spi-sirf.c 22.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*
 * SPI bus driver for CSR SiRFprimaII
 *
 * Copyright (c) 2011 Cambridge Silicon Radio Limited, a CSR plc group company.
 *
 * Licensed under GPLv2 or later.
 */

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/clk.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/of.h>
#include <linux/bitops.h>
#include <linux/err.h>
#include <linux/platform_device.h>
#include <linux/of_gpio.h>
#include <linux/spi/spi.h>
#include <linux/spi/spi_bitbang.h>
22 23 24 25
#include <linux/dmaengine.h>
#include <linux/dma-direction.h>
#include <linux/dma-mapping.h>
#include <linux/sirfsoc_dma.h>
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125

#define DRIVER_NAME "sirfsoc_spi"

#define SIRFSOC_SPI_CTRL		0x0000
#define SIRFSOC_SPI_CMD			0x0004
#define SIRFSOC_SPI_TX_RX_EN		0x0008
#define SIRFSOC_SPI_INT_EN		0x000C
#define SIRFSOC_SPI_INT_STATUS		0x0010
#define SIRFSOC_SPI_TX_DMA_IO_CTRL	0x0100
#define SIRFSOC_SPI_TX_DMA_IO_LEN	0x0104
#define SIRFSOC_SPI_TXFIFO_CTRL		0x0108
#define SIRFSOC_SPI_TXFIFO_LEVEL_CHK	0x010C
#define SIRFSOC_SPI_TXFIFO_OP		0x0110
#define SIRFSOC_SPI_TXFIFO_STATUS	0x0114
#define SIRFSOC_SPI_TXFIFO_DATA		0x0118
#define SIRFSOC_SPI_RX_DMA_IO_CTRL	0x0120
#define SIRFSOC_SPI_RX_DMA_IO_LEN	0x0124
#define SIRFSOC_SPI_RXFIFO_CTRL		0x0128
#define SIRFSOC_SPI_RXFIFO_LEVEL_CHK	0x012C
#define SIRFSOC_SPI_RXFIFO_OP		0x0130
#define SIRFSOC_SPI_RXFIFO_STATUS	0x0134
#define SIRFSOC_SPI_RXFIFO_DATA		0x0138
#define SIRFSOC_SPI_DUMMY_DELAY_CTL	0x0144

/* SPI CTRL register defines */
#define SIRFSOC_SPI_SLV_MODE		BIT(16)
#define SIRFSOC_SPI_CMD_MODE		BIT(17)
#define SIRFSOC_SPI_CS_IO_OUT		BIT(18)
#define SIRFSOC_SPI_CS_IO_MODE		BIT(19)
#define SIRFSOC_SPI_CLK_IDLE_STAT	BIT(20)
#define SIRFSOC_SPI_CS_IDLE_STAT	BIT(21)
#define SIRFSOC_SPI_TRAN_MSB		BIT(22)
#define SIRFSOC_SPI_DRV_POS_EDGE	BIT(23)
#define SIRFSOC_SPI_CS_HOLD_TIME	BIT(24)
#define SIRFSOC_SPI_CLK_SAMPLE_MODE	BIT(25)
#define SIRFSOC_SPI_TRAN_DAT_FORMAT_8	(0 << 26)
#define SIRFSOC_SPI_TRAN_DAT_FORMAT_12	(1 << 26)
#define SIRFSOC_SPI_TRAN_DAT_FORMAT_16	(2 << 26)
#define SIRFSOC_SPI_TRAN_DAT_FORMAT_32	(3 << 26)
#define SIRFSOC_SPI_CMD_BYTE_NUM(x)		((x & 3) << 28)
#define SIRFSOC_SPI_ENA_AUTO_CLR		BIT(30)
#define SIRFSOC_SPI_MUL_DAT_MODE		BIT(31)

/* Interrupt Enable */
#define SIRFSOC_SPI_RX_DONE_INT_EN		BIT(0)
#define SIRFSOC_SPI_TX_DONE_INT_EN		BIT(1)
#define SIRFSOC_SPI_RX_OFLOW_INT_EN		BIT(2)
#define SIRFSOC_SPI_TX_UFLOW_INT_EN		BIT(3)
#define SIRFSOC_SPI_RX_IO_DMA_INT_EN	BIT(4)
#define SIRFSOC_SPI_TX_IO_DMA_INT_EN	BIT(5)
#define SIRFSOC_SPI_RXFIFO_FULL_INT_EN	BIT(6)
#define SIRFSOC_SPI_TXFIFO_EMPTY_INT_EN	BIT(7)
#define SIRFSOC_SPI_RXFIFO_THD_INT_EN	BIT(8)
#define SIRFSOC_SPI_TXFIFO_THD_INT_EN	BIT(9)
#define SIRFSOC_SPI_FRM_END_INT_EN	BIT(10)

