bitmap(ctl, entry, &tmp, &size, true);
D
David Woodhouse 已提交
1826 1827
			if (!ret) {
				*offset = tmp;
1828
				*bytes = size;
1829
				return entry;
1830 1831
			} else if (size > *max_extent_size) {
				*max_extent_size = size;
D
David Woodhouse 已提交
1832
			}
1833 1834 1835
			continue;
		}

D
David Woodhouse 已提交
1836 1837
		*offset = tmp;
		*bytes = entry->bytes - align_off;
1838 1839
		return entry;
	}
1840
out:
1841 1842 1843
	return NULL;
}

1844
static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
1845 1846
			   struct btrfs_free_space *info, u64 offset)
{
1847
	info->offset = offset_to_bitmap(ctl, offset);
J
Josef Bacik 已提交
1848
	info->bytes = 0;
1849
	INIT_LIST_HEAD(&info->list);
1850 1851
	link_free_space(ctl, info);
	ctl->total_bitmaps++;
1852

1853
	ctl->op->recalc_thresholds(ctl);
1854 1855
}

1856
static void free_bitmap(struct btrfs_free_space_ctl *ctl,
1857 1858
			struct btrfs_free_space *bitmap_info)
{
1859
	unlink_free_space(ctl, bitmap_info);
1860
	kfree(bitmap_info->bitmap);
1861
	kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
1862 1863
	ctl->total_bitmaps--;
	ctl->op->recalc_thresholds(ctl);
1864 1865
}

1866
static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
1867 1868 1869 1870
			      struct btrfs_free_space *bitmap_info,
			      u64 *offset, u64 *bytes)
{
	u64 end;
1871 1872
	u64 search_start, search_bytes;
	int ret;
1873 1874

again:
1875
	end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
1876

1877
	/*
1878 1879 1880 1881
	 * We need to search for bits in this bitmap.  We could only cover some
	 * of the extent in this bitmap thanks to how we add space, so we need
	 * to search for as much as it as we can and clear that amount, and then
	 * go searching for the next bit.
1882 1883
	 */
	search_start = *offset;
1884
	search_bytes = ctl->unit;
1885
	search_bytes = min(search_bytes, end - search_start + 1);
1886 1887
	ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes,
			    false);
1888 1889
	if (ret < 0 || search_start != *offset)
		return -EINVAL;
1890

1891 1892 1893 1894 1895 1896 1897 1898 1899
	/* We may have found more bits than what we need */
	search_bytes = min(search_bytes, *bytes);

	/* Cannot clear past the end of the bitmap */
	search_bytes = min(search_bytes, end - search_start + 1);

	bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes);
	*offset += search_bytes;
	*bytes -= search_bytes;
1900 1901

	if (*bytes) {
1902
		struct rb_node *next = rb_next(&bitmap_info->offset_index);
1903
		if (!bitmap_info->bytes)
1904
			free_bitmap(ctl, bitmap_info);
1905

1906 1907 1908 1909 1910
		/*
		 * no entry after this bitmap, but we still have bytes to
		 * remove, so something has gone wrong.
		 */
		if (!next)
1911 1912
			return -EINVAL;

1913 1914 1915 1916 1917 1918 1919
		bitmap_info = rb_entry(next, struct btrfs_free_space,
				       offset_index);

		/*
		 * if the next entry isn't a bitmap we need to return to let the
		 * extent stuff do its work.
		 */
1920 1921 1922
		if (!bitmap_info->bitmap)
			return -EAGAIN;

1923 1924 1925 1926 1927 1928 1929
		/*
		 * Ok the next item is a bitmap, but it may not actually hold
		 * the information for the rest of this free space stuff, so
		 * look for it, and if we don't find it return so we can try
		 * everything over again.
		 */
		search_start = *offset;
1930
		search_bytes = ctl->unit;
1931
		ret = search_bitmap(ctl, bitmap_info, &search_start,
1932
				    &search_bytes, false);
1933 1934 1935
		if (ret < 0 || search_start != *offset)
			return -EAGAIN;

1936
		goto again;
1937
	} else if (!bitmap_info->bytes)
1938
		free_bitmap(ctl, bitmap_info);
1939 1940 1941 1942

	return 0;
}

J
Josef Bacik 已提交
1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955
static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
			       struct btrfs_free_space *info, u64 offset,
			       u64 bytes)
{
	u64 bytes_to_set = 0;
	u64 end;

	end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);

	bytes_to_set = min(end - offset, bytes);

	bitmap_set_bits(ctl, info, offset, bytes_to_set);

1956 1957 1958 1959 1960 1961
	/*
	 * We set some bytes, we have no idea what the max extent size is
	 * anymore.
	 */
	info->max_extent_size = 0;

J
Josef Bacik 已提交
1962 1963 1964 1965
	return bytes_to_set;

}

1966 1967
static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
		      struct btrfs_free_space *info)
1968
{
1969
	struct btrfs_block_group_cache *block_group = ctl->private;
1970 1971 1972 1973 1974 1975 1976
	bool forced = false;

#ifdef CONFIG_BTRFS_DEBUG
	if (btrfs_should_fragment_free_space(block_group->fs_info->extent_root,
					     block_group))
		forced = true;
#endif
1977 1978 1979 1980 1981

	/*
	 * If we are below the extents threshold then we can add this as an
	 * extent, and don't have to deal with the bitmap
	 */
1982
	if (!forced && ctl->free_extents < ctl->extents_thresh) {
1983 1984 1985
		/*
		 * If this block group has some small extents we don't want to
		 * use up all of our free slots in the cache with them, we want
1986
		 * to reserve them to larger extents, however if we have plenty
1987 1988 1989 1990
		 * of cache left then go ahead an dadd them, no sense in adding
		 * the overhead of a bitmap if we don't have to.
		 */
		if (info->bytes <= block_group->sectorsize * 4) {
1991 1992
			if (ctl->free_extents * 2 <= ctl->extents_thresh)
				return false;
1993
		} else {
1994
			return false;
1995 1996
		}
	}
1997 1998

	/*
1999 2000 2001 2002 2003 2004
	 * The original block groups from mkfs can be really small, like 8
	 * megabytes, so don't bother with a bitmap for those entries.  However
	 * some block groups can be smaller than what a bitmap would cover but
	 * are still large enough that they could overflow the 32k memory limit,
	 * so allow those block groups to still be allowed to have a bitmap
	 * entry.
2005
	 */
2006
	if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->key.offset)
2007 2008 2009 2010 2011
		return false;

	return true;
}

2012
static const struct btrfs_free_space_op free_space_op = {
J
Josef Bacik 已提交
2013 2014 2015 2016
	.recalc_thresholds	= recalculate_thresholds,
	.use_bitmap		= use_bitmap,
};

2017 2018 2019 2020
static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
			      struct btrfs_free_space *info)
{
	struct btrfs_free_space *bitmap_info;
J
Josef Bacik 已提交
2021
	struct btrfs_block_group_cache *block_group = NULL;
2022
	int added = 0;
J
Josef Bacik 已提交
2023
	u64 bytes, offset, bytes_added;
2024
	int ret;
2025 2026 2027 2028

	bytes = info->bytes;
	offset = info->offset;

2029 2030 2031
	if (!ctl->op->use_bitmap(ctl, info))
		return 0;

