spi-sirf.c 22.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*
 * SPI bus driver for CSR SiRFprimaII
 *
 * Copyright (c) 2011 Cambridge Silicon Radio Limited, a CSR plc group company.
 *
 * Licensed under GPLv2 or later.
 */

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/clk.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/of.h>
#include <linux/bitops.h>
#include <linux/err.h>
#include <linux/platform_device.h>
#include <linux/of_gpio.h>
#include <linux/spi/spi.h>
#include <linux/spi/spi_bitbang.h>
22 23 24
#include <linux/dmaengine.h>
#include <linux/dma-direction.h>
#include <linux/dma-mapping.h>
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124

#define DRIVER_NAME "sirfsoc_spi"

#define SIRFSOC_SPI_CTRL		0x0000
#define SIRFSOC_SPI_CMD			0x0004
#define SIRFSOC_SPI_TX_RX_EN		0x0008
#define SIRFSOC_SPI_INT_EN		0x000C
#define SIRFSOC_SPI_INT_STATUS		0x0010
#define SIRFSOC_SPI_TX_DMA_IO_CTRL	0x0100
#define SIRFSOC_SPI_TX_DMA_IO_LEN	0x0104
#define SIRFSOC_SPI_TXFIFO_CTRL		0x0108
#define SIRFSOC_SPI_TXFIFO_LEVEL_CHK	0x010C
#define SIRFSOC_SPI_TXFIFO_OP		0x0110
#define SIRFSOC_SPI_TXFIFO_STATUS	0x0114
#define SIRFSOC_SPI_TXFIFO_DATA		0x0118
#define SIRFSOC_SPI_RX_DMA_IO_CTRL	0x0120
#define SIRFSOC_SPI_RX_DMA_IO_LEN	0x0124
#define SIRFSOC_SPI_RXFIFO_CTRL		0x0128
#define SIRFSOC_SPI_RXFIFO_LEVEL_CHK	0x012C
#define SIRFSOC_SPI_RXFIFO_OP		0x0130
#define SIRFSOC_SPI_RXFIFO_STATUS	0x0134
#define SIRFSOC_SPI_RXFIFO_DATA		0x0138
#define SIRFSOC_SPI_DUMMY_DELAY_CTL	0x0144

/* SPI CTRL register defines */
#define SIRFSOC_SPI_SLV_MODE		BIT(16)
#define SIRFSOC_SPI_CMD_MODE		BIT(17)
#define SIRFSOC_SPI_CS_IO_OUT		BIT(18)
#define SIRFSOC_SPI_CS_IO_MODE		BIT(19)
#define SIRFSOC_SPI_CLK_IDLE_STAT	BIT(20)
#define SIRFSOC_SPI_CS_IDLE_STAT	BIT(21)
#define SIRFSOC_SPI_TRAN_MSB		BIT(22)
#define SIRFSOC_SPI_DRV_POS_EDGE	BIT(23)
#define SIRFSOC_SPI_CS_HOLD_TIME	BIT(24)
#define SIRFSOC_SPI_CLK_SAMPLE_MODE	BIT(25)
#define SIRFSOC_SPI_TRAN_DAT_FORMAT_8	(0 << 26)
#define SIRFSOC_SPI_TRAN_DAT_FORMAT_12	(1 << 26)
#define SIRFSOC_SPI_TRAN_DAT_FORMAT_16	(2 << 26)
#define SIRFSOC_SPI_TRAN_DAT_FORMAT_32	(3 << 26)
#define SIRFSOC_SPI_CMD_BYTE_NUM(x)		((x & 3) << 28)
#define SIRFSOC_SPI_ENA_AUTO_CLR		BIT(30)
#define SIRFSOC_SPI_MUL_DAT_MODE		BIT(31)

/* Interrupt Enable */
#define SIRFSOC_SPI_RX_DONE_INT_EN		BIT(0)
#define SIRFSOC_SPI_TX_DONE_INT_EN		BIT(1)
#define SIRFSOC_SPI_RX_OFLOW_INT_EN		BIT(2)
#define SIRFSOC_SPI_TX_UFLOW_INT_EN		BIT(3)
#define SIRFSOC_SPI_RX_IO_DMA_INT_EN	BIT(4)
#define SIRFSOC_SPI_TX_IO_DMA_INT_EN	BIT(5)
#define SIRFSOC_SPI_RXFIFO_FULL_INT_EN	BIT(6)
#define SIRFSOC_SPI_TXFIFO_EMPTY_INT_EN	BIT(7)
#define SIRFSOC_SPI_RXFIFO_THD_INT_EN	BIT(8)
#define SIRFSOC_SPI_TXFIFO_THD_INT_EN	BIT(9)
#define SIRFSOC_SPI_FRM_END_INT_EN	BIT(10)