#define SIRFSOC_SPI_INT_MASK_ALL		0x1FFF

/* Interrupt status */
#define SIRFSOC_SPI_RX_DONE		BIT(0)
#define SIRFSOC_SPI_TX_DONE		BIT(1)
#define SIRFSOC_SPI_RX_OFLOW		BIT(2)
#define SIRFSOC_SPI_TX_UFLOW		BIT(3)
#define SIRFSOC_SPI_RX_FIFO_FULL	BIT(6)
#define SIRFSOC_SPI_TXFIFO_EMPTY	BIT(7)
#define SIRFSOC_SPI_RXFIFO_THD_REACH	BIT(8)
#define SIRFSOC_SPI_TXFIFO_THD_REACH	BIT(9)
#define SIRFSOC_SPI_FRM_END		BIT(10)

/* TX RX enable */
#define SIRFSOC_SPI_RX_EN		BIT(0)
#define SIRFSOC_SPI_TX_EN		BIT(1)
#define SIRFSOC_SPI_CMD_TX_EN		BIT(2)

#define SIRFSOC_SPI_IO_MODE_SEL		BIT(0)
#define SIRFSOC_SPI_RX_DMA_FLUSH	BIT(2)

/* FIFO OPs */
#define SIRFSOC_SPI_FIFO_RESET		BIT(0)
#define SIRFSOC_SPI_FIFO_START		BIT(1)

/* FIFO CTRL */
#define SIRFSOC_SPI_FIFO_WIDTH_BYTE	(0 << 0)
#define SIRFSOC_SPI_FIFO_WIDTH_WORD	(1 << 0)
#define SIRFSOC_SPI_FIFO_WIDTH_DWORD	(2 << 0)

/* FIFO Status */
#define	SIRFSOC_SPI_FIFO_LEVEL_MASK	0xFF
#define SIRFSOC_SPI_FIFO_FULL		BIT(8)
#define SIRFSOC_SPI_FIFO_EMPTY		BIT(9)

/* 256 bytes rx/tx FIFO */
#define SIRFSOC_SPI_FIFO_SIZE		256
#define SIRFSOC_SPI_DAT_FRM_LEN_MAX	(64 * 1024)

#define SIRFSOC_SPI_FIFO_SC(x)		((x) & 0x3F)
#define SIRFSOC_SPI_FIFO_LC(x)		(((x) & 0x3F) << 10)
#define SIRFSOC_SPI_FIFO_HC(x)		(((x) & 0x3F) << 20)
#define SIRFSOC_SPI_FIFO_THD(x)		(((x) & 0xFF) << 2)

126 127 128 129 130 131 132 133 134 135
/*
 * only if the rx/tx buffer and transfer size are 4-bytes aligned, we use dma
 * due to the limitation of dma controller
 */

#define ALIGNED(x) (!((u32)x & 0x3))
#define IS_DMA_VALID(x) (x && ALIGNED(x->tx_buf) && ALIGNED(x->rx_buf) && \
	ALIGNED(x->len * sspi->word_width) && (x->len * sspi->word_width < \
		2 * PAGE_SIZE))

136 137
struct sirfsoc_spi {
	struct spi_bitbang bitbang;
138 139
	struct completion rx_done;
	struct completion tx_done;
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157

	void __iomem *base;
	u32 ctrl_freq;  /* SPI controller clock speed */
	struct clk *clk;

	/* rx & tx bufs from the spi_transfer */
	const void *tx;
	void *rx;

	/* place received word into rx buffer */
	void (*rx_word) (struct sirfsoc_spi *);
	/* get word from tx buffer for sending */
	void (*tx_word) (struct sirfsoc_spi *);

	/* number of words left to be tranmitted/received */
	unsigned int left_tx_cnt;
	unsigned int left_rx_cnt;

158 159 160 161 162 163 164 165
	/* rx & tx DMA channels */
	struct dma_chan *rx_chan;
	struct dma_chan *tx_chan;
	dma_addr_t src_start;
	dma_addr_t dst_start;
	void *dummypage;
	int word_width; /* in bytes */

166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
	int chipselect[0];
};

static void spi_sirfsoc_rx_word_u8(struct sirfsoc_spi *sspi)
{
	u32 data;
	u8 *rx = sspi->rx;

	data = readl(sspi->base + SIRFSOC_SPI_RXFIFO_DATA);

	if (rx) {
		*rx++ = (u8) data;
		sspi->rx = rx;
	}

	sspi->left_rx_cnt--;
}

static void spi_sirfsoc_tx_word_u8(struct sirfsoc_spi *sspi)
{
	u32 data = 0;
	const u8 *tx = sspi->tx;

	if (tx) {
		data = *tx++;
		sspi->tx = tx;
	}

	writel(data, sspi->base + SIRFSOC_SPI_TXFIFO_DATA);
	sspi->left_tx_cnt--;
}

static void spi_sirfsoc_rx_word_u16(struct sirfsoc_spi *sspi)
{
	u32 data;
	u16 *rx = sspi->rx;

	data = readl(sspi->base + SIRFSOC_SPI_RXFIFO_DATA);

	if (rx) {
		*rx++ = (u16) data;
		sspi->rx = rx;
	}

	sspi->left_rx_cnt--;
}

static void spi_sirfsoc_tx_word_u16(struct sirfsoc_spi *sspi)
{
	u32 data = 0;
	const u16 *tx = sspi->tx;

	if (tx) {
		data = *tx++;
		sspi->tx = tx;
	}

	writel(data, sspi->base + SIRFSOC_SPI_TXFIFO_DATA);
	sspi->left_tx_cnt--;
}

static void spi_sirfsoc_rx_word_u32(struct sirfsoc_spi *sspi)
{
	u32 data;
	u32 *rx = sspi->rx;

	data = readl(sspi->base + SIRFSOC_SPI_RXFIFO_DATA);

	if (rx) {
		*rx++ = (u32) data;
		sspi->rx = rx;
	}

	sspi->left_rx_cnt--;

}

static void spi_sirfsoc_tx_word_u32(struct sirfsoc_spi *sspi)
{
	u32 data = 0;
	const u32 *tx = sspi->tx;

	if (tx) {
		data = *tx++;
		sspi->tx = tx;
	}

	writel(data, sspi->base + SIRFSOC_SPI_TXFIFO_DATA);
	sspi->left_tx_cnt--;
}

static irqreturn_t spi_sirfsoc_irq(int irq, void *dev_id)
{
	struct sirfsoc_spi *sspi = dev_id;
	u32 spi_stat = readl(sspi->base + SIRFSOC_SPI_INT_STATUS);

	writel(spi_stat, sspi->base + SIRFSOC_SPI_INT_STATUS);

	/* Error Conditions */
	if (spi_stat & SIRFSOC_SPI_RX_OFLOW ||
			spi_stat & SIRFSOC_SPI_TX_UFLOW) {
267
		complete(&sspi->rx_done);
268 269 270
		writel(0x0, sspi->base + SIRFSOC_SPI_INT_EN);
	}

271 272
	if (spi_stat & (SIRFSOC_SPI_FRM_END
			| SIRFSOC_SPI_RXFIFO_THD_REACH))
273 274 275 276 277
		while (!((readl(sspi->base + SIRFSOC_SPI_RXFIFO_STATUS)
				& SIRFSOC_SPI_FIFO_EMPTY)) &&
				sspi->left_rx_cnt)
			sspi->rx_word(sspi);

278 279 280 281 282 283
	if (spi_stat & (SIRFSOC_SPI_FIFO_EMPTY
			| SIRFSOC_SPI_TXFIFO_THD_REACH))
		while (!((readl(sspi->base + SIRFSOC_SPI_TXFIFO_STATUS)
				& SIRFSOC_SPI_FIFO_FULL)) &&
				sspi->left_tx_cnt)
			sspi->tx_word(sspi);
284

285 286
	/* Received all words */
	if ((sspi->left_rx_cnt == 0) && (sspi->left_tx_cnt == 0)) {
287
		complete(&sspi->rx_done);
288 289
		writel(0x0, sspi->base + SIRFSOC_SPI_INT_EN);
	}
290 291 292
	return IRQ_HANDLED;
}

293 294 295 296 297 298 299
static void spi_sirfsoc_dma_fini_callback(void *data)
{
	struct completion *dma_complete = data;

	complete(dma_complete);
}

300 301 302 303 304 305
static int spi_sirfsoc_transfer(struct spi_device *spi, struct spi_transfer *t)
{
	struct sirfsoc_spi *sspi;
	int timeout = t->len * 10;
	sspi = spi_master_get_devdata(spi->master);

306 307
	sspi->tx = t->tx_buf ? t->tx_buf : sspi->dummypage;
	sspi->rx = t->rx_buf ? t->rx_buf : sspi->dummypage;
308
	sspi->left_tx_cnt = sspi->left_rx_cnt = t->len;
309 310
	INIT_COMPLETION(sspi->rx_done);
	INIT_COMPLETION(sspi->tx_done);
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338

	writel(SIRFSOC_SPI_INT_MASK_ALL, sspi->base + SIRFSOC_SPI_INT_STATUS);

	if (t->len == 1) {
		writel(readl(sspi->base + SIRFSOC_SPI_CTRL) |
			SIRFSOC_SPI_ENA_AUTO_CLR,
			sspi->base + SIRFSOC_SPI_CTRL);
		writel(0, sspi->base + SIRFSOC_SPI_TX_DMA_IO_LEN);
		writel(0, sspi->base + SIRFSOC_SPI_RX_DMA_IO_LEN);
	} else if ((t->len > 1) && (t->len < SIRFSOC_SPI_DAT_FRM_LEN_MAX)) {
		writel(readl(sspi->base + SIRFSOC_SPI_CTRL) |
				SIRFSOC_SPI_MUL_DAT_MODE |
				SIRFSOC_SPI_ENA_AUTO_CLR,
			sspi->base + SIRFSOC_SPI_CTRL);
		writel(t->len - 1, sspi->base + SIRFSOC_SPI_TX_DMA_IO_LEN);
		writel(t->len - 1, sspi->base + SIRFSOC_SPI_RX_DMA_IO_LEN);
	} else {
		writel(readl(sspi->base + SIRFSOC_SPI_CTRL),
			sspi->base + SIRFSOC_SPI_CTRL);
		writel(0, sspi->base + SIRFSOC_SPI_TX_DMA_IO_LEN);
		writel(0, sspi->base + SIRFSOC_SPI_RX_DMA_IO_LEN);
	}

	writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
	writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
	writel(SIRFSOC_SPI_FIFO_START, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
	writel(SIRFSOC_SPI_FIFO_START, sspi->base + SIRFSOC_SPI_TXFIFO_OP);

339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
	if (IS_DMA_VALID(t)) {
		struct dma_async_tx_descriptor *rx_desc, *tx_desc;
		unsigned int size = t->len * sspi->word_width;

		sspi->dst_start = dma_map_single(&spi->dev, sspi->rx, t->len, DMA_FROM_DEVICE);
		rx_desc = dmaengine_prep_slave_single(sspi->rx_chan,
			sspi->dst_start, size, DMA_DEV_TO_MEM,
			DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
		rx_desc->callback = spi_sirfsoc_dma_fini_callback;
		rx_desc->callback_param = &sspi->rx_done;

		sspi->src_start = dma_map_single(&spi->dev, (void *)sspi->tx, t->len, DMA_TO_DEVICE);
		tx_desc = dmaengine_prep_slave_single(sspi->tx_chan,
			sspi->src_start, size, DMA_MEM_TO_DEV,
			DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
		tx_desc->callback = spi_sirfsoc_dma_fini_callback;
		tx_desc->callback_param = &sspi->tx_done;

		dmaengine_submit(tx_desc);
		dmaengine_submit(rx_desc);
		dma_async_issue_pending(sspi->tx_chan);
		dma_async_issue_pending(sspi->rx_chan);
	} else {
		/* Send the first word to trigger the whole tx/rx process */
		sspi->tx_word(sspi);

		writel(SIRFSOC_SPI_RX_OFLOW_INT_EN | SIRFSOC_SPI_TX_UFLOW_INT_EN |
			SIRFSOC_SPI_RXFIFO_THD_INT_EN | SIRFSOC_SPI_TXFIFO_THD_INT_EN |
			SIRFSOC_SPI_FRM_END_INT_EN | SIRFSOC_SPI_RXFIFO_FULL_INT_EN |
			SIRFSOC_SPI_TXFIFO_EMPTY_INT_EN, sspi->base + SIRFSOC_SPI_INT_EN);
	}
370 371 372

	writel(SIRFSOC_SPI_RX_EN | SIRFSOC_SPI_TX_EN, sspi->base + SIRFSOC_SPI_TX_RX_EN);

373 374 375 376
	if (!IS_DMA_VALID(t)) { /* for PIO */
		if (wait_for_completion_timeout(&sspi->rx_done, timeout) == 0)
			dev_err(&spi->dev, "transfer timeout\n");
	} else if (wait_for_completion_timeout(&sspi->rx_done, timeout) == 0) {
377
		dev_err(&spi->dev, "transfer timeout\n");
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
		dmaengine_terminate_all(sspi->rx_chan);
	} else
		sspi->left_rx_cnt = 0;

	/*
	 * we only wait tx-done event if transferring by DMA. for PIO,
	 * we get rx data by writing tx data, so if rx is done, tx has
	 * done earlier
	 */
	if (IS_DMA_VALID(t)) {
		if (wait_for_completion_timeout(&sspi->tx_done, timeout) == 0) {
			dev_err(&spi->dev, "transfer timeout\n");
			dmaengine_terminate_all(sspi->tx_chan);
		}
	}

	if (IS_DMA_VALID(t)) {
		dma_unmap_single(&spi->dev, sspi->src_start, t->len, DMA_TO_DEVICE);
		dma_unmap_single(&spi->dev, sspi->dst_start, t->len, DMA_FROM_DEVICE);
	}
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446

	/* TX, RX FIFO stop */
	writel(0, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
	writel(0, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
	writel(0, sspi->base + SIRFSOC_SPI_TX_RX_EN);
	writel(0, sspi->base + SIRFSOC_SPI_INT_EN);

	return t->len - sspi->left_rx_cnt;
}

static void spi_sirfsoc_chipselect(struct spi_device *spi, int value)
{
	struct sirfsoc_spi *sspi = spi_master_get_devdata(spi->master);

	if (sspi->chipselect[spi->chip_select] == 0) {
		u32 regval = readl(sspi->base + SIRFSOC_SPI_CTRL);
		switch (value) {
		case BITBANG_CS_ACTIVE:
			if (spi->mode & SPI_CS_HIGH)
				regval |= SIRFSOC_SPI_CS_IO_OUT;
			else
				regval &= ~SIRFSOC_SPI_CS_IO_OUT;
			break;
		case BITBANG_CS_INACTIVE:
			if (spi->mode & SPI_CS_HIGH)
				regval &= ~SIRFSOC_SPI_CS_IO_OUT;
			else
				regval |= SIRFSOC_SPI_CS_IO_OUT;
			break;
		}
		writel(regval, sspi->base + SIRFSOC_SPI_CTRL);
	} else {
		int gpio = sspi->chipselect[spi->chip_select];
		gpio_direction_output(gpio, spi->mode & SPI_CS_HIGH ? 0 : 1);
	}
}

static int
spi_sirfsoc_setup_transfer(struct spi_device *spi, struct spi_transfer *t)
{
	struct sirfsoc_spi *sspi;
	u8 bits_per_word = 0;
	int hz = 0;
	u32 regval;
	u32 txfifo_ctrl, rxfifo_ctrl;
	u32 fifo_size = SIRFSOC_SPI_FIFO_SIZE / 4;

	sspi = spi_master_get_devdata(spi->master);

447
	bits_per_word = (t) ? t->bits_per_word : spi->bits_per_word;
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
	hz = t && t->speed_hz ? t->speed_hz : spi->max_speed_hz;

	regval = (sspi->ctrl_freq / (2 * hz)) - 1;
	if (regval > 0xFFFF || regval < 0) {
		dev_err(&spi->dev, "Speed %d not supported\n", hz);
		return -EINVAL;
	}

	switch (bits_per_word) {
	case 8:
		regval |= SIRFSOC_SPI_TRAN_DAT_FORMAT_8;
		sspi->rx_word = spi_sirfsoc_rx_word_u8;
		sspi->tx_word = spi_sirfsoc_tx_word_u8;
		txfifo_ctrl = SIRFSOC_SPI_FIFO_THD(SIRFSOC_SPI_FIFO_SIZE / 2) |
					SIRFSOC_SPI_FIFO_WIDTH_BYTE;
		rxfifo_ctrl = SIRFSOC_SPI_FIFO_THD(SIRFSOC_SPI_FIFO_SIZE / 2) |
					SIRFSOC_SPI_FIFO_WIDTH_BYTE;
465
		sspi->word_width = 1;
466 467 468 469 470 471 472 473 474 475 476
		break;
	case 12:
	case 16:
		regval |= (bits_per_word ==  12) ? SIRFSOC_SPI_TRAN_DAT_FORMAT_12 :
			SIRFSOC_SPI_TRAN_DAT_FORMAT_16;
		sspi->rx_word = spi_sirfsoc_rx_word_u16;
		sspi->tx_word = spi_sirfsoc_tx_word_u16;
		txfifo_ctrl = SIRFSOC_SPI_FIFO_THD(SIRFSOC_SPI_FIFO_SIZE / 2) |
					SIRFSOC_SPI_FIFO_WIDTH_WORD;
		rxfifo_ctrl = SIRFSOC_SPI_FIFO_THD(SIRFSOC_SPI_FIFO_SIZE / 2) |
					SIRFSOC_SPI_FIFO_WIDTH_WORD;
477
		sspi->word_width = 2;
478 479 480 481 482 483 484 485 486
		break;
	case 32:
		regval |= SIRFSOC_SPI_TRAN_DAT_FORMAT_32;
		sspi->rx_word = spi_sirfsoc_rx_word_u32;
		sspi->tx_word = spi_sirfsoc_tx_word_u32;
		txfifo_ctrl = SIRFSOC_SPI_FIFO_THD(SIRFSOC_SPI_FIFO_SIZE / 2) |
					SIRFSOC_SPI_FIFO_WIDTH_DWORD;
		rxfifo_ctrl = SIRFSOC_SPI_FIFO_THD(SIRFSOC_SPI_FIFO_SIZE / 2) |
					SIRFSOC_SPI_FIFO_WIDTH_DWORD;
487
		sspi->word_width = 4;
488
		break;
489 490
	default:
		BUG();
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
	}

	if (!(spi->mode & SPI_CS_HIGH))
		regval |= SIRFSOC_SPI_CS_IDLE_STAT;
	if (!(spi->mode & SPI_LSB_FIRST))
		regval |= SIRFSOC_SPI_TRAN_MSB;
	if (spi->mode & SPI_CPOL)
		regval |= SIRFSOC_SPI_CLK_IDLE_STAT;

	/*
	 * Data should be driven at least 1/2 cycle before the fetch edge to make
	 * sure that data gets stable at the fetch edge.
	 */
	if (((spi->mode & SPI_CPOL) && (spi->mode & SPI_CPHA)) ||
	    (!(spi->mode & SPI_CPOL) && !(spi->mode & SPI_CPHA)))
		regval &= ~SIRFSOC_SPI_DRV_POS_EDGE;
	else
		regval |= SIRFSOC_SPI_DRV_POS_EDGE;

	writel(SIRFSOC_SPI_FIFO_SC(fifo_size - 2) |
			SIRFSOC_SPI_FIFO_LC(fifo_size / 2) |
			SIRFSOC_SPI_FIFO_HC(2),
		sspi->base + SIRFSOC_SPI_TXFIFO_LEVEL_CHK);
	writel(SIRFSOC_SPI_FIFO_SC(2) |
			SIRFSOC_SPI_FIFO_LC(fifo_size / 2) |
			SIRFSOC_SPI_FIFO_HC(fifo_size - 2),
		sspi->base + SIRFSOC_SPI_RXFIFO_LEVEL_CHK);
	writel(txfifo_ctrl, sspi->base + SIRFSOC_SPI_TXFIFO_CTRL);
	writel(rxfifo_ctrl, sspi->base + SIRFSOC_SPI_RXFIFO_CTRL);

	writel(regval, sspi->base + SIRFSOC_SPI_CTRL);
522 523 524 525 526 527 528 529 530 531 532

	if (IS_DMA_VALID(t)) {
		/* Enable DMA mode for RX, TX */
		writel(0, sspi->base + SIRFSOC_SPI_TX_DMA_IO_CTRL);
		writel(SIRFSOC_SPI_RX_DMA_FLUSH, sspi->base + SIRFSOC_SPI_RX_DMA_IO_CTRL);
	} else {
		/* Enable IO mode for RX, TX */
		writel(SIRFSOC_SPI_IO_MODE_SEL, sspi->base + SIRFSOC_SPI_TX_DMA_IO_CTRL);
		writel(SIRFSOC_SPI_IO_MODE_SEL, sspi->base + SIRFSOC_SPI_RX_DMA_IO_CTRL);
	}

533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
	return 0;
}

static int spi_sirfsoc_setup(struct spi_device *spi)
{
	struct sirfsoc_spi *sspi;

	if (!spi->max_speed_hz)
		return -EINVAL;

	sspi = spi_master_get_devdata(spi->master);

	if (!spi->bits_per_word)
		spi->bits_per_word = 8;

	return spi_sirfsoc_setup_transfer(spi, NULL);
}

551
static int spi_sirfsoc_probe(struct platform_device *pdev)
552 553 554 555 556
{
	struct sirfsoc_spi *sspi;
	struct spi_master *master;
	struct resource *mem_res;
	int num_cs, cs_gpio, irq;
557 558
	u32 rx_dma_ch, tx_dma_ch;
	dma_cap_mask_t dma_cap_mask;
559 560 561 562 563 564 565 566 567 568
	int i;
	int ret;

	ret = of_property_read_u32(pdev->dev.of_node,
			"sirf,spi-num-chipselects", &num_cs);
	if (ret < 0) {
		dev_err(&pdev->dev, "Unable to get chip select number\n");
		goto err_cs;
	}

569 570 571 572 573 574 575 576 577 578 579 580 581 582
	ret = of_property_read_u32(pdev->dev.of_node,
			"sirf,spi-dma-rx-channel", &rx_dma_ch);
	if (ret < 0) {
		dev_err(&pdev->dev, "Unable to get rx dma channel\n");
		goto err_cs;
	}

	ret = of_property_read_u32(pdev->dev.of_node,
			"sirf,spi-dma-tx-channel", &tx_dma_ch);
	if (ret < 0) {
		dev_err(&pdev->dev, "Unable to get tx dma channel\n");
		goto err_cs;
	}

583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
	master = spi_alloc_master(&pdev->dev, sizeof(*sspi) + sizeof(int) * num_cs);
	if (!master) {
		dev_err(&pdev->dev, "Unable to allocate SPI master\n");
		return -ENOMEM;
	}
	platform_set_drvdata(pdev, master);
	sspi = spi_master_get_devdata(master);

	mem_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	if (!mem_res) {
		dev_err(&pdev->dev, "Unable to get IO resource\n");
		ret = -ENODEV;
		goto free_master;
	}
	master->num_chipselect = num_cs;

	for (i = 0; i < master->num_chipselect; i++) {
		cs_gpio = of_get_named_gpio(pdev->dev.of_node, "cs-gpios", i);
		if (cs_gpio < 0) {
			dev_err(&pdev->dev, "can't get cs gpio from DT\n");
			ret = -ENODEV;
			goto free_master;
		}

		sspi->chipselect[i] = cs_gpio;
		if (cs_gpio == 0)
			continue; /* use cs from spi controller */

		ret = gpio_request(cs_gpio, DRIVER_NAME);
		if (ret) {
			while (i > 0) {
				i--;
				if (sspi->chipselect[i] > 0)
					gpio_free(sspi->chipselect[i]);
			}
			dev_err(&pdev->dev, "fail to request cs gpios\n");
			goto free_master;
		}
	}

623 624 625
	sspi->base = devm_ioremap_resource(&pdev->dev, mem_res);
	if (IS_ERR(sspi->base)) {
		ret = PTR_ERR(sspi->base);
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
		goto free_master;
	}

	irq = platform_get_irq(pdev, 0);
	if (irq < 0) {
		ret = -ENXIO;
		goto free_master;
	}
	ret = devm_request_irq(&pdev->dev, irq, spi_sirfsoc_irq, 0,
				DRIVER_NAME, sspi);
	if (ret)
		goto free_master;

	sspi->bitbang.master = spi_master_get(master);
	sspi->bitbang.chipselect = spi_sirfsoc_chipselect;
	sspi->bitbang.setup_transfer = spi_sirfsoc_setup_transfer;
	sspi->bitbang.txrx_bufs = spi_sirfsoc_transfer;
	sspi->bitbang.master->setup = spi_sirfsoc_setup;
	master->bus_num = pdev->id;
645
	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST | SPI_CS_HIGH;
646 647
	master->bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(12) |
					SPI_BPW_MASK(16) | SPI_BPW_MASK(32);
648 649
	sspi->bitbang.master->dev.of_node = pdev->dev.of_node;

650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
	/* request DMA channels */
	dma_cap_zero(dma_cap_mask);
	dma_cap_set(DMA_INTERLEAVE, dma_cap_mask);

	sspi->rx_chan = dma_request_channel(dma_cap_mask, (dma_filter_fn)sirfsoc_dma_filter_id,
		(void *)rx_dma_ch);
	if (!sspi->rx_chan) {
		dev_err(&pdev->dev, "can not allocate rx dma channel\n");
		goto free_master;
	}
	sspi->tx_chan = dma_request_channel(dma_cap_mask, (dma_filter_fn)sirfsoc_dma_filter_id,
		(void *)tx_dma_ch);
	if (!sspi->tx_chan) {
		dev_err(&pdev->dev, "can not allocate tx dma channel\n");
		goto free_rx_dma;
	}

667 668
	sspi->clk = clk_get(&pdev->dev, NULL);
	if (IS_ERR(sspi->clk)) {
669 670
		ret = PTR_ERR(sspi->clk);
		goto free_tx_dma;
671
	}
672
	clk_prepare_enable(sspi->clk);
673 674
	sspi->ctrl_freq = clk_get_rate(sspi->clk);