J
Josef Bacik 已提交
2032 2033
	if (ctl->op == &free_space_op)
		block_group = ctl->private;
2034
again:
J
Josef Bacik 已提交
2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051
	/*
	 * Since we link bitmaps right into the cluster we need to see if we
	 * have a cluster here, and if so and it has our bitmap we need to add
	 * the free space to that bitmap.
	 */
	if (block_group && !list_empty(&block_group->cluster_list)) {
		struct btrfs_free_cluster *cluster;
		struct rb_node *node;
		struct btrfs_free_space *entry;

		cluster = list_entry(block_group->cluster_list.next,
				     struct btrfs_free_cluster,
				     block_group_list);
		spin_lock(&cluster->lock);
		node = rb_first(&cluster->root);
		if (!node) {
			spin_unlock(&cluster->lock);
2052
			goto no_cluster_bitmap;
J
Josef Bacik 已提交
2053 2054 2055 2056 2057
		}

		entry = rb_entry(node, struct btrfs_free_space, offset_index);
		if (!entry->bitmap) {
			spin_unlock(&cluster->lock);
2058
			goto no_cluster_bitmap;
J
Josef Bacik 已提交
2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072
		}

		if (entry->offset == offset_to_bitmap(ctl, offset)) {
			bytes_added = add_bytes_to_bitmap(ctl, entry,
							  offset, bytes);
			bytes -= bytes_added;
			offset += bytes_added;
		}
		spin_unlock(&cluster->lock);
		if (!bytes) {
			ret = 1;
			goto out;
		}
	}
2073 2074

no_cluster_bitmap:
2075
	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2076 2077
					 1, 0);
	if (!bitmap_info) {
2078
		ASSERT(added == 0);
2079 2080 2081
		goto new_bitmap;
	}

J
Josef Bacik 已提交
2082 2083 2084 2085
	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
	bytes -= bytes_added;
	offset += bytes_added;
	added = 0;
2086 2087 2088 2089 2090 2091 2092 2093 2094

	if (!bytes) {
		ret = 1;
		goto out;
	} else
		goto again;

new_bitmap:
	if (info && info->bitmap) {
2095
		add_new_bitmap(ctl, info, offset);
2096 2097 2098 2099
		added = 1;
		info = NULL;
		goto again;
	} else {
2100
		spin_unlock(&ctl->tree_lock);
2101 2102 2103

		/* no pre-allocated info, allocate a new one */
		if (!info) {
2104 2105
			info = kmem_cache_zalloc(btrfs_free_space_cachep,
						 GFP_NOFS);
2106
			if (!info) {
2107
				spin_lock(&ctl->tree_lock);
2108 2109 2110 2111 2112 2113
				ret = -ENOMEM;
				goto out;
			}
		}

		/* allocate the bitmap */
2114
		info->bitmap = kzalloc(PAGE_SIZE, GFP_NOFS);
2115
		spin_lock(&ctl->tree_lock);
2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126
		if (!info->bitmap) {
			ret = -ENOMEM;
			goto out;
		}
		goto again;
	}

out:
	if (info) {
		if (info->bitmap)
			kfree(info->bitmap);
2127
		kmem_cache_free(btrfs_free_space_cachep, info);
2128
	}
J
Josef Bacik 已提交
2129 2130 2131 2132

	return ret;
}

2133
static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
2134
			  struct btrfs_free_space *info, bool update_stat)
J
Josef Bacik 已提交
2135
{
2136 2137 2138 2139 2140
	struct btrfs_free_space *left_info;
	struct btrfs_free_space *right_info;
	bool merged = false;
	u64 offset = info->offset;
	u64 bytes = info->bytes;
2141

J
Josef Bacik 已提交
2142 2143 2144 2145 2146
	/*
	 * first we want to see if there is free space adjacent to the range we
	 * are adding, if there is remove that struct and add a new one to
	 * cover the entire range
	 */
2147
	right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
2148 2149 2150 2151
	if (right_info && rb_prev(&right_info->offset_index))
		left_info = rb_entry(rb_prev(&right_info->offset_index),
				     struct btrfs_free_space, offset_index);
	else
2152
		left_info = tree_search_offset(ctl, offset - 1, 0, 0);
J
Josef Bacik 已提交
2153

2154
	if (right_info && !right_info->bitmap) {
2155
		if (update_stat)
2156
			unlink_free_space(ctl, right_info);
2157
		else
2158
			__unlink_free_space(ctl, right_info);
2159
		info->bytes += right_info->bytes;
2160
		kmem_cache_free(btrfs_free_space_cachep, right_info);
2161
		merged = true;
J
Josef Bacik 已提交
2162 2163
	}

2164 2165
	if (left_info && !left_info->bitmap &&
	    left_info->offset + left_info->bytes == offset) {
2166
		if (update_stat)
2167
			unlink_free_space(ctl, left_info);
2168
		else
2169
			__unlink_free_space(ctl, left_info);
2170 2171
		info->offset = left_info->offset;
		info->bytes += left_info->bytes;
2172
		kmem_cache_free(btrfs_free_space_cachep, left_info);
2173
		merged = true;
J
Josef Bacik 已提交
2174 2175
	}

2176 2177 2178
	return merged;
}

2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300
static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl,
				     struct btrfs_free_space *info,
				     bool update_stat)
{
	struct btrfs_free_space *bitmap;
	unsigned long i;
	unsigned long j;
	const u64 end = info->offset + info->bytes;
	const u64 bitmap_offset = offset_to_bitmap(ctl, end);
	u64 bytes;

	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
	if (!bitmap)
		return false;

	i = offset_to_bit(bitmap->offset, ctl->unit, end);
	j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i);
	if (j == i)
		return false;
	bytes = (j - i) * ctl->unit;
	info->bytes += bytes;

	if (update_stat)
		bitmap_clear_bits(ctl, bitmap, end, bytes);
	else
		__bitmap_clear_bits(ctl, bitmap, end, bytes);

	if (!bitmap->bytes)
		free_bitmap(ctl, bitmap);

	return true;
}

static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl,
				       struct btrfs_free_space *info,
				       bool update_stat)
{
	struct btrfs_free_space *bitmap;
	u64 bitmap_offset;
	unsigned long i;
	unsigned long j;
	unsigned long prev_j;
	u64 bytes;

	bitmap_offset = offset_to_bitmap(ctl, info->offset);
	/* If we're on a boundary, try the previous logical bitmap. */
	if (bitmap_offset == info->offset) {
		if (info->offset == 0)
			return false;
		bitmap_offset = offset_to_bitmap(ctl, info->offset - 1);
	}

	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
	if (!bitmap)
		return false;

	i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1;
	j = 0;
	prev_j = (unsigned long)-1;
	for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) {
		if (j > i)
			break;
		prev_j = j;
	}
	if (prev_j == i)
		return false;

	if (prev_j == (unsigned long)-1)
		bytes = (i + 1) * ctl->unit;
	else
		bytes = (i - prev_j) * ctl->unit;

	info->offset -= bytes;
	info->bytes += bytes;

	if (update_stat)
		bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
	else
		__bitmap_clear_bits(ctl, bitmap, info->offset, bytes);

	if (!bitmap->bytes)
		free_bitmap(ctl, bitmap);

	return true;
}

/*
 * We prefer always to allocate from extent entries, both for clustered and
 * non-clustered allocation requests. So when attempting to add a new extent
 * entry, try to see if there's adjacent free space in bitmap entries, and if
 * there is, migrate that space from the bitmaps to the extent.
 * Like this we get better chances of satisfying space allocation requests
 * because we attempt to satisfy them based on a single cache entry, and never
 * on 2 or more entries - even if the entries represent a contiguous free space
 * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
 * ends).
 */
static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl,
			      struct btrfs_free_space *info,
			      bool update_stat)
{
	/*
	 * Only work with disconnected entries, as we can change their offset,
	 * and must be extent entries.
	 */
	ASSERT(!info->bitmap);
	ASSERT(RB_EMPTY_NODE(&info->offset_index));

	if (ctl->total_bitmaps > 0) {
		bool stole_end;
		bool stole_front = false;

		stole_end = steal_from_bitmap_to_end(ctl, info, update_stat);
		if (ctl->total_bitmaps > 0)
			stole_front = steal_from_bitmap_to_front(ctl, info,
								 update_stat);

		if (stole_end || stole_front)
			try_merge_free_space(ctl, info, update_stat);
	}
}

2301 2302
int __btrfs_add_free_space(struct btrfs_free_space_ctl *ctl,
			   u64 offset, u64 bytes)
2303 2304 2305 2306
{
	struct btrfs_free_space *info;
	int ret = 0;

2307
	info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
2308 2309 2310 2311 2312
	if (!info)
		return -ENOMEM;

	info->offset = offset;
	info->bytes = bytes;
2313
	RB_CLEAR_NODE(&info->offset_index);
2314

