i915_request.c 45.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2008-2015 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25
#include <linux/dma-fence-array.h>
26 27
#include <linux/irq_work.h>
#include <linux/prefetch.h>
28 29
#include <linux/sched.h>
#include <linux/sched/clock.h>
30
#include <linux/sched/signal.h>
31

32 33
#include "gem/i915_gem_context.h"
#include "gt/intel_context.h"
34
#include "gt/intel_ring.h"
35

36
#include "i915_active.h"
37
#include "i915_drv.h"
38
#include "i915_globals.h"
39
#include "i915_trace.h"
40
#include "intel_pm.h"
41

42 43 44 45
struct execute_cb {
	struct list_head link;
	struct irq_work work;
	struct i915_sw_fence *fence;
46 47
	void (*hook)(struct i915_request *rq, struct dma_fence *signal);
	struct i915_request *signal;
48 49
};

50
static struct i915_global_request {
51
	struct i915_global base;
52 53
	struct kmem_cache *slab_requests;
	struct kmem_cache *slab_dependencies;
54
	struct kmem_cache *slab_execute_cbs;
55 56
} global;

57
static const char *i915_fence_get_driver_name(struct dma_fence *fence)
58 59 60 61
{
	return "i915";
}

62
static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
63
{
64 65
	/*
	 * The timeline struct (as part of the ppgtt underneath a context)
66 67 68 69 70 71 72 73 74 75
	 * may be freed when the request is no longer in use by the GPU.
	 * We could extend the life of a context to beyond that of all
	 * fences, possibly keeping the hw resource around indefinitely,
	 * or we just give them a false name. Since
	 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
	 * lie seems justifiable.
	 */
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return "signaled";

76
	return to_request(fence)->gem_context->name ?: "[i915]";
77 78
}

79
static bool i915_fence_signaled(struct dma_fence *fence)
80
{
81
	return i915_request_completed(to_request(fence));
82 83
}

84
static bool i915_fence_enable_signaling(struct dma_fence *fence)
85
{
86
	return i915_request_enable_breadcrumb(to_request(fence));
87 88
}

89
static signed long i915_fence_wait(struct dma_fence *fence,
90
				   bool interruptible,
91
				   signed long timeout)
92
{
93 94 95
	return i915_request_wait(to_request(fence),
				 interruptible | I915_WAIT_PRIORITY,
				 timeout);
96 97
}

98
static void i915_fence_release(struct dma_fence *fence)
99
{
100
	struct i915_request *rq = to_request(fence);
101

102 103
	/*
	 * The request is put onto a RCU freelist (i.e. the address
104 105 106 107 108
	 * is immediately reused), mark the fences as being freed now.
	 * Otherwise the debugobjects for the fences are only marked as
	 * freed when the slab cache itself is freed, and so we would get
	 * caught trying to reuse dead objects.
	 */
109
	i915_sw_fence_fini(&rq->submit);
110
	i915_sw_fence_fini(&rq->semaphore);
111

112
	kmem_cache_free(global.slab_requests, rq);
113 114
}

115
const struct dma_fence_ops i915_fence_ops = {
116 117 118 119 120 121 122 123
	.get_driver_name = i915_fence_get_driver_name,
	.get_timeline_name = i915_fence_get_timeline_name,
	.enable_signaling = i915_fence_enable_signaling,
	.signaled = i915_fence_signaled,
	.wait = i915_fence_wait,
	.release = i915_fence_release,
};

124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
static void irq_execute_cb(struct irq_work *wrk)
{
	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);

	i915_sw_fence_complete(cb->fence);
	kmem_cache_free(global.slab_execute_cbs, cb);
}

static void irq_execute_cb_hook(struct irq_work *wrk)
{
	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);

	cb->hook(container_of(cb->fence, struct i915_request, submit),
		 &cb->signal->fence);
	i915_request_put(cb->signal);

	irq_execute_cb(wrk);
}

static void __notify_execute_cb(struct i915_request *rq)
{
	struct execute_cb *cb;

	lockdep_assert_held(&rq->lock);

	if (list_empty(&rq->execute_cb))
		return;

	list_for_each_entry(cb, &rq->execute_cb, link)
		irq_work_queue(&cb->work);

	/*
	 * XXX Rollback on __i915_request_unsubmit()
	 *
	 * In the future, perhaps when we have an active time-slicing scheduler,
	 * it will be interesting to unsubmit parallel execution and remove
	 * busywaits from the GPU until their master is restarted. This is
	 * quite hairy, we have to carefully rollback the fence and do a
	 * preempt-to-idle cycle on the target engine, all the while the
	 * master execute_cb may refire.
	 */
	INIT_LIST_HEAD(&rq->execute_cb);
}

168
static inline void
169
remove_from_client(struct i915_request *request)
170
{
171
	struct drm_i915_file_private *file_priv;
172

173
	if (!READ_ONCE(request->file_priv))
174 175
		return;

176 177 178 179
	rcu_read_lock();
	file_priv = xchg(&request->file_priv, NULL);
	if (file_priv) {
		spin_lock(&file_priv->mm.lock);
180
		list_del(&request->client_link);
181
		spin_unlock(&file_priv->mm.lock);
182
	}
183
	rcu_read_unlock();
184 185
}

186
static void free_capture_list(struct i915_request *request)
187
{
188
	struct i915_capture_list *capture;
189 190 191

	capture = request->capture_list;
	while (capture) {
192
		struct i915_capture_list *next = capture->next;
193 194 195 196 197 198

		kfree(capture);
		capture = next;
	}
}

199 200 201 202 203 204 205 206 207 208 209
static void remove_from_engine(struct i915_request *rq)
{
	struct intel_engine_cs *engine, *locked;

	/*
	 * Virtual engines complicate acquiring the engine timeline lock,
	 * as their rq->engine pointer is not stable until under that
	 * engine lock. The simple ploy we use is to take the lock then
	 * check that the rq still belongs to the newly locked engine.
	 */
	locked = READ_ONCE(rq->engine);
210
	spin_lock_irq(&locked->active.lock);
211 212 213 214 215 216
	while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
		spin_unlock(&locked->active.lock);
		spin_lock(&engine->active.lock);
		locked = engine;
	}
	list_del(&rq->sched.link);
217
	spin_unlock_irq(&locked->active.lock);
218 219
}

220
bool i915_request_retire(struct i915_request *rq)
221
{
222 223
	if (!i915_request_completed(rq))
		return false;
224

225 226 227 228
	GEM_TRACE("%s fence %llx:%lld, current %d\n",
		  rq->engine->name,
		  rq->fence.context, rq->fence.seqno,
		  hwsp_seqno(rq));
229

230 231
	GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
	trace_i915_request_retire(rq);
C
Chris Wilson 已提交
232

233 234 235 236 237 238 239 240 241
	/*
	 * We know the GPU must have read the request to have
	 * sent us the seqno + interrupt, so use the position
	 * of tail of the request to update the last known position
	 * of the GPU head.
	 *
	 * Note this requires that we are always called in request
	 * completion order.
	 */
242 243
	GEM_BUG_ON(!list_is_first(&rq->link,
				  &i915_request_timeline(rq)->requests));
244
	rq->ring->head = rq->postfix;
245

246 247 248 249 250 251
	/*
	 * We only loosely track inflight requests across preemption,
	 * and so we may find ourselves attempting to retire a _completed_
	 * request that we have removed from the HW and put back on a run
	 * queue.
	 */
252
	remove_from_engine(rq);
253

254
	spin_lock_irq(&rq->lock);
255 256 257 258 259
	i915_request_mark_complete(rq);
	if (!i915_request_signaled(rq))
		dma_fence_signal_locked(&rq->fence);
	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
		i915_request_cancel_breadcrumb(rq);
260
	if (i915_request_has_waitboost(rq)) {
261 262 263
		GEM_BUG_ON(!atomic_read(&rq->i915->gt_pm.rps.num_waiters));
		atomic_dec(&rq->i915->gt_pm.rps.num_waiters);
	}
264 265 266 267 268
	if (!test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags)) {
		set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
		__notify_execute_cb(rq);
	}
	GEM_BUG_ON(!list_empty(&rq->execute_cb));
269
	spin_unlock_irq(&rq->lock);
270

271
	remove_from_client(rq);
272
	list_del(&rq->link);
273

274 275 276
	intel_context_exit(rq->hw_context);
	intel_context_unpin(rq->hw_context);

277 278 279 280 281
	free_capture_list(rq);
	i915_sched_node_fini(&rq->sched);
	i915_request_put(rq);

	return true;
282 283
}

284
void i915_request_retire_upto(struct i915_request *rq)
285
{
286
	struct intel_timeline * const tl = i915_request_timeline(rq);
287
	struct i915_request *tmp;
288

289
	GEM_TRACE("%s fence %llx:%lld, current %d\n",
290 291
		  rq->engine->name,
		  rq->fence.context, rq->fence.seqno,
292
		  hwsp_seqno(rq));
293

294
	GEM_BUG_ON(!i915_request_completed(rq));
295

296
	do {
297
		tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
298
	} while (i915_request_retire(tmp) && tmp != rq);
299 300
}

301
static int
302 303 304 305 306
__i915_request_await_execution(struct i915_request *rq,
			       struct i915_request *signal,
			       void (*hook)(struct i915_request *rq,
					    struct dma_fence *signal),
			       gfp_t gfp)
307 308 309
{
	struct execute_cb *cb;

310 311 312
	if (i915_request_is_active(signal)) {
		if (hook)
			hook(rq, &signal->fence);
313
		return 0;
314
	}
315 316 317 318 319 320 321 322 323

	cb = kmem_cache_alloc(global.slab_execute_cbs, gfp);
	if (!cb)
		return -ENOMEM;

	cb->fence = &rq->submit;
	i915_sw_fence_await(cb->fence);
	init_irq_work(&cb->work, irq_execute_cb);

324 325 326 327 328 329
	if (hook) {
		cb->hook = hook;
		cb->signal = i915_request_get(signal);
		cb->work.func = irq_execute_cb_hook;
	}

330 331
	spin_lock_irq(&signal->lock);
	if (i915_request_is_active(signal)) {
332 333 334 335
		if (hook) {
			hook(rq, &signal->fence);
			i915_request_put(signal);
		}
336 337 338 339 340 341 342 343 344 345
		i915_sw_fence_complete(cb->fence);
		kmem_cache_free(global.slab_execute_cbs, cb);
	} else {
		list_add_tail(&cb->link, &signal->execute_cb);
	}
	spin_unlock_irq(&signal->lock);

	return 0;
}

346
bool __i915_request_submit(struct i915_request *request)
347
{
348
	struct intel_engine_cs *engine = request->engine;
349
	bool result = false;
350

351
	GEM_TRACE("%s fence %llx:%lld, current %d\n",
352
		  engine->name,
353
		  request->fence.context, request->fence.seqno,
354
		  hwsp_seqno(request));
355

356
	GEM_BUG_ON(!irqs_disabled());
357
	lockdep_assert_held(&engine->active.lock);
358

359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
	/*
	 * With the advent of preempt-to-busy, we frequently encounter
	 * requests that we have unsubmitted from HW, but left running
	 * until the next ack and so have completed in the meantime. On
	 * resubmission of that completed request, we can skip
	 * updating the payload, and execlists can even skip submitting
	 * the request.
	 *
	 * We must remove the request from the caller's priority queue,
	 * and the caller must only call us when the request is in their
	 * priority queue, under the active.lock. This ensures that the
	 * request has *not* yet been retired and we can safely move
	 * the request into the engine->active.list where it will be
	 * dropped upon retiring. (Otherwise if resubmit a *retired*
	 * request, this would be a horrible use-after-free.)
	 */
	if (i915_request_completed(request))
		goto xfer;

378 379 380
	if (i915_gem_context_is_banned(request->gem_context))
		i915_request_skip(request, -EIO);

381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
	/*
	 * Are we using semaphores when the gpu is already saturated?
	 *
	 * Using semaphores incurs a cost in having the GPU poll a
	 * memory location, busywaiting for it to change. The continual
	 * memory reads can have a noticeable impact on the rest of the
	 * system with the extra bus traffic, stalling the cpu as it too
	 * tries to access memory across the bus (perf stat -e bus-cycles).
	 *
	 * If we installed a semaphore on this request and we only submit
	 * the request after the signaler completed, that indicates the
	 * system is overloaded and using semaphores at this time only
	 * increases the amount of work we are doing. If so, we disable
	 * further use of semaphores until we are idle again, whence we
	 * optimistically try again.
	 */
	if (request->sched.semaphores &&
	    i915_sw_fence_signaled(&request->semaphore))
399
		engine->saturated |= request->sched.semaphores;
400

401 402
	engine->emit_fini_breadcrumb(request,
				     request->ring->vaddr + request->postfix);
403

404 405 406
	trace_i915_request_execute(request);
	engine->serial++;
	result = true;
407

408 409 410 411 412
xfer:	/* We may be recursing from the signal callback of another i915 fence */
	spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);

	if (!test_and_set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags))
		list_move_tail(&request->sched.link, &engine->active.requests);
413

414
	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags) &&
415
	    !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &request->fence.flags) &&
416 417
	    !i915_request_enable_breadcrumb(request))
		intel_engine_queue_breadcrumbs(engine);
418

419 420
	__notify_execute_cb(request);

421 422
	spin_unlock(&request->lock);

423
	return result;
424 425
}

426
void i915_request_submit(struct i915_request *request)
427 428 429
{
	struct intel_engine_cs *engine = request->engine;
	unsigned long flags;
430

431
	/* Will be called from irq-context when using foreign fences. */
432
	spin_lock_irqsave(&engine->active.lock, flags);
433

434
	__i915_request_submit(request);
435

436
	spin_unlock_irqrestore(&engine->active.lock, flags);
437 438
}

439
void __i915_request_unsubmit(struct i915_request *request)
440
{
441
	struct intel_engine_cs *engine = request->engine;
442

443
	GEM_TRACE("%s fence %llx:%lld, current %d\n",
444
		  engine->name,
445
		  request->fence.context, request->fence.seqno,
446
		  hwsp_seqno(request));
447

448
	GEM_BUG_ON(!irqs_disabled());
449
	lockdep_assert_held(&engine->active.lock);
450

451 452
	/*
	 * Only unwind in reverse order, required so that the per-context list
453 454
	 * is kept in seqno/ring order.
	 */
C
Chris Wilson 已提交
455

456 457
	/* We may be recursing from the signal callback of another i915 fence */
	spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
458

459
	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
460
		i915_request_cancel_breadcrumb(request);
461

462 463
	GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
	clear_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
464

465 466
	spin_unlock(&request->lock);

467 468 469 470 471 472
	/* We've already spun, don't charge on resubmitting. */
	if (request->sched.semaphores && i915_request_started(request)) {
		request->sched.attr.priority |= I915_PRIORITY_NOSEMAPHORE;
		request->sched.semaphores = 0;
	}

473 474
	/*
	 * We don't need to wake_up any waiters on request->execute, they
475
	 * will get woken by any other event or us re-adding this request
476
	 * to the engine timeline (__i915_request_submit()). The waiters
477 478 479 480 481
	 * should be quite adapt at finding that the request now has a new
	 * global_seqno to the one they went to sleep on.
	 */
}

482
void i915_request_unsubmit(struct i915_request *request)
483 484 485 486 487
{
	struct intel_engine_cs *engine = request->engine;
	unsigned long flags;

	/* Will be called from irq-context when using foreign fences. */
488
	spin_lock_irqsave(&engine->active.lock, flags);
489

490
	__i915_request_unsubmit(request);
491

492
	spin_unlock_irqrestore(&engine->active.lock, flags);
493 494
}

495
static int __i915_sw_fence_call
496
submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
497
{
498
	struct i915_request *request =
499 500 501 502
		container_of(fence, typeof(*request), submit);

	switch (state) {
	case FENCE_COMPLETE:
503
		trace_i915_request_submit(request);
C
Chris Wilson 已提交
504 505 506 507

		if (unlikely(fence->error))
			i915_request_skip(request, fence->error);

508
		/*
509 510 511 512 513 514
		 * We need to serialize use of the submit_request() callback
		 * with its hotplugging performed during an emergency
		 * i915_gem_set_wedged().  We use the RCU mechanism to mark the
		 * critical section in order to force i915_gem_set_wedged() to
		 * wait until the submit_request() is completed before
		 * proceeding.
515 516
		 */
		rcu_read_lock();
517
		request->engine->submit_request(request);
518
		rcu_read_unlock();
519 520 521
		break;

	case FENCE_FREE:
522
		i915_request_put(request);
523 524 525
		break;
	}

526 527 528
	return NOTIFY_DONE;
}

529 530 531 532 533 534 535 536
static int __i915_sw_fence_call
semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
{
	struct i915_request *request =
		container_of(fence, typeof(*request), semaphore);

	switch (state) {
	case FENCE_COMPLETE:
537
		i915_schedule_bump_priority(request, I915_PRIORITY_NOSEMAPHORE);
538 539 540 541 542 543 544 545 546 547
		break;

	case FENCE_FREE:
		i915_request_put(request);
		break;
	}

	return NOTIFY_DONE;
}

548
static void retire_requests(struct intel_timeline *tl)
549 550 551
{
	struct i915_request *rq, *rn;

552
	list_for_each_entry_safe(rq, rn, &tl->requests, link)
553
		if (!i915_request_retire(rq))
554 555 556 557
			break;
}

static noinline struct i915_request *
558
request_alloc_slow(struct intel_timeline *tl, gfp_t gfp)
559 560 561
{
	struct i915_request *rq;

562
	if (list_empty(&tl->requests))
563 564
		goto out;

565 566 567
	if (!gfpflags_allow_blocking(gfp))
		goto out;

568
	/* Move our oldest request to the slab-cache (if not in use!) */
569
	rq = list_first_entry(&tl->requests, typeof(*rq), link);
570 571 572 573 574 575 576
	i915_request_retire(rq);

	rq = kmem_cache_alloc(global.slab_requests,
			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
	if (rq)
		return rq;

577
	/* Ratelimit ourselves to prevent oom from malicious clients */
578
	rq = list_last_entry(&tl->requests, typeof(*rq), link);
579 580 581
	cond_synchronize_rcu(rq->rcustate);

	/* Retire our old requests in the hope that we free some */
582
	retire_requests(tl);
583 584

out:
585
	return kmem_cache_alloc(global.slab_requests, gfp);
586 587
}

588
struct i915_request *
589
__i915_request_create(struct intel_context *ce, gfp_t gfp)
590
{
591
	struct intel_timeline *tl = ce->timeline;
592 593
	struct i915_request *rq;
	u32 seqno;
594 595
	int ret;

596
	might_sleep_if(gfpflags_allow_blocking(gfp));
597

598 599
	/* Check that the caller provided an already pinned context */
	__intel_context_pin(ce);
600

601 602
	/*
	 * Beware: Dragons be flying overhead.
603 604 605 606
	 *
	 * We use RCU to look up requests in flight. The lookups may
	 * race with the request being allocated from the slab freelist.
	 * That is the request we are writing to here, may be in the process
607
	 * of being read by __i915_active_request_get_rcu(). As such,
608 609
	 * we have to be very careful when overwriting the contents. During
	 * the RCU lookup, we change chase the request->engine pointer,
610
	 * read the request->global_seqno and increment the reference count.
611 612 613 614
	 *
	 * The reference count is incremented atomically. If it is zero,
	 * the lookup knows the request is unallocated and complete. Otherwise,
	 * it is either still in use, or has been reallocated and reset
615 616
	 * with dma_fence_init(). This increment is safe for release as we
	 * check that the request we have a reference to and matches the active
617 618 619 620 621 622 623 624 625 626 627 628 629
	 * request.
	 *
	 * Before we increment the refcount, we chase the request->engine
	 * pointer. We must not call kmem_cache_zalloc() or else we set
	 * that pointer to NULL and cause a crash during the lookup. If
	 * we see the request is completed (based on the value of the
	 * old engine and seqno), the lookup is complete and reports NULL.
	 * If we decide the request is not completed (new engine or seqno),
	 * then we grab a reference and double check that it is still the
	 * active request - which it won't be and restart the lookup.
	 *
	 * Do not use kmem_cache_zalloc() here!
	 */
630
	rq = kmem_cache_alloc(global.slab_requests,
631
			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
632
	if (unlikely(!rq)) {
633
		rq = request_alloc_slow(tl, gfp);
634
		if (!rq) {
635 636 637
			ret = -ENOMEM;
			goto err_unreserve;
		}
638
	}
639

640
	ret = intel_timeline_get_seqno(tl, rq, &seqno);
641 642 643
	if (ret)
		goto err_free;

644
	rq->i915 = ce->engine->i915;
645
	rq->hw_context = ce;
646 647
	rq->gem_context = ce->gem_context;
	rq->engine = ce->engine;
648
	rq->ring = ce->ring;
649
	rq->execution_mask = ce->engine->mask;
650 651

	rcu_assign_pointer(rq->timeline, tl);
652 653
	rq->hwsp_seqno = tl->hwsp_seqno;
	rq->hwsp_cacheline = tl->hwsp_cacheline;
654

655
	rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
656

657
	spin_lock_init(&rq->lock);
658 659
	dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock,
		       tl->fence_context, seqno);
660

661
	/* We bump the ref for the fence chain */
662
	i915_sw_fence_init(&i915_request_get(rq)->submit, submit_notify);
663
	i915_sw_fence_init(&i915_request_get(rq)->semaphore, semaphore_notify);
664

665
	i915_sched_node_init(&rq->sched);
666

667
	/* No zalloc, must clear what we need by hand */
668 669 670
	rq->file_priv = NULL;
	rq->batch = NULL;
	rq->capture_list = NULL;
671
	rq->flags = 0;
672

673 674
	INIT_LIST_HEAD(&rq->execute_cb);

675 676 677
	/*
	 * Reserve space in the ring buffer for all the commands required to
	 * eventually emit this request. This is to guarantee that the
678
	 * i915_request_add() call can't fail. Note that the reserve may need
679 680
	 * to be redone if the request is not actually submitted straight
	 * away, e.g. because a GPU scheduler has deferred it.
681 682 683 684 685
	 *
	 * Note that due to how we add reserved_space to intel_ring_begin()
	 * we need to double our request to ensure that if we need to wrap
	 * around inside i915_request_add() there is sufficient space at
	 * the beginning of the ring as well.
686
	 */
687 688
	rq->reserved_space =
		2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
689

690 691
	/*
	 * Record the position of the start of the request so that
692 693 694 695
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
696
	rq->head = rq->ring->emit;
697

698
	ret = rq->engine->request_alloc(rq);
699 700
	if (ret)
		goto err_unwind;
701

702 703
	rq->infix = rq->ring->emit; /* end of header; start of user payload */

704
	intel_context_mark_active(ce);
705
	return rq;
706

707
err_unwind:
708
	ce->ring->emit = rq->head;
709

710
	/* Make sure we didn't add ourselves to external state before freeing */
711 712
	GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
	GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
713

714
err_free:
715
	kmem_cache_free(global.slab_requests, rq);
716
err_unreserve:
717
	intel_context_unpin(ce);
718
	return ERR_PTR(ret);
719 720
}

721 722 723 724
struct i915_request *
i915_request_create(struct intel_context *ce)
{
	struct i915_request *rq;
725
	struct intel_timeline *tl;
726

727 728 729
	tl = intel_context_timeline_lock(ce);
	if (IS_ERR(tl))
		return ERR_CAST(tl);
730 731

	/* Move our oldest request to the slab-cache (if not in use!) */
732 733
	rq = list_first_entry(&tl->requests, typeof(*rq), link);
	if (!list_is_last(&rq->link, &tl->requests))
734 735 736 737 738 739 740 741 742
		i915_request_retire(rq);

	intel_context_enter(ce);
	rq = __i915_request_create(ce, GFP_KERNEL);
	intel_context_exit(ce); /* active reference transferred to request */
	if (IS_ERR(rq))
		goto err_unlock;

	/* Check that we do not interrupt ourselves with a new request */
743
	rq->cookie = lockdep_pin_lock(&tl->mutex);
744 745 746 747

	return rq;

err_unlock:
748
	intel_context_timeline_unlock(tl);
749 750 751
	return rq;
}

752 753 754
static int
i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
{
755 756 757
	struct intel_timeline *tl;
	struct dma_fence *fence;
	int err;
758

759 760 761 762 763 764 765 766 767
	GEM_BUG_ON(i915_request_timeline(rq) ==
		   rcu_access_pointer(signal->timeline));

	rcu_read_lock();
	tl = rcu_dereference(signal->timeline);
	if (i915_request_started(signal) || !kref_get_unless_zero(&tl->kref))
		tl = NULL;
	rcu_read_unlock();
	if (!tl) /* already started or maybe even completed */
768 769
		return 0;

770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
	fence = ERR_PTR(-EBUSY);
	if (mutex_trylock(&tl->mutex)) {
		fence = NULL;
		if (!i915_request_started(signal) &&
		    !list_is_first(&signal->link, &tl->requests)) {
			signal = list_prev_entry(signal, link);
			fence = dma_fence_get(&signal->fence);
		}
		mutex_unlock(&tl->mutex);
	}
	intel_timeline_put(tl);
	if (IS_ERR_OR_NULL(fence))
		return PTR_ERR_OR_ZERO(fence);

	err = 0;
	if (intel_timeline_sync_is_later(i915_request_timeline(rq), fence))
		err = i915_sw_fence_await_dma_fence(&rq->submit,
						    fence, 0,
						    I915_FENCE_GFP);
	dma_fence_put(fence);

	return err;
792 793
}

794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
static intel_engine_mask_t
already_busywaiting(struct i915_request *rq)
{
	/*
	 * Polling a semaphore causes bus traffic, delaying other users of
	 * both the GPU and CPU. We want to limit the impact on others,
	 * while taking advantage of early submission to reduce GPU
	 * latency. Therefore we restrict ourselves to not using more
	 * than one semaphore from each source, and not using a semaphore
	 * if we have detected the engine is saturated (i.e. would not be
	 * submitted early and cause bus traffic reading an already passed
	 * semaphore).
	 *
	 * See the are-we-too-late? check in __i915_request_submit().
	 */
809
	return rq->sched.semaphores | rq->engine->saturated;
810 811
}

812 813 814 815 816
static int
emit_semaphore_wait(struct i915_request *to,
		    struct i915_request *from,
		    gfp_t gfp)
{
817
	const int has_token = INTEL_GEN(to->i915) >= 12;
818
	u32 hwsp_offset;
819
	int len;
820 821 822 823
	u32 *cs;

	GEM_BUG_ON(INTEL_GEN(to->i915) < 8);

824
	/* Just emit the first semaphore we see as request space is limited. */
825
	if (already_busywaiting(to) & from->engine->mask)
826
		goto await_fence;
827

828 829
	if (i915_request_await_start(to, from) < 0)
		goto await_fence;
830

831
	/* Only submit our spinner after the signaler is running! */
832 833
	if (__i915_request_await_execution(to, from, NULL, gfp))
		goto await_fence;
834

835
	/* We need to pin the signaler's HWSP until we are finished reading. */
836 837
	if (intel_timeline_read_hwsp(from, to, &hwsp_offset))
		goto await_fence;
838

839 840 841 842 843
	len = 4;
	if (has_token)
		len += 2;

	cs = intel_ring_begin(to, len);
844 845 846 847 848 849 850 851 852 853 854
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	/*
	 * Using greater-than-or-equal here means we have to worry
	 * about seqno wraparound. To side step that issue, we swap
	 * the timeline HWSP upon wrapping, so that everyone listening
	 * for the old (pre-wrap) values do not see the much smaller
	 * (post-wrap) values than they were expecting (and so wait
	 * forever).
	 */
855 856 857 858 859
	*cs++ = (MI_SEMAPHORE_WAIT |
		 MI_SEMAPHORE_GLOBAL_GTT |
		 MI_SEMAPHORE_POLL |
		 MI_SEMAPHORE_SAD_GTE_SDD) +
		has_token;
860 861 862
	*cs++ = from->fence.seqno;
	*cs++ = hwsp_offset;
	*cs++ = 0;
863 864 865 866
	if (has_token) {
		*cs++ = 0;
		*cs++ = MI_NOOP;
	}
867 868

	intel_ring_advance(to, cs);
869 870
	to->sched.semaphores |= from->engine->mask;
	to->sched.flags |= I915_SCHED_HAS_SEMAPHORE_CHAIN;
871
	return 0;
872 873 874 875 876

await_fence:
	return i915_sw_fence_await_dma_fence(&to->submit,
					     &from->fence, 0,
					     I915_FENCE_GFP);
877 878
}

879
static int
880
i915_request_await_request(struct i915_request *to, struct i915_request *from)
881
{
882
	int ret;
883 884

	GEM_BUG_ON(to == from);
885
	GEM_BUG_ON(to->timeline == from->timeline);
886

887
	if (i915_request_completed(from))
888 889
		return 0;

890
	if (to->engine->schedule) {
891
		ret = i915_sched_node_add_dependency(&to->sched, &from->sched);
892 893 894 895
		if (ret < 0)
			return ret;
	}

896 897 898
	if (to->engine == from->engine) {
		ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
						       &from->submit,
899
						       I915_FENCE_GFP);
900 901 902
	} else if (intel_engine_has_semaphores(to->engine) &&
		   to->gem_context->sched.priority >= I915_PRIORITY_NORMAL) {
		ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
903 904 905 906
	} else {
		ret = i915_sw_fence_await_dma_fence(&to->submit,
						    &from->fence, 0,
						    I915_FENCE_GFP);
907
	}
908 909 910 911 912 913 914 915 916 917
	if (ret < 0)
		return ret;

	if (to->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN) {
		ret = i915_sw_fence_await_dma_fence(&to->semaphore,
						    &from->fence, 0,
						    I915_FENCE_GFP);
		if (ret < 0)
			return ret;
	}
918

919
	return 0;
920 921
}

922
int
923
i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
924
{
925 926
	struct dma_fence **child = &fence;
	unsigned int nchild = 1;
927 928
	int ret;

929 930
	/*
	 * Note that if the fence-array was created in signal-on-any mode,
931 932 933 934 935 936
	 * we should *not* decompose it into its individual fences. However,
	 * we don't currently store which mode the fence-array is operating
	 * in. Fortunately, the only user of signal-on-any is private to
	 * amdgpu and we should not see any incoming fence-array from
	 * sync-file being in signal-on-any mode.
	 */
937 938 939 940 941 942 943
	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);

		child = array->fences;
		nchild = array->num_fences;
		GEM_BUG_ON(!nchild);
	}
944

945 946 947 948
	do {
		fence = *child++;
		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
			continue;
949

950 951
		/*
		 * Requests on the same timeline are explicitly ordered, along
952
		 * with their dependencies, by i915_request_add() which ensures
953 954
		 * that requests are submitted in-order through each ring.
		 */
955
		if (fence->context == rq->fence.context)
956 957
			continue;

958
		/* Squash repeated waits to the same timelines */
959
		if (fence->context &&
960 961
		    intel_timeline_sync_is_later(i915_request_timeline(rq),
						 fence))
962 963
			continue;

964
		if (dma_fence_is_i915(fence))
965
			ret = i915_request_await_request(rq, to_request(fence));
966
		else
967
			ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
968
							    fence->context ? I915_FENCE_TIMEOUT : 0,
969
							    I915_FENCE_GFP);
970 971
		if (ret < 0)
			return ret;
972 973

		/* Record the latest fence used against each timeline */
974
		if (fence->context)
975 976
			intel_timeline_sync_set(i915_request_timeline(rq),
						fence);
977
	} while (--nchild);
978 979 980 981

	return 0;
}

982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
int
i915_request_await_execution(struct i915_request *rq,
			     struct dma_fence *fence,
			     void (*hook)(struct i915_request *rq,
					  struct dma_fence *signal))
{
	struct dma_fence **child = &fence;
	unsigned int nchild = 1;
	int ret;

	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);

		/* XXX Error for signal-on-any fence arrays */

		child = array->fences;
		nchild = array->num_fences;
		GEM_BUG_ON(!nchild);
	}

	do {
		fence = *child++;
		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
			continue;

		/*
		 * We don't squash repeated fence dependencies here as we
		 * want to run our callback in all cases.
		 */

		if (dma_fence_is_i915(fence))
			ret = __i915_request_await_execution(rq,
							     to_request(fence),
							     hook,
							     I915_FENCE_GFP);
		else
			ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
							    I915_FENCE_TIMEOUT,
							    GFP_KERNEL);
		if (ret < 0)
			return ret;
	} while (--nchild);

	return 0;
}

1028
/**
1029
 * i915_request_await_object - set this request to (async) wait upon a bo
1030 1031
 * @to: request we are wishing to use
 * @obj: object which may be in use on another ring.
1032
 * @write: whether the wait is on behalf of a writer
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Conceptually we serialise writes between engines inside the GPU.
 * We only allow one engine to write into a buffer at any time, but
 * multiple readers. To ensure each has a coherent view of memory, we must:
 *
 * - If there is an outstanding write request to the object, the new
 *   request must wait for it to complete (either CPU or in hw, requests
 *   on the same ring will be naturally ordered).
 *
 * - If we are a write request (pending_write_domain is set), the new
 *   request must wait for outstanding read requests to complete.
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
int
1049 1050 1051
i915_request_await_object(struct i915_request *to,
			  struct drm_i915_gem_object *obj,
			  bool write)
1052
{
1053 1054
	struct dma_fence *excl;
	int ret = 0;
1055 1056

	if (write) {
1057 1058 1059
		struct dma_fence **shared;
		unsigned int count, i;

1060
		ret = dma_resv_get_fences_rcu(obj->base.resv,
1061 1062 1063 1064 1065
							&excl, &count, &shared);
		if (ret)
			return ret;

		for (i = 0; i < count; i++) {
1066
			ret = i915_request_await_dma_fence(to, shared[i]);
1067 1068 1069 1070 1071 1072 1073 1074 1075
			if (ret)
				break;

			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
1076
	} else {
1077
		excl = dma_resv_get_excl_rcu(obj->base.resv);
1078 1079
	}

1080 1081
	if (excl) {
		if (ret == 0)
1082
			ret = i915_request_await_dma_fence(to, excl);
1083

1084
		dma_fence_put(excl);
1085 1086
	}

1087
	return ret;
1088 1089
}

1090 1091 1092 1093 1094 1095 1096 1097
void i915_request_skip(struct i915_request *rq, int error)
{
	void *vaddr = rq->ring->vaddr;
	u32 head;

	GEM_BUG_ON(!IS_ERR_VALUE((long)error));
	dma_fence_set_error(&rq->fence, error);

C
Chris Wilson 已提交
1098 1099 1100
	if (rq->infix == rq->postfix)
		return;

1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
	/*
	 * As this request likely depends on state from the lost
	 * context, clear out all the user operations leaving the
	 * breadcrumb at the end (so we get the fence notifications).
	 */
	head = rq->infix;
	if (rq->postfix < head) {
		memset(vaddr + head, 0, rq->ring->size - head);
		head = 0;
	}
	memset(vaddr + head, 0, rq->postfix - head);
C
Chris Wilson 已提交
1112
	rq->infix = rq->postfix;
1113 1114
}

1115 1116 1117
static struct i915_request *
__i915_request_add_to_timeline(struct i915_request *rq)
{
1118
	struct intel_timeline *timeline = i915_request_timeline(rq);
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
	struct i915_request *prev;

	/*
	 * Dependency tracking and request ordering along the timeline
	 * is special cased so that we can eliminate redundant ordering
	 * operations while building the request (we know that the timeline
	 * itself is ordered, and here we guarantee it).
	 *
	 * As we know we will need to emit tracking along the timeline,
	 * we embed the hooks into our request struct -- at the cost of
	 * having to have specialised no-allocation interfaces (which will
	 * be beneficial elsewhere).
	 *
	 * A second benefit to open-coding i915_request_await_request is
	 * that we can apply a slight variant of the rules specialised
	 * for timelines that jump between engines (such as virtual engines).
	 * If we consider the case of virtual engine, we must emit a dma-fence
	 * to prevent scheduling of the second request until the first is
	 * complete (to maximise our greedy late load balancing) and this
	 * precludes optimising to use semaphores serialisation of a single
	 * timeline across engines.
	 */
1141 1142
	prev = to_request(__i915_active_fence_set(&timeline->last_request,
						  &rq->fence));
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
	if (prev && !i915_request_completed(prev)) {
		if (is_power_of_2(prev->engine->mask | rq->engine->mask))
			i915_sw_fence_await_sw_fence(&rq->submit,
						     &prev->submit,
						     &rq->submitq);
		else
			__i915_sw_fence_await_dma_fence(&rq->submit,
							&prev->fence,
							&rq->dmaq);
		if (rq->engine->schedule)
			__i915_sched_node_add_dependency(&rq->sched,
							 &prev->sched,
							 &rq->dep,
							 0);
	}

	list_add_tail(&rq->link, &timeline->requests);

1161 1162 1163 1164 1165
	/*
	 * Make sure that no request gazumped us - if it was allocated after
	 * our i915_request_alloc() and called __i915_request_add() before
	 * us, the timeline will hold its seqno which is later than ours.
	 */
1166 1167 1168 1169 1170
	GEM_BUG_ON(timeline->seqno != rq->fence.seqno);

	return prev;
}

1171 1172 1173 1174 1175
/*
 * NB: This function is not allowed to fail. Doing so would mean the the
 * request is not being tracked for completion but the work itself is
 * going to happen on the hardware. This would be a Bad Thing(tm).
 */
1176
struct i915_request *__i915_request_commit(struct i915_request *rq)
1177
{
1178 1179
	struct intel_engine_cs *engine = rq->engine;
	struct intel_ring *ring = rq->ring;
1180
	u32 *cs;
1181

1182
	GEM_TRACE("%s fence %llx:%lld\n",
1183
		  engine->name, rq->fence.context, rq->fence.seqno);
1184

1185 1186 1187 1188 1189
	/*
	 * To ensure that this call will not fail, space for its emissions
	 * should already have been reserved in the ring buffer. Let the ring
	 * know that it is time to use that space up.
	 */
1190 1191
	GEM_BUG_ON(rq->reserved_space > ring->space);
	rq->reserved_space = 0;
1192
	rq->emitted_jiffies = jiffies;
1193

1194 1195
	/*
	 * Record the position of the start of the breadcrumb so that
1196 1197
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
1198
	 * position of the ring's HEAD.
1199
	 */
1200
	cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
1201
	GEM_BUG_ON(IS_ERR(cs));
1202
	rq->postfix = intel_ring_offset(rq, cs);
1203

1204
	return __i915_request_add_to_timeline(rq);
1205 1206 1207 1208 1209
}

void __i915_request_queue(struct i915_request *rq,
			  const struct i915_sched_attr *attr)
{
1210 1211
	/*
	 * Let the backend know a new request has arrived that may need
1212 1213 1214 1215 1216 1217 1218 1219 1220
	 * to adjust the existing execution schedule due to a high priority
	 * request - i.e. we may want to preempt the current request in order
	 * to run a high priority dependency chain *before* we can execute this
	 * request.
	 *
	 * This is called before the request is ready to run so that we can
	 * decide whether to preempt the entire chain so that it is ready to
	 * run at the earliest possible convenience.
	 */
1221
	i915_sw_fence_commit(&rq->semaphore);
1222 1223
	if (attr && rq->engine->schedule)
		rq->engine->schedule(rq, attr);
1224 1225 1226 1227 1228
	i915_sw_fence_commit(&rq->submit);
}

void i915_request_add(struct i915_request *rq)
{
1229
	struct i915_sched_attr attr = rq->gem_context->sched;
1230
	struct intel_timeline * const tl = i915_request_timeline(rq);
1231 1232
	struct i915_request *prev;

1233 1234
	lockdep_assert_held(&tl->mutex);
	lockdep_unpin_lock(&tl->mutex, rq->cookie);
1235 1236 1237 1238 1239

	trace_i915_request_add(rq);

	prev = __i915_request_commit(rq);

1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
	/*
	 * Boost actual workloads past semaphores!
	 *
	 * With semaphores we spin on one engine waiting for another,
	 * simply to reduce the latency of starting our work when
	 * the signaler completes. However, if there is any other
	 * work that we could be doing on this engine instead, that
	 * is better utilisation and will reduce the overall duration
	 * of the current work. To avoid PI boosting a semaphore
	 * far in the distance past over useful work, we keep a history
	 * of any semaphore use along our dependency chain.
	 */
	if (!(rq->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN))
		attr.priority |= I915_PRIORITY_NOSEMAPHORE;

	/*
	 * Boost priorities to new clients (new request flows).
	 *
	 * Allow interactive/synchronous clients to jump ahead of
	 * the bulk clients. (FQ_CODEL)
	 */
	if (list_empty(&rq->sched.signalers_list))
		attr.priority |= I915_PRIORITY_WAIT;

1264
	local_bh_disable();
1265
	__i915_request_queue(rq, &attr);
1266
	local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
1267

1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
	/*
	 * In typical scenarios, we do not expect the previous request on
	 * the timeline to be still tracked by timeline->last_request if it
	 * has been completed. If the completed request is still here, that
	 * implies that request retirement is a long way behind submission,
	 * suggesting that we haven't been retiring frequently enough from
	 * the combination of retire-before-alloc, waiters and the background
	 * retirement worker. So if the last request on this timeline was
	 * already completed, do a catch up pass, flushing the retirement queue
	 * up to this client. Since we have now moved the heaviest operations
	 * during retirement onto secondary workers, such as freeing objects
	 * or contexts, retiring a bunch of requests is mostly list management
	 * (and cache misses), and so we should not be overly penalizing this
	 * client by performing excess work, though we may still performing
	 * work on behalf of others -- but instead we should benefit from
	 * improved resource management. (Well, that's the theory at least.)
	 */
1285 1286 1287
	if (prev &&
	    i915_request_completed(prev) &&
	    rcu_access_pointer(prev->timeline) == tl)
1288
		i915_request_retire_upto(prev);
1289

1290
	mutex_unlock(&tl->mutex);
1291 1292 1293 1294 1295 1296
}

static unsigned long local_clock_us(unsigned int *cpu)
{
	unsigned long t;

1297 1298
	/*
	 * Cheaply and approximately convert from nanoseconds to microseconds.
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
	 * The result and subsequent calculations are also defined in the same
	 * approximate microseconds units. The principal source of timing
	 * error here is from the simple truncation.
	 *
	 * Note that local_clock() is only defined wrt to the current CPU;
	 * the comparisons are no longer valid if we switch CPUs. Instead of
	 * blocking preemption for the entire busywait, we can detect the CPU
	 * switch and use that as indicator of system load and a reason to
	 * stop busywaiting, see busywait_stop().
	 */
	*cpu = get_cpu();
	t = local_clock() >> 10;
	put_cpu();

	return t;
}

static bool busywait_stop(unsigned long timeout, unsigned int cpu)
{
	unsigned int this_cpu;

	if (time_after(local_clock_us(&this_cpu), timeout))
		return true;

	return this_cpu != cpu;
}

1326 1327
static bool __i915_spin_request(const struct i915_request * const rq,
				int state, unsigned long timeout_us)
1328
{
1329
	unsigned int cpu;
1330 1331 1332 1333 1334 1335 1336

	/*
	 * Only wait for the request if we know it is likely to complete.
	 *
	 * We don't track the timestamps around requests, nor the average
	 * request length, so we do not have a good indicator that this
	 * request will complete within the timeout. What we do know is the
1337 1338 1339 1340
	 * order in which requests are executed by the context and so we can
	 * tell if the request has been started. If the request is not even
	 * running yet, it is a fair assumption that it will not complete
	 * within our relatively short timeout.
1341
	 */
1342
	if (!i915_request_is_running(rq))
1343 1344
		return false;

1345 1346
	/*
	 * When waiting for high frequency requests, e.g. during synchronous
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
	 * rendering split between the CPU and GPU, the finite amount of time
	 * required to set up the irq and wait upon it limits the response
	 * rate. By busywaiting on the request completion for a short while we
	 * can service the high frequency waits as quick as possible. However,
	 * if it is a slow request, we want to sleep as quickly as possible.
	 * The tradeoff between waiting and sleeping is roughly the time it
	 * takes to sleep on a request, on the order of a microsecond.
	 */

	timeout_us += local_clock_us(&cpu);
	do {
1358 1359
		if (i915_request_completed(rq))
			return true;
1360

1361 1362 1363 1364 1365 1366
		if (signal_pending_state(state, current))
			break;

		if (busywait_stop(timeout_us, cpu))
			break;

1367
		cpu_relax();
1368 1369 1370 1371 1372
	} while (!need_resched());

	return false;
}

1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
struct request_wait {
	struct dma_fence_cb cb;
	struct task_struct *tsk;
};

static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
{
	struct request_wait *wait = container_of(cb, typeof(*wait), cb);

	wake_up_process(wait->tsk);
}

1385
/**
1386
 * i915_request_wait - wait until execution of request has finished
1387
 * @rq: the request to wait upon
1388
 * @flags: how to wait
1389 1390
 * @timeout: how long to wait in jiffies
 *
1391
 * i915_request_wait() waits for the request to be completed, for a
1392 1393
 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
 * unbounded wait).
1394
 *
1395 1396 1397 1398
 * Returns the remaining time (in jiffies) if the request completed, which may
 * be zero or -ETIME if the request is unfinished after the timeout expires.
 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
 * pending before the request completes.
1399
 */
1400
long i915_request_wait(struct i915_request *rq,
1401 1402
		       unsigned int flags,
		       long timeout)
1403
{
1404 1405
	const int state = flags & I915_WAIT_INTERRUPTIBLE ?
		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1406
	struct request_wait wait;
1407 1408

	might_sleep();
1409
	GEM_BUG_ON(timeout < 0);
1410

1411
	if (dma_fence_is_signaled(&rq->fence))
1412
		return timeout;
1413

1414 1415
	if (!timeout)
		return -ETIME;
1416

1417
	trace_i915_request_wait_begin(rq, flags);
1418 1419 1420 1421 1422 1423 1424

	/*
	 * We must never wait on the GPU while holding a lock as we
	 * may need to perform a GPU reset. So while we don't need to
	 * serialise wait/reset with an explicit lock, we do want
	 * lockdep to detect potential dependency cycles.
	 */
1425
	mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
1426

1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
	/*
	 * Optimistic spin before touching IRQs.
	 *
	 * We may use a rather large value here to offset the penalty of
	 * switching away from the active task. Frequently, the client will
	 * wait upon an old swapbuffer to throttle itself to remain within a
	 * frame of the gpu. If the client is running in lockstep with the gpu,
	 * then it should not be waiting long at all, and a sleep now will incur
	 * extra scheduler latency in producing the next frame. To try to
	 * avoid adding the cost of enabling/disabling the interrupt to the
	 * short wait, we first spin to see if the request would have completed
	 * in the time taken to setup the interrupt.
	 *
	 * We need upto 5us to enable the irq, and upto 20us to hide the
	 * scheduler latency of a context switch, ignoring the secondary
	 * impacts from a context switch such as cache eviction.
	 *
	 * The scheme used for low-latency IO is called "hybrid interrupt
	 * polling". The suggestion there is to sleep until just before you
	 * expect to be woken by the device interrupt and then poll for its
	 * completion. That requires having a good predictor for the request
	 * duration, which we currently lack.
	 */
1450
	if (IS_ACTIVE(CONFIG_DRM_I915_SPIN_REQUEST) &&
1451 1452
	    __i915_spin_request(rq, state, CONFIG_DRM_I915_SPIN_REQUEST)) {
		dma_fence_signal(&rq->fence);
1453
		goto out;
1454
	}
1455

1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
	/*
	 * This client is about to stall waiting for the GPU. In many cases
	 * this is undesirable and limits the throughput of the system, as
	 * many clients cannot continue processing user input/output whilst
	 * blocked. RPS autotuning may take tens of milliseconds to respond
	 * to the GPU load and thus incurs additional latency for the client.
	 * We can circumvent that by promoting the GPU frequency to maximum
	 * before we sleep. This makes the GPU throttle up much more quickly
	 * (good for benchmarks and user experience, e.g. window animations),
	 * but at a cost of spending more power processing the workload
	 * (bad for battery).
	 */
	if (flags & I915_WAIT_PRIORITY) {
		if (!i915_request_started(rq) && INTEL_GEN(rq->i915) >= 6)
			gen6_rps_boost(rq);
1471
		i915_schedule_bump_priority(rq, I915_PRIORITY_WAIT);
1472
	}
1473

1474 1475 1476
	wait.tsk = current;
	if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
		goto out;
1477

1478 1479
	for (;;) {
		set_current_state(state);
1480

1481 1482
		if (i915_request_completed(rq)) {
			dma_fence_signal(&rq->fence);
1483
			break;
1484
		}
1485 1486

		if (signal_pending_state(state, current)) {
1487
			timeout = -ERESTARTSYS;
1488 1489 1490
			break;
		}

1491 1492
		if (!timeout) {
			timeout = -ETIME;
1493 1494 1495
			break;
		}

1496
		intel_engine_flush_submission(rq->engine);
1497
		timeout = io_schedule_timeout(timeout);
1498
	}
1499
	__set_current_state(TASK_RUNNING);
1500

1501 1502 1503
	dma_fence_remove_callback(&rq->fence, &wait.cb);

out:
1504
	mutex_release(&rq->engine->gt->reset.mutex.dep_map, 0, _THIS_IP_);
1505
	trace_i915_request_wait_end(rq);
1506
	return timeout;
1507
}
1508

1509 1510
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/mock_request.c"
1511
#include "selftests/i915_request.c"
1512
#endif
1513

1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
static void i915_global_request_shrink(void)
{
	kmem_cache_shrink(global.slab_dependencies);
	kmem_cache_shrink(global.slab_execute_cbs);
	kmem_cache_shrink(global.slab_requests);
}

static void i915_global_request_exit(void)
{
	kmem_cache_destroy(global.slab_dependencies);
	kmem_cache_destroy(global.slab_execute_cbs);
	kmem_cache_destroy(global.slab_requests);
}

static struct i915_global_request global = { {
	.shrink = i915_global_request_shrink,
	.exit = i915_global_request_exit,
} };

1533 1534 1535 1536 1537 1538 1539 1540 1541
int __init i915_global_request_init(void)
{
	global.slab_requests = KMEM_CACHE(i915_request,
					  SLAB_HWCACHE_ALIGN |
					  SLAB_RECLAIM_ACCOUNT |
					  SLAB_TYPESAFE_BY_RCU);
	if (!global.slab_requests)
		return -ENOMEM;

1542 1543 1544 1545 1546 1547 1548
	global.slab_execute_cbs = KMEM_CACHE(execute_cb,
					     SLAB_HWCACHE_ALIGN |
					     SLAB_RECLAIM_ACCOUNT |
					     SLAB_TYPESAFE_BY_RCU);
	if (!global.slab_execute_cbs)
		goto err_requests;

1549 1550 1551 1552
	global.slab_dependencies = KMEM_CACHE(i915_dependency,
					      SLAB_HWCACHE_ALIGN |
					      SLAB_RECLAIM_ACCOUNT);
	if (!global.slab_dependencies)
1553
		goto err_execute_cbs;
1554

1555
	i915_global_register(&global.base);
1556 1557
	return 0;

1558 1559
err_execute_cbs:
	kmem_cache_destroy(global.slab_execute_cbs);
1560 1561 1562 1563
err_requests:
	kmem_cache_destroy(global.slab_requests);
	return -ENOMEM;
}