#define SIRFSOC_SPI_INT_MASK_ALL		0x1FFF

/* Interrupt status */
#define SIRFSOC_SPI_RX_DONE		BIT(0)
#define SIRFSOC_SPI_TX_DONE		BIT(1)
#define SIRFSOC_SPI_RX_OFLOW		BIT(2)
#define SIRFSOC_SPI_TX_UFLOW		BIT(3)
#define SIRFSOC_SPI_RX_FIFO_FULL	BIT(6)
#define SIRFSOC_SPI_TXFIFO_EMPTY	BIT(7)
#define SIRFSOC_SPI_RXFIFO_THD_REACH	BIT(8)
#define SIRFSOC_SPI_TXFIFO_THD_REACH	BIT(9)
#define SIRFSOC_SPI_FRM_END		BIT(10)

/* TX RX enable */
#define SIRFSOC_SPI_RX_EN		BIT(0)
#define SIRFSOC_SPI_TX_EN		BIT(1)
#define SIRFSOC_SPI_CMD_TX_EN		BIT(2)

#define SIRFSOC_SPI_IO_MODE_SEL		BIT(0)
#define SIRFSOC_SPI_RX_DMA_FLUSH	BIT(2)

/* FIFO OPs */
#define SIRFSOC_SPI_FIFO_RESET		BIT(0)
#define SIRFSOC_SPI_FIFO_START		BIT(1)

/* FIFO CTRL */
#define SIRFSOC_SPI_FIFO_WIDTH_BYTE	(0 << 0)
#define SIRFSOC_SPI_FIFO_WIDTH_WORD	(1 << 0)
#define SIRFSOC_SPI_FIFO_WIDTH_DWORD	(2 << 0)

/* FIFO Status */
#define	SIRFSOC_SPI_FIFO_LEVEL_MASK	0xFF
#define SIRFSOC_SPI_FIFO_FULL		BIT(8)
#define SIRFSOC_SPI_FIFO_EMPTY		BIT(9)

/* 256 bytes rx/tx FIFO */
#define SIRFSOC_SPI_FIFO_SIZE		256
#define SIRFSOC_SPI_DAT_FRM_LEN_MAX	(64 * 1024)

#define SIRFSOC_SPI_FIFO_SC(x)		((x) & 0x3F)
#define SIRFSOC_SPI_FIFO_LC(x)		(((x) & 0x3F) << 10)
#define SIRFSOC_SPI_FIFO_HC(x)		(((x) & 0x3F) << 20)
#define SIRFSOC_SPI_FIFO_THD(x)		(((x) & 0xFF) << 2)

125 126 127 128 129 130 131
/*
 * only if the rx/tx buffer and transfer size are 4-bytes aligned, we use dma
 * due to the limitation of dma controller
 */

#define ALIGNED(x) (!((u32)x & 0x3))
#define IS_DMA_VALID(x) (x && ALIGNED(x->tx_buf) && ALIGNED(x->rx_buf) && \
132
	ALIGNED(x->len) && (x->len < 2 * PAGE_SIZE))
133

134 135
#define SIRFSOC_MAX_CMD_BYTES	4

136 137
struct sirfsoc_spi {
	struct spi_bitbang bitbang;
138 139
	struct completion rx_done;
	struct completion tx_done;
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154

	void __iomem *base;
	u32 ctrl_freq;  /* SPI controller clock speed */
	struct clk *clk;

	/* rx & tx bufs from the spi_transfer */
	const void *tx;
	void *rx;

	/* place received word into rx buffer */
	void (*rx_word) (struct sirfsoc_spi *);
	/* get word from tx buffer for sending */
	void (*tx_word) (struct sirfsoc_spi *);

	/* number of words left to be tranmitted/received */
155 156
	unsigned int left_tx_word;
	unsigned int left_rx_word;
157

158 159 160 161 162 163 164
	/* rx & tx DMA channels */
	struct dma_chan *rx_chan;
	struct dma_chan *tx_chan;
	dma_addr_t src_start;
	dma_addr_t dst_start;
	void *dummypage;
	int word_width; /* in bytes */
165

166 167 168 169 170 171
	/*
	 * if tx size is not more than 4 and rx size is NULL, use
	 * command model
	 */
	bool	tx_by_cmd;