2315
	spin_lock(&ctl->tree_lock);
2316

2317
	if (try_merge_free_space(ctl, info, true))
2318 2319 2320 2321 2322 2323 2324
		goto link;

	/*
	 * There was no extent directly to the left or right of this new
	 * extent then we know we're going to have to allocate a new extent, so
	 * before we do that see if we need to drop this into a bitmap
	 */
2325
	ret = insert_into_bitmap(ctl, info);
2326 2327 2328 2329 2330 2331 2332
	if (ret < 0) {
		goto out;
	} else if (ret) {
		ret = 0;
		goto out;
	}
link:
2333 2334 2335 2336 2337 2338 2339 2340
	/*
	 * Only steal free space from adjacent bitmaps if we're sure we're not
	 * going to add the new free space to existing bitmap entries - because
	 * that would mean unnecessary work that would be reverted. Therefore
	 * attempt to steal space from bitmaps if we're adding an extent entry.
	 */
	steal_from_bitmap(ctl, info, true);

2341
	ret = link_free_space(ctl, info);
J
Josef Bacik 已提交
2342
	if (ret)
2343
		kmem_cache_free(btrfs_free_space_cachep, info);
2344
out:
2345
	spin_unlock(&ctl->tree_lock);
2346

J
Josef Bacik 已提交
2347
	if (ret) {
2348
		printk(KERN_CRIT "BTRFS: unable to add free space :%d\n", ret);
2349
		ASSERT(ret != -EEXIST);
J
Josef Bacik 已提交
2350 2351 2352 2353 2354
	}

	return ret;
}

2355 2356
int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group,
			    u64 offset, u64 bytes)
J
Josef Bacik 已提交
2357
{
2358
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
J
Josef Bacik 已提交
2359
	struct btrfs_free_space *info;
2360 2361
	int ret;
	bool re_search = false;
J
Josef Bacik 已提交
2362

2363
	spin_lock(&ctl->tree_lock);
2364

2365
again:
2366
	ret = 0;
2367 2368 2369
	if (!bytes)
		goto out_lock;

2370
	info = tree_search_offset(ctl, offset, 0, 0);
2371
	if (!info) {
2372 2373 2374 2375
		/*
		 * oops didn't find an extent that matched the space we wanted
		 * to remove, look for a bitmap instead
		 */
2376
		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2377 2378
					  1, 0);
		if (!info) {
2379 2380 2381 2382
			/*
			 * If we found a partial bit of our free space in a
			 * bitmap but then couldn't find the other part this may
			 * be a problem, so WARN about it.
2383
			 */
2384
			WARN_ON(re_search);
2385 2386
			goto out_lock;
		}
2387 2388
	}

2389
	re_search = false;
2390
	if (!info->bitmap) {
2391
		unlink_free_space(ctl, info);
2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402
		if (offset == info->offset) {
			u64 to_free = min(bytes, info->bytes);

			info->bytes -= to_free;
			info->offset += to_free;
			if (info->bytes) {
				ret = link_free_space(ctl, info);
				WARN_ON(ret);
			} else {
				kmem_cache_free(btrfs_free_space_cachep, info);
			}
J
Josef Bacik 已提交
2403

2404 2405 2406 2407 2408
			offset += to_free;
			bytes -= to_free;
			goto again;
		} else {
			u64 old_end = info->bytes + info->offset;
2409

2410
			info->bytes = offset - info->offset;
2411
			ret = link_free_space(ctl, info);
2412 2413 2414 2415
			WARN_ON(ret);
			if (ret)
				goto out_lock;

2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
			/* Not enough bytes in this entry to satisfy us */
			if (old_end < offset + bytes) {
				bytes -= old_end - offset;
				offset = old_end;
				goto again;
			} else if (old_end == offset + bytes) {
				/* all done */
				goto out_lock;
			}
			spin_unlock(&ctl->tree_lock);

			ret = btrfs_add_free_space(block_group, offset + bytes,
						   old_end - (offset + bytes));
			WARN_ON(ret);
			goto out;
		}
J
Josef Bacik 已提交
2432
	}
2433

2434
	ret = remove_from_bitmap(ctl, info, &offset, &bytes);
2435 2436
	if (ret == -EAGAIN) {
		re_search = true;
2437
		goto again;
2438
	}
2439
out_lock:
2440
	spin_unlock(&ctl->tree_lock);
J
Josef Bacik 已提交
2441
out:
2442 2443 2444
	return ret;
}

J
Josef Bacik 已提交
2445 2446 2447
void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
			   u64 bytes)
{
2448
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
J
Josef Bacik 已提交
2449 2450 2451 2452
	struct btrfs_free_space *info;
	struct rb_node *n;
	int count = 0;

2453
	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
J
Josef Bacik 已提交
2454
		info = rb_entry(n, struct btrfs_free_space, offset_index);
L
Liu Bo 已提交
2455
		if (info->bytes >= bytes && !block_group->ro)
J
Josef Bacik 已提交
2456
			count++;
2457 2458 2459
		btrfs_crit(block_group->fs_info,
			   "entry offset %llu, bytes %llu, bitmap %s",
			   info->offset, info->bytes,
2460
		       (info->bitmap) ? "yes" : "no");
J
Josef Bacik 已提交
2461
	}
2462
	btrfs_info(block_group->fs_info, "block group has cluster?: %s",
2463
	       list_empty(&block_group->cluster_list) ? "no" : "yes");
2464 2465
	btrfs_info(block_group->fs_info,
		   "%d blocks of free space at or bigger than bytes is", count);
J
Josef Bacik 已提交
2466 2467
}

2468
void btrfs_init_free_space_ctl(struct btrfs_block_group_cache *block_group)
J
Josef Bacik 已提交
2469
{
2470
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
J
Josef Bacik 已提交
2471

2472 2473 2474 2475 2476
	spin_lock_init(&ctl->tree_lock);
	ctl->unit = block_group->sectorsize;
	ctl->start = block_group->key.objectid;
	ctl->private = block_group;
	ctl->op = &free_space_op;
2477 2478
	INIT_LIST_HEAD(&ctl->trimming_ranges);
	mutex_init(&ctl->cache_writeout_mutex);
J
Josef Bacik 已提交
2479

2480 2481 2482 2483 2484
	/*
	 * we only want to have 32k of ram per block group for keeping
	 * track of free space, and if we pass 1/2 of that we want to
	 * start converting things over to using bitmaps
	 */
2485
	ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space);
J
Josef Bacik 已提交
2486 2487
}

2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498
/*
 * for a given cluster, put all of its extents back into the free
 * space cache.  If the block group passed doesn't match the block group
 * pointed to by the cluster, someone else raced in and freed the
 * cluster already.  In that case, we just return without changing anything
 */
static int
__btrfs_return_cluster_to_free_space(
			     struct btrfs_block_group_cache *block_group,
			     struct btrfs_free_cluster *cluster)
{
2499
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2500 2501 2502 2503 2504 2505 2506
	struct btrfs_free_space *entry;
	struct rb_node *node;

	spin_lock(&cluster->lock);
	if (cluster->block_group != block_group)
		goto out;

2507
	cluster->block_group = NULL;
2508
	cluster->window_start = 0;
2509 2510
	list_del_init(&cluster->block_group_list);

2511
	node = rb_first(&cluster->root);
2512
	while (node) {
2513 2514
		bool bitmap;

2515 2516 2517
		entry = rb_entry(node, struct btrfs_free_space, offset_index);
		node = rb_next(&entry->offset_index);
		rb_erase(&entry->offset_index, &cluster->root);
2518
		RB_CLEAR_NODE(&entry->offset_index);
2519 2520

		bitmap = (entry->bitmap != NULL);
2521
		if (!bitmap) {
2522
			try_merge_free_space(ctl, entry, false);
2523 2524
			steal_from_bitmap(ctl, entry, false);
		}
2525
		tree_insert_offset(&ctl->free_space_offset,
2526
				   entry->offset, &entry->offset_index, bitmap);
2527
	}
2528
	cluster->root = RB_ROOT;
2529

