free-space-cache.c 91.9 KB
Newer Older
J
Josef Bacik 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * Copyright (C) 2008 Red Hat.  All rights reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */

19
#include <linux/pagemap.h>
J
Josef Bacik 已提交
20
#include <linux/sched.h>
21
#include <linux/slab.h>
22
#include <linux/math64.h>
23
#include <linux/ratelimit.h>
J
Josef Bacik 已提交
24
#include "ctree.h"
25 26
#include "free-space-cache.h"
#include "transaction.h"
27
#include "disk-io.h"
28
#include "extent_io.h"
29
#include "inode-map.h"
30
#include "volumes.h"
31

32 33
#define BITS_PER_BITMAP		(PAGE_CACHE_SIZE * 8)
#define MAX_CACHE_BYTES_PER_GIG	(32 * 1024)
J
Josef Bacik 已提交
34

35 36 37 38 39 40
struct btrfs_trim_range {
	u64 start;
	u64 bytes;
	struct list_head list;
};

41
static int link_free_space(struct btrfs_free_space_ctl *ctl,
J
Josef Bacik 已提交
42
			   struct btrfs_free_space *info);
43 44
static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
			      struct btrfs_free_space *info);
J
Josef Bacik 已提交
45

46 47 48
static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
					       struct btrfs_path *path,
					       u64 offset)
49 50 51 52 53 54 55 56 57 58
{
	struct btrfs_key key;
	struct btrfs_key location;
	struct btrfs_disk_key disk_key;
	struct btrfs_free_space_header *header;
	struct extent_buffer *leaf;
	struct inode *inode = NULL;
	int ret;

	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
59
	key.offset = offset;
60 61 62 63 64 65
	key.type = 0;

	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		return ERR_PTR(ret);
	if (ret > 0) {
66
		btrfs_release_path(path);
67 68 69 70 71 72 73 74
		return ERR_PTR(-ENOENT);
	}

	leaf = path->nodes[0];
	header = btrfs_item_ptr(leaf, path->slots[0],
				struct btrfs_free_space_header);
	btrfs_free_space_key(leaf, header, &disk_key);
	btrfs_disk_key_to_cpu(&location, &disk_key);
75
	btrfs_release_path(path);
76 77 78 79 80 81 82 83 84 85 86

	inode = btrfs_iget(root->fs_info->sb, &location, root, NULL);
	if (!inode)
		return ERR_PTR(-ENOENT);
	if (IS_ERR(inode))
		return inode;
	if (is_bad_inode(inode)) {
		iput(inode);
		return ERR_PTR(-ENOENT);
	}

A
Al Viro 已提交
87
	mapping_set_gfp_mask(inode->i_mapping,
88
			mapping_gfp_mask(inode->i_mapping) &
89
			~(__GFP_FS | __GFP_HIGHMEM));
90

91 92 93 94 95 96 97 98
	return inode;
}

struct inode *lookup_free_space_inode(struct btrfs_root *root,
				      struct btrfs_block_group_cache
				      *block_group, struct btrfs_path *path)
{
	struct inode *inode = NULL;
99
	u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
100 101 102 103 104 105 106 107 108 109 110 111 112

	spin_lock(&block_group->lock);
	if (block_group->inode)
		inode = igrab(block_group->inode);
	spin_unlock(&block_group->lock);
	if (inode)
		return inode;

	inode = __lookup_free_space_inode(root, path,
					  block_group->key.objectid);
	if (IS_ERR(inode))
		return inode;

113
	spin_lock(&block_group->lock);
114
	if (!((BTRFS_I(inode)->flags & flags) == flags)) {
115 116
		btrfs_info(root->fs_info,
			"Old style space inode found, converting.");
117 118
		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
			BTRFS_INODE_NODATACOW;
119 120 121
		block_group->disk_cache_state = BTRFS_DC_CLEAR;
	}

122
	if (!block_group->iref) {
123 124 125 126 127 128 129 130
		block_group->inode = igrab(inode);
		block_group->iref = 1;
	}
	spin_unlock(&block_group->lock);

	return inode;
}

131 132 133 134
static int __create_free_space_inode(struct btrfs_root *root,
				     struct btrfs_trans_handle *trans,
				     struct btrfs_path *path,
				     u64 ino, u64 offset)
135 136 137 138 139 140
{
	struct btrfs_key key;
	struct btrfs_disk_key disk_key;
	struct btrfs_free_space_header *header;
	struct btrfs_inode_item *inode_item;
	struct extent_buffer *leaf;
141
	u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC;
142 143
	int ret;

144
	ret = btrfs_insert_empty_inode(trans, root, path, ino);
145 146 147
	if (ret)
		return ret;

148 149 150 151
	/* We inline crc's for the free disk space cache */
	if (ino != BTRFS_FREE_INO_OBJECTID)
		flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;

152 153 154 155 156 157 158 159 160 161 162 163
	leaf = path->nodes[0];
	inode_item = btrfs_item_ptr(leaf, path->slots[0],
				    struct btrfs_inode_item);
	btrfs_item_key(leaf, &disk_key, path->slots[0]);
	memset_extent_buffer(leaf, 0, (unsigned long)inode_item,
			     sizeof(*inode_item));
	btrfs_set_inode_generation(leaf, inode_item, trans->transid);
	btrfs_set_inode_size(leaf, inode_item, 0);
	btrfs_set_inode_nbytes(leaf, inode_item, 0);
	btrfs_set_inode_uid(leaf, inode_item, 0);
	btrfs_set_inode_gid(leaf, inode_item, 0);
	btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
164
	btrfs_set_inode_flags(leaf, inode_item, flags);
165 166
	btrfs_set_inode_nlink(leaf, inode_item, 1);
	btrfs_set_inode_transid(leaf, inode_item, trans->transid);
167
	btrfs_set_inode_block_group(leaf, inode_item, offset);
168
	btrfs_mark_buffer_dirty(leaf);
169
	btrfs_release_path(path);
170 171

	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
172
	key.offset = offset;
173 174 175 176
	key.type = 0;
	ret = btrfs_insert_empty_item(trans, root, path, &key,
				      sizeof(struct btrfs_free_space_header));
	if (ret < 0) {
177
		btrfs_release_path(path);
178 179
		return ret;
	}
180

181 182 183 184 185 186
	leaf = path->nodes[0];
	header = btrfs_item_ptr(leaf, path->slots[0],
				struct btrfs_free_space_header);
	memset_extent_buffer(leaf, 0, (unsigned long)header, sizeof(*header));
	btrfs_set_free_space_key(leaf, header, &disk_key);
	btrfs_mark_buffer_dirty(leaf);
187
	btrfs_release_path(path);
188 189 190 191

	return 0;
}

192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
int create_free_space_inode(struct btrfs_root *root,
			    struct btrfs_trans_handle *trans,
			    struct btrfs_block_group_cache *block_group,
			    struct btrfs_path *path)
{
	int ret;
	u64 ino;

	ret = btrfs_find_free_objectid(root, &ino);
	if (ret < 0)
		return ret;

	return __create_free_space_inode(root, trans, path, ino,
					 block_group->key.objectid);
}

208 209
int btrfs_check_trunc_cache_free_space(struct btrfs_root *root,
				       struct btrfs_block_rsv *rsv)
210
{
211
	u64 needed_bytes;
212
	int ret;
213 214 215 216 217

	/* 1 for slack space, 1 for updating the inode */
	needed_bytes = btrfs_calc_trunc_metadata_size(root, 1) +
		btrfs_calc_trans_metadata_size(root, 1);

218 219 220 221 222 223
	spin_lock(&rsv->lock);
	if (rsv->reserved < needed_bytes)
		ret = -ENOSPC;
	else
		ret = 0;
	spin_unlock(&rsv->lock);
224
	return ret;
225 226 227 228
}

int btrfs_truncate_free_space_cache(struct btrfs_root *root,
				    struct btrfs_trans_handle *trans,
229
				    struct btrfs_block_group_cache *block_group,
230 231 232
				    struct inode *inode)
{
	int ret = 0;
233
	struct btrfs_path *path = btrfs_alloc_path();
234
	bool locked = false;
235 236 237 238 239 240 241

	if (!path) {
		ret = -ENOMEM;
		goto fail;
	}

	if (block_group) {
242
		locked = true;
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
		mutex_lock(&trans->transaction->cache_write_mutex);
		if (!list_empty(&block_group->io_list)) {
			list_del_init(&block_group->io_list);

			btrfs_wait_cache_io(root, trans, block_group,
					    &block_group->io_ctl, path,
					    block_group->key.objectid);
			btrfs_put_block_group(block_group);
		}

		/*
		 * now that we've truncated the cache away, its no longer
		 * setup or written
		 */
		spin_lock(&block_group->lock);
		block_group->disk_cache_state = BTRFS_DC_CLEAR;
		spin_unlock(&block_group->lock);
	}
	btrfs_free_path(path);
262 263

	btrfs_i_size_write(inode, 0);
264
	truncate_pagecache(inode, 0);
265 266 267 268

	/*
	 * We don't need an orphan item because truncating the free space cache
	 * will never be split across transactions.
269 270
	 * We don't need to check for -EAGAIN because we're a free space
	 * cache inode
271 272 273
	 */
	ret = btrfs_truncate_inode_items(trans, root, inode,
					 0, BTRFS_EXTENT_DATA_KEY);
274 275
	if (ret)
		goto fail;
276

277
	ret = btrfs_update_inode(trans, root, inode);
278 279

fail:
280 281
	if (locked)
		mutex_unlock(&trans->transaction->cache_write_mutex);
282 283
	if (ret)
		btrfs_abort_transaction(trans, root, ret);
284

285
	return ret;
286 287
}

288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
static int readahead_cache(struct inode *inode)
{
	struct file_ra_state *ra;
	unsigned long last_index;

	ra = kzalloc(sizeof(*ra), GFP_NOFS);
	if (!ra)
		return -ENOMEM;

	file_ra_state_init(ra, inode->i_mapping);
	last_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;

	page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);

	kfree(ra);

	return 0;
}

307
static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode,
308
		       struct btrfs_root *root, int write)
309
{
310 311 312
	int num_pages;
	int check_crcs = 0;

313
	num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_CACHE_SIZE);
314 315 316 317 318 319 320 321 322

	if (btrfs_ino(inode) != BTRFS_FREE_INO_OBJECTID)
		check_crcs = 1;

	/* Make sure we can fit our crcs into the first page */
	if (write && check_crcs &&
	    (num_pages * sizeof(u32)) >= PAGE_CACHE_SIZE)
		return -ENOSPC;

323
	memset(io_ctl, 0, sizeof(struct btrfs_io_ctl));
324

325
	io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS);
326 327
	if (!io_ctl->pages)
		return -ENOMEM;
328 329

	io_ctl->num_pages = num_pages;
330
	io_ctl->root = root;
331
	io_ctl->check_crcs = check_crcs;
332
	io_ctl->inode = inode;
333

334 335 336
	return 0;
}

337
static void io_ctl_free(struct btrfs_io_ctl *io_ctl)
338 339
{
	kfree(io_ctl->pages);
340
	io_ctl->pages = NULL;
341 342
}

343
static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl)
344 345 346 347 348 349 350
{
	if (io_ctl->cur) {
		io_ctl->cur = NULL;
		io_ctl->orig = NULL;
	}
}

351
static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear)
352
{
353
	ASSERT(io_ctl->index < io_ctl->num_pages);
354
	io_ctl->page = io_ctl->pages[io_ctl->index++];
355
	io_ctl->cur = page_address(io_ctl->page);
356 357 358 359 360 361
	io_ctl->orig = io_ctl->cur;
	io_ctl->size = PAGE_CACHE_SIZE;
	if (clear)
		memset(io_ctl->cur, 0, PAGE_CACHE_SIZE);
}

362
static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl)
363 364 365 366 367 368
{
	int i;

	io_ctl_unmap_page(io_ctl);

	for (i = 0; i < io_ctl->num_pages; i++) {
369 370 371 372 373
		if (io_ctl->pages[i]) {
			ClearPageChecked(io_ctl->pages[i]);
			unlock_page(io_ctl->pages[i]);
			page_cache_release(io_ctl->pages[i]);
		}
374 375 376
	}
}

377
static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, struct inode *inode,
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
				int uptodate)
{
	struct page *page;
	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
	int i;

	for (i = 0; i < io_ctl->num_pages; i++) {
		page = find_or_create_page(inode->i_mapping, i, mask);
		if (!page) {
			io_ctl_drop_pages(io_ctl);
			return -ENOMEM;
		}
		io_ctl->pages[i] = page;
		if (uptodate && !PageUptodate(page)) {
			btrfs_readpage(NULL, page);
			lock_page(page);
			if (!PageUptodate(page)) {
395 396
				btrfs_err(BTRFS_I(inode)->root->fs_info,
					   "error reading free space cache");
397 398 399 400 401 402
				io_ctl_drop_pages(io_ctl);
				return -EIO;
			}
		}
	}

403 404 405 406 407
	for (i = 0; i < io_ctl->num_pages; i++) {
		clear_page_dirty_for_io(io_ctl->pages[i]);
		set_page_extent_mapped(io_ctl->pages[i]);
	}

408 409 410
	return 0;
}

411
static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
412
{
A
Al Viro 已提交
413
	__le64 *val;
414 415 416 417

	io_ctl_map_page(io_ctl, 1);

	/*
418 419
	 * Skip the csum areas.  If we don't check crcs then we just have a
	 * 64bit chunk at the front of the first page.
420
	 */
421 422 423 424 425 426 427
	if (io_ctl->check_crcs) {
		io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
		io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
	} else {
		io_ctl->cur += sizeof(u64);
		io_ctl->size -= sizeof(u64) * 2;
	}
428 429 430 431 432 433

	val = io_ctl->cur;
	*val = cpu_to_le64(generation);
	io_ctl->cur += sizeof(u64);
}

434
static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
435
{
A
Al Viro 已提交
436
	__le64 *gen;
437

438 439 440 441 442 443 444 445 446 447 448 449
	/*
	 * Skip the crc area.  If we don't check crcs then we just have a 64bit
	 * chunk at the front of the first page.
	 */
	if (io_ctl->check_crcs) {
		io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
		io_ctl->size -= sizeof(u64) +
			(sizeof(u32) * io_ctl->num_pages);
	} else {
		io_ctl->cur += sizeof(u64);
		io_ctl->size -= sizeof(u64) * 2;
	}
450 451 452

	gen = io_ctl->cur;
	if (le64_to_cpu(*gen) != generation) {
453 454 455
		btrfs_err_rl(io_ctl->root->fs_info,
			"space cache generation (%llu) does not match inode (%llu)",
				*gen, generation);
456 457 458 459
		io_ctl_unmap_page(io_ctl);
		return -EIO;
	}
	io_ctl->cur += sizeof(u64);
460 461 462
	return 0;
}

463
static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index)
464 465 466 467 468 469 470 471 472 473 474
{
	u32 *tmp;
	u32 crc = ~(u32)0;
	unsigned offset = 0;

	if (!io_ctl->check_crcs) {
		io_ctl_unmap_page(io_ctl);
		return;
	}

	if (index == 0)
475
		offset = sizeof(u32) * io_ctl->num_pages;
476

477
	crc = btrfs_csum_data(io_ctl->orig + offset, crc,
478 479 480
			      PAGE_CACHE_SIZE - offset);
	btrfs_csum_final(crc, (char *)&crc);
	io_ctl_unmap_page(io_ctl);
481
	tmp = page_address(io_ctl->pages[0]);
482 483 484 485
	tmp += index;
	*tmp = crc;
}