675 676
	init_completion(&sspi->rx_done);
	init_completion(&sspi->tx_done);
677 678 679 680 681 682 683 684

	writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
	writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
	writel(SIRFSOC_SPI_FIFO_START, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
	writel(SIRFSOC_SPI_FIFO_START, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
	/* We are not using dummy delay between command and data */
	writel(0, sspi->base + SIRFSOC_SPI_DUMMY_DELAY_CTL);

685 686 687 688
	sspi->dummypage = kmalloc(2 * PAGE_SIZE, GFP_KERNEL);
	if (!sspi->dummypage)
		goto free_clk;

689 690
	ret = spi_bitbang_start(&sspi->bitbang);
	if (ret)
691
		goto free_dummypage;
692 693 694 695

	dev_info(&pdev->dev, "registerred, bus number = %d\n", master->bus_num);

	return 0;
696 697
free_dummypage:
	kfree(sspi->dummypage);
698
free_clk:
699
	clk_disable_unprepare(sspi->clk);
700
	clk_put(sspi->clk);
701 702 703 704
free_tx_dma:
	dma_release_channel(sspi->tx_chan);
free_rx_dma:
	dma_release_channel(sspi->rx_chan);
705 706 707 708 709 710
free_master:
	spi_master_put(master);
err_cs:
	return ret;
}

711
static int  spi_sirfsoc_remove(struct platform_device *pdev)
712 713 714 715 716 717 718 719 720 721 722 723 724
{
	struct spi_master *master;
	struct sirfsoc_spi *sspi;
	int i;

	master = platform_get_drvdata(pdev);
	sspi = spi_master_get_devdata(master);

	spi_bitbang_stop(&sspi->bitbang);
	for (i = 0; i < master->num_chipselect; i++) {
		if (sspi->chipselect[i] > 0)
			gpio_free(sspi->chipselect[i]);
	}
725
	kfree(sspi->dummypage);
726
	clk_disable_unprepare(sspi->clk);
727
	clk_put(sspi->clk);
728 729
	dma_release_channel(sspi->rx_chan);
	dma_release_channel(sspi->tx_chan);
730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
	spi_master_put(master);
	return 0;
}

#ifdef CONFIG_PM
static int spi_sirfsoc_suspend(struct device *dev)
{
	struct platform_device *pdev = to_platform_device(dev);
	struct spi_master *master = platform_get_drvdata(pdev);
	struct sirfsoc_spi *sspi = spi_master_get_devdata(master);

	clk_disable(sspi->clk);
	return 0;
}

static int spi_sirfsoc_resume(struct device *dev)
{
	struct platform_device *pdev = to_platform_device(dev);
	struct spi_master *master = platform_get_drvdata(pdev);
	struct sirfsoc_spi *sspi = spi_master_get_devdata(master);

	clk_enable(sspi->clk);
	writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
	writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
	writel(SIRFSOC_SPI_FIFO_START, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
	writel(SIRFSOC_SPI_FIFO_START, sspi->base + SIRFSOC_SPI_TXFIFO_OP);

	return 0;
}

static const struct dev_pm_ops spi_sirfsoc_pm_ops = {
	.suspend = spi_sirfsoc_suspend,
	.resume = spi_sirfsoc_resume,
};
#endif

static const struct of_device_id spi_sirfsoc_of_match[] = {
	{ .compatible = "sirf,prima2-spi", },
768
	{ .compatible = "sirf,marco-spi", },
769 770
	{}
};
771
MODULE_DEVICE_TABLE(of, spi_sirfsoc_of_match);
772 773 774 775 776 777 778 779 780 781 782

static struct platform_driver spi_sirfsoc_driver = {
	.driver = {
		.name = DRIVER_NAME,
		.owner = THIS_MODULE,
#ifdef CONFIG_PM
		.pm     = &spi_sirfsoc_pm_ops,
#endif
		.of_match_table = spi_sirfsoc_of_match,
	},
	.probe = spi_sirfsoc_probe,
783
	.remove = spi_sirfsoc_remove,
784 785 786 787 788 789 790
};
module_platform_driver(spi_sirfsoc_driver);

MODULE_DESCRIPTION("SiRF SoC SPI master driver");
MODULE_AUTHOR("Zhiwu Song <Zhiwu.Song@csr.com>, "
		"Barry Song <Baohua.Song@csr.com>");
MODULE_LICENSE("GPL v2");