2530 2531
out:
	spin_unlock(&cluster->lock);
2532
	btrfs_put_block_group(block_group);
2533 2534 2535
	return 0;
}

2536 2537
static void __btrfs_remove_free_space_cache_locked(
				struct btrfs_free_space_ctl *ctl)
J
Josef Bacik 已提交
2538 2539 2540
{
	struct btrfs_free_space *info;
	struct rb_node *node;
2541 2542 2543

	while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
		info = rb_entry(node, struct btrfs_free_space, offset_index);
2544 2545 2546 2547 2548 2549
		if (!info->bitmap) {
			unlink_free_space(ctl, info);
			kmem_cache_free(btrfs_free_space_cachep, info);
		} else {
			free_bitmap(ctl, info);
		}
2550 2551

		cond_resched_lock(&ctl->tree_lock);
2552
	}
2553 2554 2555 2556 2557 2558
}

void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
{
	spin_lock(&ctl->tree_lock);
	__btrfs_remove_free_space_cache_locked(ctl);
2559 2560 2561 2562 2563 2564
	spin_unlock(&ctl->tree_lock);
}

void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
{
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2565
	struct btrfs_free_cluster *cluster;
2566
	struct list_head *head;
J
Josef Bacik 已提交
2567

2568
	spin_lock(&ctl->tree_lock);
2569 2570 2571 2572
	while ((head = block_group->cluster_list.next) !=
	       &block_group->cluster_list) {
		cluster = list_entry(head, struct btrfs_free_cluster,
				     block_group_list);
2573 2574 2575

		WARN_ON(cluster->block_group != block_group);
		__btrfs_return_cluster_to_free_space(block_group, cluster);
2576 2577

		cond_resched_lock(&ctl->tree_lock);
2578
	}
2579
	__btrfs_remove_free_space_cache_locked(ctl);
2580
	spin_unlock(&ctl->tree_lock);
2581

J
Josef Bacik 已提交
2582 2583
}

2584
u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
2585 2586
			       u64 offset, u64 bytes, u64 empty_size,
			       u64 *max_extent_size)
J
Josef Bacik 已提交
2587
{
2588
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2589
	struct btrfs_free_space *entry = NULL;
2590
	u64 bytes_search = bytes + empty_size;
2591
	u64 ret = 0;
D
David Woodhouse 已提交
2592 2593
	u64 align_gap = 0;
	u64 align_gap_len = 0;
J
Josef Bacik 已提交
2594

2595
	spin_lock(&ctl->tree_lock);
D
David Woodhouse 已提交
2596
	entry = find_free_space(ctl, &offset, &bytes_search,
2597
				block_group->full_stripe_len, max_extent_size);
2598
	if (!entry)
2599 2600 2601 2602
		goto out;

	ret = offset;
	if (entry->bitmap) {
2603
		bitmap_clear_bits(ctl, entry, offset, bytes);
2604
		if (!entry->bytes)
2605
			free_bitmap(ctl, entry);
2606
	} else {
2607
		unlink_free_space(ctl, entry);
D
David Woodhouse 已提交
2608 2609 2610 2611 2612 2613 2614
		align_gap_len = offset - entry->offset;
		align_gap = entry->offset;

		entry->offset = offset + bytes;
		WARN_ON(entry->bytes < bytes + align_gap_len);

		entry->bytes -= bytes + align_gap_len;
2615
		if (!entry->bytes)
2616
			kmem_cache_free(btrfs_free_space_cachep, entry);
2617
		else
2618
			link_free_space(ctl, entry);
2619
	}
2620
out:
2621
	spin_unlock(&ctl->tree_lock);
J
Josef Bacik 已提交
2622

D
David Woodhouse 已提交
2623 2624
	if (align_gap_len)
		__btrfs_add_free_space(ctl, align_gap, align_gap_len);
J
Josef Bacik 已提交
2625 2626
	return ret;
}
2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639

/*
 * given a cluster, put all of its extents back into the free space
 * cache.  If a block group is passed, this function will only free
 * a cluster that belongs to the passed block group.
 *
 * Otherwise, it'll get a reference on the block group pointed to by the
 * cluster and remove the cluster from it.
 */
int btrfs_return_cluster_to_free_space(
			       struct btrfs_block_group_cache *block_group,
			       struct btrfs_free_cluster *cluster)
{
2640
	struct btrfs_free_space_ctl *ctl;
2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658
	int ret;

	/* first, get a safe pointer to the block group */
	spin_lock(&cluster->lock);
	if (!block_group) {
		block_group = cluster->block_group;
		if (!block_group) {
			spin_unlock(&cluster->lock);
			return 0;
		}
	} else if (cluster->block_group != block_group) {
		/* someone else has already freed it don't redo their work */
		spin_unlock(&cluster->lock);
		return 0;
	}
	atomic_inc(&block_group->count);
	spin_unlock(&cluster->lock);

2659 2660
	ctl = block_group->free_space_ctl;

2661
	/* now return any extents the cluster had on it */
2662
	spin_lock(&ctl->tree_lock);
2663
	ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
2664
	spin_unlock(&ctl->tree_lock);
2665 2666 2667 2668 2669 2670

	/* finally drop our ref */
	btrfs_put_block_group(block_group);
	return ret;
}

2671 2672
static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group,
				   struct btrfs_free_cluster *cluster,
2673
				   struct btrfs_free_space *entry,
2674 2675
				   u64 bytes, u64 min_start,
				   u64 *max_extent_size)
2676
{
2677
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2678 2679 2680 2681 2682 2683 2684 2685
	int err;
	u64 search_start = cluster->window_start;
	u64 search_bytes = bytes;
	u64 ret = 0;

	search_start = min_start;
	search_bytes = bytes;

2686
	err = search_bitmap(ctl, entry, &search_start, &search_bytes, true);
2687 2688 2689
	if (err) {
		if (search_bytes > *max_extent_size)
			*max_extent_size = search_bytes;
2690
		return 0;
2691
	}
2692 2693

	ret = search_start;
2694
	__bitmap_clear_bits(ctl, entry, ret, bytes);
2695 2696 2697 2698

	return ret;
}

2699 2700 2701 2702 2703 2704 2705
/*
 * given a cluster, try to allocate 'bytes' from it, returns 0
 * if it couldn't find anything suitably large, or a logical disk offset
 * if things worked out
 */
u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group,
			     struct btrfs_free_cluster *cluster, u64 bytes,
2706
			     u64 min_start, u64 *max_extent_size)
2707
{
2708
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724
	struct btrfs_free_space *entry = NULL;
	struct rb_node *node;
	u64 ret = 0;

	spin_lock(&cluster->lock);
	if (bytes > cluster->max_size)
		goto out;

	if (cluster->block_group != block_group)
		goto out;

	node = rb_first(&cluster->root);
	if (!node)
		goto out;

	entry = rb_entry(node, struct btrfs_free_space, offset_index);
2725
	while (1) {
2726 2727 2728
		if (entry->bytes < bytes && entry->bytes > *max_extent_size)
			*max_extent_size = entry->bytes;

2729 2730
		if (entry->bytes < bytes ||
		    (!entry->bitmap && entry->offset < min_start)) {
2731 2732 2733 2734 2735 2736 2737 2738
			node = rb_next(&entry->offset_index);
			if (!node)
				break;
			entry = rb_entry(node, struct btrfs_free_space,
					 offset_index);
			continue;
		}

2739 2740 2741
		if (entry->bitmap) {
			ret = btrfs_alloc_from_bitmap(block_group,
						      cluster, entry, bytes,
2742 2743
						      cluster->window_start,
						      max_extent_size);
2744 2745 2746 2747 2748 2749 2750 2751
			if (ret == 0) {
				node = rb_next(&entry->offset_index);
				if (!node)
					break;
				entry = rb_entry(node, struct btrfs_free_space,
						 offset_index);
				continue;
			}
2752
			cluster->window_start += bytes;
2753 2754 2755 2756 2757 2758
		} else {
			ret = entry->offset;

			entry->offset += bytes;
			entry->bytes -= bytes;
		}
2759

2760
		if (entry->bytes == 0)
2761 2762 2763 2764 2765
			rb_erase(&entry->offset_index, &cluster->root);
		break;
	}
out:
	spin_unlock(&cluster->lock);
2766

2767 2768 2769
	if (!ret)
		return 0;

2770
	spin_lock(&ctl->tree_lock);
2771

2772
	ctl->free_space -= bytes;
2773
	if (entry->bytes == 0) {
2774
		ctl->free_extents--;
2775 2776
		if (entry->bitmap) {
			kfree(entry->bitmap);
2777 2778
			ctl->total_bitmaps--;
			ctl->op->recalc_thresholds(ctl);
2779
		}
2780
		kmem_cache_free(btrfs_free_space_cachep, entry);
2781 2782
	}

2783
	spin_unlock(&ctl->tree_lock);
2784

2785 2786 2787
	return ret;
}

2788 2789 2790
static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group,
				struct btrfs_free_space *entry,
				struct btrfs_free_cluster *cluster,
2791 2792
				u64 offset, u64 bytes,
				u64 cont1_bytes, u64 min_bytes)
2793
{
2794
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2795 2796
	unsigned long next_zero;
	unsigned long i;
2797 2798
	unsigned long want_bits;
	unsigned long min_bits;
2799
	unsigned long found_bits;
2800
	unsigned long max_bits = 0;
2801 2802
	unsigned long start = 0;
	unsigned long total_found = 0;
2803
	int ret;
2804

2805
	i = offset_to_bit(entry->offset, ctl->unit,
2806
			  max_t(u64, offset, entry->offset));
2807 2808
	want_bits = bytes_to_bits(bytes, ctl->unit);
	min_bits = bytes_to_bits(min_bytes, ctl->unit);
2809

2810 2811 2812 2813 2814 2815 2816
	/*
	 * Don't bother looking for a cluster in this bitmap if it's heavily
	 * fragmented.
	 */
	if (entry->max_extent_size &&
	    entry->max_extent_size < cont1_bytes)
		return -ENOSPC;
2817 2818
again:
	found_bits = 0;
2819
	for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
2820 2821
		next_zero = find_next_zero_bit(entry->bitmap,
					       BITS_PER_BITMAP, i);
2822
		if (next_zero - i >= min_bits) {
2823
			found_bits = next_zero - i;
2824 2825
			if (found_bits > max_bits)
				max_bits = found_bits;
2826 2827
			break;
		}
2828 2829
		if (next_zero - i > max_bits)
			max_bits = next_zero - i;
2830 2831 2832
		i = next_zero;
	}

2833 2834
	if (!found_bits) {
		entry->max_extent_size = (u64)max_bits * ctl->unit;
2835
		return -ENOSPC;
2836
	}
2837

2838
	if (!total_found) {
2839
		start = i;
2840
		cluster->max_size = 0;
2841 2842 2843 2844
	}

	total_found += found_bits;

2845 2846
	if (cluster->max_size < found_bits * ctl->unit)
		cluster->max_size = found_bits * ctl->unit;
2847

2848 2849
	if (total_found < want_bits || cluster->max_size < cont1_bytes) {
		i = next_zero + 1;
2850 2851 2852
		goto again;
	}

2853
	cluster->window_start = start * ctl->unit + entry->offset;
2854
	rb_erase(&entry->offset_index, &ctl->free_space_offset);
2855 2856
	ret = tree_insert_offset(&cluster->root, entry->offset,
				 &entry->offset_index, 1);
2857
	ASSERT(!ret); /* -EEXIST; Logic error */
2858

J
Josef Bacik 已提交
2859
	trace_btrfs_setup_cluster(block_group, cluster,
2860
				  total_found * ctl->unit, 1);
2861 2862 2863
	return 0;
}

2864 2865
/*
 * This searches the block group for just extents to fill the cluster with.
2866 2867
 * Try to find a cluster with at least bytes total bytes, at least one
 * extent of cont1_bytes, and other clusters of at least min_bytes.
2868
 */
2869 2870 2871 2872
static noinline int
setup_cluster_no_bitmap(struct btrfs_block_group_cache *block_group,
			struct btrfs_free_cluster *cluster,
			struct list_head *bitmaps, u64 offset, u64 bytes,
2873
			u64 cont1_bytes, u64 min_bytes)
2874
{
2875
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2876 2877 2878 2879 2880 2881
	struct btrfs_free_space *first = NULL;
	struct btrfs_free_space *entry = NULL;
	struct btrfs_free_space *last;
	struct rb_node *node;
	u64 window_free;
	u64 max_extent;
J
Josef Bacik 已提交
2882
	u64 total_size = 0;
2883

2884
	entry = tree_search_offset(ctl, offset, 0, 1);
2885 2886 2887 2888 2889 2890 2891
	if (!entry)
		return -ENOSPC;

	/*
	 * We don't want bitmaps, so just move along until we find a normal
	 * extent entry.
	 */
2892 2893
	while (entry->bitmap || entry->bytes < min_bytes) {
		if (entry->bitmap && list_empty(&entry->list))
2894
			list_add_tail(&entry->list, bitmaps);
2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905
		node = rb_next(&entry->offset_index);
		if (!node)
			return -ENOSPC;
		entry = rb_entry(node, struct btrfs_free_space, offset_index);
	}

	window_free = entry->bytes;
	max_extent = entry->bytes;
	first = entry;
	last = entry;

2906 2907
	for (node = rb_next(&entry->offset_index); node;
	     node = rb_next(&entry->offset_index)) {
2908 2909
		entry = rb_entry(node, struct btrfs_free_space, offset_index);

2910 2911 2912
		if (entry->bitmap) {
			if (list_empty(&entry->list))
				list_add_tail(&entry->list, bitmaps);
2913
			continue;
2914 2915
		}

2916 2917 2918 2919 2920 2921
		if (entry->bytes < min_bytes)
			continue;

		last = entry;
		window_free += entry->bytes;
		if (entry->bytes > max_extent)
2922 2923 2924
			max_extent = entry->bytes;
	}

2925 2926 2927
	if (window_free < bytes || max_extent < cont1_bytes)
		return -ENOSPC;

2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940
	cluster->window_start = first->offset;

	node = &first->offset_index;

	/*
	 * now we've found our entries, pull them out of the free space
	 * cache and put them into the cluster rbtree
	 */
	do {
		int ret;

		entry = rb_entry(node, struct btrfs_free_space, offset_index);
		node = rb_next(&entry->offset_index);
2941
		if (entry->bitmap || entry->bytes < min_bytes)
2942 2943
			continue;

2944
		rb_erase(&entry->offset_index, &ctl->free_space_offset);
2945 2946
		ret = tree_insert_offset(&cluster->root, entry->offset,
					 &entry->offset_index, 0);
J
Josef Bacik 已提交
2947
		total_size += entry->bytes;
2948
		ASSERT(!ret); /* -EEXIST; Logic error */
2949 2950 2951
	} while (node && entry != last);

	cluster->max_size = max_extent;
J
Josef Bacik 已提交
2952
	trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
2953 2954 2955 2956 2957 2958 2959
	return 0;
}

/*
 * This specifically looks for bitmaps that may work in the cluster, we assume
 * that we have already failed to find extents that will work.
 */
2960 2961 2962 2963
static noinline int
setup_cluster_bitmap(struct btrfs_block_group_cache *block_group,
		     struct btrfs_free_cluster *cluster,
		     struct list_head *bitmaps, u64 offset, u64 bytes,
2964
		     u64 cont1_bytes, u64 min_bytes)
2965
{
2966
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2967
	struct btrfs_free_space *entry = NULL;
2968
	int ret = -ENOSPC;
2969
	u64 bitmap_offset = offset_to_bitmap(ctl, offset);
2970

2971
	if (ctl->total_bitmaps == 0)
2972 2973
		return -ENOSPC;

2974 2975 2976 2977
	/*
	 * The bitmap that covers offset won't be in the list unless offset
	 * is just its start offset.
	 */
2978 2979 2980 2981
	if (!list_empty(bitmaps))
		entry = list_first_entry(bitmaps, struct btrfs_free_space, list);

	if (!entry || entry->offset != bitmap_offset) {
2982 2983 2984 2985 2986
		entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
		if (entry && list_empty(&entry->list))
			list_add(&entry->list, bitmaps);
	}

2987
	list_for_each_entry(entry, bitmaps, list) {
2988
		if (entry->bytes < bytes)
2989 2990
			continue;
		ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
2991
					   bytes, cont1_bytes, min_bytes);
2992 2993 2994 2995 2996
		if (!ret)
			return 0;
	}

	/*
2997 2998
	 * The bitmaps list has all the bitmaps that record free space
	 * starting after offset, so no more search is required.
2999
	 */
3000
	return -ENOSPC;
3001 3002
}

3003 3004
/*
 * here we try to find a cluster of blocks in a block group.  The goal
3005
 * is to find at least bytes+empty_size.
3006 3007 3008 3009 3010
 * We might not find them all in one contiguous area.
 *
 * returns zero and sets up cluster if things worked out, otherwise
 * it returns -enospc
 */
3011
int btrfs_find_space_cluster(struct btrfs_root *root,
3012 3013 3014 3015
			     struct btrfs_block_group_cache *block_group,
			     struct btrfs_free_cluster *cluster,
			     u64 offset, u64 bytes, u64 empty_size)
{
3016
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3017
	struct btrfs_free_space *entry, *tmp;
3018
	LIST_HEAD(bitmaps);
3019
	u64 min_bytes;
3020
	u64 cont1_bytes;
3021 3022
	int ret;

3023 3024 3025 3026 3027 3028
	/*
	 * Choose the minimum extent size we'll require for this
	 * cluster.  For SSD_SPREAD, don't allow any fragmentation.
	 * For metadata, allow allocates with smaller extents.  For
	 * data, keep it dense.
	 */
3029
	if (btrfs_test_opt(root, SSD_SPREAD)) {
3030
		cont1_bytes = min_bytes = bytes + empty_size;
3031
	} else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
3032 3033 3034 3035 3036 3037
		cont1_bytes = bytes;
		min_bytes = block_group->sectorsize;
	} else {
		cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
		min_bytes = block_group->sectorsize;
	}
3038

3039
	spin_lock(&ctl->tree_lock);
3040 3041 3042 3043 3044

	/*
	 * If we know we don't have enough space to make a cluster don't even
	 * bother doing all the work to try and find one.
	 */
3045
	if (ctl->free_space < bytes) {
3046
		spin_unlock(&ctl->tree_lock);
3047 3048 3049
		return -ENOSPC;
	}

3050 3051 3052 3053 3054 3055 3056 3057
	spin_lock(&cluster->lock);

	/* someone already found a cluster, hooray */
	if (cluster->block_group) {
		ret = 0;
		goto out;
	}

J
Josef Bacik 已提交
3058 3059 3060
	trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
				 min_bytes);

3061
	ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
3062 3063
				      bytes + empty_size,
				      cont1_bytes, min_bytes);
3064
	if (ret)
3065
		ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
3066 3067
					   offset, bytes + empty_size,
					   cont1_bytes, min_bytes);
3068 3069 3070 3071

	/* Clear our temporary list */
	list_for_each_entry_safe(entry, tmp, &bitmaps, list)
		list_del_init(&entry->list);
3072

3073 3074 3075 3076 3077
	if (!ret) {
		atomic_inc(&block_group->count);
		list_add_tail(&cluster->block_group_list,
			      &block_group->cluster_list);
		cluster->block_group = block_group;
J
Josef Bacik 已提交
3078 3079
	} else {
		trace_btrfs_failed_cluster_setup(block_group);
3080 3081 3082
	}
out:
	spin_unlock(&cluster->lock);
3083
	spin_unlock(&ctl->tree_lock);
3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094

	return ret;
}

/*
 * simple code to zero out a cluster
 */
void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
{
	spin_lock_init(&cluster->lock);
	spin_lock_init(&cluster->refill_lock);
3095
	cluster->root = RB_ROOT;
3096
	cluster->max_size = 0;
3097
	cluster->fragmented = false;
3098 3099 3100 3101
	INIT_LIST_HEAD(&cluster->block_group_list);
	cluster->block_group = NULL;
}

3102 3103
static int do_trimming(struct btrfs_block_group_cache *block_group,
		       u64 *total_trimmed, u64 start, u64 bytes,
3104 3105
		       u64 reserved_start, u64 reserved_bytes,
		       struct btrfs_trim_range *trim_entry)
3106
{
3107
	struct btrfs_space_info *space_info = block_group->space_info;
3108
	struct btrfs_fs_info *fs_info = block_group->fs_info;
3109
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3110 3111 3112
	int ret;
	int update = 0;
	u64 trimmed = 0;
3113

3114 3115 3116 3117 3118 3119 3120 3121 3122 3123
	spin_lock(&space_info->lock);
	spin_lock(&block_group->lock);
	if (!block_group->ro) {
		block_group->reserved += reserved_bytes;
		space_info->bytes_reserved += reserved_bytes;
		update = 1;
	}
	spin_unlock(&block_group->lock);
	spin_unlock(&space_info->lock);

3124 3125
	ret = btrfs_discard_extent(fs_info->extent_root,
				   start, bytes, &trimmed);
3126 3127 3128
	if (!ret)
		*total_trimmed += trimmed;

3129
	mutex_lock(&ctl->cache_writeout_mutex);
3130
	btrfs_add_free_space(block_group, reserved_start, reserved_bytes);
3131 3132
	list_del(&trim_entry->list);
	mutex_unlock(&ctl->cache_writeout_mutex);
3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157

	if (update) {
		spin_lock(&space_info->lock);
		spin_lock(&block_group->lock);
		if (block_group->ro)
			space_info->bytes_readonly += reserved_bytes;
		block_group->reserved -= reserved_bytes;
		space_info->bytes_reserved -= reserved_bytes;
		spin_unlock(&space_info->lock);
		spin_unlock(&block_group->lock);
	}

	return ret;
}

static int trim_no_bitmap(struct btrfs_block_group_cache *block_group,
			  u64 *total_trimmed, u64 start, u64 end, u64 minlen)
{
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
	struct btrfs_free_space *entry;
	struct rb_node *node;
	int ret = 0;
	u64 extent_start;
	u64 extent_bytes;
	u64 bytes;
3158 3159

	while (start < end) {
3160 3161 3162
		struct btrfs_trim_range trim_entry;

		mutex_lock(&ctl->cache_writeout_mutex);
3163
		spin_lock(&ctl->tree_lock);
3164

3165 3166
		if (ctl->free_space < minlen) {
			spin_unlock(&ctl->tree_lock);
3167
			mutex_unlock(&ctl->cache_writeout_mutex);
3168 3169 3170
			break;
		}

3171
		entry = tree_search_offset(ctl, start, 0, 1);
3172
		if (!entry) {
3173
			spin_unlock(&ctl->tree_lock);
3174
			mutex_unlock(&ctl->cache_writeout_mutex);
3175 3176 3177
			break;
		}

3178 3179 3180 3181
		/* skip bitmaps */
		while (entry->bitmap) {
			node = rb_next(&entry->offset_index);
			if (!node) {
3182
				spin_unlock(&ctl->tree_lock);
3183
				mutex_unlock(&ctl->cache_writeout_mutex);
3184
				goto out;
3185
			}
3186 3187
			entry = rb_entry(node, struct btrfs_free_space,
					 offset_index);
3188 3189
		}

3190 3191
		if (entry->offset >= end) {
			spin_unlock(&ctl->tree_lock);
3192
			mutex_unlock(&ctl->cache_writeout_mutex);
3193
			break;
3194 3195
		}