172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
	int chipselect[0];
};

static void spi_sirfsoc_rx_word_u8(struct sirfsoc_spi *sspi)
{
	u32 data;
	u8 *rx = sspi->rx;

	data = readl(sspi->base + SIRFSOC_SPI_RXFIFO_DATA);

	if (rx) {
		*rx++ = (u8) data;
		sspi->rx = rx;
	}

187
	sspi->left_rx_word--;
188 189 190 191 192 193 194 195 196 197 198 199 200
}

static void spi_sirfsoc_tx_word_u8(struct sirfsoc_spi *sspi)
{
	u32 data = 0;
	const u8 *tx = sspi->tx;

	if (tx) {
		data = *tx++;
		sspi->tx = tx;
	}

	writel(data, sspi->base + SIRFSOC_SPI_TXFIFO_DATA);
201
	sspi->left_tx_word--;
202 203 204 205 206 207 208 209 210 211 212 213 214 215
}

static void spi_sirfsoc_rx_word_u16(struct sirfsoc_spi *sspi)
{
	u32 data;
	u16 *rx = sspi->rx;

	data = readl(sspi->base + SIRFSOC_SPI_RXFIFO_DATA);

	if (rx) {
		*rx++ = (u16) data;
		sspi->rx = rx;
	}

216
	sspi->left_rx_word--;
217 218 219 220 221 222 223 224 225 226 227 228 229
}

static void spi_sirfsoc_tx_word_u16(struct sirfsoc_spi *sspi)
{
	u32 data = 0;
	const u16 *tx = sspi->tx;

	if (tx) {
		data = *tx++;
		sspi->tx = tx;
	}

	writel(data, sspi->base + SIRFSOC_SPI_TXFIFO_DATA);
230
	sspi->left_tx_word--;
231 232 233 234 235 236 237 238 239 240 241 242 243 244
}

static void spi_sirfsoc_rx_word_u32(struct sirfsoc_spi *sspi)
{
	u32 data;
	u32 *rx = sspi->rx;

	data = readl(sspi->base + SIRFSOC_SPI_RXFIFO_DATA);

	if (rx) {
		*rx++ = (u32) data;
		sspi->rx = rx;
	}

245
	sspi->left_rx_word--;
246 247 248 249 250 251 252 253 254 255 256 257 258 259

}

static void spi_sirfsoc_tx_word_u32(struct sirfsoc_spi *sspi)
{
	u32 data = 0;
	const u32 *tx = sspi->tx;

	if (tx) {
		data = *tx++;
		sspi->tx = tx;
	}

	writel(data, sspi->base + SIRFSOC_SPI_TXFIFO_DATA);
260
	sspi->left_tx_word--;
261 262 263 264 265 266 267 268 269
}

static irqreturn_t spi_sirfsoc_irq(int irq, void *dev_id)
{
	struct sirfsoc_spi *sspi = dev_id;
	u32 spi_stat = readl(sspi->base + SIRFSOC_SPI_INT_STATUS);

	writel(spi_stat, sspi->base + SIRFSOC_SPI_INT_STATUS);

270 271 272 273 274 275
	if (sspi->tx_by_cmd && (spi_stat & SIRFSOC_SPI_FRM_END)) {
		complete(&sspi->tx_done);
		writel(0x0, sspi->base + SIRFSOC_SPI_INT_EN);
		return IRQ_HANDLED;
	}

276 277 278
	/* Error Conditions */
	if (spi_stat & SIRFSOC_SPI_RX_OFLOW ||
			spi_stat & SIRFSOC_SPI_TX_UFLOW) {
279
		complete(&sspi->rx_done);
280 281 282
		writel(0x0, sspi->base + SIRFSOC_SPI_INT_EN);
	}

283 284
	if (spi_stat & (SIRFSOC_SPI_FRM_END
			| SIRFSOC_SPI_RXFIFO_THD_REACH))
285 286
		while (!((readl(sspi->base + SIRFSOC_SPI_RXFIFO_STATUS)
				& SIRFSOC_SPI_FIFO_EMPTY)) &&
287
				sspi->left_rx_word)
288 289
			sspi->rx_word(sspi);

290 291
	if (spi_stat & (SIRFSOC_SPI_TXFIFO_EMPTY |
			SIRFSOC_SPI_TXFIFO_THD_REACH))
292 293
		while (!((readl(sspi->base + SIRFSOC_SPI_TXFIFO_STATUS)
				& SIRFSOC_SPI_FIFO_FULL)) &&
294
				sspi->left_tx_word)
295
			sspi->tx_word(sspi);
296

297
	/* Received all words */
298
	if ((sspi->left_rx_word == 0) && (sspi->left_tx_word == 0)) {
299
		complete(&sspi->rx_done);
300 301
		writel(0x0, sspi->base + SIRFSOC_SPI_INT_EN);
	}
302 303 304
	return IRQ_HANDLED;
}

305 306 307 308 309 310 311
static void spi_sirfsoc_dma_fini_callback(void *data)
{
	struct completion *dma_complete = data;

	complete(dma_complete);
}

312 313 314 315 316 317
static int spi_sirfsoc_transfer(struct spi_device *spi, struct spi_transfer *t)
{
	struct sirfsoc_spi *sspi;
	int timeout = t->len * 10;
	sspi = spi_master_get_devdata(spi->master);

318 319
	sspi->tx = t->tx_buf ? t->tx_buf : sspi->dummypage;
	sspi->rx = t->rx_buf ? t->rx_buf : sspi->dummypage;
320
	sspi->left_tx_word = sspi->left_rx_word = t->len / sspi->word_width;
321 322
	reinit_completion(&sspi->rx_done);
	reinit_completion(&sspi->tx_done);
323 324 325

	writel(SIRFSOC_SPI_INT_MASK_ALL, sspi->base + SIRFSOC_SPI_INT_STATUS);

326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
	/*
	 * fill tx_buf into command register and wait for its completion
	 */
	if (sspi->tx_by_cmd) {
		u32 cmd;
		memcpy(&cmd, sspi->tx, t->len);

		if (sspi->word_width == 1 && !(spi->mode & SPI_LSB_FIRST))
			cmd = cpu_to_be32(cmd) >>
				((SIRFSOC_MAX_CMD_BYTES - t->len) * 8);
		if (sspi->word_width == 2 && t->len == 4 &&
				(!(spi->mode & SPI_LSB_FIRST)))
			cmd = ((cmd & 0xffff) << 16) | (cmd >> 16);

		writel(cmd, sspi->base + SIRFSOC_SPI_CMD);
		writel(SIRFSOC_SPI_FRM_END_INT_EN,
			sspi->base + SIRFSOC_SPI_INT_EN);
		writel(SIRFSOC_SPI_CMD_TX_EN,
			sspi->base + SIRFSOC_SPI_TX_RX_EN);

		if (wait_for_completion_timeout(&sspi->tx_done, timeout) == 0) {
			dev_err(&spi->dev, "transfer timeout\n");
			return 0;
		}

		return t->len;
	}

354
	if (sspi->left_tx_word == 1) {
355 356 357 358 359
		writel(readl(sspi->base + SIRFSOC_SPI_CTRL) |
			SIRFSOC_SPI_ENA_AUTO_CLR,
			sspi->base + SIRFSOC_SPI_CTRL);
		writel(0, sspi->base + SIRFSOC_SPI_TX_DMA_IO_LEN);
		writel(0, sspi->base + SIRFSOC_SPI_RX_DMA_IO_LEN);
360 361
	} else if ((sspi->left_tx_word > 1) && (sspi->left_tx_word <
				SIRFSOC_SPI_DAT_FRM_LEN_MAX)) {
362 363 364 365
		writel(readl(sspi->base + SIRFSOC_SPI_CTRL) |
				SIRFSOC_SPI_MUL_DAT_MODE |
				SIRFSOC_SPI_ENA_AUTO_CLR,
			sspi->base + SIRFSOC_SPI_CTRL);
366 367 368 369
		writel(sspi->left_tx_word - 1,
				sspi->base + SIRFSOC_SPI_TX_DMA_IO_LEN);
		writel(sspi->left_tx_word - 1,
				sspi->base + SIRFSOC_SPI_RX_DMA_IO_LEN);
370 371 372 373 374 375 376 377 378 379 380 381
	} else {
		writel(readl(sspi->base + SIRFSOC_SPI_CTRL),
			sspi->base + SIRFSOC_SPI_CTRL);
		writel(0, sspi->base + SIRFSOC_SPI_TX_DMA_IO_LEN);
		writel(0, sspi->base + SIRFSOC_SPI_RX_DMA_IO_LEN);
	}

	writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
	writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
	writel(SIRFSOC_SPI_FIFO_START, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
	writel(SIRFSOC_SPI_FIFO_START, sspi->base + SIRFSOC_SPI_TXFIFO_OP);

382 383 384 385 386
	if (IS_DMA_VALID(t)) {
		struct dma_async_tx_descriptor *rx_desc, *tx_desc;

		sspi->dst_start = dma_map_single(&spi->dev, sspi->rx, t->len, DMA_FROM_DEVICE);
		rx_desc = dmaengine_prep_slave_single(sspi->rx_chan,
387
			sspi->dst_start, t->len, DMA_DEV_TO_MEM,
388 389 390 391 392 393
			DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
		rx_desc->callback = spi_sirfsoc_dma_fini_callback;
		rx_desc->callback_param = &sspi->rx_done;

		sspi->src_start = dma_map_single(&spi->dev, (void *)sspi->tx, t->len, DMA_TO_DEVICE);
		tx_desc = dmaengine_prep_slave_single(sspi->tx_chan,
394
			sspi->src_start, t->len, DMA_MEM_TO_DEV,
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
			DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
		tx_desc->callback = spi_sirfsoc_dma_fini_callback;
		tx_desc->callback_param = &sspi->tx_done;

		dmaengine_submit(tx_desc);
		dmaengine_submit(rx_desc);
		dma_async_issue_pending(sspi->tx_chan);
		dma_async_issue_pending(sspi->rx_chan);
	} else {
		/* Send the first word to trigger the whole tx/rx process */
		sspi->tx_word(sspi);

		writel(SIRFSOC_SPI_RX_OFLOW_INT_EN | SIRFSOC_SPI_TX_UFLOW_INT_EN |
			SIRFSOC_SPI_RXFIFO_THD_INT_EN | SIRFSOC_SPI_TXFIFO_THD_INT_EN |
			SIRFSOC_SPI_FRM_END_INT_EN | SIRFSOC_SPI_RXFIFO_FULL_INT_EN |
			SIRFSOC_SPI_TXFIFO_EMPTY_INT_EN, sspi->base + SIRFSOC_SPI_INT_EN);
	}
412 413 414

	writel(SIRFSOC_SPI_RX_EN | SIRFSOC_SPI_TX_EN, sspi->base + SIRFSOC_SPI_TX_RX_EN);

415 416 417 418
	if (!IS_DMA_VALID(t)) { /* for PIO */
		if (wait_for_completion_timeout(&sspi->rx_done, timeout) == 0)
			dev_err(&spi->dev, "transfer timeout\n");
	} else if (wait_for_completion_timeout(&sspi->rx_done, timeout) == 0) {
419
		dev_err(&spi->dev, "transfer timeout\n");
420 421
		dmaengine_terminate_all(sspi->rx_chan);
	} else
422
		sspi->left_rx_word = 0;
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439

	/*
	 * we only wait tx-done event if transferring by DMA. for PIO,
	 * we get rx data by writing tx data, so if rx is done, tx has
	 * done earlier
	 */
	if (IS_DMA_VALID(t)) {
		if (wait_for_completion_timeout(&sspi->tx_done, timeout) == 0) {
			dev_err(&spi->dev, "transfer timeout\n");
			dmaengine_terminate_all(sspi->tx_chan);
		}
	}

	if (IS_DMA_VALID(t)) {
		dma_unmap_single(&spi->dev, sspi->src_start, t->len, DMA_TO_DEVICE);
		dma_unmap_single(&spi->dev, sspi->dst_start, t->len, DMA_FROM_DEVICE);
	}
440 441 442 443 444 445 446

	/* TX, RX FIFO stop */
	writel(0, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
	writel(0, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
	writel(0, sspi->base + SIRFSOC_SPI_TX_RX_EN);
	writel(0, sspi->base + SIRFSOC_SPI_INT_EN);

447
	return t->len - sspi->left_rx_word * sspi->word_width;
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
}

static void spi_sirfsoc_chipselect(struct spi_device *spi, int value)
{
	struct sirfsoc_spi *sspi = spi_master_get_devdata(spi->master);

	if (sspi->chipselect[spi->chip_select] == 0) {
		u32 regval = readl(sspi->base + SIRFSOC_SPI_CTRL);
		switch (value) {
		case BITBANG_CS_ACTIVE:
			if (spi->mode & SPI_CS_HIGH)
				regval |= SIRFSOC_SPI_CS_IO_OUT;
			else
				regval &= ~SIRFSOC_SPI_CS_IO_OUT;
			break;
		case BITBANG_CS_INACTIVE:
			if (spi->mode & SPI_CS_HIGH)
				regval &= ~SIRFSOC_SPI_CS_IO_OUT;
			else
				regval |= SIRFSOC_SPI_CS_IO_OUT;
			break;
		}
		writel(regval, sspi->base + SIRFSOC_SPI_CTRL);
	} else {
		int gpio = sspi->chipselect[spi->chip_select];
473 474 475 476 477 478 479 480 481 482
		switch (value) {
		case BITBANG_CS_ACTIVE:
			gpio_direction_output(gpio,
					spi->mode & SPI_CS_HIGH ? 1 : 0);
			break;
		case BITBANG_CS_INACTIVE:
			gpio_direction_output(gpio,
					spi->mode & SPI_CS_HIGH ? 0 : 1);
			break;
		}
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
	}
}

static int
spi_sirfsoc_setup_transfer(struct spi_device *spi, struct spi_transfer *t)
{
	struct sirfsoc_spi *sspi;
	u8 bits_per_word = 0;
	int hz = 0;
	u32 regval;
	u32 txfifo_ctrl, rxfifo_ctrl;
	u32 fifo_size = SIRFSOC_SPI_FIFO_SIZE / 4;

	sspi = spi_master_get_devdata(spi->master);

498
	bits_per_word = (t) ? t->bits_per_word : spi->bits_per_word;
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
	hz = t && t->speed_hz ? t->speed_hz : spi->max_speed_hz;

	regval = (sspi->ctrl_freq / (2 * hz)) - 1;
	if (regval > 0xFFFF || regval < 0) {
		dev_err(&spi->dev, "Speed %d not supported\n", hz);
		return -EINVAL;
	}

	switch (bits_per_word) {
	case 8:
		regval |= SIRFSOC_SPI_TRAN_DAT_FORMAT_8;
		sspi->rx_word = spi_sirfsoc_rx_word_u8;
		sspi->tx_word = spi_sirfsoc_tx_word_u8;
		break;
	case 12:
	case 16:
		regval |= (bits_per_word ==  12) ? SIRFSOC_SPI_TRAN_DAT_FORMAT_12 :
			SIRFSOC_SPI_TRAN_DAT_FORMAT_16;
		sspi->rx_word = spi_sirfsoc_rx_word_u16;
		sspi->tx_word = spi_sirfsoc_tx_word_u16;
		break;
	case 32:
		regval |= SIRFSOC_SPI_TRAN_DAT_FORMAT_32;
		sspi->rx_word = spi_sirfsoc_rx_word_u32;
		sspi->tx_word = spi_sirfsoc_tx_word_u32;
		break;
525 526
	default:
		BUG();
527 528
	}

529 530 531 532 533 534
	sspi->word_width = DIV_ROUND_UP(bits_per_word, 8);
	txfifo_ctrl = SIRFSOC_SPI_FIFO_THD(SIRFSOC_SPI_FIFO_SIZE / 2) |
					   sspi->word_width;
	rxfifo_ctrl = SIRFSOC_SPI_FIFO_THD(SIRFSOC_SPI_FIFO_SIZE / 2) |
					   sspi->word_width;

535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
	if (!(spi->mode & SPI_CS_HIGH))
		regval |= SIRFSOC_SPI_CS_IDLE_STAT;
	if (!(spi->mode & SPI_LSB_FIRST))
		regval |= SIRFSOC_SPI_TRAN_MSB;
	if (spi->mode & SPI_CPOL)
		regval |= SIRFSOC_SPI_CLK_IDLE_STAT;

	/*
	 * Data should be driven at least 1/2 cycle before the fetch edge to make
	 * sure that data gets stable at the fetch edge.
	 */
	if (((spi->mode & SPI_CPOL) && (spi->mode & SPI_CPHA)) ||
	    (!(spi->mode & SPI_CPOL) && !(spi->mode & SPI_CPHA)))
		regval &= ~SIRFSOC_SPI_DRV_POS_EDGE;
	else
		regval |= SIRFSOC_SPI_DRV_POS_EDGE;

	writel(SIRFSOC_SPI_FIFO_SC(fifo_size - 2) |
			SIRFSOC_SPI_FIFO_LC(fifo_size / 2) |
			SIRFSOC_SPI_FIFO_HC(2),
		sspi->base + SIRFSOC_SPI_TXFIFO_LEVEL_CHK);
	writel(SIRFSOC_SPI_FIFO_SC(2) |
			SIRFSOC_SPI_FIFO_LC(fifo_size / 2) |
			SIRFSOC_SPI_FIFO_HC(fifo_size - 2),
		sspi->base + SIRFSOC_SPI_RXFIFO_LEVEL_CHK);
	writel(txfifo_ctrl, sspi->base + SIRFSOC_SPI_TXFIFO_CTRL);
	writel(rxfifo_ctrl, sspi->base + SIRFSOC_SPI_RXFIFO_CTRL);

563 564 565 566 567 568 569 570
	if (t && t->tx_buf && !t->rx_buf && (t->len <= SIRFSOC_MAX_CMD_BYTES)) {
		regval |= (SIRFSOC_SPI_CMD_BYTE_NUM((t->len - 1)) |
				SIRFSOC_SPI_CMD_MODE);
		sspi->tx_by_cmd = true;
	} else {
		regval &= ~SIRFSOC_SPI_CMD_MODE;
		sspi->tx_by_cmd = false;
	}
571 572 573 574 575
	/*
	 * set spi controller in RISC chipselect mode, we are controlling CS by
	 * software BITBANG_CS_ACTIVE and BITBANG_CS_INACTIVE.
	 */
	regval |= SIRFSOC_SPI_CS_IO_MODE;
576
	writel(regval, sspi->base + SIRFSOC_SPI_CTRL);
577 578 579 580 581 582 583 584 585 586 587

	if (IS_DMA_VALID(t)) {
		/* Enable DMA mode for RX, TX */
		writel(0, sspi->base + SIRFSOC_SPI_TX_DMA_IO_CTRL);
		writel(SIRFSOC_SPI_RX_DMA_FLUSH, sspi->base + SIRFSOC_SPI_RX_DMA_IO_CTRL);
	} else {
		/* Enable IO mode for RX, TX */
		writel(SIRFSOC_SPI_IO_MODE_SEL, sspi->base + SIRFSOC_SPI_TX_DMA_IO_CTRL);
		writel(SIRFSOC_SPI_IO_MODE_SEL, sspi->base + SIRFSOC_SPI_RX_DMA_IO_CTRL);
	}

588 589 590 591 592 593 594 595 596 597 598
	return 0;
}

static int spi_sirfsoc_setup(struct spi_device *spi)
{
	if (!spi->max_speed_hz)
		return -EINVAL;

	return spi_sirfsoc_setup_transfer(spi, NULL);
}

599
static int spi_sirfsoc_probe(struct platform_device *pdev)
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
{
	struct sirfsoc_spi *sspi;
	struct spi_master *master;
	struct resource *mem_res;
	int num_cs, cs_gpio, irq;
	int i;
	int ret;

	ret = of_property_read_u32(pdev->dev.of_node,
			"sirf,spi-num-chipselects", &num_cs);
	if (ret < 0) {
		dev_err(&pdev->dev, "Unable to get chip select number\n");
		goto err_cs;
	}

	master = spi_alloc_master(&pdev->dev, sizeof(*sspi) + sizeof(int) * num_cs);
	if (!master) {
		dev_err(&pdev->dev, "Unable to allocate SPI master\n");
		return -ENOMEM;
	}
	platform_set_drvdata(pdev, master);
	sspi = spi_master_get_devdata(master);

	master->num_chipselect = num_cs;

	for (i = 0; i < master->num_chipselect; i++) {
		cs_gpio = of_get_named_gpio(pdev->dev.of_node, "cs-gpios", i);
		if (cs_gpio < 0) {
			dev_err(&pdev->dev, "can't get cs gpio from DT\n");
			ret = -ENODEV;
			goto free_master;
		}

		sspi->chipselect[i] = cs_gpio;
		if (cs_gpio == 0)
			continue; /* use cs from spi controller */

		ret = gpio_request(cs_gpio, DRIVER_NAME);
		if (ret) {
			while (i > 0) {
				i--;
				if (sspi->chipselect[i] > 0)
					gpio_free(sspi->chipselect[i]);
			}
			dev_err(&pdev->dev, "fail to request cs gpios\n");
			goto free_master;
		}
	}

649
	mem_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
650 651 652
	sspi->base = devm_ioremap_resource(&pdev->dev, mem_res);
	if (IS_ERR(sspi->base)) {
		ret = PTR_ERR(sspi->base);
653 654 655 656 657 658 659 660 661 662 663 664 665
		goto free_master;
	}

	irq = platform_get_irq(pdev, 0);
	if (irq < 0) {
		ret = -ENXIO;
		goto free_master;
	}
	ret = devm_request_irq(&pdev->dev, irq, spi_sirfsoc_irq, 0,
				DRIVER_NAME, sspi);
	if (ret)
		goto free_master;

666
	sspi->bitbang.master = master;
667 668 669 670 671
	sspi->bitbang.chipselect = spi_sirfsoc_chipselect;
	sspi->bitbang.setup_transfer = spi_sirfsoc_setup_transfer;
	sspi->bitbang.txrx_bufs = spi_sirfsoc_transfer;
	sspi->bitbang.master->setup = spi_sirfsoc_setup;
	master->bus_num = pdev->id;
672
	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST | SPI_CS_HIGH;
673 674
	master->bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(12) |
					SPI_BPW_MASK(16) | SPI_BPW_MASK(32);
675 676
	sspi->bitbang.master->dev.of_node = pdev->dev.of_node;

677
	/* request DMA channels */
678
	sspi->rx_chan = dma_request_slave_channel(&pdev->dev, "rx");
679 680
	if (!sspi->rx_chan) {
		dev_err(&pdev->dev, "can not allocate rx dma channel\n");
681
		ret = -ENODEV;
682 683
		goto free_master;
	}
684
	sspi->tx_chan = dma_request_slave_channel(&pdev->dev, "tx");
685 686
	if (!sspi->tx_chan) {
		dev_err(&pdev->dev, "can not allocate tx dma channel\n");
687
		ret = -ENODEV;
688 689 690
		goto free_rx_dma;
	}

691 692
	sspi->clk = clk_get(&pdev->dev, NULL);
	if (IS_ERR(sspi->clk)) {
693 694
		ret = PTR_ERR(sspi->clk);
		goto free_tx_dma;
695
	}
696
	clk_prepare_enable(sspi->clk);
697 698
	sspi->ctrl_freq = clk_get_rate(sspi->clk);

699 700
	init_completion(&sspi->rx_done);
	init_completion(&sspi->tx_done);
701 702 703 704 705 706 707 708

	writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
	writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
	writel(SIRFSOC_SPI_FIFO_START, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
	writel(SIRFSOC_SPI_FIFO_START, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
	/* We are not using dummy delay between command and data */
	writel(0, sspi->base + SIRFSOC_SPI_DUMMY_DELAY_CTL);

709
	sspi->dummypage = kmalloc(2 * PAGE_SIZE, GFP_KERNEL);
710 711
	if (!sspi->dummypage) {
		ret = -ENOMEM;
712
		goto free_clk;
713
	}
714

715 716
	ret = spi_bitbang_start(&sspi->bitbang);
	if (ret)
717
		goto free_dummypage;
718 719 720 721

	dev_info(&pdev->dev, "registerred, bus number = %d\n", master->bus_num);

	return 0;
722 723
free_dummypage:
	kfree(sspi->dummypage);
724
free_clk:
725
	clk_disable_unprepare(sspi->clk);
726
	clk_put(sspi->clk);
727 728 729 730
free_tx_dma:
	dma_release_channel(sspi->tx_chan);
free_rx_dma:
	dma_release_channel(sspi->rx_chan);
731 732 733 734 735 736
free_master:
	spi_master_put(master);
err_cs:
	return ret;
}

737
static int  spi_sirfsoc_remove(struct platform_device *pdev)
738 739 740 741 742 743 744 745 746 747 748 749 750
{
	struct spi_master *master;
	struct sirfsoc_spi *sspi;
	int i;

	master = platform_get_drvdata(pdev);
	sspi = spi_master_get_devdata(master);

	spi_bitbang_stop(&sspi->bitbang);
	for (i = 0; i < master->num_chipselect; i++) {
		if (sspi->chipselect[i] > 0)
			gpio_free(sspi->chipselect[i]);
	}
751
	kfree(sspi->dummypage);
752
	clk_disable_unprepare(sspi->clk);
753
	clk_put(sspi->clk);
754 755
	dma_release_channel(sspi->rx_chan);
	dma_release_channel(sspi->tx_chan);
756 757 758 759
	spi_master_put(master);
	return 0;
}

760
#ifdef CONFIG_PM_SLEEP
761 762
static int spi_sirfsoc_suspend(struct device *dev)
{
763
	struct spi_master *master = dev_get_drvdata(dev);
764
	struct sirfsoc_spi *sspi = spi_master_get_devdata(master);
765 766 767 768 769
	int ret;

	ret = spi_master_suspend(master);
	if (ret)
		return ret;
770 771 772 773 774 775 776

	clk_disable(sspi->clk);
	return 0;
}

static int spi_sirfsoc_resume(struct device *dev)
{
777
	struct spi_master *master = dev_get_drvdata(dev);
778 779 780 781 782 783 784 785
	struct sirfsoc_spi *sspi = spi_master_get_devdata(master);

	clk_enable(sspi->clk);
	writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
	writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
	writel(SIRFSOC_SPI_FIFO_START, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
	writel(SIRFSOC_SPI_FIFO_START, sspi->base + SIRFSOC_SPI_TXFIFO_OP);

786
	return spi_master_resume(master);
787
}
788
#endif
789

790 791
static SIMPLE_DEV_PM_OPS(spi_sirfsoc_pm_ops, spi_sirfsoc_suspend,
			 spi_sirfsoc_resume);
792 793 794

static const struct of_device_id spi_sirfsoc_of_match[] = {
	{ .compatible = "sirf,prima2-spi", },
795
	{ .compatible = "sirf,marco-spi", },
796 797
	{}
};
798
MODULE_DEVICE_TABLE(of, spi_sirfsoc_of_match);
799 800 801 802 803 804 805 806 807

static struct platform_driver spi_sirfsoc_driver = {
	.driver = {
		.name = DRIVER_NAME,
		.owner = THIS_MODULE,
		.pm     = &spi_sirfsoc_pm_ops,
		.of_match_table = spi_sirfsoc_of_match,
	},
	.probe = spi_sirfsoc_probe,
808
	.remove = spi_sirfsoc_remove,
809 810 811 812 813 814 815
};
module_platform_driver(spi_sirfsoc_driver);

MODULE_DESCRIPTION("SiRF SoC SPI master driver");
MODULE_AUTHOR("Zhiwu Song <Zhiwu.Song@csr.com>, "
		"Barry Song <Baohua.Song@csr.com>");
MODULE_LICENSE("GPL v2");