486
static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index)
487 488 489 490 491 492 493 494 495 496 497 498 499
{
	u32 *tmp, val;
	u32 crc = ~(u32)0;
	unsigned offset = 0;

	if (!io_ctl->check_crcs) {
		io_ctl_map_page(io_ctl, 0);
		return 0;
	}

	if (index == 0)
		offset = sizeof(u32) * io_ctl->num_pages;

500
	tmp = page_address(io_ctl->pages[0]);
501 502 503 504
	tmp += index;
	val = *tmp;

	io_ctl_map_page(io_ctl, 0);
505
	crc = btrfs_csum_data(io_ctl->orig + offset, crc,
506 507 508
			      PAGE_CACHE_SIZE - offset);
	btrfs_csum_final(crc, (char *)&crc);
	if (val != crc) {
509 510
		btrfs_err_rl(io_ctl->root->fs_info,
			"csum mismatch on free space cache");
511 512 513 514
		io_ctl_unmap_page(io_ctl);
		return -EIO;
	}

515 516 517
	return 0;
}

518
static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes,
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
			    void *bitmap)
{
	struct btrfs_free_space_entry *entry;

	if (!io_ctl->cur)
		return -ENOSPC;

	entry = io_ctl->cur;
	entry->offset = cpu_to_le64(offset);
	entry->bytes = cpu_to_le64(bytes);
	entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
		BTRFS_FREE_SPACE_EXTENT;
	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
	io_ctl->size -= sizeof(struct btrfs_free_space_entry);

	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
		return 0;

537
	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
538 539 540 541 542 543 544 545 546 547

	/* No more pages to map */
	if (io_ctl->index >= io_ctl->num_pages)
		return 0;

	/* map the next page */
	io_ctl_map_page(io_ctl, 1);
	return 0;
}

548
static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap)
549 550 551 552 553 554 555 556 557
{
	if (!io_ctl->cur)
		return -ENOSPC;

	/*
	 * If we aren't at the start of the current page, unmap this one and
	 * map the next one if there is any left.
	 */
	if (io_ctl->cur != io_ctl->orig) {
558
		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
559 560 561 562 563 564
		if (io_ctl->index >= io_ctl->num_pages)
			return -ENOSPC;
		io_ctl_map_page(io_ctl, 0);
	}

	memcpy(io_ctl->cur, bitmap, PAGE_CACHE_SIZE);
565
	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
566 567 568 569 570
	if (io_ctl->index < io_ctl->num_pages)
		io_ctl_map_page(io_ctl, 0);
	return 0;
}

571
static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl)
572
{
573 574 575 576 577 578 579 580
	/*
	 * If we're not on the boundary we know we've modified the page and we
	 * need to crc the page.
	 */
	if (io_ctl->cur != io_ctl->orig)
		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
	else
		io_ctl_unmap_page(io_ctl);
581 582 583

	while (io_ctl->index < io_ctl->num_pages) {
		io_ctl_map_page(io_ctl, 1);
584
		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
585 586 587
	}
}

588
static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl,
589
			    struct btrfs_free_space *entry, u8 *type)
590 591
{
	struct btrfs_free_space_entry *e;
592 593 594 595 596 597 598
	int ret;

	if (!io_ctl->cur) {
		ret = io_ctl_check_crc(io_ctl, io_ctl->index);
		if (ret)
			return ret;
	}
599 600 601 602

	e = io_ctl->cur;
	entry->offset = le64_to_cpu(e->offset);
	entry->bytes = le64_to_cpu(e->bytes);
603
	*type = e->type;
604 605 606 607
	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
	io_ctl->size -= sizeof(struct btrfs_free_space_entry);

	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
608
		return 0;
609 610 611

	io_ctl_unmap_page(io_ctl);

612
	return 0;
613 614
}

615
static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl,
616
			      struct btrfs_free_space *entry)
617
{
618 619 620 621 622 623
	int ret;

	ret = io_ctl_check_crc(io_ctl, io_ctl->index);
	if (ret)
		return ret;

624 625
	memcpy(entry->bitmap, io_ctl->cur, PAGE_CACHE_SIZE);
	io_ctl_unmap_page(io_ctl);
626 627

	return 0;
628 629
}

630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
/*
 * Since we attach pinned extents after the fact we can have contiguous sections
 * of free space that are split up in entries.  This poses a problem with the
 * tree logging stuff since it could have allocated across what appears to be 2
 * entries since we would have merged the entries when adding the pinned extents
 * back to the free space cache.  So run through the space cache that we just
 * loaded and merge contiguous entries.  This will make the log replay stuff not
 * blow up and it will make for nicer allocator behavior.
 */
static void merge_space_tree(struct btrfs_free_space_ctl *ctl)
{
	struct btrfs_free_space *e, *prev = NULL;
	struct rb_node *n;

again:
	spin_lock(&ctl->tree_lock);
	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
		e = rb_entry(n, struct btrfs_free_space, offset_index);
		if (!prev)
			goto next;
		if (e->bitmap || prev->bitmap)
			goto next;
		if (prev->offset + prev->bytes == e->offset) {
			unlink_free_space(ctl, prev);
			unlink_free_space(ctl, e);
			prev->bytes += e->bytes;
			kmem_cache_free(btrfs_free_space_cachep, e);
			link_free_space(ctl, prev);
			prev = NULL;
			spin_unlock(&ctl->tree_lock);
			goto again;
		}
next:
		prev = e;
	}
	spin_unlock(&ctl->tree_lock);
}

668 669 670
static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
				   struct btrfs_free_space_ctl *ctl,
				   struct btrfs_path *path, u64 offset)
671 672 673
{
	struct btrfs_free_space_header *header;
	struct extent_buffer *leaf;
674
	struct btrfs_io_ctl io_ctl;
675
	struct btrfs_key key;
676
	struct btrfs_free_space *e, *n;
677
	LIST_HEAD(bitmaps);
678 679 680
	u64 num_entries;
	u64 num_bitmaps;
	u64 generation;
681
	u8 type;
682
	int ret = 0;
683 684

	/* Nothing in the space cache, goodbye */
685
	if (!i_size_read(inode))
686
		return 0;
687 688

	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
689
	key.offset = offset;
690 691 692
	key.type = 0;

	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
693
	if (ret < 0)
694
		return 0;
695
	else if (ret > 0) {
696
		btrfs_release_path(path);
697
		return 0;
698 699
	}

700 701
	ret = -1;

702 703 704 705 706 707
	leaf = path->nodes[0];
	header = btrfs_item_ptr(leaf, path->slots[0],
				struct btrfs_free_space_header);
	num_entries = btrfs_free_space_entries(leaf, header);
	num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
	generation = btrfs_free_space_generation(leaf, header);
708
	btrfs_release_path(path);
709

710 711 712 713 714 715 716
	if (!BTRFS_I(inode)->generation) {
		btrfs_info(root->fs_info,
			   "The free space cache file (%llu) is invalid. skip it\n",
			   offset);
		return 0;
	}

717
	if (BTRFS_I(inode)->generation != generation) {
718 719 720
		btrfs_err(root->fs_info,
			"free space inode generation (%llu) "
			"did not match free space cache generation (%llu)",
721
			BTRFS_I(inode)->generation, generation);
722
		return 0;
723 724 725
	}

	if (!num_entries)
726
		return 0;
727

728
	ret = io_ctl_init(&io_ctl, inode, root, 0);
729 730 731
	if (ret)
		return ret;

732
	ret = readahead_cache(inode);
733
	if (ret)
734 735
		goto out;

736 737 738
	ret = io_ctl_prepare_pages(&io_ctl, inode, 1);
	if (ret)
		goto out;
739

740 741 742 743
	ret = io_ctl_check_crc(&io_ctl, 0);
	if (ret)
		goto free_cache;

744 745 746
	ret = io_ctl_check_generation(&io_ctl, generation);
	if (ret)
		goto free_cache;
747

748 749 750 751
	while (num_entries) {
		e = kmem_cache_zalloc(btrfs_free_space_cachep,
				      GFP_NOFS);
		if (!e)
752 753
			goto free_cache;

754 755 756 757 758 759
		ret = io_ctl_read_entry(&io_ctl, e, &type);
		if (ret) {
			kmem_cache_free(btrfs_free_space_cachep, e);
			goto free_cache;
		}

760 761 762
		if (!e->bytes) {
			kmem_cache_free(btrfs_free_space_cachep, e);
			goto free_cache;
763
		}
764 765 766 767 768 769

		if (type == BTRFS_FREE_SPACE_EXTENT) {
			spin_lock(&ctl->tree_lock);
			ret = link_free_space(ctl, e);
			spin_unlock(&ctl->tree_lock);
			if (ret) {
770 771
				btrfs_err(root->fs_info,
					"Duplicate entries in free space cache, dumping");
772
				kmem_cache_free(btrfs_free_space_cachep, e);
773 774
				goto free_cache;
			}
775
		} else {
776
			ASSERT(num_bitmaps);
777 778 779 780 781
			num_bitmaps--;
			e->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
			if (!e->bitmap) {
				kmem_cache_free(
					btrfs_free_space_cachep, e);
782 783
				goto free_cache;
			}
784 785 786 787 788 789
			spin_lock(&ctl->tree_lock);
			ret = link_free_space(ctl, e);
			ctl->total_bitmaps++;
			ctl->op->recalc_thresholds(ctl);
			spin_unlock(&ctl->tree_lock);
			if (ret) {
790 791
				btrfs_err(root->fs_info,
					"Duplicate entries in free space cache, dumping");
792
				kmem_cache_free(btrfs_free_space_cachep, e);
793 794
				goto free_cache;
			}
795
			list_add_tail(&e->list, &bitmaps);
796 797
		}

798 799
		num_entries--;
	}
800

801 802
	io_ctl_unmap_page(&io_ctl);

803 804 805 806 807
	/*
	 * We add the bitmaps at the end of the entries in order that
	 * the bitmap entries are added to the cache.
	 */
	list_for_each_entry_safe(e, n, &bitmaps, list) {
808
		list_del_init(&e->list);
809 810 811
		ret = io_ctl_read_bitmap(&io_ctl, e);
		if (ret)
			goto free_cache;
812 813
	}

814
	io_ctl_drop_pages(&io_ctl);
815
	merge_space_tree(ctl);
816 817
	ret = 1;
out:
818
	io_ctl_free(&io_ctl);
819 820
	return ret;
free_cache:
821
	io_ctl_drop_pages(&io_ctl);
822
	__btrfs_remove_free_space_cache(ctl);
823 824 825
	goto out;
}

826 827
int load_free_space_cache(struct btrfs_fs_info *fs_info,
			  struct btrfs_block_group_cache *block_group)
J
Josef Bacik 已提交
828
{
829
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
830 831 832
	struct btrfs_root *root = fs_info->tree_root;
	struct inode *inode;
	struct btrfs_path *path;
833
	int ret = 0;
834 835 836 837 838 839 840
	bool matched;
	u64 used = btrfs_block_group_used(&block_group->item);

	/*
	 * If this block group has been marked to be cleared for one reason or
	 * another then we can't trust the on disk cache, so just return.
	 */
841
	spin_lock(&block_group->lock);
842 843 844 845
	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
		spin_unlock(&block_group->lock);
		return 0;
	}
846
	spin_unlock(&block_group->lock);
847 848 849 850

	path = btrfs_alloc_path();
	if (!path)
		return 0;
851 852
	path->search_commit_root = 1;
	path->skip_locking = 1;
853 854 855 856 857 858 859

	inode = lookup_free_space_inode(root, block_group, path);
	if (IS_ERR(inode)) {
		btrfs_free_path(path);
		return 0;
	}

860 861 862 863
	/* We may have converted the inode and made the cache invalid. */
	spin_lock(&block_group->lock);
	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
		spin_unlock(&block_group->lock);
864
		btrfs_free_path(path);
865 866 867 868
		goto out;
	}
	spin_unlock(&block_group->lock);

869 870 871 872 873 874 875 876 877 878 879 880 881
	ret = __load_free_space_cache(fs_info->tree_root, inode, ctl,
				      path, block_group->key.objectid);
	btrfs_free_path(path);
	if (ret <= 0)
		goto out;

	spin_lock(&ctl->tree_lock);
	matched = (ctl->free_space == (block_group->key.offset - used -
				       block_group->bytes_super));
	spin_unlock(&ctl->tree_lock);

	if (!matched) {
		__btrfs_remove_free_space_cache(ctl);
882
		btrfs_warn(fs_info, "block group %llu has wrong amount of free space",
883
			block_group->key.objectid);
884 885 886 887 888 889 890 891
		ret = -1;
	}
out:
	if (ret < 0) {
		/* This cache is bogus, make sure it gets cleared */
		spin_lock(&block_group->lock);
		block_group->disk_cache_state = BTRFS_DC_CLEAR;
		spin_unlock(&block_group->lock);
892
		ret = 0;
893

894
		btrfs_warn(fs_info, "failed to load free space cache for block group %llu, rebuild it now",
895
			block_group->key.objectid);
896 897 898 899
	}

	iput(inode);
	return ret;
900 901
}

902
static noinline_for_stack
903
int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl,
904 905 906 907
			      struct btrfs_free_space_ctl *ctl,
			      struct btrfs_block_group_cache *block_group,
			      int *entries, int *bitmaps,
			      struct list_head *bitmap_list)
J
Josef Bacik 已提交
908
{
909
	int ret;
910
	struct btrfs_free_cluster *cluster = NULL;
911
	struct btrfs_free_cluster *cluster_locked = NULL;
912
	struct rb_node *node = rb_first(&ctl->free_space_offset);
913
	struct btrfs_trim_range *trim_entry;
914

915
	/* Get the cluster for this block_group if it exists */
916
	if (block_group && !list_empty(&block_group->cluster_list)) {
917 918 919
		cluster = list_entry(block_group->cluster_list.next,
				     struct btrfs_free_cluster,
				     block_group_list);
920
	}
921

922
	if (!node && cluster) {
923 924
		cluster_locked = cluster;
		spin_lock(&cluster_locked->lock);
925 926 927 928
		node = rb_first(&cluster->root);
		cluster = NULL;
	}

929 930 931
	/* Write out the extent entries */
	while (node) {
		struct btrfs_free_space *e;
J
Josef Bacik 已提交
932

933
		e = rb_entry(node, struct btrfs_free_space, offset_index);
934
		*entries += 1;
J
Josef Bacik 已提交
935

936
		ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes,
937 938
				       e->bitmap);
		if (ret)
939
			goto fail;
940

941
		if (e->bitmap) {
942 943
			list_add_tail(&e->list, bitmap_list);
			*bitmaps += 1;
944
		}
945 946 947
		node = rb_next(node);
		if (!node && cluster) {
			node = rb_first(&cluster->root);
948 949
			cluster_locked = cluster;
			spin_lock(&cluster_locked->lock);
950
			cluster = NULL;
951
		}
952
	}
953 954 955 956
	if (cluster_locked) {
		spin_unlock(&cluster_locked->lock);
		cluster_locked = NULL;
	}
957 958 959 960 961 962 963 964 965 966 967 968 969 970 971

	/*
	 * Make sure we don't miss any range that was removed from our rbtree
	 * because trimming is running. Otherwise after a umount+mount (or crash
	 * after committing the transaction) we would leak free space and get
	 * an inconsistent free space cache report from fsck.
	 */
	list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) {
		ret = io_ctl_add_entry(io_ctl, trim_entry->start,
				       trim_entry->bytes, NULL);
		if (ret)
			goto fail;
		*entries += 1;
	}