3196 3197 3198 3199 3200 3201
		extent_start = entry->offset;
		extent_bytes = entry->bytes;
		start = max(start, extent_start);
		bytes = min(extent_start + extent_bytes, end) - start;
		if (bytes < minlen) {
			spin_unlock(&ctl->tree_lock);
3202
			mutex_unlock(&ctl->cache_writeout_mutex);
3203
			goto next;
3204 3205
		}

3206 3207 3208
		unlink_free_space(ctl, entry);
		kmem_cache_free(btrfs_free_space_cachep, entry);

3209
		spin_unlock(&ctl->tree_lock);
3210 3211 3212 3213
		trim_entry.start = extent_start;
		trim_entry.bytes = extent_bytes;
		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
		mutex_unlock(&ctl->cache_writeout_mutex);
3214

3215
		ret = do_trimming(block_group, total_trimmed, start, bytes,
3216
				  extent_start, extent_bytes, &trim_entry);
3217 3218 3219 3220
		if (ret)
			break;
next:
		start += bytes;
3221

3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244
		if (fatal_signal_pending(current)) {
			ret = -ERESTARTSYS;
			break;
		}

		cond_resched();
	}
out:
	return ret;
}

static int trim_bitmaps(struct btrfs_block_group_cache *block_group,
			u64 *total_trimmed, u64 start, u64 end, u64 minlen)
{
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
	struct btrfs_free_space *entry;
	int ret = 0;
	int ret2;
	u64 bytes;
	u64 offset = offset_to_bitmap(ctl, start);

	while (offset < end) {
		bool next_bitmap = false;
3245
		struct btrfs_trim_range trim_entry;
3246

3247
		mutex_lock(&ctl->cache_writeout_mutex);
3248 3249 3250 3251
		spin_lock(&ctl->tree_lock);

		if (ctl->free_space < minlen) {
			spin_unlock(&ctl->tree_lock);
3252
			mutex_unlock(&ctl->cache_writeout_mutex);
3253 3254 3255 3256 3257 3258
			break;
		}

		entry = tree_search_offset(ctl, offset, 1, 0);
		if (!entry) {
			spin_unlock(&ctl->tree_lock);
3259
			mutex_unlock(&ctl->cache_writeout_mutex);
3260 3261 3262 3263 3264
			next_bitmap = true;
			goto next;
		}

		bytes = minlen;
3265
		ret2 = search_bitmap(ctl, entry, &start, &bytes, false);
3266 3267
		if (ret2 || start >= end) {
			spin_unlock(&ctl->tree_lock);
3268
			mutex_unlock(&ctl->cache_writeout_mutex);
3269 3270 3271 3272 3273 3274 3275
			next_bitmap = true;
			goto next;
		}

		bytes = min(bytes, end - start);
		if (bytes < minlen) {
			spin_unlock(&ctl->tree_lock);
3276
			mutex_unlock(&ctl->cache_writeout_mutex);
3277 3278 3279 3280 3281 3282 3283 3284
			goto next;
		}

		bitmap_clear_bits(ctl, entry, start, bytes);
		if (entry->bytes == 0)
			free_bitmap(ctl, entry);

		spin_unlock(&ctl->tree_lock);
3285 3286 3287 3288
		trim_entry.start = start;
		trim_entry.bytes = bytes;
		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
		mutex_unlock(&ctl->cache_writeout_mutex);
3289 3290

		ret = do_trimming(block_group, total_trimmed, start, bytes,
3291
				  start, bytes, &trim_entry);
3292 3293 3294 3295 3296 3297 3298 3299 3300
		if (ret)
			break;
next:
		if (next_bitmap) {
			offset += BITS_PER_BITMAP * ctl->unit;
		} else {
			start += bytes;
			if (start >= offset + BITS_PER_BITMAP * ctl->unit)
				offset += BITS_PER_BITMAP * ctl->unit;
3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312
		}

		if (fatal_signal_pending(current)) {
			ret = -ERESTARTSYS;
			break;
		}

		cond_resched();
	}

	return ret;
}
3313

3314
void btrfs_get_block_group_trimming(struct btrfs_block_group_cache *cache)
3315
{
3316 3317
	atomic_inc(&cache->trimming);
}
3318

3319 3320 3321 3322 3323
void btrfs_put_block_group_trimming(struct btrfs_block_group_cache *block_group)
{
	struct extent_map_tree *em_tree;
	struct extent_map *em;
	bool cleanup;
3324

3325
	spin_lock(&block_group->lock);
3326 3327
	cleanup = (atomic_dec_and_test(&block_group->trimming) &&
		   block_group->removed);
3328 3329
	spin_unlock(&block_group->lock);

3330
	if (cleanup) {
3331
		lock_chunks(block_group->fs_info->chunk_root);
3332 3333 3334 3335 3336
		em_tree = &block_group->fs_info->mapping_tree.map_tree;
		write_lock(&em_tree->lock);
		em = lookup_extent_mapping(em_tree, block_group->key.objectid,
					   1);
		BUG_ON(!em); /* logic error, can't happen */
3337 3338 3339 3340
		/*
		 * remove_extent_mapping() will delete us from the pinned_chunks
		 * list, which is protected by the chunk mutex.
		 */
3341 3342 3343 3344 3345 3346 3347
		remove_extent_mapping(em_tree, em);
		write_unlock(&em_tree->lock);
		unlock_chunks(block_group->fs_info->chunk_root);

		/* once for us and once for the tree */
		free_extent_map(em);
		free_extent_map(em);
3348 3349 3350 3351 3352 3353

		/*
		 * We've left one free space entry and other tasks trimming
		 * this block group have left 1 entry each one. Free them.
		 */
		__btrfs_remove_free_space_cache(block_group->free_space_ctl);
3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365
	}
}

int btrfs_trim_block_group(struct btrfs_block_group_cache *block_group,
			   u64 *trimmed, u64 start, u64 end, u64 minlen)
{
	int ret;

	*trimmed = 0;

	spin_lock(&block_group->lock);
	if (block_group->removed) {
3366
		spin_unlock(&block_group->lock);
3367
		return 0;
3368
	}
3369 3370 3371 3372 3373 3374
	btrfs_get_block_group_trimming(block_group);
	spin_unlock(&block_group->lock);

	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen);
	if (ret)
		goto out;
3375

3376 3377 3378
	ret = trim_bitmaps(block_group, trimmed, start, end, minlen);
out:
	btrfs_put_block_group_trimming(block_group);
3379 3380 3381
	return ret;
}

3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417
/*
 * Find the left-most item in the cache tree, and then return the
 * smallest inode number in the item.
 *
 * Note: the returned inode number may not be the smallest one in
 * the tree, if the left-most item is a bitmap.
 */
u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root)
{
	struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl;
	struct btrfs_free_space *entry = NULL;
	u64 ino = 0;

	spin_lock(&ctl->tree_lock);

	if (RB_EMPTY_ROOT(&ctl->free_space_offset))
		goto out;

	entry = rb_entry(rb_first(&ctl->free_space_offset),
			 struct btrfs_free_space, offset_index);

	if (!entry->bitmap) {
		ino = entry->offset;

		unlink_free_space(ctl, entry);
		entry->offset++;
		entry->bytes--;
		if (!entry->bytes)
			kmem_cache_free(btrfs_free_space_cachep, entry);
		else
			link_free_space(ctl, entry);
	} else {
		u64 offset = 0;
		u64 count = 1;
		int ret;

3418
		ret = search_bitmap(ctl, entry, &offset, &count, true);
3419
		/* Logic error; Should be empty if it can't find anything */
3420
		ASSERT(!ret);
3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431

		ino = offset;
		bitmap_clear_bits(ctl, entry, offset, 1);
		if (entry->bytes == 0)
			free_bitmap(ctl, entry);
	}
out:
	spin_unlock(&ctl->tree_lock);

	return ino;
}
3432 3433 3434 3435 3436 3437

struct inode *lookup_free_ino_inode(struct btrfs_root *root,
				    struct btrfs_path *path)
{
	struct inode *inode = NULL;

3438 3439 3440 3441
	spin_lock(&root->ino_cache_lock);
	if (root->ino_cache_inode)
		inode = igrab(root->ino_cache_inode);
	spin_unlock(&root->ino_cache_lock);
3442 3443 3444 3445 3446 3447 3448
	if (inode)
		return inode;

	inode = __lookup_free_space_inode(root, path, 0);
	if (IS_ERR(inode))
		return inode;

3449
	spin_lock(&root->ino_cache_lock);
3450
	if (!btrfs_fs_closing(root->fs_info))
3451 3452
		root->ino_cache_inode = igrab(inode);
	spin_unlock(&root->ino_cache_lock);
3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472

	return inode;
}

int create_free_ino_inode(struct btrfs_root *root,
			  struct btrfs_trans_handle *trans,
			  struct btrfs_path *path)
{
	return __create_free_space_inode(root, trans, path,
					 BTRFS_FREE_INO_OBJECTID, 0);
}

int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
{
	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
	struct btrfs_path *path;
	struct inode *inode;
	int ret = 0;
	u64 root_gen = btrfs_root_generation(&root->root_item);

C
Chris Mason 已提交
3473 3474 3475
	if (!btrfs_test_opt(root, INODE_MAP_CACHE))
		return 0;

3476 3477 3478 3479
	/*
	 * If we're unmounting then just return, since this does a search on the
	 * normal root and not the commit root and we could deadlock.
	 */
3480
	if (btrfs_fs_closing(fs_info))
3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496
		return 0;

	path = btrfs_alloc_path();
	if (!path)
		return 0;

	inode = lookup_free_ino_inode(root, path);
	if (IS_ERR(inode))
		goto out;

	if (root_gen != BTRFS_I(inode)->generation)
		goto out_put;

	ret = __load_free_space_cache(root, inode, ctl, path, 0);

	if (ret < 0)
3497 3498 3499
		btrfs_err(fs_info,
			"failed to load free ino cache for root %llu",
			root->root_key.objectid);
3500 3501 3502 3503 3504 3505 3506 3507 3508
out_put:
	iput(inode);
out:
	btrfs_free_path(path);
	return ret;
}

int btrfs_write_out_ino_cache(struct btrfs_root *root,
			      struct btrfs_trans_handle *trans,
3509 3510
			      struct btrfs_path *path,
			      struct inode *inode)
3511 3512 3513
{
	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
	int ret;
3514
	struct btrfs_io_ctl io_ctl;
3515
	bool release_metadata = true;
3516

C
Chris Mason 已提交
3517 3518 3519
	if (!btrfs_test_opt(root, INODE_MAP_CACHE))
		return 0;

C
Chris Mason 已提交
3520
	memset(&io_ctl, 0, sizeof(io_ctl));
3521
	ret = __btrfs_write_out_cache(root, inode, ctl, NULL, &io_ctl,
C
Chris Mason 已提交
3522
				      trans, path, 0);
3523 3524 3525 3526 3527 3528 3529 3530
	if (!ret) {
		/*
		 * At this point writepages() didn't error out, so our metadata
		 * reservation is released when the writeback finishes, at
		 * inode.c:btrfs_finish_ordered_io(), regardless of it finishing
		 * with or without an error.
		 */
		release_metadata = false;
C
Chris Mason 已提交
3531
		ret = btrfs_wait_cache_io(root, trans, NULL, &io_ctl, path, 0);
3532
	}
C
Chris Mason 已提交
3533

3534
	if (ret) {
3535 3536
		if (release_metadata)
			btrfs_delalloc_release_metadata(inode, inode->i_size);
3537
#ifdef DEBUG
3538 3539 3540
		btrfs_err(root->fs_info,
			"failed to write free ino cache for root %llu",
			root->root_key.objectid);
3541 3542
#endif
	}
3543 3544 3545

	return ret;
}
3546 3547

#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3548 3549 3550 3551 3552 3553 3554 3555
/*
 * Use this if you need to make a bitmap or extent entry specifically, it
 * doesn't do any of the merging that add_free_space does, this acts a lot like
 * how the free space cache loading stuff works, so you can get really weird
 * configurations.
 */
int test_add_free_space_entry(struct btrfs_block_group_cache *cache,
			      u64 offset, u64 bytes, bool bitmap)
3556
{
3557 3558 3559 3560 3561
	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
	struct btrfs_free_space *info = NULL, *bitmap_info;
	void *map = NULL;
	u64 bytes_added;
	int ret;
3562

3563 3564 3565 3566 3567
again:
	if (!info) {
		info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
		if (!info)
			return -ENOMEM;
3568 3569
	}

3570 3571 3572 3573
	if (!bitmap) {
		spin_lock(&ctl->tree_lock);
		info->offset = offset;
		info->bytes = bytes;
3574
		info->max_extent_size = 0;
3575 3576 3577 3578 3579 3580 3581 3582
		ret = link_free_space(ctl, info);
		spin_unlock(&ctl->tree_lock);
		if (ret)
			kmem_cache_free(btrfs_free_space_cachep, info);
		return ret;
	}

	if (!map) {
3583
		map = kzalloc(PAGE_SIZE, GFP_NOFS);
3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597
		if (!map) {
			kmem_cache_free(btrfs_free_space_cachep, info);
			return -ENOMEM;
		}
	}

	spin_lock(&ctl->tree_lock);
	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
					 1, 0);
	if (!bitmap_info) {
		info->bitmap = map;
		map = NULL;
		add_new_bitmap(ctl, info, offset);
		bitmap_info = info;
3598
		info = NULL;
3599
	}
3600

3601
	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
3602

3603 3604 3605
	bytes -= bytes_added;
	offset += bytes_added;
	spin_unlock(&ctl->tree_lock);
3606

3607 3608
	if (bytes)
		goto again;
3609

3610 3611
	if (info)
		kmem_cache_free(btrfs_free_space_cachep, info);
3612 3613 3614
	if (map)
		kfree(map);
	return 0;
3615 3616 3617 3618 3619 3620 3621
}

/*
 * Checks to see if the given range is in the free space cache.  This is really
 * just used to check the absence of space, so if there is free space in the
 * range at all we will return 1.
 */
3622 3623
int test_check_exists(struct btrfs_block_group_cache *cache,
		      u64 offset, u64 bytes)
3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645
{
	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
	struct btrfs_free_space *info;
	int ret = 0;

	spin_lock(&ctl->tree_lock);
	info = tree_search_offset(ctl, offset, 0, 0);
	if (!info) {
		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
					  1, 0);
		if (!info)
			goto out;
	}

have_info:
	if (info->bitmap) {
		u64 bit_off, bit_bytes;
		struct rb_node *n;
		struct btrfs_free_space *tmp;

		bit_off = offset;
		bit_bytes = ctl->unit;
3646
		ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false);
3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664
		if (!ret) {
			if (bit_off == offset) {
				ret = 1;
				goto out;
			} else if (bit_off > offset &&
				   offset + bytes > bit_off) {
				ret = 1;
				goto out;
			}
		}

		n = rb_prev(&info->offset_index);
		while (n) {
			tmp = rb_entry(n, struct btrfs_free_space,
				       offset_index);
			if (tmp->offset + tmp->bytes < offset)
				break;
			if (offset + bytes < tmp->offset) {
3665
				n = rb_prev(&tmp->offset_index);
3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678
				continue;
			}
			info = tmp;
			goto have_info;
		}

		n = rb_next(&info->offset_index);
		while (n) {
			tmp = rb_entry(n, struct btrfs_free_space,
				       offset_index);
			if (offset + bytes < tmp->offset)
				break;
			if (tmp->offset + tmp->bytes < offset) {
3679
				n = rb_next(&tmp->offset_index);
3680 3681 3682 3683 3684 3685
				continue;
			}
			info = tmp;
			goto have_info;
		}

3686
		ret = 0;
3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700
		goto out;
	}

	if (info->offset == offset) {
		ret = 1;
		goto out;
	}

	if (offset > info->offset && offset < info->offset + info->bytes)
		ret = 1;
out:
	spin_unlock(&ctl->tree_lock);
	return ret;
}
3701
#endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */