spi-sirf.c 23.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
/*
 * SPI bus driver for CSR SiRFprimaII
 *
 * Copyright (c) 2011 Cambridge Silicon Radio Limited, a CSR plc group company.
 *
 * Licensed under GPLv2 or later.
 */

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/clk.h>
13
#include <linux/completion.h>
14 15 16 17 18 19 20 21 22
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/of.h>
#include <linux/bitops.h>
#include <linux/err.h>
#include <linux/platform_device.h>
#include <linux/of_gpio.h>
#include <linux/spi/spi.h>
#include <linux/spi/spi_bitbang.h>
23 24 25
#include <linux/dmaengine.h>
#include <linux/dma-direction.h>
#include <linux/dma-mapping.h>
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

#define DRIVER_NAME "sirfsoc_spi"

#define SIRFSOC_SPI_CTRL		0x0000
#define SIRFSOC_SPI_CMD			0x0004
#define SIRFSOC_SPI_TX_RX_EN		0x0008
#define SIRFSOC_SPI_INT_EN		0x000C
#define SIRFSOC_SPI_INT_STATUS		0x0010
#define SIRFSOC_SPI_TX_DMA_IO_CTRL	0x0100
#define SIRFSOC_SPI_TX_DMA_IO_LEN	0x0104
#define SIRFSOC_SPI_TXFIFO_CTRL		0x0108
#define SIRFSOC_SPI_TXFIFO_LEVEL_CHK	0x010C
#define SIRFSOC_SPI_TXFIFO_OP		0x0110
#define SIRFSOC_SPI_TXFIFO_STATUS	0x0114
#define SIRFSOC_SPI_TXFIFO_DATA		0x0118
#define SIRFSOC_SPI_RX_DMA_IO_CTRL	0x0120
#define SIRFSOC_SPI_RX_DMA_IO_LEN	0x0124
#define SIRFSOC_SPI_RXFIFO_CTRL		0x0128
#define SIRFSOC_SPI_RXFIFO_LEVEL_CHK	0x012C
#define SIRFSOC_SPI_RXFIFO_OP		0x0130
#define SIRFSOC_SPI_RXFIFO_STATUS	0x0134
#define SIRFSOC_SPI_RXFIFO_DATA		0x0138
#define SIRFSOC_SPI_DUMMY_DELAY_CTL	0x0144

/* SPI CTRL register defines */
#define SIRFSOC_SPI_SLV_MODE		BIT(16)
#define SIRFSOC_SPI_CMD_MODE		BIT(17)
#define SIRFSOC_SPI_CS_IO_OUT		BIT(18)
#define SIRFSOC_SPI_CS_IO_MODE		BIT(19)
#define SIRFSOC_SPI_CLK_IDLE_STAT	BIT(20)
#define SIRFSOC_SPI_CS_IDLE_STAT	BIT(21)
#define SIRFSOC_SPI_TRAN_MSB		BIT(22)
#define SIRFSOC_SPI_DRV_POS_EDGE	BIT(23)
#define SIRFSOC_SPI_CS_HOLD_TIME	BIT(24)
#define SIRFSOC_SPI_CLK_SAMPLE_MODE	BIT(25)
#define SIRFSOC_SPI_TRAN_DAT_FORMAT_8	(0 << 26)
#define SIRFSOC_SPI_TRAN_DAT_FORMAT_12	(1 << 26)
#define SIRFSOC_SPI_TRAN_DAT_FORMAT_16	(2 << 26)
#define SIRFSOC_SPI_TRAN_DAT_FORMAT_32	(3 << 26)
65 66 67
#define SIRFSOC_SPI_CMD_BYTE_NUM(x)	((x & 3) << 28)
#define SIRFSOC_SPI_ENA_AUTO_CLR	BIT(30)
#define SIRFSOC_SPI_MUL_DAT_MODE	BIT(31)
68 69

/* Interrupt Enable */
70 71 72 73
#define SIRFSOC_SPI_RX_DONE_INT_EN	BIT(0)
#define SIRFSOC_SPI_TX_DONE_INT_EN	BIT(1)
#define SIRFSOC_SPI_RX_OFLOW_INT_EN	BIT(2)
#define SIRFSOC_SPI_TX_UFLOW_INT_EN	BIT(3)
74 75 76 77 78 79 80 81
#define SIRFSOC_SPI_RX_IO_DMA_INT_EN	BIT(4)
#define SIRFSOC_SPI_TX_IO_DMA_INT_EN	BIT(5)
#define SIRFSOC_SPI_RXFIFO_FULL_INT_EN	BIT(6)
#define SIRFSOC_SPI_TXFIFO_EMPTY_INT_EN	BIT(7)
#define SIRFSOC_SPI_RXFIFO_THD_INT_EN	BIT(8)
#define SIRFSOC_SPI_TXFIFO_THD_INT_EN	BIT(9)
#define SIRFSOC_SPI_FRM_END_INT_EN	BIT(10)

82
#define SIRFSOC_SPI_INT_MASK_ALL	0x1FFF
83 84 85 86 87 88

/* Interrupt status */
#define SIRFSOC_SPI_RX_DONE		BIT(0)
#define SIRFSOC_SPI_TX_DONE		BIT(1)
#define SIRFSOC_SPI_RX_OFLOW		BIT(2)
#define SIRFSOC_SPI_TX_UFLOW		BIT(3)
89
#define SIRFSOC_SPI_RX_IO_DMA		BIT(4)
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
#define SIRFSOC_SPI_RX_FIFO_FULL	BIT(6)
#define SIRFSOC_SPI_TXFIFO_EMPTY	BIT(7)
#define SIRFSOC_SPI_RXFIFO_THD_REACH	BIT(8)
#define SIRFSOC_SPI_TXFIFO_THD_REACH	BIT(9)
#define SIRFSOC_SPI_FRM_END		BIT(10)

/* TX RX enable */
#define SIRFSOC_SPI_RX_EN		BIT(0)
#define SIRFSOC_SPI_TX_EN		BIT(1)
#define SIRFSOC_SPI_CMD_TX_EN		BIT(2)

#define SIRFSOC_SPI_IO_MODE_SEL		BIT(0)
#define SIRFSOC_SPI_RX_DMA_FLUSH	BIT(2)

/* FIFO OPs */
#define SIRFSOC_SPI_FIFO_RESET		BIT(0)
#define SIRFSOC_SPI_FIFO_START		BIT(1)

/* FIFO CTRL */
#define SIRFSOC_SPI_FIFO_WIDTH_BYTE	(0 << 0)
#define SIRFSOC_SPI_FIFO_WIDTH_WORD	(1 << 0)
#define SIRFSOC_SPI_FIFO_WIDTH_DWORD	(2 << 0)

/* FIFO Status */
#define	SIRFSOC_SPI_FIFO_LEVEL_MASK	0xFF
#define SIRFSOC_SPI_FIFO_FULL		BIT(8)
#define SIRFSOC_SPI_FIFO_EMPTY		BIT(9)

/* 256 bytes rx/tx FIFO */
#define SIRFSOC_SPI_FIFO_SIZE		256
#define SIRFSOC_SPI_DAT_FRM_LEN_MAX	(64 * 1024)

#define SIRFSOC_SPI_FIFO_SC(x)		((x) & 0x3F)
#define SIRFSOC_SPI_FIFO_LC(x)		(((x) & 0x3F) << 10)
#define SIRFSOC_SPI_FIFO_HC(x)		(((x) & 0x3F) << 20)
#define SIRFSOC_SPI_FIFO_THD(x)		(((x) & 0xFF) << 2)

127 128 129 130 131 132 133
/*
 * only if the rx/tx buffer and transfer size are 4-bytes aligned, we use dma
 * due to the limitation of dma controller
 */

#define ALIGNED(x) (!((u32)x & 0x3))
#define IS_DMA_VALID(x) (x && ALIGNED(x->tx_buf) && ALIGNED(x->rx_buf) && \
134
	ALIGNED(x->len) && (x->len < 2 * PAGE_SIZE))
135

136 137
#define SIRFSOC_MAX_CMD_BYTES	4

138 139
struct sirfsoc_spi {
	struct spi_bitbang bitbang;
140 141
	struct completion rx_done;
	struct completion tx_done;
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156

	void __iomem *base;
	u32 ctrl_freq;  /* SPI controller clock speed */
	struct clk *clk;

	/* rx & tx bufs from the spi_transfer */
	const void *tx;
	void *rx;

	/* place received word into rx buffer */
	void (*rx_word) (struct sirfsoc_spi *);
	/* get word from tx buffer for sending */
	void (*tx_word) (struct sirfsoc_spi *);

	/* number of words left to be tranmitted/received */
157 158
	unsigned int left_tx_word;
	unsigned int left_rx_word;
159

160 161 162 163 164 165 166
	/* rx & tx DMA channels */
	struct dma_chan *rx_chan;
	struct dma_chan *tx_chan;
	dma_addr_t src_start;
	dma_addr_t dst_start;
	void *dummypage;
	int word_width; /* in bytes */
167

168 169 170 171 172
	/*
	 * if tx size is not more than 4 and rx size is NULL, use
	 * command model
	 */
	bool	tx_by_cmd;
173
	bool	hw_cs;
174 175 176 177 178 179 180 181 182 183 184 185 186 187
};

static void spi_sirfsoc_rx_word_u8(struct sirfsoc_spi *sspi)
{
	u32 data;
	u8 *rx = sspi->rx;

	data = readl(sspi->base + SIRFSOC_SPI_RXFIFO_DATA);

	if (rx) {
		*rx++ = (u8) data;
		sspi->rx = rx;
	}

188
	sspi->left_rx_word--;
189 190 191 192 193 194 195 196 197 198 199 200 201
}

static void spi_sirfsoc_tx_word_u8(struct sirfsoc_spi *sspi)
{
	u32 data = 0;
	const u8 *tx = sspi->tx;

	if (tx) {
		data = *tx++;
		sspi->tx = tx;
	}

	writel(data, sspi->base + SIRFSOC_SPI_TXFIFO_DATA);
202
	sspi->left_tx_word--;
203 204 205 206 207 208 209 210 211 212 213 214 215 216
}

static void spi_sirfsoc_rx_word_u16(struct sirfsoc_spi *sspi)
{
	u32 data;
	u16 *rx = sspi->rx;

	data = readl(sspi->base + SIRFSOC_SPI_RXFIFO_DATA);

	if (rx) {
		*rx++ = (u16) data;
		sspi->rx = rx;
	}

217
	sspi->left_rx_word--;
218 219 220 221 222 223 224 225 226 227 228 229 230
}

static void spi_sirfsoc_tx_word_u16(struct sirfsoc_spi *sspi)
{
	u32 data = 0;
	const u16 *tx = sspi->tx;

	if (tx) {
		data = *tx++;
		sspi->tx = tx;
	}

	writel(data, sspi->base + SIRFSOC_SPI_TXFIFO_DATA);
231
	sspi->left_tx_word--;
232 233 234 235 236 237 238 239 240 241 242 243 244 245
}

static void spi_sirfsoc_rx_word_u32(struct sirfsoc_spi *sspi)
{
	u32 data;
	u32 *rx = sspi->rx;

	data = readl(sspi->base + SIRFSOC_SPI_RXFIFO_DATA);

	if (rx) {
		*rx++ = (u32) data;
		sspi->rx = rx;
	}

246
	sspi->left_rx_word--;
247 248 249 250 251 252 253 254 255 256 257 258 259 260

}

static void spi_sirfsoc_tx_word_u32(struct sirfsoc_spi *sspi)
{
	u32 data = 0;
	const u32 *tx = sspi->tx;

	if (tx) {
		data = *tx++;
		sspi->tx = tx;
	}

	writel(data, sspi->base + SIRFSOC_SPI_TXFIFO_DATA);
261
	sspi->left_tx_word--;
262 263 264 265 266 267
}

static irqreturn_t spi_sirfsoc_irq(int irq, void *dev_id)
{
	struct sirfsoc_spi *sspi = dev_id;
	u32 spi_stat = readl(sspi->base + SIRFSOC_SPI_INT_STATUS);
268 269 270
	if (sspi->tx_by_cmd && (spi_stat & SIRFSOC_SPI_FRM_END)) {
		complete(&sspi->tx_done);
		writel(0x0, sspi->base + SIRFSOC_SPI_INT_EN);
271 272
		writel(SIRFSOC_SPI_INT_MASK_ALL,
				sspi->base + SIRFSOC_SPI_INT_STATUS);
273 274 275
		return IRQ_HANDLED;
	}

276 277 278
	/* Error Conditions */
	if (spi_stat & SIRFSOC_SPI_RX_OFLOW ||
			spi_stat & SIRFSOC_SPI_TX_UFLOW) {
279
		complete(&sspi->tx_done);
280
		complete(&sspi->rx_done);
281
		writel(0x0, sspi->base + SIRFSOC_SPI_INT_EN);
282 283 284
		writel(SIRFSOC_SPI_INT_MASK_ALL,
				sspi->base + SIRFSOC_SPI_INT_STATUS);
		return IRQ_HANDLED;
285
	}
286 287 288 289 290 291 292 293 294
	if (spi_stat & SIRFSOC_SPI_TXFIFO_EMPTY)
		complete(&sspi->tx_done);
	while (!(readl(sspi->base + SIRFSOC_SPI_INT_STATUS) &
		SIRFSOC_SPI_RX_IO_DMA))
		cpu_relax();
	complete(&sspi->rx_done);
	writel(0x0, sspi->base + SIRFSOC_SPI_INT_EN);
	writel(SIRFSOC_SPI_INT_MASK_ALL,
			sspi->base + SIRFSOC_SPI_INT_STATUS);
295 296 297 298

	return IRQ_HANDLED;
}

299 300 301 302 303 304 305
static void spi_sirfsoc_dma_fini_callback(void *data)
{
	struct completion *dma_complete = data;

	complete(dma_complete);
}

306
static void spi_sirfsoc_cmd_transfer(struct spi_device *spi,
307
	struct spi_transfer *t)
308 309 310
{
	struct sirfsoc_spi *sspi;
	int timeout = t->len * 10;
311
	u32 cmd;
312

313
	sspi = spi_master_get_devdata(spi->master);
314 315
	writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
	writel(SIRFSOC_SPI_FIFO_START, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
316 317 318 319 320 321 322 323 324 325 326 327 328 329
	memcpy(&cmd, sspi->tx, t->len);
	if (sspi->word_width == 1 && !(spi->mode & SPI_LSB_FIRST))
		cmd = cpu_to_be32(cmd) >>
			((SIRFSOC_MAX_CMD_BYTES - t->len) * 8);
	if (sspi->word_width == 2 && t->len == 4 &&
			(!(spi->mode & SPI_LSB_FIRST)))
		cmd = ((cmd & 0xffff) << 16) | (cmd >> 16);
	writel(cmd, sspi->base + SIRFSOC_SPI_CMD);
	writel(SIRFSOC_SPI_FRM_END_INT_EN,
		sspi->base + SIRFSOC_SPI_INT_EN);
	writel(SIRFSOC_SPI_CMD_TX_EN,
		sspi->base + SIRFSOC_SPI_TX_RX_EN);
	if (wait_for_completion_timeout(&sspi->tx_done, timeout) == 0) {
		dev_err(&spi->dev, "cmd transfer timeout\n");
330
		return;
331
	}
332
	sspi->left_rx_word -= t->len;
333
}
334

335 336 337 338 339 340
static void spi_sirfsoc_dma_transfer(struct spi_device *spi,
	struct spi_transfer *t)
{
	struct sirfsoc_spi *sspi;
	struct dma_async_tx_descriptor *rx_desc, *tx_desc;
	int timeout = t->len * 10;
341

342 343 344 345 346 347 348 349
	sspi = spi_master_get_devdata(spi->master);
	writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
	writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
	writel(SIRFSOC_SPI_FIFO_START, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
	writel(SIRFSOC_SPI_FIFO_START, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
	writel(0, sspi->base + SIRFSOC_SPI_INT_EN);
	writel(SIRFSOC_SPI_INT_MASK_ALL, sspi->base + SIRFSOC_SPI_INT_STATUS);
	if (sspi->left_tx_word < SIRFSOC_SPI_DAT_FRM_LEN_MAX) {
350
		writel(readl(sspi->base + SIRFSOC_SPI_CTRL) |
351
			SIRFSOC_SPI_ENA_AUTO_CLR | SIRFSOC_SPI_MUL_DAT_MODE,
352
			sspi->base + SIRFSOC_SPI_CTRL);
353 354 355 356
		writel(sspi->left_tx_word - 1,
				sspi->base + SIRFSOC_SPI_TX_DMA_IO_LEN);
		writel(sspi->left_tx_word - 1,
				sspi->base + SIRFSOC_SPI_RX_DMA_IO_LEN);
357 358 359 360 361 362
	} else {
		writel(readl(sspi->base + SIRFSOC_SPI_CTRL),
			sspi->base + SIRFSOC_SPI_CTRL);
		writel(0, sspi->base + SIRFSOC_SPI_TX_DMA_IO_LEN);
		writel(0, sspi->base + SIRFSOC_SPI_RX_DMA_IO_LEN);
	}
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
	sspi->dst_start = dma_map_single(&spi->dev, sspi->rx, t->len,
					(t->tx_buf != t->rx_buf) ?
					DMA_FROM_DEVICE : DMA_BIDIRECTIONAL);
	rx_desc = dmaengine_prep_slave_single(sspi->rx_chan,
		sspi->dst_start, t->len, DMA_DEV_TO_MEM,
		DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
	rx_desc->callback = spi_sirfsoc_dma_fini_callback;
	rx_desc->callback_param = &sspi->rx_done;

	sspi->src_start = dma_map_single(&spi->dev, (void *)sspi->tx, t->len,
					(t->tx_buf != t->rx_buf) ?
					DMA_TO_DEVICE : DMA_BIDIRECTIONAL);
	tx_desc = dmaengine_prep_slave_single(sspi->tx_chan,
		sspi->src_start, t->len, DMA_MEM_TO_DEV,
		DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
	tx_desc->callback = spi_sirfsoc_dma_fini_callback;
	tx_desc->callback_param = &sspi->tx_done;

	dmaengine_submit(tx_desc);
	dmaengine_submit(rx_desc);
	dma_async_issue_pending(sspi->tx_chan);
	dma_async_issue_pending(sspi->rx_chan);
385 386
	writel(SIRFSOC_SPI_RX_EN | SIRFSOC_SPI_TX_EN,
			sspi->base + SIRFSOC_SPI_TX_RX_EN);
387
	if (wait_for_completion_timeout(&sspi->rx_done, timeout) == 0) {
388
		dev_err(&spi->dev, "transfer timeout\n");
389 390
		dmaengine_terminate_all(sspi->rx_chan);
	} else
391
		sspi->left_rx_word = 0;
392 393 394 395 396
	/*
	 * we only wait tx-done event if transferring by DMA. for PIO,
	 * we get rx data by writing tx data, so if rx is done, tx has
	 * done earlier
	 */
397 398 399
	if (wait_for_completion_timeout(&sspi->tx_done, timeout) == 0) {
		dev_err(&spi->dev, "transfer timeout\n");
		dmaengine_terminate_all(sspi->tx_chan);
400
	}
401 402 403 404 405 406 407 408
	dma_unmap_single(&spi->dev, sspi->src_start, t->len, DMA_TO_DEVICE);
	dma_unmap_single(&spi->dev, sspi->dst_start, t->len, DMA_FROM_DEVICE);
	/* TX, RX FIFO stop */
	writel(0, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
	writel(0, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
	if (sspi->left_tx_word >= SIRFSOC_SPI_DAT_FRM_LEN_MAX)
		writel(0, sspi->base + SIRFSOC_SPI_TX_RX_EN);
}
409

410 411 412 413 414
static void spi_sirfsoc_pio_transfer(struct spi_device *spi,
		struct spi_transfer *t)
{
	struct sirfsoc_spi *sspi;
	int timeout = t->len * 10;
415

416
	sspi = spi_master_get_devdata(spi->master);
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
	do {
		writel(SIRFSOC_SPI_FIFO_RESET,
			sspi->base + SIRFSOC_SPI_RXFIFO_OP);
		writel(SIRFSOC_SPI_FIFO_RESET,
			sspi->base + SIRFSOC_SPI_TXFIFO_OP);
		writel(SIRFSOC_SPI_FIFO_START,
			sspi->base + SIRFSOC_SPI_RXFIFO_OP);
		writel(SIRFSOC_SPI_FIFO_START,
			sspi->base + SIRFSOC_SPI_TXFIFO_OP);
		writel(0, sspi->base + SIRFSOC_SPI_INT_EN);
		writel(SIRFSOC_SPI_INT_MASK_ALL,
			sspi->base + SIRFSOC_SPI_INT_STATUS);
		writel(readl(sspi->base + SIRFSOC_SPI_CTRL) |
			SIRFSOC_SPI_MUL_DAT_MODE | SIRFSOC_SPI_ENA_AUTO_CLR,
			sspi->base + SIRFSOC_SPI_CTRL);
		writel(min(sspi->left_tx_word, (u32)(256 / sspi->word_width))
				- 1, sspi->base + SIRFSOC_SPI_TX_DMA_IO_LEN);
		writel(min(sspi->left_rx_word, (u32)(256 / sspi->word_width))
				- 1, sspi->base + SIRFSOC_SPI_RX_DMA_IO_LEN);
		while (!((readl(sspi->base + SIRFSOC_SPI_TXFIFO_STATUS)
			& SIRFSOC_SPI_FIFO_FULL)) && sspi->left_tx_word)
			sspi->tx_word(sspi);
		writel(SIRFSOC_SPI_TXFIFO_EMPTY_INT_EN |
			SIRFSOC_SPI_TX_UFLOW_INT_EN |
441 442
			SIRFSOC_SPI_RX_OFLOW_INT_EN |
			SIRFSOC_SPI_RX_IO_DMA_INT_EN,
443 444
			sspi->base + SIRFSOC_SPI_INT_EN);
		writel(SIRFSOC_SPI_RX_EN | SIRFSOC_SPI_TX_EN,
445
			sspi->base + SIRFSOC_SPI_TX_RX_EN);
446 447 448 449 450 451 452 453 454 455 456
		if (!wait_for_completion_timeout(&sspi->tx_done, timeout) ||
			!wait_for_completion_timeout(&sspi->rx_done, timeout)) {
			dev_err(&spi->dev, "transfer timeout\n");
			break;
		}
		while (!((readl(sspi->base + SIRFSOC_SPI_RXFIFO_STATUS)
			& SIRFSOC_SPI_FIFO_EMPTY)) && sspi->left_rx_word)
			sspi->rx_word(sspi);
		writel(0, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
		writel(0, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
	} while (sspi->left_tx_word != 0 || sspi->left_rx_word != 0);
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
}

static int spi_sirfsoc_transfer(struct spi_device *spi, struct spi_transfer *t)
{
	struct sirfsoc_spi *sspi;
	sspi = spi_master_get_devdata(spi->master);

	sspi->tx = t->tx_buf ? t->tx_buf : sspi->dummypage;
	sspi->rx = t->rx_buf ? t->rx_buf : sspi->dummypage;
	sspi->left_tx_word = sspi->left_rx_word = t->len / sspi->word_width;
	reinit_completion(&sspi->rx_done);
	reinit_completion(&sspi->tx_done);
	/*
	 * in the transfer, if transfer data using command register with rx_buf
	 * null, just fill command data into command register and wait for its
	 * completion.
	 */
	if (sspi->tx_by_cmd)
		spi_sirfsoc_cmd_transfer(spi, t);
	else if (IS_DMA_VALID(t))
		spi_sirfsoc_dma_transfer(spi, t);
	else
		spi_sirfsoc_pio_transfer(spi, t);
480

481
	return t->len - sspi->left_rx_word * sspi->word_width;
482 483 484 485 486 487
}

static void spi_sirfsoc_chipselect(struct spi_device *spi, int value)
{
	struct sirfsoc_spi *sspi = spi_master_get_devdata(spi->master);

488
	if (sspi->hw_cs) {
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
		u32 regval = readl(sspi->base + SIRFSOC_SPI_CTRL);
		switch (value) {
		case BITBANG_CS_ACTIVE:
			if (spi->mode & SPI_CS_HIGH)
				regval |= SIRFSOC_SPI_CS_IO_OUT;
			else
				regval &= ~SIRFSOC_SPI_CS_IO_OUT;
			break;
		case BITBANG_CS_INACTIVE:
			if (spi->mode & SPI_CS_HIGH)
				regval &= ~SIRFSOC_SPI_CS_IO_OUT;
			else
				regval |= SIRFSOC_SPI_CS_IO_OUT;
			break;
		}
		writel(regval, sspi->base + SIRFSOC_SPI_CTRL);
	} else {
506 507
		switch (value) {
		case BITBANG_CS_ACTIVE:
508
			gpio_direction_output(spi->cs_gpio,
509 510 511
					spi->mode & SPI_CS_HIGH ? 1 : 0);
			break;
		case BITBANG_CS_INACTIVE:
512
			gpio_direction_output(spi->cs_gpio,
513 514 515
					spi->mode & SPI_CS_HIGH ? 0 : 1);
			break;
		}
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
	}
}

static int
spi_sirfsoc_setup_transfer(struct spi_device *spi, struct spi_transfer *t)
{
	struct sirfsoc_spi *sspi;
	u8 bits_per_word = 0;
	int hz = 0;
	u32 regval;
	u32 txfifo_ctrl, rxfifo_ctrl;
	u32 fifo_size = SIRFSOC_SPI_FIFO_SIZE / 4;

	sspi = spi_master_get_devdata(spi->master);

531
	bits_per_word = (t) ? t->bits_per_word : spi->bits_per_word;
532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
	hz = t && t->speed_hz ? t->speed_hz : spi->max_speed_hz;

	regval = (sspi->ctrl_freq / (2 * hz)) - 1;
	if (regval > 0xFFFF || regval < 0) {
		dev_err(&spi->dev, "Speed %d not supported\n", hz);
		return -EINVAL;
	}

	switch (bits_per_word) {
	case 8:
		regval |= SIRFSOC_SPI_TRAN_DAT_FORMAT_8;
		sspi->rx_word = spi_sirfsoc_rx_word_u8;
		sspi->tx_word = spi_sirfsoc_tx_word_u8;
		break;
	case 12:
	case 16:
548 549
		regval |= (bits_per_word ==  12) ?
			SIRFSOC_SPI_TRAN_DAT_FORMAT_12 :
550 551 552 553 554 555 556 557 558
			SIRFSOC_SPI_TRAN_DAT_FORMAT_16;
		sspi->rx_word = spi_sirfsoc_rx_word_u16;
		sspi->tx_word = spi_sirfsoc_tx_word_u16;
		break;
	case 32:
		regval |= SIRFSOC_SPI_TRAN_DAT_FORMAT_32;
		sspi->rx_word = spi_sirfsoc_rx_word_u32;
		sspi->tx_word = spi_sirfsoc_tx_word_u32;
		break;
559 560
	default:
		BUG();
561 562
	}

563 564 565 566 567 568
	sspi->word_width = DIV_ROUND_UP(bits_per_word, 8);
	txfifo_ctrl = SIRFSOC_SPI_FIFO_THD(SIRFSOC_SPI_FIFO_SIZE / 2) |
					   sspi->word_width;
	rxfifo_ctrl = SIRFSOC_SPI_FIFO_THD(SIRFSOC_SPI_FIFO_SIZE / 2) |
					   sspi->word_width;

569 570 571 572 573 574 575 576
	if (!(spi->mode & SPI_CS_HIGH))
		regval |= SIRFSOC_SPI_CS_IDLE_STAT;
	if (!(spi->mode & SPI_LSB_FIRST))
		regval |= SIRFSOC_SPI_TRAN_MSB;
	if (spi->mode & SPI_CPOL)
		regval |= SIRFSOC_SPI_CLK_IDLE_STAT;

	/*
577 578
	 * Data should be driven at least 1/2 cycle before the fetch edge
	 * to make sure that data gets stable at the fetch edge.
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
	 */
	if (((spi->mode & SPI_CPOL) && (spi->mode & SPI_CPHA)) ||
	    (!(spi->mode & SPI_CPOL) && !(spi->mode & SPI_CPHA)))
		regval &= ~SIRFSOC_SPI_DRV_POS_EDGE;
	else
		regval |= SIRFSOC_SPI_DRV_POS_EDGE;

	writel(SIRFSOC_SPI_FIFO_SC(fifo_size - 2) |
			SIRFSOC_SPI_FIFO_LC(fifo_size / 2) |
			SIRFSOC_SPI_FIFO_HC(2),
		sspi->base + SIRFSOC_SPI_TXFIFO_LEVEL_CHK);
	writel(SIRFSOC_SPI_FIFO_SC(2) |
			SIRFSOC_SPI_FIFO_LC(fifo_size / 2) |
			SIRFSOC_SPI_FIFO_HC(fifo_size - 2),
		sspi->base + SIRFSOC_SPI_RXFIFO_LEVEL_CHK);
	writel(txfifo_ctrl, sspi->base + SIRFSOC_SPI_TXFIFO_CTRL);
	writel(rxfifo_ctrl, sspi->base + SIRFSOC_SPI_RXFIFO_CTRL);

597 598 599 600 601 602 603 604
	if (t && t->tx_buf && !t->rx_buf && (t->len <= SIRFSOC_MAX_CMD_BYTES)) {
		regval |= (SIRFSOC_SPI_CMD_BYTE_NUM((t->len - 1)) |
				SIRFSOC_SPI_CMD_MODE);
		sspi->tx_by_cmd = true;
	} else {
		regval &= ~SIRFSOC_SPI_CMD_MODE;
		sspi->tx_by_cmd = false;
	}
605
	/*
606 607
	 * it should never set to hardware cs mode because in hardware cs mode,
	 * cs signal can't controlled by driver.
608 609
	 */
	regval |= SIRFSOC_SPI_CS_IO_MODE;
610
	writel(regval, sspi->base + SIRFSOC_SPI_CTRL);
611 612 613 614

	if (IS_DMA_VALID(t)) {
		/* Enable DMA mode for RX, TX */
		writel(0, sspi->base + SIRFSOC_SPI_TX_DMA_IO_CTRL);
615 616
		writel(SIRFSOC_SPI_RX_DMA_FLUSH,
			sspi->base + SIRFSOC_SPI_RX_DMA_IO_CTRL);
617 618
	} else {
		/* Enable IO mode for RX, TX */
619 620 621 622
		writel(SIRFSOC_SPI_IO_MODE_SEL,
			sspi->base + SIRFSOC_SPI_TX_DMA_IO_CTRL);
		writel(SIRFSOC_SPI_IO_MODE_SEL,
			sspi->base + SIRFSOC_SPI_RX_DMA_IO_CTRL);
623 624
	}

625 626 627 628 629
	return 0;
}

static int spi_sirfsoc_setup(struct spi_device *spi)
{
630 631
	struct sirfsoc_spi *sspi;

632 633 634
	if (!spi->max_speed_hz)
		return -EINVAL;

635 636 637 638 639 640
	sspi = spi_master_get_devdata(spi->master);

	if (spi->cs_gpio == -ENOENT)
		sspi->hw_cs = true;
	else
		sspi->hw_cs = false;
641 642 643
	return spi_sirfsoc_setup_transfer(spi, NULL);
}

644
static int spi_sirfsoc_probe(struct platform_device *pdev)
645 646 647 648
{
	struct sirfsoc_spi *sspi;
	struct spi_master *master;
	struct resource *mem_res;
649 650
	int irq;
	int i, ret;
651

652
	master = spi_alloc_master(&pdev->dev, sizeof(*sspi));
653 654 655 656 657 658 659
	if (!master) {
		dev_err(&pdev->dev, "Unable to allocate SPI master\n");
		return -ENOMEM;
	}
	platform_set_drvdata(pdev, master);
	sspi = spi_master_get_devdata(master);

660
	mem_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
661 662 663
	sspi->base = devm_ioremap_resource(&pdev->dev, mem_res);
	if (IS_ERR(sspi->base)) {
		ret = PTR_ERR(sspi->base);
664 665 666 667 668 669 670 671 672 673 674 675 676
		goto free_master;
	}

	irq = platform_get_irq(pdev, 0);
	if (irq < 0) {
		ret = -ENXIO;
		goto free_master;
	}
	ret = devm_request_irq(&pdev->dev, irq, spi_sirfsoc_irq, 0,
				DRIVER_NAME, sspi);
	if (ret)
		goto free_master;

677
	sspi->bitbang.master = master;
678 679 680 681 682
	sspi->bitbang.chipselect = spi_sirfsoc_chipselect;
	sspi->bitbang.setup_transfer = spi_sirfsoc_setup_transfer;
	sspi->bitbang.txrx_bufs = spi_sirfsoc_transfer;
	sspi->bitbang.master->setup = spi_sirfsoc_setup;
	master->bus_num = pdev->id;
683
	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST | SPI_CS_HIGH;
684 685
	master->bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(12) |
					SPI_BPW_MASK(16) | SPI_BPW_MASK(32);
686 687
	sspi->bitbang.master->dev.of_node = pdev->dev.of_node;

688
	/* request DMA channels */
689
	sspi->rx_chan = dma_request_slave_channel(&pdev->dev, "rx");
690 691
	if (!sspi->rx_chan) {
		dev_err(&pdev->dev, "can not allocate rx dma channel\n");
692
		ret = -ENODEV;
693 694
		goto free_master;
	}
695
	sspi->tx_chan = dma_request_slave_channel(&pdev->dev, "tx");
696 697
	if (!sspi->tx_chan) {
		dev_err(&pdev->dev, "can not allocate tx dma channel\n");
698
		ret = -ENODEV;
699 700 701
		goto free_rx_dma;
	}

702 703
	sspi->clk = clk_get(&pdev->dev, NULL);
	if (IS_ERR(sspi->clk)) {
704 705
		ret = PTR_ERR(sspi->clk);
		goto free_tx_dma;
706
	}
707
	clk_prepare_enable(sspi->clk);
708 709
	sspi->ctrl_freq = clk_get_rate(sspi->clk);

710 711
	init_completion(&sspi->rx_done);
	init_completion(&sspi->tx_done);
712 713 714 715 716 717 718 719

	writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
	writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
	writel(SIRFSOC_SPI_FIFO_START, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
	writel(SIRFSOC_SPI_FIFO_START, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
	/* We are not using dummy delay between command and data */
	writel(0, sspi->base + SIRFSOC_SPI_DUMMY_DELAY_CTL);

720
	sspi->dummypage = kmalloc(2 * PAGE_SIZE, GFP_KERNEL);
721 722
	if (!sspi->dummypage) {
		ret = -ENOMEM;
723
		goto free_clk;
724
	}
725

726 727
	ret = spi_bitbang_start(&sspi->bitbang);
	if (ret)
728
		goto free_dummypage;
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
	for (i = 0; master->cs_gpios && i < master->num_chipselect; i++) {
		if (master->cs_gpios[i] == -ENOENT)
			continue;
		if (!gpio_is_valid(master->cs_gpios[i])) {
			dev_err(&pdev->dev, "no valid gpio\n");
			ret = -EINVAL;
			goto free_dummypage;
		}
		ret = devm_gpio_request(&pdev->dev,
				master->cs_gpios[i], DRIVER_NAME);
		if (ret) {
			dev_err(&pdev->dev, "failed to request gpio\n");
			goto free_dummypage;
		}
	}
744 745 746
	dev_info(&pdev->dev, "registerred, bus number = %d\n", master->bus_num);

	return 0;
747 748
free_dummypage:
	kfree(sspi->dummypage);
749
free_clk:
750
	clk_disable_unprepare(sspi->clk);
751
	clk_put(sspi->clk);
752 753 754 755
free_tx_dma:
	dma_release_channel(sspi->tx_chan);
free_rx_dma:
	dma_release_channel(sspi->rx_chan);
756 757
free_master:
	spi_master_put(master);
758

759 760 761
	return ret;
}

762
static int  spi_sirfsoc_remove(struct platform_device *pdev)
763 764 765 766 767 768 769 770
{
	struct spi_master *master;
	struct sirfsoc_spi *sspi;

	master = platform_get_drvdata(pdev);
	sspi = spi_master_get_devdata(master);

	spi_bitbang_stop(&sspi->bitbang);
771
	kfree(sspi->dummypage);
772
	clk_disable_unprepare(sspi->clk);
773
	clk_put(sspi->clk);
774 775
	dma_release_channel(sspi->rx_chan);
	dma_release_channel(sspi->tx_chan);
776 777 778 779
	spi_master_put(master);
	return 0;
}

780
#ifdef CONFIG_PM_SLEEP
781 782
static int spi_sirfsoc_suspend(struct device *dev)
{
783
	struct spi_master *master = dev_get_drvdata(dev);
784
	struct sirfsoc_spi *sspi = spi_master_get_devdata(master);
785 786 787 788 789
	int ret;

	ret = spi_master_suspend(master);
	if (ret)
		return ret;
790 791 792 793 794 795 796

	clk_disable(sspi->clk);
	return 0;
}

static int spi_sirfsoc_resume(struct device *dev)
{
797
	struct spi_master *master = dev_get_drvdata(dev);
798 799 800 801 802 803 804 805
	struct sirfsoc_spi *sspi = spi_master_get_devdata(master);

	clk_enable(sspi->clk);
	writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
	writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
	writel(SIRFSOC_SPI_FIFO_START, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
	writel(SIRFSOC_SPI_FIFO_START, sspi->base + SIRFSOC_SPI_TXFIFO_OP);

806
	return spi_master_resume(master);
807
}
808
#endif
809

810 811
static SIMPLE_DEV_PM_OPS(spi_sirfsoc_pm_ops, spi_sirfsoc_suspend,
			 spi_sirfsoc_resume);
812 813 814

static const struct of_device_id spi_sirfsoc_of_match[] = {
	{ .compatible = "sirf,prima2-spi", },
815
	{ .compatible = "sirf,marco-spi", },
816 817
	{}
};
818
MODULE_DEVICE_TABLE(of, spi_sirfsoc_of_match);
819 820 821 822 823 824 825 826 827

static struct platform_driver spi_sirfsoc_driver = {
	.driver = {
		.name = DRIVER_NAME,
		.owner = THIS_MODULE,
		.pm     = &spi_sirfsoc_pm_ops,
		.of_match_table = spi_sirfsoc_of_match,
	},
	.probe = spi_sirfsoc_probe,
828
	.remove = spi_sirfsoc_remove,
829 830 831
};
module_platform_driver(spi_sirfsoc_driver);
MODULE_DESCRIPTION("SiRF SoC SPI master driver");
832 833
MODULE_AUTHOR("Zhiwu Song <Zhiwu.Song@csr.com>");
MODULE_AUTHOR("Barry Song <Baohua.Song@csr.com>");
834
MODULE_LICENSE("GPL v2");