972 973
	return 0;
fail:
974 975
	if (cluster_locked)
		spin_unlock(&cluster_locked->lock);
976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
	return -ENOSPC;
}

static noinline_for_stack int
update_cache_item(struct btrfs_trans_handle *trans,
		  struct btrfs_root *root,
		  struct inode *inode,
		  struct btrfs_path *path, u64 offset,
		  int entries, int bitmaps)
{
	struct btrfs_key key;
	struct btrfs_free_space_header *header;
	struct extent_buffer *leaf;
	int ret;

	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
	key.offset = offset;
	key.type = 0;

	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
	if (ret < 0) {
		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
				 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL,
				 GFP_NOFS);
		goto fail;
	}
	leaf = path->nodes[0];
	if (ret > 0) {
		struct btrfs_key found_key;
		ASSERT(path->slots[0]);
		path->slots[0]--;
		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
		if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
		    found_key.offset != offset) {
			clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
					 inode->i_size - 1,
					 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0,
					 NULL, GFP_NOFS);
			btrfs_release_path(path);
			goto fail;
		}
	}

	BTRFS_I(inode)->generation = trans->transid;
	header = btrfs_item_ptr(leaf, path->slots[0],
				struct btrfs_free_space_header);
	btrfs_set_free_space_entries(leaf, header, entries);
	btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
	btrfs_set_free_space_generation(leaf, header, trans->transid);
	btrfs_mark_buffer_dirty(leaf);
	btrfs_release_path(path);

	return 0;

fail:
	return -1;
}

static noinline_for_stack int
1035 1036
write_pinned_extent_entries(struct btrfs_root *root,
			    struct btrfs_block_group_cache *block_group,
1037
			    struct btrfs_io_ctl *io_ctl,
1038
			    int *entries)
1039 1040 1041 1042
{
	u64 start, extent_start, extent_end, len;
	struct extent_io_tree *unpin = NULL;
	int ret;
1043

1044 1045 1046
	if (!block_group)
		return 0;

1047 1048 1049
	/*
	 * We want to add any pinned extents to our free space cache
	 * so we don't leak the space
1050
	 *
1051 1052 1053 1054 1055
	 * We shouldn't have switched the pinned extents yet so this is the
	 * right one
	 */
	unpin = root->fs_info->pinned_extents;

1056
	start = block_group->key.objectid;
1057

1058
	while (start < block_group->key.objectid + block_group->key.offset) {
1059 1060
		ret = find_first_extent_bit(unpin, start,
					    &extent_start, &extent_end,
1061
					    EXTENT_DIRTY, NULL);
1062 1063
		if (ret)
			return 0;
J
Josef Bacik 已提交
1064

1065
		/* This pinned extent is out of our range */
1066
		if (extent_start >= block_group->key.objectid +
1067
		    block_group->key.offset)
1068
			return 0;
1069

1070 1071 1072 1073
		extent_start = max(extent_start, start);
		extent_end = min(block_group->key.objectid +
				 block_group->key.offset, extent_end + 1);
		len = extent_end - extent_start;
J
Josef Bacik 已提交
1074

1075 1076
		*entries += 1;
		ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL);
1077
		if (ret)
1078
			return -ENOSPC;
J
Josef Bacik 已提交
1079

1080
		start = extent_end;
1081
	}
J
Josef Bacik 已提交
1082

1083 1084 1085 1086
	return 0;
}

static noinline_for_stack int
1087
write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list)
1088 1089 1090 1091
{
	struct list_head *pos, *n;
	int ret;

J
Josef Bacik 已提交
1092
	/* Write out the bitmaps */
1093
	list_for_each_safe(pos, n, bitmap_list) {
J
Josef Bacik 已提交
1094 1095 1096
		struct btrfs_free_space *entry =
			list_entry(pos, struct btrfs_free_space, list);

1097
		ret = io_ctl_add_bitmap(io_ctl, entry->bitmap);
1098
		if (ret)
1099
			return -ENOSPC;
J
Josef Bacik 已提交
1100
		list_del_init(&entry->list);
1101 1102
	}

1103 1104
	return 0;
}
J
Josef Bacik 已提交
1105

1106 1107 1108
static int flush_dirty_cache(struct inode *inode)
{
	int ret;
1109

1110
	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
1111
	if (ret)
1112 1113 1114
		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
				 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL,
				 GFP_NOFS);
J
Josef Bacik 已提交
1115

1116
	return ret;
1117 1118 1119
}

static void noinline_for_stack
1120
cleanup_bitmap_list(struct list_head *bitmap_list)
1121 1122
{
	struct list_head *pos, *n;
1123

1124 1125 1126 1127
	list_for_each_safe(pos, n, bitmap_list) {
		struct btrfs_free_space *entry =
			list_entry(pos, struct btrfs_free_space, list);
		list_del_init(&entry->list);
J
Josef Bacik 已提交
1128
	}
1129 1130 1131 1132 1133 1134 1135 1136
}

static void noinline_for_stack
cleanup_write_cache_enospc(struct inode *inode,
			   struct btrfs_io_ctl *io_ctl,
			   struct extent_state **cached_state,
			   struct list_head *bitmap_list)
{
1137 1138 1139 1140 1141
	io_ctl_drop_pages(io_ctl);
	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
			     i_size_read(inode) - 1, cached_state,
			     GFP_NOFS);
}
1142

1143 1144 1145 1146 1147 1148 1149 1150 1151
int btrfs_wait_cache_io(struct btrfs_root *root,
			struct btrfs_trans_handle *trans,
			struct btrfs_block_group_cache *block_group,
			struct btrfs_io_ctl *io_ctl,
			struct btrfs_path *path, u64 offset)
{
	int ret;
	struct inode *inode = io_ctl->inode;

1152 1153 1154
	if (!inode)
		return 0;

C
Chris Mason 已提交
1155 1156
	if (block_group)
		root = root->fs_info->tree_root;
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181

	/* Flush the dirty pages in the cache file. */
	ret = flush_dirty_cache(inode);
	if (ret)
		goto out;

	/* Update the cache item to tell everyone this cache file is valid. */
	ret = update_cache_item(trans, root, inode, path, offset,
				io_ctl->entries, io_ctl->bitmaps);
out:
	io_ctl_free(io_ctl);
	if (ret) {
		invalidate_inode_pages2(inode->i_mapping);
		BTRFS_I(inode)->generation = 0;
		if (block_group) {
#ifdef DEBUG
			btrfs_err(root->fs_info,
				"failed to write free space cache for block group %llu",
				block_group->key.objectid);
#endif
		}
	}
	btrfs_update_inode(trans, root, inode);

	if (block_group) {
1182 1183 1184 1185
		/* the dirty list is protected by the dirty_bgs_lock */
		spin_lock(&trans->transaction->dirty_bgs_lock);

		/* the disk_cache_state is protected by the block group lock */
1186 1187 1188 1189
		spin_lock(&block_group->lock);

		/*
		 * only mark this as written if we didn't get put back on
1190 1191
		 * the dirty list while waiting for IO.   Otherwise our
		 * cache state won't be right, and we won't get written again
1192 1193 1194 1195 1196 1197 1198
		 */
		if (!ret && list_empty(&block_group->dirty_list))
			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
		else if (ret)
			block_group->disk_cache_state = BTRFS_DC_ERROR;

		spin_unlock(&block_group->lock);
1199
		spin_unlock(&trans->transaction->dirty_bgs_lock);
1200 1201 1202 1203 1204 1205 1206 1207
		io_ctl->inode = NULL;
		iput(inode);
	}

	return ret;

}

1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
/**
 * __btrfs_write_out_cache - write out cached info to an inode
 * @root - the root the inode belongs to
 * @ctl - the free space cache we are going to write out
 * @block_group - the block_group for this cache if it belongs to a block_group
 * @trans - the trans handle
 * @path - the path to use
 * @offset - the offset for the key we'll insert
 *
 * This function writes out a free space cache struct to disk for quick recovery
G
Geliang Tang 已提交
1218
 * on mount.  This will return 0 if it was successful in writing the cache out,
1219
 * or an errno if it was not.
1220 1221 1222 1223
 */
static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
				   struct btrfs_free_space_ctl *ctl,
				   struct btrfs_block_group_cache *block_group,
1224
				   struct btrfs_io_ctl *io_ctl,
1225 1226 1227 1228
				   struct btrfs_trans_handle *trans,
				   struct btrfs_path *path, u64 offset)
{
	struct extent_state *cached_state = NULL;
1229
	LIST_HEAD(bitmap_list);
1230 1231 1232
	int entries = 0;
	int bitmaps = 0;
	int ret;
1233
	int must_iput = 0;
1234 1235

	if (!i_size_read(inode))
1236
		return -EIO;
1237

1238 1239
	WARN_ON(io_ctl->pages);
	ret = io_ctl_init(io_ctl, inode, root, 1);
1240
	if (ret)
1241
		return ret;
1242

1243 1244 1245 1246 1247 1248 1249 1250 1251
	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) {
		down_write(&block_group->data_rwsem);
		spin_lock(&block_group->lock);
		if (block_group->delalloc_bytes) {
			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
			spin_unlock(&block_group->lock);
			up_write(&block_group->data_rwsem);
			BTRFS_I(inode)->generation = 0;
			ret = 0;
1252
			must_iput = 1;
1253 1254 1255 1256 1257
			goto out;
		}
		spin_unlock(&block_group->lock);
	}

1258
	/* Lock all pages first so we can lock the extent safely. */
1259 1260 1261
	ret = io_ctl_prepare_pages(io_ctl, inode, 0);
	if (ret)
		goto out;
1262 1263 1264 1265

	lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
			 0, &cached_state);

1266
	io_ctl_set_generation(io_ctl, trans->transid);
1267

1268
	mutex_lock(&ctl->cache_writeout_mutex);
1269
	/* Write out the extent entries in the free space cache */
1270
	spin_lock(&ctl->tree_lock);
1271
	ret = write_cache_extent_entries(io_ctl, ctl,
1272 1273
					 block_group, &entries, &bitmaps,
					 &bitmap_list);
1274 1275
	if (ret)
		goto out_nospc_locked;
1276

1277 1278 1279 1280
	/*
	 * Some spaces that are freed in the current transaction are pinned,
	 * they will be added into free space cache after the transaction is
	 * committed, we shouldn't lose them.
1281 1282 1283
	 *
	 * If this changes while we are working we'll get added back to
	 * the dirty list and redo it.  No locking needed
1284
	 */
1285
	ret = write_pinned_extent_entries(root, block_group, io_ctl, &entries);
1286 1287
	if (ret)
		goto out_nospc_locked;
1288

1289 1290 1291 1292 1293
	/*
	 * At last, we write out all the bitmaps and keep cache_writeout_mutex
	 * locked while doing it because a concurrent trim can be manipulating
	 * or freeing the bitmap.
	 */
1294
	ret = write_bitmap_entries(io_ctl, &bitmap_list);
1295
	spin_unlock(&ctl->tree_lock);
1296
	mutex_unlock(&ctl->cache_writeout_mutex);
1297 1298 1299 1300
	if (ret)
		goto out_nospc;

	/* Zero out the rest of the pages just to make sure */
1301
	io_ctl_zero_remaining_pages(io_ctl);
1302

1303
	/* Everything is written out, now we dirty the pages in the file. */
1304
	ret = btrfs_dirty_pages(root, inode, io_ctl->pages, io_ctl->num_pages,
1305 1306
				0, i_size_read(inode), &cached_state);
	if (ret)
1307
		goto out_nospc;
1308

1309 1310
	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
		up_write(&block_group->data_rwsem);
1311 1312 1313 1314
	/*
	 * Release the pages and unlock the extent, we will flush
	 * them out later
	 */
1315
	io_ctl_drop_pages(io_ctl);
1316 1317 1318 1319

	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
			     i_size_read(inode) - 1, &cached_state, GFP_NOFS);

1320 1321 1322 1323 1324 1325 1326 1327 1328
	/*
	 * at this point the pages are under IO and we're happy,
	 * The caller is responsible for waiting on them and updating the
	 * the cache and the inode
	 */
	io_ctl->entries = entries;
	io_ctl->bitmaps = bitmaps;

	ret = btrfs_fdatawrite_range(inode, 0, (u64)-1);
1329
	if (ret)
1330 1331
		goto out;

1332 1333
	return 0;

1334
out:
1335 1336
	io_ctl->inode = NULL;
	io_ctl_free(io_ctl);
1337
	if (ret) {
1338
		invalidate_inode_pages2(inode->i_mapping);
J
Josef Bacik 已提交
1339 1340 1341
		BTRFS_I(inode)->generation = 0;
	}
	btrfs_update_inode(trans, root, inode);
1342 1343
	if (must_iput)
		iput(inode);
1344
	return ret;
1345

1346 1347 1348 1349 1350
out_nospc_locked:
	cleanup_bitmap_list(&bitmap_list);
	spin_unlock(&ctl->tree_lock);
	mutex_unlock(&ctl->cache_writeout_mutex);

1351
out_nospc:
1352
	cleanup_write_cache_enospc(inode, io_ctl, &cached_state, &bitmap_list);
1353 1354 1355 1356

	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
		up_write(&block_group->data_rwsem);

1357
	goto out;
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
}

int btrfs_write_out_cache(struct btrfs_root *root,
			  struct btrfs_trans_handle *trans,
			  struct btrfs_block_group_cache *block_group,
			  struct btrfs_path *path)
{
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
	struct inode *inode;
	int ret = 0;

	root = root->fs_info->tree_root;

	spin_lock(&block_group->lock);
	if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
		spin_unlock(&block_group->lock);
1374 1375
		return 0;
	}
1376 1377 1378 1379 1380 1381
	spin_unlock(&block_group->lock);

	inode = lookup_free_space_inode(root, block_group, path);
	if (IS_ERR(inode))
		return 0;

1382 1383
	ret = __btrfs_write_out_cache(root, inode, ctl, block_group,
				      &block_group->io_ctl, trans,
1384
				      path, block_group->key.objectid);
1385 1386
	if (ret) {
#ifdef DEBUG
1387 1388 1389
		btrfs_err(root->fs_info,
			"failed to write free space cache for block group %llu",
			block_group->key.objectid);
1390
#endif
1391 1392 1393 1394 1395 1396
		spin_lock(&block_group->lock);
		block_group->disk_cache_state = BTRFS_DC_ERROR;
		spin_unlock(&block_group->lock);

		block_group->io_ctl.inode = NULL;
		iput(inode);
1397 1398
	}

1399 1400 1401 1402 1403
	/*
	 * if ret == 0 the caller is expected to call btrfs_wait_cache_io
	 * to wait for IO and put the inode
	 */

J
Josef Bacik 已提交
1404 1405 1406
	return ret;
}

1407
static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1408
					  u64 offset)
J
Josef Bacik 已提交
1409
{
1410
	ASSERT(offset >= bitmap_start);
1411
	offset -= bitmap_start;
1412
	return (unsigned long)(div_u64(offset, unit));
1413
}
J
Josef Bacik 已提交
1414

1415
static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1416
{
1417
	return (unsigned long)(div_u64(bytes, unit));
1418
}
J
Josef Bacik 已提交
1419

1420
static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1421 1422 1423
				   u64 offset)
{
	u64 bitmap_start;
1424
	u32 bytes_per_bitmap;
J
Josef Bacik 已提交
1425

1426 1427
	bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
	bitmap_start = offset - ctl->start;
1428
	bitmap_start = div_u64(bitmap_start, bytes_per_bitmap);
1429
	bitmap_start *= bytes_per_bitmap;
1430
	bitmap_start += ctl->start;
J
Josef Bacik 已提交
1431

1432
	return bitmap_start;
J
Josef Bacik 已提交
1433 1434
}

1435 1436
static int tree_insert_offset(struct rb_root *root, u64 offset,
			      struct rb_node *node, int bitmap)
J
Josef Bacik 已提交
1437 1438 1439 1440 1441 1442 1443
{
	struct rb_node **p = &root->rb_node;
	struct rb_node *parent = NULL;
	struct btrfs_free_space *info;

	while (*p) {
		parent = *p;
1444
		info = rb_entry(parent, struct btrfs_free_space, offset_index);
J
Josef Bacik 已提交
1445

1446
		if (offset < info->offset) {
J
Josef Bacik 已提交
1447
			p = &(*p)->rb_left;
1448
		} else if (offset > info->offset) {
J
Josef Bacik 已提交
1449
			p = &(*p)->rb_right;
1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
		} else {
			/*
			 * we could have a bitmap entry and an extent entry
			 * share the same offset.  If this is the case, we want
			 * the extent entry to always be found first if we do a
			 * linear search through the tree, since we want to have
			 * the quickest allocation time, and allocating from an
			 * extent is faster than allocating from a bitmap.  So
			 * if we're inserting a bitmap and we find an entry at
			 * this offset, we want to go right, or after this entry
			 * logically.  If we are inserting an extent and we've
			 * found a bitmap, we want to go left, or before
			 * logically.
			 */
			if (bitmap) {
1465 1466 1467 1468
				if (info->bitmap) {
					WARN_ON_ONCE(1);
					return -EEXIST;
				}
1469 1470
				p = &(*p)->rb_right;
			} else {
1471 1472 1473 1474
				if (!info->bitmap) {
					WARN_ON_ONCE(1);
					return -EEXIST;
				}
1475 1476 1477
				p = &(*p)->rb_left;
			}
		}
J
Josef Bacik 已提交
1478 1479 1480 1481 1482 1483 1484 1485 1486
	}

	rb_link_node(node, parent, p);
	rb_insert_color(node, root);

	return 0;
}

/*
J
Josef Bacik 已提交
1487 1488
 * searches the tree for the given offset.
 *
1489 1490 1491
 * fuzzy - If this is set, then we are trying to make an allocation, and we just
 * want a section that has at least bytes size and comes at or after the given
 * offset.
J
Josef Bacik 已提交
1492
 */
1493
static struct btrfs_free_space *
1494
tree_search_offset(struct btrfs_free_space_ctl *ctl,
1495
		   u64 offset, int bitmap_only, int fuzzy)
J
Josef Bacik 已提交
1496
{
1497
	struct rb_node *n = ctl->free_space_offset.rb_node;
1498 1499 1500 1501 1502 1503 1504 1505
	struct btrfs_free_space *entry, *prev = NULL;

	/* find entry that is closest to the 'offset' */
	while (1) {
		if (!n) {
			entry = NULL;
			break;
		}
J
Josef Bacik 已提交
1506 1507

		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1508
		prev = entry;
J
Josef Bacik 已提交
1509

1510
		if (offset < entry->offset)
J
Josef Bacik 已提交
1511
			n = n->rb_left;
1512
		else if (offset > entry->offset)
J
Josef Bacik 已提交
1513
			n = n->rb_right;
1514
		else
J
Josef Bacik 已提交
1515 1516 1517
			break;
	}

1518 1519 1520 1521 1522
	if (bitmap_only) {
		if (!entry)
			return NULL;
		if (entry->bitmap)
			return entry;
J
Josef Bacik 已提交
1523

1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
		/*
		 * bitmap entry and extent entry may share same offset,
		 * in that case, bitmap entry comes after extent entry.
		 */
		n = rb_next(n);
		if (!n)
			return NULL;
		entry = rb_entry(n, struct btrfs_free_space, offset_index);
		if (entry->offset != offset)
			return NULL;
J
Josef Bacik 已提交
1534

1535 1536 1537 1538
		WARN_ON(!entry->bitmap);
		return entry;
	} else if (entry) {
		if (entry->bitmap) {
J
Josef Bacik 已提交
1539
			/*
1540 1541
			 * if previous extent entry covers the offset,
			 * we should return it instead of the bitmap entry
J
Josef Bacik 已提交
1542
			 */
1543 1544
			n = rb_prev(&entry->offset_index);
			if (n) {
1545 1546
				prev = rb_entry(n, struct btrfs_free_space,
						offset_index);
1547 1548 1549
				if (!prev->bitmap &&
				    prev->offset + prev->bytes > offset)
					entry = prev;
J
Josef Bacik 已提交
1550
			}
1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
		}
		return entry;
	}

	if (!prev)
		return NULL;

	/* find last entry before the 'offset' */
	entry = prev;
	if (entry->offset > offset) {
		n = rb_prev(&entry->offset_index);
		if (n) {
			entry = rb_entry(n, struct btrfs_free_space,
					offset_index);
1565
			ASSERT(entry->offset <= offset);
J
Josef Bacik 已提交
1566
		} else {
1567 1568 1569 1570
			if (fuzzy)
				return entry;
			else
				return NULL;
J
Josef Bacik 已提交
1571 1572 1573
		}
	}

1574
	if (entry->bitmap) {
1575 1576
		n = rb_prev(&entry->offset_index);
		if (n) {
1577 1578
			prev = rb_entry(n, struct btrfs_free_space,
					offset_index);
1579 1580 1581
			if (!prev->bitmap &&
			    prev->offset + prev->bytes > offset)
				return prev;
1582
		}
1583
		if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
			return entry;
	} else if (entry->offset + entry->bytes > offset)
		return entry;

	if (!fuzzy)
		return NULL;

	while (1) {
		if (entry->bitmap) {
			if (entry->offset + BITS_PER_BITMAP *
1594
			    ctl->unit > offset)
1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
				break;
		} else {
			if (entry->offset + entry->bytes > offset)
				break;
		}

		n = rb_next(&entry->offset_index);
		if (!n)
			return NULL;
		entry = rb_entry(n, struct btrfs_free_space, offset_index);
	}
	return entry;
J
Josef Bacik 已提交
1607 1608
}

1609
static inline void
1610
__unlink_free_space(struct btrfs_free_space_ctl *ctl,
1611
		    struct btrfs_free_space *info)
J
Josef Bacik 已提交
1612
{
1613 1614
	rb_erase(&info->offset_index, &ctl->free_space_offset);
	ctl->free_extents--;
1615 1616
}

1617
static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1618 1619
			      struct btrfs_free_space *info)
{
1620 1621
	__unlink_free_space(ctl, info);
	ctl->free_space -= info->bytes;
J
Josef Bacik 已提交
1622 1623
}

1624
static int link_free_space(struct btrfs_free_space_ctl *ctl,
J
Josef Bacik 已提交
1625 1626 1627 1628
			   struct btrfs_free_space *info)
{
	int ret = 0;

1629
	ASSERT(info->bytes || info->bitmap);
1630
	ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
1631
				 &info->offset_index, (info->bitmap != NULL));
J
Josef Bacik 已提交
1632 1633 1634
	if (ret)
		return ret;

1635 1636
	ctl->free_space += info->bytes;
	ctl->free_extents++;
1637 1638 1639
	return ret;
}

1640
static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
1641
{
1642
	struct btrfs_block_group_cache *block_group = ctl->private;
1643 1644 1645
	u64 max_bytes;
	u64 bitmap_bytes;
	u64 extent_bytes;
1646
	u64 size = block_group->key.offset;
1647 1648
	u32 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
	u32 max_bitmaps = div_u64(size + bytes_per_bg - 1, bytes_per_bg);
1649

1650
	max_bitmaps = max_t(u32, max_bitmaps, 1);
1651

1652
	ASSERT(ctl->total_bitmaps <= max_bitmaps);
1653 1654 1655 1656 1657 1658

	/*
	 * The goal is to keep the total amount of memory used per 1gb of space
	 * at or below 32k, so we need to adjust how much memory we allow to be
	 * used by extent based free space tracking
	 */
1659 1660 1661 1662
	if (size < 1024 * 1024 * 1024)
		max_bytes = MAX_CACHE_BYTES_PER_GIG;
	else
		max_bytes = MAX_CACHE_BYTES_PER_GIG *
1663
			div_u64(size, 1024 * 1024 * 1024);
1664

1665 1666 1667 1668 1669
	/*
	 * we want to account for 1 more bitmap than what we have so we can make
	 * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
	 * we add more bitmaps.
	 */
1670
	bitmap_bytes = (ctl->total_bitmaps + 1) * PAGE_CACHE_SIZE;
1671

1672
	if (bitmap_bytes >= max_bytes) {
1673
		ctl->extents_thresh = 0;
1674 1675
		return;
	}
1676

1677
	/*
1678
	 * we want the extent entry threshold to always be at most 1/2 the max
1679 1680 1681
	 * bytes we can have, or whatever is less than that.
	 */
	extent_bytes = max_bytes - bitmap_bytes;
1682
	extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1);
1683

1684
	ctl->extents_thresh =
1685
		div_u64(extent_bytes, sizeof(struct btrfs_free_space));
1686 1687
}

1688 1689 1690
static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
				       struct btrfs_free_space *info,
				       u64 offset, u64 bytes)
1691
{
L
Li Zefan 已提交
1692
	unsigned long start, count;
1693

1694 1695
	start = offset_to_bit(info->offset, ctl->unit, offset);
	count = bytes_to_bits(bytes, ctl->unit);
1696
	ASSERT(start + count <= BITS_PER_BITMAP);
1697

L
Li Zefan 已提交
1698
	bitmap_clear(info->bitmap, start, count);
1699 1700

	info->bytes -= bytes;
1701 1702 1703 1704 1705 1706 1707
}

static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
			      struct btrfs_free_space *info, u64 offset,
			      u64 bytes)
{
	__bitmap_clear_bits(ctl, info, offset, bytes);
1708
	ctl->free_space -= bytes;
1709 1710
}

1711
static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
J
Josef Bacik 已提交
1712 1713
			    struct btrfs_free_space *info, u64 offset,
			    u64 bytes)
1714
{
L
Li Zefan 已提交
1715
	unsigned long start, count;
1716

1717 1718
	start = offset_to_bit(info->offset, ctl->unit, offset);
	count = bytes_to_bits(bytes, ctl->unit);
1719
	ASSERT(start + count <= BITS_PER_BITMAP);
1720

L
Li Zefan 已提交
1721
	bitmap_set(info->bitmap, start, count);
1722 1723

	info->bytes += bytes;
1724
	ctl->free_space += bytes;
1725 1726
}

1727 1728 1729 1730
/*
 * If we can not find suitable extent, we will use bytes to record
 * the size of the max extent.
 */
1731
static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1732
			 struct btrfs_free_space *bitmap_info, u64 *offset,
1733
			 u64 *bytes, bool for_alloc)
1734 1735
{
	unsigned long found_bits = 0;
1736
	unsigned long max_bits = 0;
1737 1738
	unsigned long bits, i;
	unsigned long next_zero;
1739
	unsigned long extent_bits;
1740

1741 1742 1743 1744
	/*
	 * Skip searching the bitmap if we don't have a contiguous section that
	 * is large enough for this allocation.
	 */
1745 1746
	if (for_alloc &&
	    bitmap_info->max_extent_size &&
1747 1748 1749 1750 1751
	    bitmap_info->max_extent_size < *bytes) {
		*bytes = bitmap_info->max_extent_size;
		return -1;
	}

1752
	i = offset_to_bit(bitmap_info->offset, ctl->unit,
1753
			  max_t(u64, *offset, bitmap_info->offset));
1754
	bits = bytes_to_bits(*bytes, ctl->unit);
1755

1756
	for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
1757 1758 1759 1760
		if (for_alloc && bits == 1) {
			found_bits = 1;
			break;
		}
1761 1762
		next_zero = find_next_zero_bit(bitmap_info->bitmap,
					       BITS_PER_BITMAP, i);
1763 1764 1765
		extent_bits = next_zero - i;
		if (extent_bits >= bits) {
			found_bits = extent_bits;
1766
			break;
1767 1768
		} else if (extent_bits > max_bits) {
			max_bits = extent_bits;
1769 1770 1771 1772 1773
		}
		i = next_zero;
	}

	if (found_bits) {
1774 1775
		*offset = (u64)(i * ctl->unit) + bitmap_info->offset;
		*bytes = (u64)(found_bits) * ctl->unit;
1776 1777 1778
		return 0;
	}

1779
	*bytes = (u64)(max_bits) * ctl->unit;
1780
	bitmap_info->max_extent_size = *bytes;
1781 1782 1783
	return -1;
}

1784
/* Cache the size of the max extent in bytes */
1785
static struct btrfs_free_space *
D
David Woodhouse 已提交
1786
find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
1787
		unsigned long align, u64 *max_extent_size)
1788 1789 1790
{
	struct btrfs_free_space *entry;
	struct rb_node *node;
D
David Woodhouse 已提交
1791 1792
	u64 tmp;
	u64 align_off;
1793 1794
	int ret;

1795
	if (!ctl->free_space_offset.rb_node)
1796
		goto out;
1797

1798
	entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
1799
	if (!entry)
1800
		goto out;
1801 1802 1803

	for (node = &entry->offset_index; node; node = rb_next(node)) {
		entry = rb_entry(node, struct btrfs_free_space, offset_index);
1804 1805 1806
		if (entry->bytes < *bytes) {
			if (entry->bytes > *max_extent_size)
				*max_extent_size = entry->bytes;
1807
			continue;
1808
		}
1809

D
David Woodhouse 已提交
1810 1811 1812 1813
		/* make sure the space returned is big enough
		 * to match our requested alignment
		 */
		if (*bytes >= align) {
1814
			tmp = entry->offset - ctl->start + align - 1;
1815
			tmp = div64_u64(tmp, align);
D
David Woodhouse 已提交
1816 1817 1818 1819 1820 1821 1822
			tmp = tmp * align + ctl->start;
			align_off = tmp - entry->offset;
		} else {
			align_off = 0;
			tmp = entry->offset;
		}

1823 1824 1825
		if (entry->bytes < *bytes + align_off) {
			if (entry->bytes > *max_extent_size)
				*max_extent_size = entry->bytes;
D
David Woodhouse 已提交
1826
			continue;
1827
		}
D
David Woodhouse 已提交
1828

1829
		if (entry->bitmap) {
1830 1831
			u64 size = *bytes;

1832
			ret = search_bitmap(ctl, entry, &tmp, &size, true);
D
David Woodhouse 已提交
1833 1834
			if (!ret) {
				*offset = tmp;
1835
				*bytes = size;
1836
				return entry;
1837 1838
			} else if (size > *max_extent_size) {
				*max_extent_size = size;
D
David Woodhouse 已提交
1839
			}
1840 1841 1842
			continue;
		}

D
David Woodhouse 已提交
1843 1844
		*offset = tmp;
		*bytes = entry->bytes - align_off;
1845 1846
		return entry;
	}
1847
out:
1848 1849 1850
	return NULL;
}

1851
static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
1852 1853
			   struct btrfs_free_space *info, u64 offset)
{
1854
	info->offset = offset_to_bitmap(ctl, offset);
J
Josef Bacik 已提交
1855
	info->bytes = 0;
1856
	INIT_LIST_HEAD(&info->list);
1857 1858
	link_free_space(ctl, info);
	ctl->total_bitmaps++;
1859

1860
	ctl->op->recalc_thresholds(ctl);
1861 1862
}

1863
static void free_bitmap(struct btrfs_free_space_ctl *ctl,
1864 1865
			struct btrfs_free_space *bitmap_info)
{
1866
	unlink_free_space(ctl, bitmap_info);
1867
	kfree(bitmap_info->bitmap);
1868
	kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
1869 1870
	ctl->total_bitmaps--;
	ctl->op->recalc_thresholds(ctl);
1871 1872
}

1873
static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
1874 1875 1876 1877
			      struct btrfs_free_space *bitmap_info,
			      u64 *offset, u64 *bytes)
{
	u64 end;
1878 1879
	u64 search_start, search_bytes;
	int ret;
1880 1881

again:
1882
	end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
1883

1884
	/*
1885 1886 1887 1888
	 * We need to search for bits in this bitmap.  We could only cover some
	 * of the extent in this bitmap thanks to how we add space, so we need
	 * to search for as much as it as we can and clear that amount, and then
	 * go searching for the next bit.
1889 1890
	 */
	search_start = *offset;
1891
	search_bytes = ctl->unit;
1892
	search_bytes = min(search_bytes, end - search_start + 1);
1893 1894
	ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes,
			    false);
1895 1896
	if (ret < 0 || search_start != *offset)
		return -EINVAL;
1897

1898 1899 1900 1901 1902 1903 1904 1905 1906
	/* We may have found more bits than what we need */
	search_bytes = min(search_bytes, *bytes);

	/* Cannot clear past the end of the bitmap */
	search_bytes = min(search_bytes, end - search_start + 1);

	bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes);
	*offset += search_bytes;
	*bytes -= search_bytes;
1907 1908

	if (*bytes) {
1909
		struct rb_node *next = rb_next(&bitmap_info->offset_index);
1910
		if (!bitmap_info->bytes)
1911
			free_bitmap(ctl, bitmap_info);
1912

1913 1914 1915 1916 1917
		/*
		 * no entry after this bitmap, but we still have bytes to
		 * remove, so something has gone wrong.
		 */
		if (!next)
1918 1919
			return -EINVAL;

1920 1921 1922 1923 1924 1925 1926
		bitmap_info = rb_entry(next, struct btrfs_free_space,
				       offset_index);

		/*
		 * if the next entry isn't a bitmap we need to return to let the
		 * extent stuff do its work.
		 */
1927 1928 1929
		if (!bitmap_info->bitmap)
			return -EAGAIN;

1930 1931 1932 1933 1934 1935 1936
		/*
		 * Ok the next item is a bitmap, but it may not actually hold
		 * the information for the rest of this free space stuff, so
		 * look for it, and if we don't find it return so we can try
		 * everything over again.
		 */
		search_start = *offset;
1937
		search_bytes = ctl->unit;
1938
		ret = search_bitmap(ctl, bitmap_info, &search_start,
1939
				    &search_bytes, false);
1940 1941 1942
		if (ret < 0 || search_start != *offset)
			return -EAGAIN;

1943
		goto again;
1944
	} else if (!bitmap_info->bytes)
1945
		free_bitmap(ctl, bitmap_info);
1946 1947 1948 1949

	return 0;
}

J
Josef Bacik 已提交
1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962
static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
			       struct btrfs_free_space *info, u64 offset,
			       u64 bytes)
{
	u64 bytes_to_set = 0;
	u64 end;

	end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);

	bytes_to_set = min(end - offset, bytes);

	bitmap_set_bits(ctl, info, offset, bytes_to_set);

1963 1964 1965 1966 1967 1968
	/*
	 * We set some bytes, we have no idea what the max extent size is
	 * anymore.
	 */
	info->max_extent_size = 0;

J
Josef Bacik 已提交
1969 1970 1971 1972
	return bytes_to_set;

}

1973 1974
static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
		      struct btrfs_free_space *info)
1975
{
1976
	struct btrfs_block_group_cache *block_group = ctl->private;
1977 1978 1979 1980 1981 1982 1983
	bool forced = false;

#ifdef CONFIG_BTRFS_DEBUG
	if (btrfs_should_fragment_free_space(block_group->fs_info->extent_root,
					     block_group))
		forced = true;
#endif
1984 1985 1986 1987 1988

	/*
	 * If we are below the extents threshold then we can add this as an
	 * extent, and don't have to deal with the bitmap
	 */
1989
	if (!forced && ctl->free_extents < ctl->extents_thresh) {
1990 1991 1992 1993 1994 1995 1996 1997
		/*
		 * If this block group has some small extents we don't want to
		 * use up all of our free slots in the cache with them, we want
		 * to reserve them to larger extents, however if we have plent
		 * of cache left then go ahead an dadd them, no sense in adding
		 * the overhead of a bitmap if we don't have to.
		 */
		if (info->bytes <= block_group->sectorsize * 4) {
1998 1999
			if (ctl->free_extents * 2 <= ctl->extents_thresh)
				return false;
2000
		} else {
2001
			return false;
2002 2003
		}
	}
2004 2005

	/*
2006 2007 2008 2009 2010 2011
	 * The original block groups from mkfs can be really small, like 8
	 * megabytes, so don't bother with a bitmap for those entries.  However
	 * some block groups can be smaller than what a bitmap would cover but
	 * are still large enough that they could overflow the 32k memory limit,
	 * so allow those block groups to still be allowed to have a bitmap
	 * entry.
2012
	 */
2013
	if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->key.offset)
2014 2015 2016 2017 2018
		return false;

	return true;
}

J
Josef Bacik 已提交
2019 2020 2021 2022 2023
static struct btrfs_free_space_op free_space_op = {
	.recalc_thresholds	= recalculate_thresholds,
	.use_bitmap		= use_bitmap,
};

2024 2025 2026 2027
static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
			      struct btrfs_free_space *info)
{
	struct btrfs_free_space *bitmap_info;
J
Josef Bacik 已提交
2028
	struct btrfs_block_group_cache *block_group = NULL;
2029
	int added = 0;
J
Josef Bacik 已提交
2030
	u64 bytes, offset, bytes_added;
2031
	int ret;
2032 2033 2034 2035

	bytes = info->bytes;
	offset = info->offset;

2036 2037 2038
	if (!ctl->op->use_bitmap(ctl, info))
		return 0;

J
Josef Bacik 已提交
2039 2040
	if (ctl->op == &free_space_op)
		block_group = ctl->private;
2041
again:
J
Josef Bacik 已提交
2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
	/*
	 * Since we link bitmaps right into the cluster we need to see if we
	 * have a cluster here, and if so and it has our bitmap we need to add
	 * the free space to that bitmap.
	 */
	if (block_group && !list_empty(&block_group->cluster_list)) {
		struct btrfs_free_cluster *cluster;
		struct rb_node *node;
		struct btrfs_free_space *entry;

		cluster = list_entry(block_group->cluster_list.next,
				     struct btrfs_free_cluster,
				     block_group_list);
		spin_lock(&cluster->lock);
		node = rb_first(&cluster->root);
		if (!node) {
			spin_unlock(&cluster->lock);
2059
			goto no_cluster_bitmap;
J
Josef Bacik 已提交
2060 2061 2062 2063 2064
		}

		entry = rb_entry(node, struct btrfs_free_space, offset_index);
		if (!entry->bitmap) {
			spin_unlock(&cluster->lock);
2065
			goto no_cluster_bitmap;
J
Josef Bacik 已提交
2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
		}

		if (entry->offset == offset_to_bitmap(ctl, offset)) {
			bytes_added = add_bytes_to_bitmap(ctl, entry,
							  offset, bytes);
			bytes -= bytes_added;
			offset += bytes_added;
		}
		spin_unlock(&cluster->lock);
		if (!bytes) {
			ret = 1;
			goto out;
		}
	}
2080 2081

no_cluster_bitmap:
2082
	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2083 2084
					 1, 0);
	if (!bitmap_info) {
2085
		ASSERT(added == 0);
2086 2087 2088
		goto new_bitmap;
	}

J
Josef Bacik 已提交
2089 2090 2091 2092
	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
	bytes -= bytes_added;
	offset += bytes_added;
	added = 0;
2093 2094 2095 2096 2097 2098 2099 2100 2101

	if (!bytes) {
		ret = 1;
		goto out;
	} else
		goto again;

new_bitmap:
	if (info && info->bitmap) {
2102
		add_new_bitmap(ctl, info, offset);
2103 2104 2105 2106
		added = 1;
		info = NULL;
		goto again;
	} else {
2107
		spin_unlock(&ctl->tree_lock);
2108 2109 2110

		/* no pre-allocated info, allocate a new one */
		if (!info) {
2111 2112
			info = kmem_cache_zalloc(btrfs_free_space_cachep,
						 GFP_NOFS);
2113
			if (!info) {
2114
				spin_lock(&ctl->tree_lock);
2115 2116 2117 2118 2119 2120 2121
				ret = -ENOMEM;
				goto out;
			}
		}

		/* allocate the bitmap */
		info->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
2122
		spin_lock(&ctl->tree_lock);
2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133
		if (!info->bitmap) {
			ret = -ENOMEM;
			goto out;
		}
		goto again;
	}

out:
	if (info) {
		if (info->bitmap)
			kfree(info->bitmap);
2134
		kmem_cache_free(btrfs_free_space_cachep, info);
2135
	}
J
Josef Bacik 已提交
2136 2137 2138 2139

	return ret;
}

2140
static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
2141
			  struct btrfs_free_space *info, bool update_stat)
J
Josef Bacik 已提交
2142
{
2143 2144 2145 2146 2147
	struct btrfs_free_space *left_info;
	struct btrfs_free_space *right_info;
	bool merged = false;
	u64 offset = info->offset;
	u64 bytes = info->bytes;
2148

J
Josef Bacik 已提交
2149 2150 2151 2152 2153
	/*
	 * first we want to see if there is free space adjacent to the range we
	 * are adding, if there is remove that struct and add a new one to
	 * cover the entire range
	 */
2154
	right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
2155 2156 2157 2158
	if (right_info && rb_prev(&right_info->offset_index))
		left_info = rb_entry(rb_prev(&right_info->offset_index),
				     struct btrfs_free_space, offset_index);
	else
2159
		left_info = tree_search_offset(ctl, offset - 1, 0, 0);
J
Josef Bacik 已提交
2160

2161
	if (right_info && !right_info->bitmap) {
2162
		if (update_stat)
2163
			unlink_free_space(ctl, right_info);
2164
		else
2165
			__unlink_free_space(ctl, right_info);
2166
		info->bytes += right_info->bytes;
2167
		kmem_cache_free(btrfs_free_space_cachep, right_info);
2168
		merged = true;
J
Josef Bacik 已提交
2169 2170
	}

2171 2172
	if (left_info && !left_info->bitmap &&
	    left_info->offset + left_info->bytes == offset) {
2173
		if (update_stat)
2174
			unlink_free_space(ctl, left_info);
2175
		else
2176
			__unlink_free_space(ctl, left_info);
2177 2178
		info->offset = left_info->offset;
		info->bytes += left_info->bytes;
2179
		kmem_cache_free(btrfs_free_space_cachep, left_info);
2180
		merged = true;
J
Josef Bacik 已提交
2181 2182
	}

2183 2184 2185
	return merged;
}

2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307
static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl,
				     struct btrfs_free_space *info,
				     bool update_stat)
{
	struct btrfs_free_space *bitmap;
	unsigned long i;
	unsigned long j;
	const u64 end = info->offset + info->bytes;
	const u64 bitmap_offset = offset_to_bitmap(ctl, end);
	u64 bytes;

	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
	if (!bitmap)
		return false;

	i = offset_to_bit(bitmap->offset, ctl->unit, end);
	j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i);
	if (j == i)
		return false;
	bytes = (j - i) * ctl->unit;
	info->bytes += bytes;

	if (update_stat)
		bitmap_clear_bits(ctl, bitmap, end, bytes);
	else
		__bitmap_clear_bits(ctl, bitmap, end, bytes);

	if (!bitmap->bytes)
		free_bitmap(ctl, bitmap);

	return true;
}

static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl,
				       struct btrfs_free_space *info,
				       bool update_stat)
{
	struct btrfs_free_space *bitmap;
	u64 bitmap_offset;
	unsigned long i;
	unsigned long j;
	unsigned long prev_j;
	u64 bytes;

	bitmap_offset = offset_to_bitmap(ctl, info->offset);
	/* If we're on a boundary, try the previous logical bitmap. */
	if (bitmap_offset == info->offset) {
		if (info->offset == 0)
			return false;
		bitmap_offset = offset_to_bitmap(ctl, info->offset - 1);
	}

	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
	if (!bitmap)
		return false;

	i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1;
	j = 0;
	prev_j = (unsigned long)-1;
	for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) {
		if (j > i)
			break;
		prev_j = j;
	}
	if (prev_j == i)
		return false;

	if (prev_j == (unsigned long)-1)
		bytes = (i + 1) * ctl->unit;
	else
		bytes = (i - prev_j) * ctl->unit;

	info->offset -= bytes;
	info->bytes += bytes;

	if (update_stat)
		bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
	else
		__bitmap_clear_bits(ctl, bitmap, info->offset, bytes);

	if (!bitmap->bytes)
		free_bitmap(ctl, bitmap);

	return true;
}

/*
 * We prefer always to allocate from extent entries, both for clustered and
 * non-clustered allocation requests. So when attempting to add a new extent
 * entry, try to see if there's adjacent free space in bitmap entries, and if
 * there is, migrate that space from the bitmaps to the extent.
 * Like this we get better chances of satisfying space allocation requests
 * because we attempt to satisfy them based on a single cache entry, and never
 * on 2 or more entries - even if the entries represent a contiguous free space
 * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
 * ends).
 */
static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl,
			      struct btrfs_free_space *info,
			      bool update_stat)
{
	/*
	 * Only work with disconnected entries, as we can change their offset,
	 * and must be extent entries.
	 */
	ASSERT(!info->bitmap);
	ASSERT(RB_EMPTY_NODE(&info->offset_index));

	if (ctl->total_bitmaps > 0) {
		bool stole_end;
		bool stole_front = false;

		stole_end = steal_from_bitmap_to_end(ctl, info, update_stat);
		if (ctl->total_bitmaps > 0)
			stole_front = steal_from_bitmap_to_front(ctl, info,
								 update_stat);

		if (stole_end || stole_front)
			try_merge_free_space(ctl, info, update_stat);
	}
}

2308 2309
int __btrfs_add_free_space(struct btrfs_free_space_ctl *ctl,
			   u64 offset, u64 bytes)
2310 2311 2312 2313
{
	struct btrfs_free_space *info;
	int ret = 0;

2314
	info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
2315 2316 2317 2318 2319
	if (!info)
		return -ENOMEM;

	info->offset = offset;
	info->bytes = bytes;
2320
	RB_CLEAR_NODE(&info->offset_index);
2321

2322
	spin_lock(&ctl->tree_lock);
2323

2324
	if (try_merge_free_space(ctl, info, true))
2325 2326 2327 2328 2329 2330 2331
		goto link;

	/*
	 * There was no extent directly to the left or right of this new
	 * extent then we know we're going to have to allocate a new extent, so
	 * before we do that see if we need to drop this into a bitmap
	 */
2332
	ret = insert_into_bitmap(ctl, info);
2333 2334 2335 2336 2337 2338 2339
	if (ret < 0) {
		goto out;
	} else if (ret) {
		ret = 0;
		goto out;
	}
link:
2340 2341 2342 2343 2344 2345 2346 2347
	/*
	 * Only steal free space from adjacent bitmaps if we're sure we're not
	 * going to add the new free space to existing bitmap entries - because
	 * that would mean unnecessary work that would be reverted. Therefore
	 * attempt to steal space from bitmaps if we're adding an extent entry.
	 */
	steal_from_bitmap(ctl, info, true);

2348
	ret = link_free_space(ctl, info);
J
Josef Bacik 已提交
2349
	if (ret)
2350
		kmem_cache_free(btrfs_free_space_cachep, info);
2351
out:
2352
	spin_unlock(&ctl->tree_lock);
2353

J
Josef Bacik 已提交
2354
	if (ret) {
2355
		printk(KERN_CRIT "BTRFS: unable to add free space :%d\n", ret);
2356
		ASSERT(ret != -EEXIST);
J
Josef Bacik 已提交
2357 2358 2359 2360 2361
	}

	return ret;
}

2362 2363
int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group,
			    u64 offset, u64 bytes)
J
Josef Bacik 已提交
2364
{
2365
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
J
Josef Bacik 已提交
2366
	struct btrfs_free_space *info;
2367 2368
	int ret;
	bool re_search = false;
J
Josef Bacik 已提交
2369

2370
	spin_lock(&ctl->tree_lock);
2371

2372
again:
2373
	ret = 0;
2374 2375 2376
	if (!bytes)
		goto out_lock;

2377
	info = tree_search_offset(ctl, offset, 0, 0);
2378
	if (!info) {
2379 2380 2381 2382
		/*
		 * oops didn't find an extent that matched the space we wanted
		 * to remove, look for a bitmap instead
		 */
2383
		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2384 2385
					  1, 0);
		if (!info) {
2386 2387 2388 2389
			/*
			 * If we found a partial bit of our free space in a
			 * bitmap but then couldn't find the other part this may
			 * be a problem, so WARN about it.
2390
			 */
2391
			WARN_ON(re_search);
2392 2393
			goto out_lock;
		}
2394 2395
	}

2396
	re_search = false;
2397
	if (!info->bitmap) {
2398
		unlink_free_space(ctl, info);
2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409
		if (offset == info->offset) {
			u64 to_free = min(bytes, info->bytes);

			info->bytes -= to_free;
			info->offset += to_free;
			if (info->bytes) {
				ret = link_free_space(ctl, info);
				WARN_ON(ret);
			} else {
				kmem_cache_free(btrfs_free_space_cachep, info);
			}
J
Josef Bacik 已提交
2410

2411 2412 2413 2414 2415
			offset += to_free;
			bytes -= to_free;
			goto again;
		} else {
			u64 old_end = info->bytes + info->offset;
2416

2417
			info->bytes = offset - info->offset;
2418
			ret = link_free_space(ctl, info);
2419 2420 2421 2422
			WARN_ON(ret);
			if (ret)
				goto out_lock;

2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438
			/* Not enough bytes in this entry to satisfy us */
			if (old_end < offset + bytes) {
				bytes -= old_end - offset;
				offset = old_end;
				goto again;
			} else if (old_end == offset + bytes) {
				/* all done */
				goto out_lock;
			}
			spin_unlock(&ctl->tree_lock);

			ret = btrfs_add_free_space(block_group, offset + bytes,
						   old_end - (offset + bytes));
			WARN_ON(ret);
			goto out;
		}
J
Josef Bacik 已提交
2439
	}
2440

2441
	ret = remove_from_bitmap(ctl, info, &offset, &bytes);
2442 2443
	if (ret == -EAGAIN) {
		re_search = true;
2444
		goto again;
2445
	}
2446
out_lock:
2447
	spin_unlock(&ctl->tree_lock);
J
Josef Bacik 已提交
2448
out:
2449 2450 2451
	return ret;
}

J
Josef Bacik 已提交
2452 2453 2454
void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
			   u64 bytes)
{
2455
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
J
Josef Bacik 已提交
2456 2457 2458 2459
	struct btrfs_free_space *info;
	struct rb_node *n;
	int count = 0;

2460
	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
J
Josef Bacik 已提交
2461
		info = rb_entry(n, struct btrfs_free_space, offset_index);
L
Liu Bo 已提交
2462
		if (info->bytes >= bytes && !block_group->ro)
J
Josef Bacik 已提交
2463
			count++;
2464 2465 2466
		btrfs_crit(block_group->fs_info,
			   "entry offset %llu, bytes %llu, bitmap %s",
			   info->offset, info->bytes,
2467
		       (info->bitmap) ? "yes" : "no");
J
Josef Bacik 已提交
2468
	}
2469
	btrfs_info(block_group->fs_info, "block group has cluster?: %s",
2470
	       list_empty(&block_group->cluster_list) ? "no" : "yes");
2471 2472
	btrfs_info(block_group->fs_info,
		   "%d blocks of free space at or bigger than bytes is", count);
J
Josef Bacik 已提交
2473 2474
}

2475
void btrfs_init_free_space_ctl(struct btrfs_block_group_cache *block_group)
J
Josef Bacik 已提交
2476
{
2477
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
J
Josef Bacik 已提交
2478

2479 2480 2481 2482 2483
	spin_lock_init(&ctl->tree_lock);
	ctl->unit = block_group->sectorsize;
	ctl->start = block_group->key.objectid;
	ctl->private = block_group;
	ctl->op = &free_space_op;
2484 2485
	INIT_LIST_HEAD(&ctl->trimming_ranges);
	mutex_init(&ctl->cache_writeout_mutex);
J
Josef Bacik 已提交
2486

2487 2488 2489 2490 2491 2492 2493
	/*
	 * we only want to have 32k of ram per block group for keeping
	 * track of free space, and if we pass 1/2 of that we want to
	 * start converting things over to using bitmaps
	 */
	ctl->extents_thresh = ((1024 * 32) / 2) /
				sizeof(struct btrfs_free_space);
J
Josef Bacik 已提交
2494 2495
}

2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506
/*
 * for a given cluster, put all of its extents back into the free
 * space cache.  If the block group passed doesn't match the block group
 * pointed to by the cluster, someone else raced in and freed the
 * cluster already.  In that case, we just return without changing anything
 */
static int
__btrfs_return_cluster_to_free_space(
			     struct btrfs_block_group_cache *block_group,
			     struct btrfs_free_cluster *cluster)
{
2507
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2508 2509 2510 2511 2512 2513 2514
	struct btrfs_free_space *entry;
	struct rb_node *node;

	spin_lock(&cluster->lock);
	if (cluster->block_group != block_group)
		goto out;

2515
	cluster->block_group = NULL;
2516
	cluster->window_start = 0;
2517 2518
	list_del_init(&cluster->block_group_list);

2519
	node = rb_first(&cluster->root);
2520
	while (node) {
2521 2522
		bool bitmap;

2523 2524 2525
		entry = rb_entry(node, struct btrfs_free_space, offset_index);
		node = rb_next(&entry->offset_index);
		rb_erase(&entry->offset_index, &cluster->root);
2526
		RB_CLEAR_NODE(&entry->offset_index);
2527 2528

		bitmap = (entry->bitmap != NULL);
2529
		if (!bitmap) {
2530
			try_merge_free_space(ctl, entry, false);
2531 2532
			steal_from_bitmap(ctl, entry, false);
		}
2533
		tree_insert_offset(&ctl->free_space_offset,
2534
				   entry->offset, &entry->offset_index, bitmap);
2535
	}
2536
	cluster->root = RB_ROOT;
2537

2538 2539
out:
	spin_unlock(&cluster->lock);
2540
	btrfs_put_block_group(block_group);
2541 2542 2543
	return 0;
}

2544 2545
static void __btrfs_remove_free_space_cache_locked(
				struct btrfs_free_space_ctl *ctl)
J
Josef Bacik 已提交
2546 2547 2548
{
	struct btrfs_free_space *info;
	struct rb_node *node;
2549 2550 2551

	while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
		info = rb_entry(node, struct btrfs_free_space, offset_index);
2552 2553 2554 2555 2556 2557
		if (!info->bitmap) {
			unlink_free_space(ctl, info);
			kmem_cache_free(btrfs_free_space_cachep, info);
		} else {
			free_bitmap(ctl, info);
		}
2558 2559

		cond_resched_lock(&ctl->tree_lock);
2560
	}
2561 2562 2563 2564 2565 2566
}

void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
{
	spin_lock(&ctl->tree_lock);
	__btrfs_remove_free_space_cache_locked(ctl);
2567 2568 2569 2570 2571 2572
	spin_unlock(&ctl->tree_lock);
}

void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
{
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2573
	struct btrfs_free_cluster *cluster;
2574
	struct list_head *head;
J
Josef Bacik 已提交
2575

2576
	spin_lock(&ctl->tree_lock);
2577 2578 2579 2580
	while ((head = block_group->cluster_list.next) !=
	       &block_group->cluster_list) {
		cluster = list_entry(head, struct btrfs_free_cluster,
				     block_group_list);
2581 2582 2583

		WARN_ON(cluster->block_group != block_group);
		__btrfs_return_cluster_to_free_space(block_group, cluster);
2584 2585

		cond_resched_lock(&ctl->tree_lock);
2586
	}
2587
	__btrfs_remove_free_space_cache_locked(ctl);
2588
	spin_unlock(&ctl->tree_lock);
2589

J
Josef Bacik 已提交
2590 2591
}

2592
u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
2593 2594
			       u64 offset, u64 bytes, u64 empty_size,
			       u64 *max_extent_size)
J
Josef Bacik 已提交
2595
{
2596
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2597
	struct btrfs_free_space *entry = NULL;
2598
	u64 bytes_search = bytes + empty_size;
2599
	u64 ret = 0;
D
David Woodhouse 已提交
2600 2601
	u64 align_gap = 0;
	u64 align_gap_len = 0;
J
Josef Bacik 已提交
2602

2603
	spin_lock(&ctl->tree_lock);
D
David Woodhouse 已提交
2604
	entry = find_free_space(ctl, &offset, &bytes_search,
2605
				block_group->full_stripe_len, max_extent_size);
2606
	if (!entry)
2607 2608 2609 2610
		goto out;

	ret = offset;
	if (entry->bitmap) {
2611
		bitmap_clear_bits(ctl, entry, offset, bytes);
2612
		if (!entry->bytes)
2613
			free_bitmap(ctl, entry);
2614
	} else {
2615
		unlink_free_space(ctl, entry);
D
David Woodhouse 已提交
2616 2617 2618 2619 2620 2621 2622
		align_gap_len = offset - entry->offset;
		align_gap = entry->offset;

		entry->offset = offset + bytes;
		WARN_ON(entry->bytes < bytes + align_gap_len);

		entry->bytes -= bytes + align_gap_len;
2623
		if (!entry->bytes)
2624
			kmem_cache_free(btrfs_free_space_cachep, entry);
2625
		else
2626
			link_free_space(ctl, entry);
2627
	}
2628
out:
2629
	spin_unlock(&ctl->tree_lock);
J
Josef Bacik 已提交
2630

D
David Woodhouse 已提交
2631 2632
	if (align_gap_len)
		__btrfs_add_free_space(ctl, align_gap, align_gap_len);
J
Josef Bacik 已提交
2633 2634
	return ret;
}
2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647

/*
 * given a cluster, put all of its extents back into the free space
 * cache.  If a block group is passed, this function will only free
 * a cluster that belongs to the passed block group.
 *
 * Otherwise, it'll get a reference on the block group pointed to by the
 * cluster and remove the cluster from it.
 */
int btrfs_return_cluster_to_free_space(
			       struct btrfs_block_group_cache *block_group,
			       struct btrfs_free_cluster *cluster)
{
2648
	struct btrfs_free_space_ctl *ctl;
2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666
	int ret;

	/* first, get a safe pointer to the block group */
	spin_lock(&cluster->lock);
	if (!block_group) {
		block_group = cluster->block_group;
		if (!block_group) {
			spin_unlock(&cluster->lock);
			return 0;
		}
	} else if (cluster->block_group != block_group) {
		/* someone else has already freed it don't redo their work */
		spin_unlock(&cluster->lock);
		return 0;
	}
	atomic_inc(&block_group->count);
	spin_unlock(&cluster->lock);

2667 2668
	ctl = block_group->free_space_ctl;

2669
	/* now return any extents the cluster had on it */
2670
	spin_lock(&ctl->tree_lock);
2671
	ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
2672
	spin_unlock(&ctl->tree_lock);
2673 2674 2675 2676 2677 2678

	/* finally drop our ref */
	btrfs_put_block_group(block_group);
	return ret;
}

2679 2680
static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group,
				   struct btrfs_free_cluster *cluster,
2681
				   struct btrfs_free_space *entry,
2682 2683
				   u64 bytes, u64 min_start,
				   u64 *max_extent_size)
2684
{
2685
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2686 2687 2688 2689 2690 2691 2692 2693
	int err;
	u64 search_start = cluster->window_start;
	u64 search_bytes = bytes;
	u64 ret = 0;

	search_start = min_start;
	search_bytes = bytes;

2694
	err = search_bitmap(ctl, entry, &search_start, &search_bytes, true);
2695 2696 2697
	if (err) {
		if (search_bytes > *max_extent_size)
			*max_extent_size = search_bytes;
2698
		return 0;
2699
	}
2700 2701

	ret = search_start;
2702
	__bitmap_clear_bits(ctl, entry, ret, bytes);
2703 2704 2705 2706

	return ret;
}

2707 2708 2709 2710 2711 2712 2713
/*
 * given a cluster, try to allocate 'bytes' from it, returns 0
 * if it couldn't find anything suitably large, or a logical disk offset
 * if things worked out
 */
u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group,
			     struct btrfs_free_cluster *cluster, u64 bytes,
2714
			     u64 min_start, u64 *max_extent_size)
2715
{
2716
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732
	struct btrfs_free_space *entry = NULL;
	struct rb_node *node;
	u64 ret = 0;

	spin_lock(&cluster->lock);
	if (bytes > cluster->max_size)
		goto out;

	if (cluster->block_group != block_group)
		goto out;

	node = rb_first(&cluster->root);
	if (!node)
		goto out;

	entry = rb_entry(node, struct btrfs_free_space, offset_index);
2733
	while (1) {
2734 2735 2736
		if (entry->bytes < bytes && entry->bytes > *max_extent_size)
			*max_extent_size = entry->bytes;

2737 2738
		if (entry->bytes < bytes ||
		    (!entry->bitmap && entry->offset < min_start)) {
2739 2740 2741 2742 2743 2744 2745 2746
			node = rb_next(&entry->offset_index);
			if (!node)
				break;
			entry = rb_entry(node, struct btrfs_free_space,
					 offset_index);
			continue;
		}

2747 2748 2749
		if (entry->bitmap) {
			ret = btrfs_alloc_from_bitmap(block_group,
						      cluster, entry, bytes,
2750 2751
						      cluster->window_start,
						      max_extent_size);
2752 2753 2754 2755 2756 2757 2758 2759
			if (ret == 0) {
				node = rb_next(&entry->offset_index);
				if (!node)
					break;
				entry = rb_entry(node, struct btrfs_free_space,
						 offset_index);
				continue;
			}
2760
			cluster->window_start += bytes;
2761 2762 2763 2764 2765 2766
		} else {
			ret = entry->offset;

			entry->offset += bytes;
			entry->bytes -= bytes;
		}
2767

2768
		if (entry->bytes == 0)
2769 2770 2771 2772 2773
			rb_erase(&entry->offset_index, &cluster->root);
		break;
	}
out:
	spin_unlock(&cluster->lock);
2774

2775 2776 2777
	if (!ret)
		return 0;

2778
	spin_lock(&ctl->tree_lock);
2779

2780
	ctl->free_space -= bytes;
2781
	if (entry->bytes == 0) {
2782
		ctl->free_extents--;
2783 2784
		if (entry->bitmap) {
			kfree(entry->bitmap);
2785 2786
			ctl->total_bitmaps--;
			ctl->op->recalc_thresholds(ctl);
2787
		}
2788
		kmem_cache_free(btrfs_free_space_cachep, entry);
2789 2790
	}

2791
	spin_unlock(&ctl->tree_lock);
2792

2793 2794 2795
	return ret;
}

2796 2797 2798
static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group,
				struct btrfs_free_space *entry,
				struct btrfs_free_cluster *cluster,
2799 2800
				u64 offset, u64 bytes,
				u64 cont1_bytes, u64 min_bytes)
2801
{
2802
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2803 2804
	unsigned long next_zero;
	unsigned long i;
2805 2806
	unsigned long want_bits;
	unsigned long min_bits;
2807
	unsigned long found_bits;
2808
	unsigned long max_bits = 0;
2809 2810
	unsigned long start = 0;
	unsigned long total_found = 0;
2811
	int ret;
2812

2813
	i = offset_to_bit(entry->offset, ctl->unit,
2814
			  max_t(u64, offset, entry->offset));
2815 2816
	want_bits = bytes_to_bits(bytes, ctl->unit);
	min_bits = bytes_to_bits(min_bytes, ctl->unit);
2817

2818 2819 2820 2821 2822 2823 2824
	/*
	 * Don't bother looking for a cluster in this bitmap if it's heavily
	 * fragmented.
	 */
	if (entry->max_extent_size &&
	    entry->max_extent_size < cont1_bytes)
		return -ENOSPC;
2825 2826
again:
	found_bits = 0;
2827
	for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
2828 2829
		next_zero = find_next_zero_bit(entry->bitmap,
					       BITS_PER_BITMAP, i);
2830
		if (next_zero - i >= min_bits) {
2831
			found_bits = next_zero - i;
2832 2833
			if (found_bits > max_bits)
				max_bits = found_bits;
2834 2835
			break;
		}
2836 2837
		if (next_zero - i > max_bits)
			max_bits = next_zero - i;
2838 2839 2840
		i = next_zero;
	}

2841 2842
	if (!found_bits) {
		entry->max_extent_size = (u64)max_bits * ctl->unit;
2843
		return -ENOSPC;
2844
	}
2845

2846
	if (!total_found) {
2847
		start = i;
2848
		cluster->max_size = 0;
2849 2850 2851 2852
	}

	total_found += found_bits;

2853 2854
	if (cluster->max_size < found_bits * ctl->unit)
		cluster->max_size = found_bits * ctl->unit;
2855

2856 2857
	if (total_found < want_bits || cluster->max_size < cont1_bytes) {
		i = next_zero + 1;
2858 2859 2860
		goto again;
	}

2861
	cluster->window_start = start * ctl->unit + entry->offset;
2862
	rb_erase(&entry->offset_index, &ctl->free_space_offset);
2863 2864
	ret = tree_insert_offset(&cluster->root, entry->offset,
				 &entry->offset_index, 1);
2865
	ASSERT(!ret); /* -EEXIST; Logic error */
2866

J
Josef Bacik 已提交
2867
	trace_btrfs_setup_cluster(block_group, cluster,
2868
				  total_found * ctl->unit, 1);
2869 2870 2871
	return 0;
}

2872 2873
/*
 * This searches the block group for just extents to fill the cluster with.
2874 2875
 * Try to find a cluster with at least bytes total bytes, at least one
 * extent of cont1_bytes, and other clusters of at least min_bytes.
2876
 */
2877 2878 2879 2880
static noinline int
setup_cluster_no_bitmap(struct btrfs_block_group_cache *block_group,
			struct btrfs_free_cluster *cluster,
			struct list_head *bitmaps, u64 offset, u64 bytes,
2881
			u64 cont1_bytes, u64 min_bytes)
2882
{
2883
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2884 2885 2886 2887 2888 2889
	struct btrfs_free_space *first = NULL;
	struct btrfs_free_space *entry = NULL;
	struct btrfs_free_space *last;
	struct rb_node *node;
	u64 window_free;
	u64 max_extent;
J
Josef Bacik 已提交
2890
	u64 total_size = 0;
2891

2892
	entry = tree_search_offset(ctl, offset, 0, 1);
2893 2894 2895 2896 2897 2898 2899
	if (!entry)
		return -ENOSPC;

	/*
	 * We don't want bitmaps, so just move along until we find a normal
	 * extent entry.
	 */
2900 2901
	while (entry->bitmap || entry->bytes < min_bytes) {
		if (entry->bitmap && list_empty(&entry->list))
2902
			list_add_tail(&entry->list, bitmaps);
2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913
		node = rb_next(&entry->offset_index);
		if (!node)
			return -ENOSPC;
		entry = rb_entry(node, struct btrfs_free_space, offset_index);
	}

	window_free = entry->bytes;
	max_extent = entry->bytes;
	first = entry;
	last = entry;

2914 2915
	for (node = rb_next(&entry->offset_index); node;
	     node = rb_next(&entry->offset_index)) {
2916 2917
		entry = rb_entry(node, struct btrfs_free_space, offset_index);

2918 2919 2920
		if (entry->bitmap) {
			if (list_empty(&entry->list))
				list_add_tail(&entry->list, bitmaps);
2921
			continue;
2922 2923
		}

2924 2925 2926 2927 2928 2929
		if (entry->bytes < min_bytes)
			continue;

		last = entry;
		window_free += entry->bytes;
		if (entry->bytes > max_extent)
2930 2931 2932
			max_extent = entry->bytes;
	}

2933 2934 2935
	if (window_free < bytes || max_extent < cont1_bytes)
		return -ENOSPC;

2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948
	cluster->window_start = first->offset;

	node = &first->offset_index;

	/*
	 * now we've found our entries, pull them out of the free space
	 * cache and put them into the cluster rbtree
	 */
	do {
		int ret;

		entry = rb_entry(node, struct btrfs_free_space, offset_index);
		node = rb_next(&entry->offset_index);
2949
		if (entry->bitmap || entry->bytes < min_bytes)
2950 2951
			continue;

2952
		rb_erase(&entry->offset_index, &ctl->free_space_offset);
2953 2954
		ret = tree_insert_offset(&cluster->root, entry->offset,
					 &entry->offset_index, 0);
J
Josef Bacik 已提交
2955
		total_size += entry->bytes;
2956
		ASSERT(!ret); /* -EEXIST; Logic error */
2957 2958 2959
	} while (node && entry != last);

	cluster->max_size = max_extent;
J
Josef Bacik 已提交
2960
	trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
2961 2962 2963 2964 2965 2966 2967
	return 0;
}

/*
 * This specifically looks for bitmaps that may work in the cluster, we assume
 * that we have already failed to find extents that will work.
 */
2968 2969 2970 2971
static noinline int
setup_cluster_bitmap(struct btrfs_block_group_cache *block_group,
		     struct btrfs_free_cluster *cluster,
		     struct list_head *bitmaps, u64 offset, u64 bytes,
2972
		     u64 cont1_bytes, u64 min_bytes)
2973
{
2974
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2975 2976
	struct btrfs_free_space *entry;
	int ret = -ENOSPC;
2977
	u64 bitmap_offset = offset_to_bitmap(ctl, offset);
2978

2979
	if (ctl->total_bitmaps == 0)
2980 2981
		return -ENOSPC;

2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992
	/*
	 * The bitmap that covers offset won't be in the list unless offset
	 * is just its start offset.
	 */
	entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
	if (entry->offset != bitmap_offset) {
		entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
		if (entry && list_empty(&entry->list))
			list_add(&entry->list, bitmaps);
	}

2993
	list_for_each_entry(entry, bitmaps, list) {
2994
		if (entry->bytes < bytes)
2995 2996
			continue;
		ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
2997
					   bytes, cont1_bytes, min_bytes);
2998 2999 3000 3001 3002
		if (!ret)
			return 0;
	}

	/*
3003 3004
	 * The bitmaps list has all the bitmaps that record free space
	 * starting after offset, so no more search is required.
3005
	 */
3006
	return -ENOSPC;
3007 3008
}

3009 3010
/*
 * here we try to find a cluster of blocks in a block group.  The goal
3011
 * is to find at least bytes+empty_size.
3012 3013 3014 3015 3016
 * We might not find them all in one contiguous area.
 *
 * returns zero and sets up cluster if things worked out, otherwise
 * it returns -enospc
 */
3017
int btrfs_find_space_cluster(struct btrfs_root *root,
3018 3019 3020 3021
			     struct btrfs_block_group_cache *block_group,
			     struct btrfs_free_cluster *cluster,
			     u64 offset, u64 bytes, u64 empty_size)
{
3022
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3023
	struct btrfs_free_space *entry, *tmp;
3024
	LIST_HEAD(bitmaps);
3025
	u64 min_bytes;
3026
	u64 cont1_bytes;
3027 3028
	int ret;

3029 3030 3031 3032 3033 3034
	/*
	 * Choose the minimum extent size we'll require for this
	 * cluster.  For SSD_SPREAD, don't allow any fragmentation.
	 * For metadata, allow allocates with smaller extents.  For
	 * data, keep it dense.
	 */
3035
	if (btrfs_test_opt(root, SSD_SPREAD)) {
3036
		cont1_bytes = min_bytes = bytes + empty_size;
3037
	} else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
3038 3039 3040 3041 3042 3043
		cont1_bytes = bytes;
		min_bytes = block_group->sectorsize;
	} else {
		cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
		min_bytes = block_group->sectorsize;
	}
3044

3045
	spin_lock(&ctl->tree_lock);
3046 3047 3048 3049 3050

	/*
	 * If we know we don't have enough space to make a cluster don't even
	 * bother doing all the work to try and find one.
	 */
3051
	if (ctl->free_space < bytes) {
3052
		spin_unlock(&ctl->tree_lock);
3053 3054 3055
		return -ENOSPC;
	}

3056 3057 3058 3059 3060 3061 3062 3063
	spin_lock(&cluster->lock);

	/* someone already found a cluster, hooray */
	if (cluster->block_group) {
		ret = 0;
		goto out;
	}

J
Josef Bacik 已提交
3064 3065 3066
	trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
				 min_bytes);

3067
	ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
3068 3069
				      bytes + empty_size,
				      cont1_bytes, min_bytes);
3070
	if (ret)
3071
		ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
3072 3073
					   offset, bytes + empty_size,
					   cont1_bytes, min_bytes);
3074 3075 3076 3077

	/* Clear our temporary list */
	list_for_each_entry_safe(entry, tmp, &bitmaps, list)
		list_del_init(&entry->list);
3078

3079 3080 3081 3082 3083
	if (!ret) {
		atomic_inc(&block_group->count);
		list_add_tail(&cluster->block_group_list,
			      &block_group->cluster_list);
		cluster->block_group = block_group;
J
Josef Bacik 已提交
3084 3085
	} else {
		trace_btrfs_failed_cluster_setup(block_group);
3086 3087 3088
	}
out:
	spin_unlock(&cluster->lock);
3089
	spin_unlock(&ctl->tree_lock);
3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100

	return ret;
}

/*
 * simple code to zero out a cluster
 */
void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
{
	spin_lock_init(&cluster->lock);
	spin_lock_init(&cluster->refill_lock);
3101
	cluster->root = RB_ROOT;
3102
	cluster->max_size = 0;
3103
	cluster->fragmented = false;
3104 3105 3106 3107
	INIT_LIST_HEAD(&cluster->block_group_list);
	cluster->block_group = NULL;
}

3108 3109
static int do_trimming(struct btrfs_block_group_cache *block_group,
		       u64 *total_trimmed, u64 start, u64 bytes,
3110 3111
		       u64 reserved_start, u64 reserved_bytes,
		       struct btrfs_trim_range *trim_entry)
3112
{
3113
	struct btrfs_space_info *space_info = block_group->space_info;
3114
	struct btrfs_fs_info *fs_info = block_group->fs_info;
3115
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3116 3117 3118
	int ret;
	int update = 0;
	u64 trimmed = 0;
3119

3120 3121 3122 3123 3124 3125 3126 3127 3128 3129
	spin_lock(&space_info->lock);
	spin_lock(&block_group->lock);
	if (!block_group->ro) {
		block_group->reserved += reserved_bytes;
		space_info->bytes_reserved += reserved_bytes;
		update = 1;
	}
	spin_unlock(&block_group->lock);
	spin_unlock(&space_info->lock);

3130 3131
	ret = btrfs_discard_extent(fs_info->extent_root,
				   start, bytes, &trimmed);
3132 3133 3134
	if (!ret)
		*total_trimmed += trimmed;

3135
	mutex_lock(&ctl->cache_writeout_mutex);
3136
	btrfs_add_free_space(block_group, reserved_start, reserved_bytes);
3137 3138
	list_del(&trim_entry->list);
	mutex_unlock(&ctl->cache_writeout_mutex);
3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163

	if (update) {
		spin_lock(&space_info->lock);
		spin_lock(&block_group->lock);
		if (block_group->ro)
			space_info->bytes_readonly += reserved_bytes;
		block_group->reserved -= reserved_bytes;
		space_info->bytes_reserved -= reserved_bytes;
		spin_unlock(&space_info->lock);
		spin_unlock(&block_group->lock);
	}

	return ret;
}

static int trim_no_bitmap(struct btrfs_block_group_cache *block_group,
			  u64 *total_trimmed, u64 start, u64 end, u64 minlen)
{
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
	struct btrfs_free_space *entry;
	struct rb_node *node;
	int ret = 0;
	u64 extent_start;
	u64 extent_bytes;
	u64 bytes;
3164 3165

	while (start < end) {
3166 3167 3168
		struct btrfs_trim_range trim_entry;

		mutex_lock(&ctl->cache_writeout_mutex);
3169
		spin_lock(&ctl->tree_lock);
3170

3171 3172
		if (ctl->free_space < minlen) {
			spin_unlock(&ctl->tree_lock);
3173
			mutex_unlock(&ctl->cache_writeout_mutex);
3174 3175 3176
			break;
		}

3177
		entry = tree_search_offset(ctl, start, 0, 1);
3178
		if (!entry) {
3179
			spin_unlock(&ctl->tree_lock);
3180
			mutex_unlock(&ctl->cache_writeout_mutex);
3181 3182 3183
			break;
		}

3184 3185 3186 3187
		/* skip bitmaps */
		while (entry->bitmap) {
			node = rb_next(&entry->offset_index);
			if (!node) {
3188
				spin_unlock(&ctl->tree_lock);
3189
				mutex_unlock(&ctl->cache_writeout_mutex);
3190
				goto out;
3191
			}
3192 3193
			entry = rb_entry(node, struct btrfs_free_space,
					 offset_index);
3194 3195
		}

3196 3197
		if (entry->offset >= end) {
			spin_unlock(&ctl->tree_lock);
3198
			mutex_unlock(&ctl->cache_writeout_mutex);
3199
			break;
3200 3201
		}

3202 3203 3204 3205 3206 3207
		extent_start = entry->offset;
		extent_bytes = entry->bytes;
		start = max(start, extent_start);
		bytes = min(extent_start + extent_bytes, end) - start;
		if (bytes < minlen) {
			spin_unlock(&ctl->tree_lock);
3208
			mutex_unlock(&ctl->cache_writeout_mutex);
3209
			goto next;
3210 3211
		}

3212 3213 3214
		unlink_free_space(ctl, entry);
		kmem_cache_free(btrfs_free_space_cachep, entry);

3215
		spin_unlock(&ctl->tree_lock);
3216 3217 3218 3219
		trim_entry.start = extent_start;
		trim_entry.bytes = extent_bytes;
		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
		mutex_unlock(&ctl->cache_writeout_mutex);
3220

3221
		ret = do_trimming(block_group, total_trimmed, start, bytes,
3222
				  extent_start, extent_bytes, &trim_entry);
3223 3224 3225 3226
		if (ret)
			break;
next:
		start += bytes;
3227

3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250
		if (fatal_signal_pending(current)) {
			ret = -ERESTARTSYS;
			break;
		}

		cond_resched();
	}
out:
	return ret;
}

static int trim_bitmaps(struct btrfs_block_group_cache *block_group,
			u64 *total_trimmed, u64 start, u64 end, u64 minlen)
{
	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
	struct btrfs_free_space *entry;
	int ret = 0;
	int ret2;
	u64 bytes;
	u64 offset = offset_to_bitmap(ctl, start);

	while (offset < end) {
		bool next_bitmap = false;
3251
		struct btrfs_trim_range trim_entry;
3252

3253
		mutex_lock(&ctl->cache_writeout_mutex);
3254 3255 3256 3257
		spin_lock(&ctl->tree_lock);

		if (ctl->free_space < minlen) {
			spin_unlock(&ctl->tree_lock);
3258
			mutex_unlock(&ctl->cache_writeout_mutex);
3259 3260 3261 3262 3263 3264
			break;
		}

		entry = tree_search_offset(ctl, offset, 1, 0);
		if (!entry) {
			spin_unlock(&ctl->tree_lock);
3265
			mutex_unlock(&ctl->cache_writeout_mutex);
3266 3267 3268 3269 3270
			next_bitmap = true;
			goto next;
		}

		bytes = minlen;
3271
		ret2 = search_bitmap(ctl, entry, &start, &bytes, false);
3272 3273
		if (ret2 || start >= end) {
			spin_unlock(&ctl->tree_lock);
3274
			mutex_unlock(&ctl->cache_writeout_mutex);
3275 3276 3277 3278 3279 3280 3281
			next_bitmap = true;
			goto next;
		}

		bytes = min(bytes, end - start);
		if (bytes < minlen) {
			spin_unlock(&ctl->tree_lock);
3282
			mutex_unlock(&ctl->cache_writeout_mutex);
3283 3284 3285 3286 3287 3288 3289 3290
			goto next;
		}

		bitmap_clear_bits(ctl, entry, start, bytes);
		if (entry->bytes == 0)
			free_bitmap(ctl, entry);

		spin_unlock(&ctl->tree_lock);
3291 3292 3293 3294
		trim_entry.start = start;
		trim_entry.bytes = bytes;
		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
		mutex_unlock(&ctl->cache_writeout_mutex);
3295 3296

		ret = do_trimming(block_group, total_trimmed, start, bytes,
3297
				  start, bytes, &trim_entry);
3298 3299 3300 3301 3302 3303 3304 3305 3306
		if (ret)
			break;
next:
		if (next_bitmap) {
			offset += BITS_PER_BITMAP * ctl->unit;
		} else {
			start += bytes;
			if (start >= offset + BITS_PER_BITMAP * ctl->unit)
				offset += BITS_PER_BITMAP * ctl->unit;
3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318
		}

		if (fatal_signal_pending(current)) {
			ret = -ERESTARTSYS;
			break;
		}

		cond_resched();
	}

	return ret;
}
3319

3320
void btrfs_get_block_group_trimming(struct btrfs_block_group_cache *cache)
3321
{
3322 3323
	atomic_inc(&cache->trimming);
}
3324

3325 3326 3327 3328 3329
void btrfs_put_block_group_trimming(struct btrfs_block_group_cache *block_group)
{
	struct extent_map_tree *em_tree;
	struct extent_map *em;
	bool cleanup;
3330

3331
	spin_lock(&block_group->lock);
3332 3333
	cleanup = (atomic_dec_and_test(&block_group->trimming) &&
		   block_group->removed);
3334 3335
	spin_unlock(&block_group->lock);

3336
	if (cleanup) {
3337
		lock_chunks(block_group->fs_info->chunk_root);
3338 3339 3340 3341 3342
		em_tree = &block_group->fs_info->mapping_tree.map_tree;
		write_lock(&em_tree->lock);
		em = lookup_extent_mapping(em_tree, block_group->key.objectid,
					   1);
		BUG_ON(!em); /* logic error, can't happen */
3343 3344 3345 3346
		/*
		 * remove_extent_mapping() will delete us from the pinned_chunks
		 * list, which is protected by the chunk mutex.
		 */
3347 3348 3349 3350 3351 3352 3353
		remove_extent_mapping(em_tree, em);
		write_unlock(&em_tree->lock);
		unlock_chunks(block_group->fs_info->chunk_root);

		/* once for us and once for the tree */
		free_extent_map(em);
		free_extent_map(em);
3354 3355 3356 3357 3358 3359

		/*
		 * We've left one free space entry and other tasks trimming
		 * this block group have left 1 entry each one. Free them.
		 */
		__btrfs_remove_free_space_cache(block_group->free_space_ctl);
3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371
	}
}

int btrfs_trim_block_group(struct btrfs_block_group_cache *block_group,
			   u64 *trimmed, u64 start, u64 end, u64 minlen)
{
	int ret;

	*trimmed = 0;

	spin_lock(&block_group->lock);
	if (block_group->removed) {
3372
		spin_unlock(&block_group->lock);
3373
		return 0;
3374
	}
3375 3376 3377 3378 3379 3380
	btrfs_get_block_group_trimming(block_group);
	spin_unlock(&block_group->lock);

	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen);
	if (ret)
		goto out;
3381

3382 3383 3384
	ret = trim_bitmaps(block_group, trimmed, start, end, minlen);
out:
	btrfs_put_block_group_trimming(block_group);
3385 3386 3387
	return ret;
}

3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423
/*
 * Find the left-most item in the cache tree, and then return the
 * smallest inode number in the item.
 *
 * Note: the returned inode number may not be the smallest one in
 * the tree, if the left-most item is a bitmap.
 */
u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root)
{
	struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl;
	struct btrfs_free_space *entry = NULL;
	u64 ino = 0;

	spin_lock(&ctl->tree_lock);

	if (RB_EMPTY_ROOT(&ctl->free_space_offset))
		goto out;

	entry = rb_entry(rb_first(&ctl->free_space_offset),
			 struct btrfs_free_space, offset_index);

	if (!entry->bitmap) {
		ino = entry->offset;

		unlink_free_space(ctl, entry);
		entry->offset++;
		entry->bytes--;
		if (!entry->bytes)
			kmem_cache_free(btrfs_free_space_cachep, entry);
		else
			link_free_space(ctl, entry);
	} else {
		u64 offset = 0;
		u64 count = 1;
		int ret;

3424
		ret = search_bitmap(ctl, entry, &offset, &count, true);
3425
		/* Logic error; Should be empty if it can't find anything */
3426
		ASSERT(!ret);
3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437

		ino = offset;
		bitmap_clear_bits(ctl, entry, offset, 1);
		if (entry->bytes == 0)
			free_bitmap(ctl, entry);
	}
out:
	spin_unlock(&ctl->tree_lock);

	return ino;
}
3438 3439 3440 3441 3442 3443

struct inode *lookup_free_ino_inode(struct btrfs_root *root,
				    struct btrfs_path *path)
{
	struct inode *inode = NULL;

3444 3445 3446 3447
	spin_lock(&root->ino_cache_lock);
	if (root->ino_cache_inode)
		inode = igrab(root->ino_cache_inode);
	spin_unlock(&root->ino_cache_lock);
3448 3449 3450 3451 3452 3453 3454
	if (inode)
		return inode;

	inode = __lookup_free_space_inode(root, path, 0);
	if (IS_ERR(inode))
		return inode;

3455
	spin_lock(&root->ino_cache_lock);
3456
	if (!btrfs_fs_closing(root->fs_info))
3457 3458
		root->ino_cache_inode = igrab(inode);
	spin_unlock(&root->ino_cache_lock);
3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478

	return inode;
}

int create_free_ino_inode(struct btrfs_root *root,
			  struct btrfs_trans_handle *trans,
			  struct btrfs_path *path)
{
	return __create_free_space_inode(root, trans, path,
					 BTRFS_FREE_INO_OBJECTID, 0);
}

int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
{
	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
	struct btrfs_path *path;
	struct inode *inode;
	int ret = 0;
	u64 root_gen = btrfs_root_generation(&root->root_item);

C
Chris Mason 已提交
3479 3480 3481
	if (!btrfs_test_opt(root, INODE_MAP_CACHE))
		return 0;

3482 3483 3484 3485
	/*
	 * If we're unmounting then just return, since this does a search on the
	 * normal root and not the commit root and we could deadlock.
	 */
3486
	if (btrfs_fs_closing(fs_info))
3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502
		return 0;

	path = btrfs_alloc_path();
	if (!path)
		return 0;

	inode = lookup_free_ino_inode(root, path);
	if (IS_ERR(inode))
		goto out;

	if (root_gen != BTRFS_I(inode)->generation)
		goto out_put;

	ret = __load_free_space_cache(root, inode, ctl, path, 0);

	if (ret < 0)
3503 3504 3505
		btrfs_err(fs_info,
			"failed to load free ino cache for root %llu",
			root->root_key.objectid);
3506 3507 3508 3509 3510 3511 3512 3513 3514
out_put:
	iput(inode);
out:
	btrfs_free_path(path);
	return ret;
}

int btrfs_write_out_ino_cache(struct btrfs_root *root,
			      struct btrfs_trans_handle *trans,
3515 3516
			      struct btrfs_path *path,
			      struct inode *inode)
3517 3518 3519
{
	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
	int ret;
3520
	struct btrfs_io_ctl io_ctl;
3521
	bool release_metadata = true;
3522

C
Chris Mason 已提交
3523 3524 3525
	if (!btrfs_test_opt(root, INODE_MAP_CACHE))
		return 0;

C
Chris Mason 已提交
3526
	memset(&io_ctl, 0, sizeof(io_ctl));
3527
	ret = __btrfs_write_out_cache(root, inode, ctl, NULL, &io_ctl,
C
Chris Mason 已提交
3528
				      trans, path, 0);
3529 3530 3531 3532 3533 3534 3535 3536
	if (!ret) {
		/*
		 * At this point writepages() didn't error out, so our metadata
		 * reservation is released when the writeback finishes, at
		 * inode.c:btrfs_finish_ordered_io(), regardless of it finishing
		 * with or without an error.
		 */
		release_metadata = false;
C
Chris Mason 已提交
3537
		ret = btrfs_wait_cache_io(root, trans, NULL, &io_ctl, path, 0);
3538
	}
C
Chris Mason 已提交
3539

3540
	if (ret) {
3541 3542
		if (release_metadata)
			btrfs_delalloc_release_metadata(inode, inode->i_size);
3543
#ifdef DEBUG
3544 3545 3546
		btrfs_err(root->fs_info,
			"failed to write free ino cache for root %llu",
			root->root_key.objectid);
3547 3548
#endif
	}
3549 3550 3551

	return ret;
}
3552 3553

#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3554 3555 3556 3557 3558 3559 3560 3561
/*
 * Use this if you need to make a bitmap or extent entry specifically, it
 * doesn't do any of the merging that add_free_space does, this acts a lot like
 * how the free space cache loading stuff works, so you can get really weird
 * configurations.
 */
int test_add_free_space_entry(struct btrfs_block_group_cache *cache,
			      u64 offset, u64 bytes, bool bitmap)
3562
{
3563 3564 3565 3566 3567
	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
	struct btrfs_free_space *info = NULL, *bitmap_info;
	void *map = NULL;
	u64 bytes_added;
	int ret;
3568

3569 3570 3571 3572 3573
again:
	if (!info) {
		info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
		if (!info)
			return -ENOMEM;
3574 3575
	}

3576 3577 3578 3579
	if (!bitmap) {
		spin_lock(&ctl->tree_lock);
		info->offset = offset;
		info->bytes = bytes;
3580
		info->max_extent_size = 0;
3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603
		ret = link_free_space(ctl, info);
		spin_unlock(&ctl->tree_lock);
		if (ret)
			kmem_cache_free(btrfs_free_space_cachep, info);
		return ret;
	}

	if (!map) {
		map = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
		if (!map) {
			kmem_cache_free(btrfs_free_space_cachep, info);
			return -ENOMEM;
		}
	}

	spin_lock(&ctl->tree_lock);
	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
					 1, 0);
	if (!bitmap_info) {
		info->bitmap = map;
		map = NULL;
		add_new_bitmap(ctl, info, offset);
		bitmap_info = info;
3604
		info = NULL;
3605
	}
3606

3607
	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
3608

3609 3610 3611
	bytes -= bytes_added;
	offset += bytes_added;
	spin_unlock(&ctl->tree_lock);
3612

3613 3614
	if (bytes)
		goto again;
3615

3616 3617
	if (info)
		kmem_cache_free(btrfs_free_space_cachep, info);
3618 3619 3620
	if (map)
		kfree(map);
	return 0;
3621 3622 3623 3624 3625 3626 3627
}

/*
 * Checks to see if the given range is in the free space cache.  This is really
 * just used to check the absence of space, so if there is free space in the
 * range at all we will return 1.
 */
3628 3629
int test_check_exists(struct btrfs_block_group_cache *cache,
		      u64 offset, u64 bytes)
3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651
{
	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
	struct btrfs_free_space *info;
	int ret = 0;

	spin_lock(&ctl->tree_lock);
	info = tree_search_offset(ctl, offset, 0, 0);
	if (!info) {
		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
					  1, 0);
		if (!info)
			goto out;
	}

have_info:
	if (info->bitmap) {
		u64 bit_off, bit_bytes;
		struct rb_node *n;
		struct btrfs_free_space *tmp;

		bit_off = offset;
		bit_bytes = ctl->unit;
3652
		ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false);
3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691
		if (!ret) {
			if (bit_off == offset) {
				ret = 1;
				goto out;
			} else if (bit_off > offset &&
				   offset + bytes > bit_off) {
				ret = 1;
				goto out;
			}
		}

		n = rb_prev(&info->offset_index);
		while (n) {
			tmp = rb_entry(n, struct btrfs_free_space,
				       offset_index);
			if (tmp->offset + tmp->bytes < offset)
				break;
			if (offset + bytes < tmp->offset) {
				n = rb_prev(&info->offset_index);
				continue;
			}
			info = tmp;
			goto have_info;
		}

		n = rb_next(&info->offset_index);
		while (n) {
			tmp = rb_entry(n, struct btrfs_free_space,
				       offset_index);
			if (offset + bytes < tmp->offset)
				break;
			if (tmp->offset + tmp->bytes < offset) {
				n = rb_next(&info->offset_index);
				continue;
			}
			info = tmp;
			goto have_info;
		}

3692
		ret = 0;
3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706
		goto out;
	}

	if (info->offset == offset) {
		ret = 1;
		goto out;
	}

	if (offset > info->offset && offset < info->offset + info->bytes)
		ret = 1;
out:
	spin_unlock(&ctl->tree_lock);
	return ret;
}
3707
#endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */