sys_regs.c 69.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * Copyright (C) 2012,2013 - ARM Ltd
 * Author: Marc Zyngier <marc.zyngier@arm.com>
 *
 * Derived from arch/arm/kvm/coproc.c:
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Authors: Rusty Russell <rusty@rustcorp.com.au>
 *          Christoffer Dall <c.dall@virtualopensystems.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

23
#include <linux/bsearch.h>
24
#include <linux/kvm_host.h>
25
#include <linux/mm.h>
26
#include <linux/printk.h>
27
#include <linux/uaccess.h>
28

29 30
#include <asm/cacheflush.h>
#include <asm/cputype.h>
31
#include <asm/debug-monitors.h>
32 33
#include <asm/esr.h>
#include <asm/kvm_arm.h>
34
#include <asm/kvm_asm.h>
35 36 37
#include <asm/kvm_coproc.h>
#include <asm/kvm_emulate.h>
#include <asm/kvm_host.h>
38
#include <asm/kvm_hyp.h>
39
#include <asm/kvm_mmu.h>
40
#include <asm/perf_event.h>
41
#include <asm/sysreg.h>
42

43 44 45 46
#include <trace/events/kvm.h>

#include "sys_regs.h"

47 48
#include "trace.h"

49 50 51 52 53
/*
 * All of this file is extremly similar to the ARM coproc.c, but the
 * types are different. My gut feeling is that it should be pretty
 * easy to merge, but that would be an ABI breakage -- again. VFP
 * would also need to be abstracted.
54 55 56 57
 *
 * For AArch32, we only take care of what is being trapped. Anything
 * that has to do with init and userspace access has to go via the
 * 64bit interface.
58 59
 */

60
static bool read_from_write_only(struct kvm_vcpu *vcpu,
61 62
				 struct sys_reg_params *params,
				 const struct sys_reg_desc *r)
63 64 65 66 67 68 69
{
	WARN_ONCE(1, "Unexpected sys_reg read to write-only register\n");
	print_sys_reg_instr(params);
	kvm_inject_undefined(vcpu);
	return false;
}

70 71 72 73 74 75 76 77 78 79
static bool write_to_read_only(struct kvm_vcpu *vcpu,
			       struct sys_reg_params *params,
			       const struct sys_reg_desc *r)
{
	WARN_ONCE(1, "Unexpected sys_reg write to read-only register\n");
	print_sys_reg_instr(params);
	kvm_inject_undefined(vcpu);
	return false;
}

80 81 82 83 84 85 86 87
u64 vcpu_read_sys_reg(struct kvm_vcpu *vcpu, int reg)
{
	if (!vcpu->arch.sysregs_loaded_on_cpu)
		goto immediate_read;

	/*
	 * System registers listed in the switch are not saved on every
	 * exit from the guest but are only saved on vcpu_put.
88 89 90 91 92
	 *
	 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
	 * should never be listed below, because the guest cannot modify its
	 * own MPIDR_EL1 and MPIDR_EL1 is accessed for VCPU A from VCPU B's
	 * thread when emulating cross-VCPU communication.
93 94
	 */
	switch (reg) {
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
	case CSSELR_EL1:	return read_sysreg_s(SYS_CSSELR_EL1);
	case SCTLR_EL1:		return read_sysreg_s(sctlr_EL12);
	case ACTLR_EL1:		return read_sysreg_s(SYS_ACTLR_EL1);
	case CPACR_EL1:		return read_sysreg_s(cpacr_EL12);
	case TTBR0_EL1:		return read_sysreg_s(ttbr0_EL12);
	case TTBR1_EL1:		return read_sysreg_s(ttbr1_EL12);
	case TCR_EL1:		return read_sysreg_s(tcr_EL12);
	case ESR_EL1:		return read_sysreg_s(esr_EL12);
	case AFSR0_EL1:		return read_sysreg_s(afsr0_EL12);
	case AFSR1_EL1:		return read_sysreg_s(afsr1_EL12);
	case FAR_EL1:		return read_sysreg_s(far_EL12);
	case MAIR_EL1:		return read_sysreg_s(mair_EL12);
	case VBAR_EL1:		return read_sysreg_s(vbar_EL12);
	case CONTEXTIDR_EL1:	return read_sysreg_s(contextidr_EL12);
	case TPIDR_EL0:		return read_sysreg_s(SYS_TPIDR_EL0);
	case TPIDRRO_EL0:	return read_sysreg_s(SYS_TPIDRRO_EL0);
	case TPIDR_EL1:		return read_sysreg_s(SYS_TPIDR_EL1);
	case AMAIR_EL1:		return read_sysreg_s(amair_EL12);
	case CNTKCTL_EL1:	return read_sysreg_s(cntkctl_EL12);
	case PAR_EL1:		return read_sysreg_s(SYS_PAR_EL1);
115 116 117
	case DACR32_EL2:	return read_sysreg_s(SYS_DACR32_EL2);
	case IFSR32_EL2:	return read_sysreg_s(SYS_IFSR32_EL2);
	case DBGVCR32_EL2:	return read_sysreg_s(SYS_DBGVCR32_EL2);
118 119 120 121 122 123 124 125 126 127 128 129 130 131
	}

immediate_read:
	return __vcpu_sys_reg(vcpu, reg);
}

void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)
{
	if (!vcpu->arch.sysregs_loaded_on_cpu)
		goto immediate_write;

	/*
	 * System registers listed in the switch are not restored on every
	 * entry to the guest but are only restored on vcpu_load.
132 133 134 135
	 *
	 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
	 * should never be listed below, because the the MPIDR should only be
	 * set once, before running the VCPU, and never changed later.
136 137
	 */
	switch (reg) {
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
	case CSSELR_EL1:	write_sysreg_s(val, SYS_CSSELR_EL1);	return;
	case SCTLR_EL1:		write_sysreg_s(val, sctlr_EL12);	return;
	case ACTLR_EL1:		write_sysreg_s(val, SYS_ACTLR_EL1);	return;
	case CPACR_EL1:		write_sysreg_s(val, cpacr_EL12);	return;
	case TTBR0_EL1:		write_sysreg_s(val, ttbr0_EL12);	return;
	case TTBR1_EL1:		write_sysreg_s(val, ttbr1_EL12);	return;
	case TCR_EL1:		write_sysreg_s(val, tcr_EL12);		return;
	case ESR_EL1:		write_sysreg_s(val, esr_EL12);		return;
	case AFSR0_EL1:		write_sysreg_s(val, afsr0_EL12);	return;
	case AFSR1_EL1:		write_sysreg_s(val, afsr1_EL12);	return;
	case FAR_EL1:		write_sysreg_s(val, far_EL12);		return;
	case MAIR_EL1:		write_sysreg_s(val, mair_EL12);		return;
	case VBAR_EL1:		write_sysreg_s(val, vbar_EL12);		return;
	case CONTEXTIDR_EL1:	write_sysreg_s(val, contextidr_EL12);	return;
	case TPIDR_EL0:		write_sysreg_s(val, SYS_TPIDR_EL0);	return;
	case TPIDRRO_EL0:	write_sysreg_s(val, SYS_TPIDRRO_EL0);	return;
	case TPIDR_EL1:		write_sysreg_s(val, SYS_TPIDR_EL1);	return;
	case AMAIR_EL1:		write_sysreg_s(val, amair_EL12);	return;
	case CNTKCTL_EL1:	write_sysreg_s(val, cntkctl_EL12);	return;
	case PAR_EL1:		write_sysreg_s(val, SYS_PAR_EL1);	return;
158 159 160
	case DACR32_EL2:	write_sysreg_s(val, SYS_DACR32_EL2);	return;
	case IFSR32_EL2:	write_sysreg_s(val, SYS_IFSR32_EL2);	return;
	case DBGVCR32_EL2:	write_sysreg_s(val, SYS_DBGVCR32_EL2);	return;
161 162 163 164 165 166
	}

immediate_write:
	 __vcpu_sys_reg(vcpu, reg) = val;
}

167 168 169 170 171 172 173 174 175 176 177 178 179
/* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
static u32 cache_levels;

/* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
#define CSSELR_MAX 12

/* Which cache CCSIDR represents depends on CSSELR value. */
static u32 get_ccsidr(u32 csselr)
{
	u32 ccsidr;

	/* Make sure noone else changes CSSELR during this! */
	local_irq_disable();
180
	write_sysreg(csselr, csselr_el1);
181
	isb();
182
	ccsidr = read_sysreg(ccsidr_el1);
183 184 185 186 187
	local_irq_enable();

	return ccsidr;
}

188 189 190
/*
 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
 */
191
static bool access_dcsw(struct kvm_vcpu *vcpu,
192
			struct sys_reg_params *p,
193 194 195
			const struct sys_reg_desc *r)
{
	if (!p->is_write)
196
		return read_from_write_only(vcpu, p, r);
197

198
	kvm_set_way_flush(vcpu);
199 200 201
	return true;
}

202 203
/*
 * Generic accessor for VM registers. Only called as long as HCR_TVM
204 205
 * is set. If the guest enables the MMU, we stop trapping the VM
 * sys_regs and leave it in complete control of the caches.
206 207
 */
static bool access_vm_reg(struct kvm_vcpu *vcpu,
208
			  struct sys_reg_params *p,
209 210
			  const struct sys_reg_desc *r)
{
211
	bool was_enabled = vcpu_has_cache_enabled(vcpu);
212 213
	u64 val;
	int reg = r->reg;
214 215 216

	BUG_ON(!p->is_write);

217 218 219 220 221 222
	/* See the 32bit mapping in kvm_host.h */
	if (p->is_aarch32)
		reg = r->reg / 2;

	if (!p->is_aarch32 || !p->is_32bit) {
		val = p->regval;
223
	} else {
224
		val = vcpu_read_sys_reg(vcpu, reg);
225 226 227 228 229
		if (r->reg % 2)
			val = (p->regval << 32) | (u64)lower_32_bits(val);
		else
			val = ((u64)upper_32_bits(val) << 32) |
				lower_32_bits(p->regval);
230
	}
231
	vcpu_write_sys_reg(vcpu, val, reg);
232

233
	kvm_toggle_cache(vcpu, was_enabled);
234 235 236
	return true;
}

237 238 239 240 241 242 243
/*
 * Trap handler for the GICv3 SGI generation system register.
 * Forward the request to the VGIC emulation.
 * The cp15_64 code makes sure this automatically works
 * for both AArch64 and AArch32 accesses.
 */
static bool access_gic_sgi(struct kvm_vcpu *vcpu,
244
			   struct sys_reg_params *p,
245 246 247
			   const struct sys_reg_desc *r)
{
	if (!p->is_write)
248
		return read_from_write_only(vcpu, p, r);
249

250
	vgic_v3_dispatch_sgi(vcpu, p->regval);
251 252 253 254

	return true;
}

255 256 257 258 259 260 261 262 263 264 265
static bool access_gic_sre(struct kvm_vcpu *vcpu,
			   struct sys_reg_params *p,
			   const struct sys_reg_desc *r)
{
	if (p->is_write)
		return ignore_write(vcpu, p);

	p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
	return true;
}

266
static bool trap_raz_wi(struct kvm_vcpu *vcpu,
267
			struct sys_reg_params *p,
268
			const struct sys_reg_desc *r)
269 270 271 272 273 274 275
{
	if (p->is_write)
		return ignore_write(vcpu, p);
	else
		return read_zero(vcpu, p);
}

276 277 278 279 280 281 282 283
static bool trap_undef(struct kvm_vcpu *vcpu,
		       struct sys_reg_params *p,
		       const struct sys_reg_desc *r)
{
	kvm_inject_undefined(vcpu);
	return false;
}

284
static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
285
			   struct sys_reg_params *p,
286 287 288 289 290
			   const struct sys_reg_desc *r)
{
	if (p->is_write) {
		return ignore_write(vcpu, p);
	} else {
291
		p->regval = (1 << 3);
292 293 294 295 296
		return true;
	}
}

static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
297
				   struct sys_reg_params *p,
298 299 300 301 302
				   const struct sys_reg_desc *r)
{
	if (p->is_write) {
		return ignore_write(vcpu, p);
	} else {
303
		p->regval = read_sysreg(dbgauthstatus_el1);
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
		return true;
	}
}

/*
 * We want to avoid world-switching all the DBG registers all the
 * time:
 * 
 * - If we've touched any debug register, it is likely that we're
 *   going to touch more of them. It then makes sense to disable the
 *   traps and start doing the save/restore dance
 * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
 *   then mandatory to save/restore the registers, as the guest
 *   depends on them.
 * 
 * For this, we use a DIRTY bit, indicating the guest has modified the
 * debug registers, used as follow:
 *
 * On guest entry:
 * - If the dirty bit is set (because we're coming back from trapping),
 *   disable the traps, save host registers, restore guest registers.
 * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
 *   set the dirty bit, disable the traps, save host registers,
 *   restore guest registers.
 * - Otherwise, enable the traps
 *
 * On guest exit:
 * - If the dirty bit is set, save guest registers, restore host
 *   registers and clear the dirty bit. This ensure that the host can
 *   now use the debug registers.
 */
static bool trap_debug_regs(struct kvm_vcpu *vcpu,
336
			    struct sys_reg_params *p,
337 338 339
			    const struct sys_reg_desc *r)
{
	if (p->is_write) {
340
		vcpu_write_sys_reg(vcpu, p->regval, r->reg);
341 342
		vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
	} else {
343
		p->regval = vcpu_read_sys_reg(vcpu, r->reg);
344 345
	}

346
	trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
347

348 349 350
	return true;
}

351 352 353 354 355 356 357 358 359
/*
 * reg_to_dbg/dbg_to_reg
 *
 * A 32 bit write to a debug register leave top bits alone
 * A 32 bit read from a debug register only returns the bottom bits
 *
 * All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the
 * hyp.S code switches between host and guest values in future.
 */
360 361 362
static void reg_to_dbg(struct kvm_vcpu *vcpu,
		       struct sys_reg_params *p,
		       u64 *dbg_reg)
363
{
364
	u64 val = p->regval;
365 366 367 368 369 370 371 372 373 374

	if (p->is_32bit) {
		val &= 0xffffffffUL;
		val |= ((*dbg_reg >> 32) << 32);
	}

	*dbg_reg = val;
	vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
}

375 376 377
static void dbg_to_reg(struct kvm_vcpu *vcpu,
		       struct sys_reg_params *p,
		       u64 *dbg_reg)
378
{
379
	p->regval = *dbg_reg;
380
	if (p->is_32bit)
381
		p->regval &= 0xffffffffUL;
382 383
}

384 385 386
static bool trap_bvr(struct kvm_vcpu *vcpu,
		     struct sys_reg_params *p,
		     const struct sys_reg_desc *rd)
387 388 389 390 391 392 393 394
{
	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];

	if (p->is_write)
		reg_to_dbg(vcpu, p, dbg_reg);
	else
		dbg_to_reg(vcpu, p, dbg_reg);

395 396
	trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);

397 398 399 400 401 402 403 404
	return true;
}

static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
		const struct kvm_one_reg *reg, void __user *uaddr)
{
	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];

405
	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
406 407 408 409 410 411 412 413 414 415 416 417 418 419
		return -EFAULT;
	return 0;
}

static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
	const struct kvm_one_reg *reg, void __user *uaddr)
{
	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];

	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
		return -EFAULT;
	return 0;
}

420 421
static void reset_bvr(struct kvm_vcpu *vcpu,
		      const struct sys_reg_desc *rd)
422 423 424 425
{
	vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg] = rd->val;
}

426 427 428
static bool trap_bcr(struct kvm_vcpu *vcpu,
		     struct sys_reg_params *p,
		     const struct sys_reg_desc *rd)
429 430 431 432 433 434 435 436
{
	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];

	if (p->is_write)
		reg_to_dbg(vcpu, p, dbg_reg);
	else
		dbg_to_reg(vcpu, p, dbg_reg);

437 438
	trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);

439 440 441 442 443 444 445 446
	return true;
}

static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
		const struct kvm_one_reg *reg, void __user *uaddr)
{
	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];

447
	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
		return -EFAULT;

	return 0;
}

static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
	const struct kvm_one_reg *reg, void __user *uaddr)
{
	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];

	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
		return -EFAULT;
	return 0;
}

463 464
static void reset_bcr(struct kvm_vcpu *vcpu,
		      const struct sys_reg_desc *rd)
465 466 467 468
{
	vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg] = rd->val;
}

469 470 471
static bool trap_wvr(struct kvm_vcpu *vcpu,
		     struct sys_reg_params *p,
		     const struct sys_reg_desc *rd)
472 473 474 475 476 477 478 479
{
	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];

	if (p->is_write)
		reg_to_dbg(vcpu, p, dbg_reg);
	else
		dbg_to_reg(vcpu, p, dbg_reg);

480 481 482
	trace_trap_reg(__func__, rd->reg, p->is_write,
		vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg]);

483 484 485 486 487 488 489 490
	return true;
}

static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
		const struct kvm_one_reg *reg, void __user *uaddr)
{
	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];

491
	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
492 493 494 495 496 497 498 499 500 501 502 503 504 505
		return -EFAULT;
	return 0;
}

static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
	const struct kvm_one_reg *reg, void __user *uaddr)
{
	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];

	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
		return -EFAULT;
	return 0;
}

506 507
static void reset_wvr(struct kvm_vcpu *vcpu,
		      const struct sys_reg_desc *rd)
508 509 510 511
{
	vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg] = rd->val;
}

512 513 514
static bool trap_wcr(struct kvm_vcpu *vcpu,
		     struct sys_reg_params *p,
		     const struct sys_reg_desc *rd)
515 516 517 518 519 520 521 522
{
	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];

	if (p->is_write)
		reg_to_dbg(vcpu, p, dbg_reg);
	else
		dbg_to_reg(vcpu, p, dbg_reg);

523 524
	trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);

525 526 527 528 529 530 531 532
	return true;
}

static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
		const struct kvm_one_reg *reg, void __user *uaddr)
{
	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];

533
	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
534 535 536 537 538 539 540 541 542 543 544 545 546 547
		return -EFAULT;
	return 0;
}

static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
	const struct kvm_one_reg *reg, void __user *uaddr)
{
	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];

	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
		return -EFAULT;
	return 0;
}

548 549
static void reset_wcr(struct kvm_vcpu *vcpu,
		      const struct sys_reg_desc *rd)
550 551 552 553
{
	vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg] = rd->val;
}

554 555
static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
{
556 557
	u64 amair = read_sysreg(amair_el1);
	vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1);
558 559 560 561
}

static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
{
562 563
	u64 mpidr;

564
	/*
565 566 567 568 569
	 * Map the vcpu_id into the first three affinity level fields of
	 * the MPIDR. We limit the number of VCPUs in level 0 due to a
	 * limitation to 16 CPUs in that level in the ICC_SGIxR registers
	 * of the GICv3 to be able to address each CPU directly when
	 * sending IPIs.
570
	 */
571 572 573
	mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
	mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
	mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
574
	vcpu_write_sys_reg(vcpu, (1ULL << 31) | mpidr, MPIDR_EL1);
575 576
}

577 578 579 580
static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
{
	u64 pmcr, val;

581 582 583
	pmcr = read_sysreg(pmcr_el0);
	/*
	 * Writable bits of PMCR_EL0 (ARMV8_PMU_PMCR_MASK) are reset to UNKNOWN
584 585 586 587
	 * except PMCR.E resetting to zero.
	 */
	val = ((pmcr & ~ARMV8_PMU_PMCR_MASK)
	       | (ARMV8_PMU_PMCR_MASK & 0xdecafbad)) & (~ARMV8_PMU_PMCR_E);
588
	__vcpu_sys_reg(vcpu, PMCR_EL0) = val;
589 590
}

591
static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
592
{
593
	u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0);
594
	bool enabled = (reg & flags) || vcpu_mode_priv(vcpu);
595

596 597
	if (!enabled)
		kvm_inject_undefined(vcpu);
598

599
	return !enabled;
600 601
}

602
static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
603
{
604 605
	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
}
606

607 608 609
static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
{
	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
610 611 612 613
}

static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
{
614
	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
615 616 617 618
}

static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
{
619
	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
620 621
}

622 623 624 625 626 627 628 629
static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
			const struct sys_reg_desc *r)
{
	u64 val;

	if (!kvm_arm_pmu_v3_ready(vcpu))
		return trap_raz_wi(vcpu, p, r);

630 631 632
	if (pmu_access_el0_disabled(vcpu))
		return false;

633 634
	if (p->is_write) {
		/* Only update writeable bits of PMCR */
635
		val = __vcpu_sys_reg(vcpu, PMCR_EL0);
636 637
		val &= ~ARMV8_PMU_PMCR_MASK;
		val |= p->regval & ARMV8_PMU_PMCR_MASK;
638
		__vcpu_sys_reg(vcpu, PMCR_EL0) = val;
639
		kvm_pmu_handle_pmcr(vcpu, val);
640 641
	} else {
		/* PMCR.P & PMCR.C are RAZ */
642
		val = __vcpu_sys_reg(vcpu, PMCR_EL0)
643 644 645 646 647 648 649
		      & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
		p->regval = val;
	}

	return true;
}

650 651 652 653 654 655
static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
			  const struct sys_reg_desc *r)
{
	if (!kvm_arm_pmu_v3_ready(vcpu))
		return trap_raz_wi(vcpu, p, r);

656 657 658
	if (pmu_access_event_counter_el0_disabled(vcpu))
		return false;

659
	if (p->is_write)
660
		__vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
661 662
	else
		/* return PMSELR.SEL field */
663
		p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0)
664 665 666 667 668
			    & ARMV8_PMU_COUNTER_MASK;

	return true;
}

669 670 671 672 673 674 675 676 677 678
static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
			  const struct sys_reg_desc *r)
{
	u64 pmceid;

	if (!kvm_arm_pmu_v3_ready(vcpu))
		return trap_raz_wi(vcpu, p, r);

	BUG_ON(p->is_write);

679 680 681
	if (pmu_access_el0_disabled(vcpu))
		return false;

682
	if (!(p->Op2 & 1))
683
		pmceid = read_sysreg(pmceid0_el0);
684
	else
685
		pmceid = read_sysreg(pmceid1_el0);
686 687 688 689 690 691

	p->regval = pmceid;

	return true;
}

692 693 694 695
static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
{
	u64 pmcr, val;

696
	pmcr = __vcpu_sys_reg(vcpu, PMCR_EL0);
697
	val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
698 699
	if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
		kvm_inject_undefined(vcpu);
700
		return false;
701
	}
702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717

	return true;
}

static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
			      struct sys_reg_params *p,
			      const struct sys_reg_desc *r)
{
	u64 idx;

	if (!kvm_arm_pmu_v3_ready(vcpu))
		return trap_raz_wi(vcpu, p, r);

	if (r->CRn == 9 && r->CRm == 13) {
		if (r->Op2 == 2) {
			/* PMXEVCNTR_EL0 */
718 719 720
			if (pmu_access_event_counter_el0_disabled(vcpu))
				return false;

721
			idx = __vcpu_sys_reg(vcpu, PMSELR_EL0)
722 723 724
			      & ARMV8_PMU_COUNTER_MASK;
		} else if (r->Op2 == 0) {
			/* PMCCNTR_EL0 */
725 726 727
			if (pmu_access_cycle_counter_el0_disabled(vcpu))
				return false;

728 729
			idx = ARMV8_PMU_CYCLE_IDX;
		} else {
730
			return false;
731
		}
732 733 734 735 736 737
	} else if (r->CRn == 0 && r->CRm == 9) {
		/* PMCCNTR */
		if (pmu_access_event_counter_el0_disabled(vcpu))
			return false;

		idx = ARMV8_PMU_CYCLE_IDX;
738 739
	} else if (r->CRn == 14 && (r->CRm & 12) == 8) {
		/* PMEVCNTRn_EL0 */
740 741 742
		if (pmu_access_event_counter_el0_disabled(vcpu))
			return false;

743 744
		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
	} else {
745
		return false;
746 747 748 749 750
	}

	if (!pmu_counter_idx_valid(vcpu, idx))
		return false;

751 752 753 754
	if (p->is_write) {
		if (pmu_access_el0_disabled(vcpu))
			return false;

755
		kvm_pmu_set_counter_value(vcpu, idx, p->regval);
756
	} else {
757
		p->regval = kvm_pmu_get_counter_value(vcpu, idx);
758
	}
759 760 761 762

	return true;
}

763 764 765 766 767 768 769 770
static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
			       const struct sys_reg_desc *r)
{
	u64 idx, reg;

	if (!kvm_arm_pmu_v3_ready(vcpu))
		return trap_raz_wi(vcpu, p, r);

771 772 773
	if (pmu_access_el0_disabled(vcpu))
		return false;

774 775
	if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
		/* PMXEVTYPER_EL0 */
776
		idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793
		reg = PMEVTYPER0_EL0 + idx;
	} else if (r->CRn == 14 && (r->CRm & 12) == 12) {
		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
		if (idx == ARMV8_PMU_CYCLE_IDX)
			reg = PMCCFILTR_EL0;
		else
			/* PMEVTYPERn_EL0 */
			reg = PMEVTYPER0_EL0 + idx;
	} else {
		BUG();
	}

	if (!pmu_counter_idx_valid(vcpu, idx))
		return false;

	if (p->is_write) {
		kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
794
		__vcpu_sys_reg(vcpu, reg) = p->regval & ARMV8_PMU_EVTYPE_MASK;
795
	} else {
796
		p->regval = __vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK;
797 798 799 800 801
	}

	return true;
}

802 803 804 805 806 807 808 809
static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
			   const struct sys_reg_desc *r)
{
	u64 val, mask;

	if (!kvm_arm_pmu_v3_ready(vcpu))
		return trap_raz_wi(vcpu, p, r);

810 811 812
	if (pmu_access_el0_disabled(vcpu))
		return false;

813 814 815 816 817
	mask = kvm_pmu_valid_counter_mask(vcpu);
	if (p->is_write) {
		val = p->regval & mask;
		if (r->Op2 & 0x1) {
			/* accessing PMCNTENSET_EL0 */
818
			__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
819 820 821
			kvm_pmu_enable_counter(vcpu, val);
		} else {
			/* accessing PMCNTENCLR_EL0 */
822
			__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
823 824 825
			kvm_pmu_disable_counter(vcpu, val);
		}
	} else {
826
		p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & mask;
827 828 829 830 831
	}

	return true;
}

832 833 834 835 836 837 838 839
static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
			   const struct sys_reg_desc *r)
{
	u64 mask = kvm_pmu_valid_counter_mask(vcpu);

	if (!kvm_arm_pmu_v3_ready(vcpu))
		return trap_raz_wi(vcpu, p, r);

840 841
	if (!vcpu_mode_priv(vcpu)) {
		kvm_inject_undefined(vcpu);
842
		return false;
843
	}
844

845 846 847 848 849
	if (p->is_write) {
		u64 val = p->regval & mask;

		if (r->Op2 & 0x1)
			/* accessing PMINTENSET_EL1 */
850
			__vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
851 852
		else
			/* accessing PMINTENCLR_EL1 */
853
			__vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
854
	} else {
855
		p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1) & mask;
856 857 858 859 860
	}

	return true;
}

861 862 863 864 865 866 867 868
static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
			 const struct sys_reg_desc *r)
{
	u64 mask = kvm_pmu_valid_counter_mask(vcpu);

	if (!kvm_arm_pmu_v3_ready(vcpu))
		return trap_raz_wi(vcpu, p, r);

869 870 871
	if (pmu_access_el0_disabled(vcpu))
		return false;

872 873 874
	if (p->is_write) {
		if (r->CRm & 0x2)
			/* accessing PMOVSSET_EL0 */
875
			__vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask);
876 877
		else
			/* accessing PMOVSCLR_EL0 */
878
			__vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
879
	} else {
880
		p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0) & mask;
881 882 883 884 885
	}

	return true;
}

886 887 888 889 890 891 892 893
static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
			   const struct sys_reg_desc *r)
{
	u64 mask;

	if (!kvm_arm_pmu_v3_ready(vcpu))
		return trap_raz_wi(vcpu, p, r);

894
	if (!p->is_write)
895
		return read_from_write_only(vcpu, p, r);
896

897 898 899
	if (pmu_write_swinc_el0_disabled(vcpu))
		return false;

900 901 902
	mask = kvm_pmu_valid_counter_mask(vcpu);
	kvm_pmu_software_increment(vcpu, p->regval & mask);
	return true;
903 904
}

905 906 907 908 909 910 911
static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
			     const struct sys_reg_desc *r)
{
	if (!kvm_arm_pmu_v3_ready(vcpu))
		return trap_raz_wi(vcpu, p, r);

	if (p->is_write) {
912 913
		if (!vcpu_mode_priv(vcpu)) {
			kvm_inject_undefined(vcpu);
914
			return false;
915
		}
916

917 918
		__vcpu_sys_reg(vcpu, PMUSERENR_EL0) =
			       p->regval & ARMV8_PMU_USERENR_MASK;
919
	} else {
920
		p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0)
921 922 923 924 925 926
			    & ARMV8_PMU_USERENR_MASK;
	}

	return true;
}

927 928
/* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
#define DBG_BCR_BVR_WCR_WVR_EL1(n)					\
929
	{ SYS_DESC(SYS_DBGBVRn_EL1(n)),					\
930
	  trap_bvr, reset_bvr, n, 0, get_bvr, set_bvr },		\
931
	{ SYS_DESC(SYS_DBGBCRn_EL1(n)),					\
932
	  trap_bcr, reset_bcr, n, 0, get_bcr, set_bcr },		\
933
	{ SYS_DESC(SYS_DBGWVRn_EL1(n)),					\
934
	  trap_wvr, reset_wvr, n, 0,  get_wvr, set_wvr },		\
935
	{ SYS_DESC(SYS_DBGWCRn_EL1(n)),					\
936
	  trap_wcr, reset_wcr, n, 0,  get_wcr, set_wcr }
937

938 939
/* Macro to expand the PMEVCNTRn_EL0 register */
#define PMU_PMEVCNTR_EL0(n)						\
940
	{ SYS_DESC(SYS_PMEVCNTRn_EL0(n)),					\
941 942
	  access_pmu_evcntr, reset_unknown, (PMEVCNTR0_EL0 + n), }

943 944
/* Macro to expand the PMEVTYPERn_EL0 register */
#define PMU_PMEVTYPER_EL0(n)						\
945
	{ SYS_DESC(SYS_PMEVTYPERn_EL0(n)),					\
946 947
	  access_pmu_evtyper, reset_unknown, (PMEVTYPER0_EL0 + n), }

948 949 950 951
static bool access_cntp_tval(struct kvm_vcpu *vcpu,
		struct sys_reg_params *p,
		const struct sys_reg_desc *r)
{
952
	u64 now = kvm_phys_timer_read();
953
	u64 cval;
954

955 956 957 958 959 960 961
	if (p->is_write) {
		kvm_arm_timer_set_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL,
				      p->regval + now);
	} else {
		cval = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL);
		p->regval = cval - now;
	}
962

963 964 965 966 967 968 969
	return true;
}

static bool access_cntp_ctl(struct kvm_vcpu *vcpu,
		struct sys_reg_params *p,
		const struct sys_reg_desc *r)
{
970 971 972 973
	if (p->is_write)
		kvm_arm_timer_set_reg(vcpu, KVM_REG_ARM_PTIMER_CTL, p->regval);
	else
		p->regval = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_PTIMER_CTL);
974

975 976 977 978 979 980 981
	return true;
}

static bool access_cntp_cval(struct kvm_vcpu *vcpu,
		struct sys_reg_params *p,
		const struct sys_reg_desc *r)
{
982
	if (p->is_write)
983
		kvm_arm_timer_set_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL, p->regval);
984
	else
985
		p->regval = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL);
986

987 988 989
	return true;
}

990 991 992 993 994
/* Read a sanitised cpufeature ID register by sys_reg_desc */
static u64 read_id_reg(struct sys_reg_desc const *r, bool raz)
{
	u32 id = sys_reg((u32)r->Op0, (u32)r->Op1,
			 (u32)r->CRn, (u32)r->CRm, (u32)r->Op2);
995
	u64 val = raz ? 0 : read_sanitised_ftr_reg(id);
996

997 998 999 1000 1001 1002
	if (id == SYS_ID_AA64PFR0_EL1) {
		if (val & (0xfUL << ID_AA64PFR0_SVE_SHIFT))
			pr_err_once("kvm [%i]: SVE unsupported for guests, suppressing\n",
				    task_pid_nr(current));

		val &= ~(0xfUL << ID_AA64PFR0_SVE_SHIFT);
1003 1004 1005 1006 1007 1008
	} else if (id == SYS_ID_AA64MMFR1_EL1) {
		if (val & (0xfUL << ID_AA64MMFR1_LOR_SHIFT))
			pr_err_once("kvm [%i]: LORegions unsupported for guests, suppressing\n",
				    task_pid_nr(current));

		val &= ~(0xfUL << ID_AA64MMFR1_LOR_SHIFT);
1009 1010 1011
	}

	return val;
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
}

/* cpufeature ID register access trap handlers */

static bool __access_id_reg(struct kvm_vcpu *vcpu,
			    struct sys_reg_params *p,
			    const struct sys_reg_desc *r,
			    bool raz)
{
	if (p->is_write)
		return write_to_read_only(vcpu, p, r);

	p->regval = read_id_reg(r, raz);
	return true;
}

static bool access_id_reg(struct kvm_vcpu *vcpu,
			  struct sys_reg_params *p,
			  const struct sys_reg_desc *r)
{
	return __access_id_reg(vcpu, p, r, false);
}

static bool access_raz_id_reg(struct kvm_vcpu *vcpu,
			      struct sys_reg_params *p,
			      const struct sys_reg_desc *r)
{
	return __access_id_reg(vcpu, p, r, true);
}

static int reg_from_user(u64 *val, const void __user *uaddr, u64 id);
static int reg_to_user(void __user *uaddr, const u64 *val, u64 id);
static u64 sys_reg_to_index(const struct sys_reg_desc *reg);

/*
 * cpufeature ID register user accessors
 *
 * For now, these registers are immutable for userspace, so no values
 * are stored, and for set_id_reg() we don't allow the effective value
 * to be changed.
 */
static int __get_id_reg(const struct sys_reg_desc *rd, void __user *uaddr,
			bool raz)
{
	const u64 id = sys_reg_to_index(rd);
	const u64 val = read_id_reg(rd, raz);

	return reg_to_user(uaddr, &val, id);
}

static int __set_id_reg(const struct sys_reg_desc *rd, void __user *uaddr,
			bool raz)
{
	const u64 id = sys_reg_to_index(rd);
	int err;
	u64 val;

	err = reg_from_user(&val, uaddr, id);
	if (err)
		return err;

	/* This is what we mean by invariant: you can't change it. */
	if (val != read_id_reg(rd, raz))
		return -EINVAL;

	return 0;
}

static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
		      const struct kvm_one_reg *reg, void __user *uaddr)
{
	return __get_id_reg(rd, uaddr, false);
}

static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
		      const struct kvm_one_reg *reg, void __user *uaddr)
{
	return __set_id_reg(rd, uaddr, false);
}

static int get_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
			  const struct kvm_one_reg *reg, void __user *uaddr)
{
	return __get_id_reg(rd, uaddr, true);
}

static int set_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
			  const struct kvm_one_reg *reg, void __user *uaddr)
{
	return __set_id_reg(rd, uaddr, true);
}

/* sys_reg_desc initialiser for known cpufeature ID registers */
#define ID_SANITISED(name) {			\
	SYS_DESC(SYS_##name),			\
	.access	= access_id_reg,		\
	.get_user = get_id_reg,			\
	.set_user = set_id_reg,			\
}

/*
 * sys_reg_desc initialiser for architecturally unallocated cpufeature ID
 * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
 * (1 <= crm < 8, 0 <= Op2 < 8).
 */
#define ID_UNALLOCATED(crm, op2) {			\
	Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2),	\
	.access = access_raz_id_reg,			\
	.get_user = get_raz_id_reg,			\
	.set_user = set_raz_id_reg,			\
}

/*
 * sys_reg_desc initialiser for known ID registers that we hide from guests.
 * For now, these are exposed just like unallocated ID regs: they appear
 * RAZ for the guest.
 */
#define ID_HIDDEN(name) {			\
	SYS_DESC(SYS_##name),			\
	.access = access_raz_id_reg,		\
	.get_user = get_raz_id_reg,		\
	.set_user = set_raz_id_reg,		\
}

1136 1137 1138
/*
 * Architected system registers.
 * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
1139
 *
1140 1141 1142 1143 1144 1145
 * Debug handling: We do trap most, if not all debug related system
 * registers. The implementation is good enough to ensure that a guest
 * can use these with minimal performance degradation. The drawback is
 * that we don't implement any of the external debug, none of the
 * OSlock protocol. This should be revisited if we ever encounter a
 * more demanding guest...
1146 1147
 */
static const struct sys_reg_desc sys_reg_descs[] = {
1148 1149 1150
	{ SYS_DESC(SYS_DC_ISW), access_dcsw },
	{ SYS_DESC(SYS_DC_CSW), access_dcsw },
	{ SYS_DESC(SYS_DC_CISW), access_dcsw },
1151

1152 1153
	DBG_BCR_BVR_WCR_WVR_EL1(0),
	DBG_BCR_BVR_WCR_WVR_EL1(1),
1154 1155
	{ SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
	{ SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
	DBG_BCR_BVR_WCR_WVR_EL1(2),
	DBG_BCR_BVR_WCR_WVR_EL1(3),
	DBG_BCR_BVR_WCR_WVR_EL1(4),
	DBG_BCR_BVR_WCR_WVR_EL1(5),
	DBG_BCR_BVR_WCR_WVR_EL1(6),
	DBG_BCR_BVR_WCR_WVR_EL1(7),
	DBG_BCR_BVR_WCR_WVR_EL1(8),
	DBG_BCR_BVR_WCR_WVR_EL1(9),
	DBG_BCR_BVR_WCR_WVR_EL1(10),
	DBG_BCR_BVR_WCR_WVR_EL1(11),
	DBG_BCR_BVR_WCR_WVR_EL1(12),
	DBG_BCR_BVR_WCR_WVR_EL1(13),
	DBG_BCR_BVR_WCR_WVR_EL1(14),
	DBG_BCR_BVR_WCR_WVR_EL1(15),

1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
	{ SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
	{ SYS_DESC(SYS_OSLAR_EL1), trap_raz_wi },
	{ SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1 },
	{ SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
	{ SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
	{ SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
	{ SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
	{ SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },

	{ SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
	{ SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
	// DBGDTR[TR]X_EL0 share the same encoding
	{ SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },

	{ SYS_DESC(SYS_DBGVCR32_EL2), NULL, reset_val, DBGVCR32_EL2, 0 },
1186

1187
	{ SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265

	/*
	 * ID regs: all ID_SANITISED() entries here must have corresponding
	 * entries in arm64_ftr_regs[].
	 */

	/* AArch64 mappings of the AArch32 ID registers */
	/* CRm=1 */
	ID_SANITISED(ID_PFR0_EL1),
	ID_SANITISED(ID_PFR1_EL1),
	ID_SANITISED(ID_DFR0_EL1),
	ID_HIDDEN(ID_AFR0_EL1),
	ID_SANITISED(ID_MMFR0_EL1),
	ID_SANITISED(ID_MMFR1_EL1),
	ID_SANITISED(ID_MMFR2_EL1),
	ID_SANITISED(ID_MMFR3_EL1),

	/* CRm=2 */
	ID_SANITISED(ID_ISAR0_EL1),
	ID_SANITISED(ID_ISAR1_EL1),
	ID_SANITISED(ID_ISAR2_EL1),
	ID_SANITISED(ID_ISAR3_EL1),
	ID_SANITISED(ID_ISAR4_EL1),
	ID_SANITISED(ID_ISAR5_EL1),
	ID_SANITISED(ID_MMFR4_EL1),
	ID_UNALLOCATED(2,7),

	/* CRm=3 */
	ID_SANITISED(MVFR0_EL1),
	ID_SANITISED(MVFR1_EL1),
	ID_SANITISED(MVFR2_EL1),
	ID_UNALLOCATED(3,3),
	ID_UNALLOCATED(3,4),
	ID_UNALLOCATED(3,5),
	ID_UNALLOCATED(3,6),
	ID_UNALLOCATED(3,7),

	/* AArch64 ID registers */
	/* CRm=4 */
	ID_SANITISED(ID_AA64PFR0_EL1),
	ID_SANITISED(ID_AA64PFR1_EL1),
	ID_UNALLOCATED(4,2),
	ID_UNALLOCATED(4,3),
	ID_UNALLOCATED(4,4),
	ID_UNALLOCATED(4,5),
	ID_UNALLOCATED(4,6),
	ID_UNALLOCATED(4,7),

	/* CRm=5 */
	ID_SANITISED(ID_AA64DFR0_EL1),
	ID_SANITISED(ID_AA64DFR1_EL1),
	ID_UNALLOCATED(5,2),
	ID_UNALLOCATED(5,3),
	ID_HIDDEN(ID_AA64AFR0_EL1),
	ID_HIDDEN(ID_AA64AFR1_EL1),
	ID_UNALLOCATED(5,6),
	ID_UNALLOCATED(5,7),

	/* CRm=6 */
	ID_SANITISED(ID_AA64ISAR0_EL1),
	ID_SANITISED(ID_AA64ISAR1_EL1),
	ID_UNALLOCATED(6,2),
	ID_UNALLOCATED(6,3),
	ID_UNALLOCATED(6,4),
	ID_UNALLOCATED(6,5),
	ID_UNALLOCATED(6,6),
	ID_UNALLOCATED(6,7),

	/* CRm=7 */
	ID_SANITISED(ID_AA64MMFR0_EL1),
	ID_SANITISED(ID_AA64MMFR1_EL1),
	ID_SANITISED(ID_AA64MMFR2_EL1),
	ID_UNALLOCATED(7,3),
	ID_UNALLOCATED(7,4),
	ID_UNALLOCATED(7,5),
	ID_UNALLOCATED(7,6),
	ID_UNALLOCATED(7,7),

1266 1267 1268 1269 1270 1271 1272 1273 1274
	{ SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
	{ SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
	{ SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
	{ SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
	{ SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },

	{ SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
	{ SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
	{ SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284

	{ SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi },
	{ SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi },
	{ SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi },
	{ SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi },
	{ SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi },
	{ SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi },
	{ SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi },
	{ SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi },

1285 1286
	{ SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
	{ SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
1287

1288 1289
	{ SYS_DESC(SYS_PMINTENSET_EL1), access_pminten, reset_unknown, PMINTENSET_EL1 },
	{ SYS_DESC(SYS_PMINTENCLR_EL1), access_pminten, NULL, PMINTENSET_EL1 },
1290

1291 1292
	{ SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
	{ SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
1293

1294 1295 1296 1297 1298 1299
	{ SYS_DESC(SYS_LORSA_EL1), trap_undef },
	{ SYS_DESC(SYS_LOREA_EL1), trap_undef },
	{ SYS_DESC(SYS_LORN_EL1), trap_undef },
	{ SYS_DESC(SYS_LORC_EL1), trap_undef },
	{ SYS_DESC(SYS_LORID_EL1), trap_undef },

1300
	{ SYS_DESC(SYS_VBAR_EL1), NULL, reset_val, VBAR_EL1, 0 },
1301
	{ SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 },
1302

1303
	{ SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only },
1304
	{ SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only },
1305
	{ SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only },
1306
	{ SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only },
1307
	{ SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only },
1308
	{ SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
1309
	{ SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only },
1310
	{ SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only },
1311
	{ SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only },
1312
	{ SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
1313

1314 1315
	{ SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
	{ SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
1316

1317
	{ SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
1318

1319
	{ SYS_DESC(SYS_CSSELR_EL1), NULL, reset_unknown, CSSELR_EL1 },
1320

1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
	{ SYS_DESC(SYS_PMCR_EL0), access_pmcr, reset_pmcr, },
	{ SYS_DESC(SYS_PMCNTENSET_EL0), access_pmcnten, reset_unknown, PMCNTENSET_EL0 },
	{ SYS_DESC(SYS_PMCNTENCLR_EL0), access_pmcnten, NULL, PMCNTENSET_EL0 },
	{ SYS_DESC(SYS_PMOVSCLR_EL0), access_pmovs, NULL, PMOVSSET_EL0 },
	{ SYS_DESC(SYS_PMSWINC_EL0), access_pmswinc, reset_unknown, PMSWINC_EL0 },
	{ SYS_DESC(SYS_PMSELR_EL0), access_pmselr, reset_unknown, PMSELR_EL0 },
	{ SYS_DESC(SYS_PMCEID0_EL0), access_pmceid },
	{ SYS_DESC(SYS_PMCEID1_EL0), access_pmceid },
	{ SYS_DESC(SYS_PMCCNTR_EL0), access_pmu_evcntr, reset_unknown, PMCCNTR_EL0 },
	{ SYS_DESC(SYS_PMXEVTYPER_EL0), access_pmu_evtyper },
	{ SYS_DESC(SYS_PMXEVCNTR_EL0), access_pmu_evcntr },
	/*
	 * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
1334 1335
	 * in 32bit mode. Here we choose to reset it as zero for consistency.
	 */
1336 1337
	{ SYS_DESC(SYS_PMUSERENR_EL0), access_pmuserenr, reset_val, PMUSERENR_EL0, 0 },
	{ SYS_DESC(SYS_PMOVSSET_EL0), access_pmovs, reset_unknown, PMOVSSET_EL0 },
1338

1339 1340
	{ SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
	{ SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
1341

1342 1343 1344
	{ SYS_DESC(SYS_CNTP_TVAL_EL0), access_cntp_tval },
	{ SYS_DESC(SYS_CNTP_CTL_EL0), access_cntp_ctl },
	{ SYS_DESC(SYS_CNTP_CVAL_EL0), access_cntp_cval },
1345

1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
	/* PMEVCNTRn_EL0 */
	PMU_PMEVCNTR_EL0(0),
	PMU_PMEVCNTR_EL0(1),
	PMU_PMEVCNTR_EL0(2),
	PMU_PMEVCNTR_EL0(3),
	PMU_PMEVCNTR_EL0(4),
	PMU_PMEVCNTR_EL0(5),
	PMU_PMEVCNTR_EL0(6),
	PMU_PMEVCNTR_EL0(7),
	PMU_PMEVCNTR_EL0(8),
	PMU_PMEVCNTR_EL0(9),
	PMU_PMEVCNTR_EL0(10),
	PMU_PMEVCNTR_EL0(11),
	PMU_PMEVCNTR_EL0(12),
	PMU_PMEVCNTR_EL0(13),
	PMU_PMEVCNTR_EL0(14),
	PMU_PMEVCNTR_EL0(15),
	PMU_PMEVCNTR_EL0(16),
	PMU_PMEVCNTR_EL0(17),
	PMU_PMEVCNTR_EL0(18),
	PMU_PMEVCNTR_EL0(19),
	PMU_PMEVCNTR_EL0(20),
	PMU_PMEVCNTR_EL0(21),
	PMU_PMEVCNTR_EL0(22),
	PMU_PMEVCNTR_EL0(23),
	PMU_PMEVCNTR_EL0(24),
	PMU_PMEVCNTR_EL0(25),
	PMU_PMEVCNTR_EL0(26),
	PMU_PMEVCNTR_EL0(27),
	PMU_PMEVCNTR_EL0(28),
	PMU_PMEVCNTR_EL0(29),
	PMU_PMEVCNTR_EL0(30),
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
	/* PMEVTYPERn_EL0 */
	PMU_PMEVTYPER_EL0(0),
	PMU_PMEVTYPER_EL0(1),
	PMU_PMEVTYPER_EL0(2),
	PMU_PMEVTYPER_EL0(3),
	PMU_PMEVTYPER_EL0(4),
	PMU_PMEVTYPER_EL0(5),
	PMU_PMEVTYPER_EL0(6),
	PMU_PMEVTYPER_EL0(7),
	PMU_PMEVTYPER_EL0(8),
	PMU_PMEVTYPER_EL0(9),
	PMU_PMEVTYPER_EL0(10),
	PMU_PMEVTYPER_EL0(11),
	PMU_PMEVTYPER_EL0(12),
	PMU_PMEVTYPER_EL0(13),
	PMU_PMEVTYPER_EL0(14),
	PMU_PMEVTYPER_EL0(15),
	PMU_PMEVTYPER_EL0(16),
	PMU_PMEVTYPER_EL0(17),
	PMU_PMEVTYPER_EL0(18),
	PMU_PMEVTYPER_EL0(19),
	PMU_PMEVTYPER_EL0(20),
	PMU_PMEVTYPER_EL0(21),
	PMU_PMEVTYPER_EL0(22),
	PMU_PMEVTYPER_EL0(23),
	PMU_PMEVTYPER_EL0(24),
	PMU_PMEVTYPER_EL0(25),
	PMU_PMEVTYPER_EL0(26),
	PMU_PMEVTYPER_EL0(27),
	PMU_PMEVTYPER_EL0(28),
	PMU_PMEVTYPER_EL0(29),
	PMU_PMEVTYPER_EL0(30),
1410 1411
	/*
	 * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
1412 1413
	 * in 32bit mode. Here we choose to reset it as zero for consistency.
	 */
1414
	{ SYS_DESC(SYS_PMCCFILTR_EL0), access_pmu_evtyper, reset_val, PMCCFILTR_EL0, 0 },
1415

1416 1417 1418
	{ SYS_DESC(SYS_DACR32_EL2), NULL, reset_unknown, DACR32_EL2 },
	{ SYS_DESC(SYS_IFSR32_EL2), NULL, reset_unknown, IFSR32_EL2 },
	{ SYS_DESC(SYS_FPEXC32_EL2), NULL, reset_val, FPEXC32_EL2, 0x70 },
1419 1420
};

1421
static bool trap_dbgidr(struct kvm_vcpu *vcpu,
1422
			struct sys_reg_params *p,
1423 1424 1425 1426 1427
			const struct sys_reg_desc *r)
{
	if (p->is_write) {
		return ignore_write(vcpu, p);
	} else {
1428 1429
		u64 dfr = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
		u64 pfr = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1430
		u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL3_SHIFT);
1431

1432 1433 1434 1435
		p->regval = ((((dfr >> ID_AA64DFR0_WRPS_SHIFT) & 0xf) << 28) |
			     (((dfr >> ID_AA64DFR0_BRPS_SHIFT) & 0xf) << 24) |
			     (((dfr >> ID_AA64DFR0_CTX_CMPS_SHIFT) & 0xf) << 20)
			     | (6 << 16) | (el3 << 14) | (el3 << 12));
1436 1437 1438 1439 1440
		return true;
	}
}

static bool trap_debug32(struct kvm_vcpu *vcpu,
1441
			 struct sys_reg_params *p,
1442 1443 1444
			 const struct sys_reg_desc *r)
{
	if (p->is_write) {
1445
		vcpu_cp14(vcpu, r->reg) = p->regval;
1446 1447
		vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
	} else {
1448
		p->regval = vcpu_cp14(vcpu, r->reg);
1449 1450 1451 1452 1453
	}

	return true;
}

1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
/* AArch32 debug register mappings
 *
 * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
 * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
 *
 * All control registers and watchpoint value registers are mapped to
 * the lower 32 bits of their AArch64 equivalents. We share the trap
 * handlers with the above AArch64 code which checks what mode the
 * system is in.
 */

1465 1466 1467
static bool trap_xvr(struct kvm_vcpu *vcpu,
		     struct sys_reg_params *p,
		     const struct sys_reg_desc *rd)
1468 1469 1470 1471 1472 1473 1474
{
	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];

	if (p->is_write) {
		u64 val = *dbg_reg;

		val &= 0xffffffffUL;
1475
		val |= p->regval << 32;
1476 1477 1478 1479
		*dbg_reg = val;

		vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
	} else {
1480
		p->regval = *dbg_reg >> 32;
1481 1482
	}

1483 1484
	trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);

1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
	return true;
}

#define DBG_BCR_BVR_WCR_WVR(n)						\
	/* DBGBVRn */							\
	{ Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, 	\
	/* DBGBCRn */							\
	{ Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n },	\
	/* DBGWVRn */							\
	{ Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n },	\
	/* DBGWCRn */							\
	{ Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }

#define DBGBXVR(n)							\
	{ Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_xvr, NULL, n }
1500 1501 1502 1503

/*
 * Trapped cp14 registers. We generally ignore most of the external
 * debug, on the principle that they don't really make sense to a
1504
 * guest. Revisit this one day, would this principle change.
1505
 */
1506
static const struct sys_reg_desc cp14_regs[] = {
1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
	/* DBGIDR */
	{ Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr },
	/* DBGDTRRXext */
	{ Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },

	DBG_BCR_BVR_WCR_WVR(0),
	/* DBGDSCRint */
	{ Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
	DBG_BCR_BVR_WCR_WVR(1),
	/* DBGDCCINT */
	{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug32 },
	/* DBGDSCRext */
	{ Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug32 },
	DBG_BCR_BVR_WCR_WVR(2),
	/* DBGDTR[RT]Xint */
	{ Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
	/* DBGDTR[RT]Xext */
	{ Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
	DBG_BCR_BVR_WCR_WVR(3),
	DBG_BCR_BVR_WCR_WVR(4),
	DBG_BCR_BVR_WCR_WVR(5),
	/* DBGWFAR */
	{ Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
	/* DBGOSECCR */
	{ Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
	DBG_BCR_BVR_WCR_WVR(6),
	/* DBGVCR */
	{ Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug32 },
	DBG_BCR_BVR_WCR_WVR(7),
	DBG_BCR_BVR_WCR_WVR(8),
	DBG_BCR_BVR_WCR_WVR(9),
	DBG_BCR_BVR_WCR_WVR(10),
	DBG_BCR_BVR_WCR_WVR(11),
	DBG_BCR_BVR_WCR_WVR(12),
	DBG_BCR_BVR_WCR_WVR(13),
	DBG_BCR_BVR_WCR_WVR(14),
	DBG_BCR_BVR_WCR_WVR(15),

	/* DBGDRAR (32bit) */
	{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },

	DBGBXVR(0),
	/* DBGOSLAR */
	{ Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi },
	DBGBXVR(1),
	/* DBGOSLSR */
	{ Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 },
	DBGBXVR(2),
	DBGBXVR(3),
	/* DBGOSDLR */
	{ Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
	DBGBXVR(4),
	/* DBGPRCR */
	{ Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
	DBGBXVR(5),
	DBGBXVR(6),
	DBGBXVR(7),
	DBGBXVR(8),
	DBGBXVR(9),
	DBGBXVR(10),
	DBGBXVR(11),
	DBGBXVR(12),
	DBGBXVR(13),
	DBGBXVR(14),
	DBGBXVR(15),

	/* DBGDSAR (32bit) */
	{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },

	/* DBGDEVID2 */
	{ Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
	/* DBGDEVID1 */
	{ Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
	/* DBGDEVID */
	{ Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
	/* DBGCLAIMSET */
	{ Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
	/* DBGCLAIMCLR */
	{ Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
	/* DBGAUTHSTATUS */
	{ Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
1588 1589
};

1590 1591
/* Trapped cp14 64bit registers */
static const struct sys_reg_desc cp14_64_regs[] = {
1592 1593 1594 1595 1596
	/* DBGDRAR (64bit) */
	{ Op1( 0), CRm( 1), .access = trap_raz_wi },

	/* DBGDSAR (64bit) */
	{ Op1( 0), CRm( 2), .access = trap_raz_wi },
1597 1598
};

1599 1600 1601 1602 1603 1604 1605
/* Macro to expand the PMEVCNTRn register */
#define PMU_PMEVCNTR(n)							\
	/* PMEVCNTRn */							\
	{ Op1(0), CRn(0b1110),						\
	  CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),		\
	  access_pmu_evcntr }

1606 1607 1608 1609 1610 1611 1612
/* Macro to expand the PMEVTYPERn register */
#define PMU_PMEVTYPER(n)						\
	/* PMEVTYPERn */						\
	{ Op1(0), CRn(0b1110),						\
	  CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),		\
	  access_pmu_evtyper }

1613 1614 1615 1616 1617
/*
 * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
 * depending on the way they are accessed (as a 32bit or a 64bit
 * register).
 */
1618
static const struct sys_reg_desc cp15_regs[] = {
1619 1620
	{ Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi },

1621
	{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, c1_SCTLR },
1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
	{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
	{ Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 },
	{ Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, c2_TTBCR },
	{ Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, c3_DACR },
	{ Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, c5_DFSR },
	{ Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, c5_IFSR },
	{ Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, c5_ADFSR },
	{ Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, c5_AIFSR },
	{ Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, c6_DFAR },
	{ Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, c6_IFAR },

1633 1634 1635 1636 1637 1638
	/*
	 * DC{C,I,CI}SW operations:
	 */
	{ Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
	{ Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
	{ Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
1639

1640
	/* PMU */
1641
	{ Op1( 0), CRn( 9), CRm(12), Op2( 0), access_pmcr },
1642 1643
	{ Op1( 0), CRn( 9), CRm(12), Op2( 1), access_pmcnten },
	{ Op1( 0), CRn( 9), CRm(12), Op2( 2), access_pmcnten },
1644
	{ Op1( 0), CRn( 9), CRm(12), Op2( 3), access_pmovs },
1645
	{ Op1( 0), CRn( 9), CRm(12), Op2( 4), access_pmswinc },
1646
	{ Op1( 0), CRn( 9), CRm(12), Op2( 5), access_pmselr },
1647 1648
	{ Op1( 0), CRn( 9), CRm(12), Op2( 6), access_pmceid },
	{ Op1( 0), CRn( 9), CRm(12), Op2( 7), access_pmceid },
1649
	{ Op1( 0), CRn( 9), CRm(13), Op2( 0), access_pmu_evcntr },
1650
	{ Op1( 0), CRn( 9), CRm(13), Op2( 1), access_pmu_evtyper },
1651
	{ Op1( 0), CRn( 9), CRm(13), Op2( 2), access_pmu_evcntr },
1652
	{ Op1( 0), CRn( 9), CRm(14), Op2( 0), access_pmuserenr },
1653 1654
	{ Op1( 0), CRn( 9), CRm(14), Op2( 1), access_pminten },
	{ Op1( 0), CRn( 9), CRm(14), Op2( 2), access_pminten },
1655
	{ Op1( 0), CRn( 9), CRm(14), Op2( 3), access_pmovs },
1656 1657 1658 1659 1660

	{ Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, c10_PRRR },
	{ Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, c10_NMRR },
	{ Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, c10_AMAIR0 },
	{ Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, c10_AMAIR1 },
1661 1662

	/* ICC_SRE */
1663
	{ Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
1664

1665
	{ Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, c13_CID },
1666

1667 1668 1669 1670 1671
	/* CNTP_TVAL */
	{ Op1( 0), CRn(14), CRm( 2), Op2( 0), access_cntp_tval },
	/* CNTP_CTL */
	{ Op1( 0), CRn(14), CRm( 2), Op2( 1), access_cntp_ctl },

1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
	/* PMEVCNTRn */
	PMU_PMEVCNTR(0),
	PMU_PMEVCNTR(1),
	PMU_PMEVCNTR(2),
	PMU_PMEVCNTR(3),
	PMU_PMEVCNTR(4),
	PMU_PMEVCNTR(5),
	PMU_PMEVCNTR(6),
	PMU_PMEVCNTR(7),
	PMU_PMEVCNTR(8),
	PMU_PMEVCNTR(9),
	PMU_PMEVCNTR(10),
	PMU_PMEVCNTR(11),
	PMU_PMEVCNTR(12),
	PMU_PMEVCNTR(13),
	PMU_PMEVCNTR(14),
	PMU_PMEVCNTR(15),
	PMU_PMEVCNTR(16),
	PMU_PMEVCNTR(17),
	PMU_PMEVCNTR(18),
	PMU_PMEVCNTR(19),
	PMU_PMEVCNTR(20),
	PMU_PMEVCNTR(21),
	PMU_PMEVCNTR(22),
	PMU_PMEVCNTR(23),
	PMU_PMEVCNTR(24),
	PMU_PMEVCNTR(25),
	PMU_PMEVCNTR(26),
	PMU_PMEVCNTR(27),
	PMU_PMEVCNTR(28),
	PMU_PMEVCNTR(29),
	PMU_PMEVCNTR(30),
1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737
	/* PMEVTYPERn */
	PMU_PMEVTYPER(0),
	PMU_PMEVTYPER(1),
	PMU_PMEVTYPER(2),
	PMU_PMEVTYPER(3),
	PMU_PMEVTYPER(4),
	PMU_PMEVTYPER(5),
	PMU_PMEVTYPER(6),
	PMU_PMEVTYPER(7),
	PMU_PMEVTYPER(8),
	PMU_PMEVTYPER(9),
	PMU_PMEVTYPER(10),
	PMU_PMEVTYPER(11),
	PMU_PMEVTYPER(12),
	PMU_PMEVTYPER(13),
	PMU_PMEVTYPER(14),
	PMU_PMEVTYPER(15),
	PMU_PMEVTYPER(16),
	PMU_PMEVTYPER(17),
	PMU_PMEVTYPER(18),
	PMU_PMEVTYPER(19),
	PMU_PMEVTYPER(20),
	PMU_PMEVTYPER(21),
	PMU_PMEVTYPER(22),
	PMU_PMEVTYPER(23),
	PMU_PMEVTYPER(24),
	PMU_PMEVTYPER(25),
	PMU_PMEVTYPER(26),
	PMU_PMEVTYPER(27),
	PMU_PMEVTYPER(28),
	PMU_PMEVTYPER(29),
	PMU_PMEVTYPER(30),
	/* PMCCFILTR */
	{ Op1(0), CRn(14), CRm(15), Op2(7), access_pmu_evtyper },
1738 1739 1740 1741
};

static const struct sys_reg_desc cp15_64_regs[] = {
	{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
1742
	{ Op1( 0), CRn( 0), CRm( 9), Op2( 0), access_pmu_evcntr },
1743
	{ Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi },
1744
	{ Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 },
1745
	{ Op1( 2), CRn( 0), CRm(14), Op2( 0), access_cntp_cval },
1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757
};

/* Target specific emulation tables */
static struct kvm_sys_reg_target_table *target_tables[KVM_ARM_NUM_TARGETS];

void kvm_register_target_sys_reg_table(unsigned int target,
				       struct kvm_sys_reg_target_table *table)
{
	target_tables[target] = table;
}

/* Get specific register table for this target. */
1758 1759 1760
static const struct sys_reg_desc *get_target_table(unsigned target,
						   bool mode_is_64,
						   size_t *num)
1761 1762 1763 1764
{
	struct kvm_sys_reg_target_table *table;

	table = target_tables[target];
1765 1766 1767 1768 1769 1770 1771
	if (mode_is_64) {
		*num = table->table64.num;
		return table->table64.table;
	} else {
		*num = table->table32.num;
		return table->table32.table;
	}
1772 1773
}

1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792
#define reg_to_match_value(x)						\
	({								\
		unsigned long val;					\
		val  = (x)->Op0 << 14;					\
		val |= (x)->Op1 << 11;					\
		val |= (x)->CRn << 7;					\
		val |= (x)->CRm << 3;					\
		val |= (x)->Op2;					\
		val;							\
	 })

static int match_sys_reg(const void *key, const void *elt)
{
	const unsigned long pval = (unsigned long)key;
	const struct sys_reg_desc *r = elt;

	return pval - reg_to_match_value(r);
}

1793 1794 1795 1796
static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
					 const struct sys_reg_desc table[],
					 unsigned int num)
{
1797 1798 1799
	unsigned long pval = reg_to_match_value(params);

	return bsearch((void *)pval, table, num, sizeof(table[0]), match_sys_reg);
1800 1801
}

1802 1803 1804 1805 1806 1807
int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
	kvm_inject_undefined(vcpu);
	return 1;
}

1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
static void perform_access(struct kvm_vcpu *vcpu,
			   struct sys_reg_params *params,
			   const struct sys_reg_desc *r)
{
	/*
	 * Not having an accessor means that we have configured a trap
	 * that we don't know how to handle. This certainly qualifies
	 * as a gross bug that should be fixed right away.
	 */
	BUG_ON(!r->access);

	/* Skip instruction if instructed so */
	if (likely(r->access(vcpu, params, r)))
		kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
}

1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834
/*
 * emulate_cp --  tries to match a sys_reg access in a handling table, and
 *                call the corresponding trap handler.
 *
 * @params: pointer to the descriptor of the access
 * @table: array of trap descriptors
 * @num: size of the trap descriptor array
 *
 * Return 0 if the access has been handled, and -1 if not.
 */
static int emulate_cp(struct kvm_vcpu *vcpu,
1835
		      struct sys_reg_params *params,
1836 1837
		      const struct sys_reg_desc *table,
		      size_t num)
1838
{
1839
	const struct sys_reg_desc *r;
1840

1841 1842
	if (!table)
		return -1;	/* Not handled */
1843 1844 1845

	r = find_reg(params, table, num);

1846
	if (r) {
1847 1848
		perform_access(vcpu, params, r);
		return 0;
1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
	}

	/* Not handled */
	return -1;
}

static void unhandled_cp_access(struct kvm_vcpu *vcpu,
				struct sys_reg_params *params)
{
	u8 hsr_ec = kvm_vcpu_trap_get_class(vcpu);
D
Dan Carpenter 已提交
1859
	int cp = -1;
1860 1861

	switch(hsr_ec) {
1862 1863
	case ESR_ELx_EC_CP15_32:
	case ESR_ELx_EC_CP15_64:
1864 1865
		cp = 15;
		break;
1866 1867
	case ESR_ELx_EC_CP14_MR:
	case ESR_ELx_EC_CP14_64:
1868 1869 1870
		cp = 14;
		break;
	default:
D
Dan Carpenter 已提交
1871
		WARN_ON(1);
1872 1873
	}

1874 1875
	kvm_err("Unsupported guest CP%d access at: %08lx\n",
		cp, *vcpu_pc(vcpu));
1876 1877 1878 1879 1880
	print_sys_reg_instr(params);
	kvm_inject_undefined(vcpu);
}

/**
1881
 * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
1882 1883 1884
 * @vcpu: The VCPU pointer
 * @run:  The kvm_run struct
 */
1885 1886 1887 1888 1889
static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
			    const struct sys_reg_desc *global,
			    size_t nr_global,
			    const struct sys_reg_desc *target_specific,
			    size_t nr_specific)
1890 1891 1892
{
	struct sys_reg_params params;
	u32 hsr = kvm_vcpu_get_hsr(vcpu);
1893 1894
	int Rt = kvm_vcpu_sys_get_rt(vcpu);
	int Rt2 = (hsr >> 10) & 0x1f;
1895

1896 1897
	params.is_aarch32 = true;
	params.is_32bit = false;
1898 1899 1900 1901 1902 1903 1904 1905 1906
	params.CRm = (hsr >> 1) & 0xf;
	params.is_write = ((hsr & 1) == 0);

	params.Op0 = 0;
	params.Op1 = (hsr >> 16) & 0xf;
	params.Op2 = 0;
	params.CRn = 0;

	/*
1907
	 * Make a 64-bit value out of Rt and Rt2. As we use the same trap
1908 1909 1910
	 * backends between AArch32 and AArch64, we get away with it.
	 */
	if (params.is_write) {
1911 1912
		params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
		params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
1913 1914
	}

1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928
	/*
	 * Try to emulate the coprocessor access using the target
	 * specific table first, and using the global table afterwards.
	 * If either of the tables contains a handler, handle the
	 * potential register operation in the case of a read and return
	 * with success.
	 */
	if (!emulate_cp(vcpu, &params, target_specific, nr_specific) ||
	    !emulate_cp(vcpu, &params, global, nr_global)) {
		/* Split up the value between registers for the read side */
		if (!params.is_write) {
			vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
			vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
		}
1929

1930
		return 1;
1931 1932
	}

1933
	unhandled_cp_access(vcpu, &params);
1934 1935 1936 1937
	return 1;
}

/**
1938
 * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
1939 1940 1941
 * @vcpu: The VCPU pointer
 * @run:  The kvm_run struct
 */
1942 1943 1944 1945 1946
static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
			    const struct sys_reg_desc *global,
			    size_t nr_global,
			    const struct sys_reg_desc *target_specific,
			    size_t nr_specific)
1947 1948 1949
{
	struct sys_reg_params params;
	u32 hsr = kvm_vcpu_get_hsr(vcpu);
1950
	int Rt  = kvm_vcpu_sys_get_rt(vcpu);
1951

1952 1953
	params.is_aarch32 = true;
	params.is_32bit = true;
1954
	params.CRm = (hsr >> 1) & 0xf;
1955
	params.regval = vcpu_get_reg(vcpu, Rt);
1956 1957 1958 1959 1960 1961
	params.is_write = ((hsr & 1) == 0);
	params.CRn = (hsr >> 10) & 0xf;
	params.Op0 = 0;
	params.Op1 = (hsr >> 14) & 0x7;
	params.Op2 = (hsr >> 17) & 0x7;

1962 1963 1964 1965
	if (!emulate_cp(vcpu, &params, target_specific, nr_specific) ||
	    !emulate_cp(vcpu, &params, global, nr_global)) {
		if (!params.is_write)
			vcpu_set_reg(vcpu, Rt, params.regval);
1966
		return 1;
1967
	}
1968 1969

	unhandled_cp_access(vcpu, &params);
1970 1971 1972
	return 1;
}

1973 1974 1975 1976 1977 1978 1979
int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
	const struct sys_reg_desc *target_specific;
	size_t num;

	target_specific = get_target_table(vcpu->arch.target, false, &num);
	return kvm_handle_cp_64(vcpu,
1980
				cp15_64_regs, ARRAY_SIZE(cp15_64_regs),
1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
				target_specific, num);
}

int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
	const struct sys_reg_desc *target_specific;
	size_t num;

	target_specific = get_target_table(vcpu->arch.target, false, &num);
	return kvm_handle_cp_32(vcpu,
				cp15_regs, ARRAY_SIZE(cp15_regs),
				target_specific, num);
}

int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
	return kvm_handle_cp_64(vcpu,
1998
				cp14_64_regs, ARRAY_SIZE(cp14_64_regs),
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
				NULL, 0);
}

int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
	return kvm_handle_cp_32(vcpu,
				cp14_regs, ARRAY_SIZE(cp14_regs),
				NULL, 0);
}

2009
static int emulate_sys_reg(struct kvm_vcpu *vcpu,
2010
			   struct sys_reg_params *params)
2011 2012 2013 2014
{
	size_t num;
	const struct sys_reg_desc *table, *r;

2015
	table = get_target_table(vcpu->arch.target, true, &num);
2016 2017 2018 2019 2020 2021 2022

	/* Search target-specific then generic table. */
	r = find_reg(params, table, num);
	if (!r)
		r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));

	if (likely(r)) {
2023
		perform_access(vcpu, params, r);
2024 2025 2026 2027
	} else {
		kvm_err("Unsupported guest sys_reg access at: %lx\n",
			*vcpu_pc(vcpu));
		print_sys_reg_instr(params);
2028
		kvm_inject_undefined(vcpu);
2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051
	}
	return 1;
}

static void reset_sys_reg_descs(struct kvm_vcpu *vcpu,
			      const struct sys_reg_desc *table, size_t num)
{
	unsigned long i;

	for (i = 0; i < num; i++)
		if (table[i].reset)
			table[i].reset(vcpu, &table[i]);
}

/**
 * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
 * @vcpu: The VCPU pointer
 * @run:  The kvm_run struct
 */
int kvm_handle_sys_reg(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
	struct sys_reg_params params;
	unsigned long esr = kvm_vcpu_get_hsr(vcpu);
2052
	int Rt = kvm_vcpu_sys_get_rt(vcpu);
2053
	int ret;
2054

2055 2056
	trace_kvm_handle_sys_reg(esr);

2057 2058
	params.is_aarch32 = false;
	params.is_32bit = false;
2059 2060 2061 2062 2063
	params.Op0 = (esr >> 20) & 3;
	params.Op1 = (esr >> 14) & 0x7;
	params.CRn = (esr >> 10) & 0xf;
	params.CRm = (esr >> 1) & 0xf;
	params.Op2 = (esr >> 17) & 0x7;
2064
	params.regval = vcpu_get_reg(vcpu, Rt);
2065 2066
	params.is_write = !(esr & 1);

2067 2068 2069 2070 2071
	ret = emulate_sys_reg(vcpu, &params);

	if (!params.is_write)
		vcpu_set_reg(vcpu, Rt, params.regval);
	return ret;
2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106
}

/******************************************************************************
 * Userspace API
 *****************************************************************************/

static bool index_to_params(u64 id, struct sys_reg_params *params)
{
	switch (id & KVM_REG_SIZE_MASK) {
	case KVM_REG_SIZE_U64:
		/* Any unused index bits means it's not valid. */
		if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
			      | KVM_REG_ARM_COPROC_MASK
			      | KVM_REG_ARM64_SYSREG_OP0_MASK
			      | KVM_REG_ARM64_SYSREG_OP1_MASK
			      | KVM_REG_ARM64_SYSREG_CRN_MASK
			      | KVM_REG_ARM64_SYSREG_CRM_MASK
			      | KVM_REG_ARM64_SYSREG_OP2_MASK))
			return false;
		params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
			       >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
		params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
			       >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
		params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
			       >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
		params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
			       >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
		params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
			       >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
		return true;
	default:
		return false;
	}
}

2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
const struct sys_reg_desc *find_reg_by_id(u64 id,
					  struct sys_reg_params *params,
					  const struct sys_reg_desc table[],
					  unsigned int num)
{
	if (!index_to_params(id, params))
		return NULL;

	return find_reg(params, table, num);
}

2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129
/* Decode an index value, and find the sys_reg_desc entry. */
static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
						    u64 id)
{
	size_t num;
	const struct sys_reg_desc *table, *r;
	struct sys_reg_params params;

	/* We only do sys_reg for now. */
	if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
		return NULL;

2130
	table = get_target_table(vcpu->arch.target, true, &num);
2131
	r = find_reg_by_id(id, &params, table, num);
2132 2133 2134
	if (!r)
		r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));

2135 2136
	/* Not saved in the sys_reg array and not otherwise accessible? */
	if (r && !(r->reg || r->get_user))
2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153
		r = NULL;

	return r;
}

/*
 * These are the invariant sys_reg registers: we let the guest see the
 * host versions of these, so they're part of the guest state.
 *
 * A future CPU may provide a mechanism to present different values to
 * the guest, or a future kvm may trap them.
 */

#define FUNCTION_INVARIANT(reg)						\
	static void get_##reg(struct kvm_vcpu *v,			\
			      const struct sys_reg_desc *r)		\
	{								\
2154
		((struct sys_reg_desc *)r)->val = read_sysreg(reg);	\
2155 2156 2157 2158 2159 2160 2161 2162 2163 2164
	}

FUNCTION_INVARIANT(midr_el1)
FUNCTION_INVARIANT(ctr_el0)
FUNCTION_INVARIANT(revidr_el1)
FUNCTION_INVARIANT(clidr_el1)
FUNCTION_INVARIANT(aidr_el1)

/* ->val is filled in by kvm_sys_reg_table_init() */
static struct sys_reg_desc invariant_sys_regs[] = {
2165 2166 2167 2168 2169
	{ SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 },
	{ SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 },
	{ SYS_DESC(SYS_CLIDR_EL1), NULL, get_clidr_el1 },
	{ SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 },
	{ SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 },
2170 2171
};

2172
static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
2173 2174 2175 2176 2177 2178
{
	if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
		return -EFAULT;
	return 0;
}

2179
static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190
{
	if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
		return -EFAULT;
	return 0;
}

static int get_invariant_sys_reg(u64 id, void __user *uaddr)
{
	struct sys_reg_params params;
	const struct sys_reg_desc *r;

2191 2192
	r = find_reg_by_id(id, &params, invariant_sys_regs,
			   ARRAY_SIZE(invariant_sys_regs));
2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205
	if (!r)
		return -ENOENT;

	return reg_to_user(uaddr, &r->val, id);
}

static int set_invariant_sys_reg(u64 id, void __user *uaddr)
{
	struct sys_reg_params params;
	const struct sys_reg_desc *r;
	int err;
	u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */

2206 2207
	r = find_reg_by_id(id, &params, invariant_sys_regs,
			   ARRAY_SIZE(invariant_sys_regs));
2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226
	if (!r)
		return -ENOENT;

	err = reg_from_user(&val, uaddr, id);
	if (err)
		return err;

	/* This is what we mean by invariant: you can't change it. */
	if (r->val != val)
		return -EINVAL;

	return 0;
}

static bool is_valid_cache(u32 val)
{
	u32 level, ctype;

	if (val >= CSSELR_MAX)
2227
		return false;
2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318

	/* Bottom bit is Instruction or Data bit.  Next 3 bits are level. */
	level = (val >> 1);
	ctype = (cache_levels >> (level * 3)) & 7;

	switch (ctype) {
	case 0: /* No cache */
		return false;
	case 1: /* Instruction cache only */
		return (val & 1);
	case 2: /* Data cache only */
	case 4: /* Unified cache */
		return !(val & 1);
	case 3: /* Separate instruction and data caches */
		return true;
	default: /* Reserved: we can't know instruction or data. */
		return false;
	}
}

static int demux_c15_get(u64 id, void __user *uaddr)
{
	u32 val;
	u32 __user *uval = uaddr;

	/* Fail if we have unknown bits set. */
	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
		return -ENOENT;

	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
		if (KVM_REG_SIZE(id) != 4)
			return -ENOENT;
		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
		if (!is_valid_cache(val))
			return -ENOENT;

		return put_user(get_ccsidr(val), uval);
	default:
		return -ENOENT;
	}
}

static int demux_c15_set(u64 id, void __user *uaddr)
{
	u32 val, newval;
	u32 __user *uval = uaddr;

	/* Fail if we have unknown bits set. */
	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
		return -ENOENT;

	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
		if (KVM_REG_SIZE(id) != 4)
			return -ENOENT;
		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
		if (!is_valid_cache(val))
			return -ENOENT;

		if (get_user(newval, uval))
			return -EFAULT;

		/* This is also invariant: you can't change it. */
		if (newval != get_ccsidr(val))
			return -EINVAL;
		return 0;
	default:
		return -ENOENT;
	}
}

int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
{
	const struct sys_reg_desc *r;
	void __user *uaddr = (void __user *)(unsigned long)reg->addr;

	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
		return demux_c15_get(reg->id, uaddr);

	if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
		return -ENOENT;

	r = index_to_sys_reg_desc(vcpu, reg->id);
	if (!r)
		return get_invariant_sys_reg(reg->id, uaddr);

2319 2320 2321
	if (r->get_user)
		return (r->get_user)(vcpu, r, reg, uaddr);

2322
	return reg_to_user(uaddr, &__vcpu_sys_reg(vcpu, r->reg), reg->id);
2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339
}

int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
{
	const struct sys_reg_desc *r;
	void __user *uaddr = (void __user *)(unsigned long)reg->addr;

	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
		return demux_c15_set(reg->id, uaddr);

	if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
		return -ENOENT;

	r = index_to_sys_reg_desc(vcpu, reg->id);
	if (!r)
		return set_invariant_sys_reg(reg->id, uaddr);

2340 2341 2342
	if (r->set_user)
		return (r->set_user)(vcpu, r, reg, uaddr);

2343
	return reg_from_user(&__vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358
}

static unsigned int num_demux_regs(void)
{
	unsigned int i, count = 0;

	for (i = 0; i < CSSELR_MAX; i++)
		if (is_valid_cache(i))
			count++;

	return count;
}

static int write_demux_regids(u64 __user *uindices)
{
2359
	u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395
	unsigned int i;

	val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
	for (i = 0; i < CSSELR_MAX; i++) {
		if (!is_valid_cache(i))
			continue;
		if (put_user(val | i, uindices))
			return -EFAULT;
		uindices++;
	}
	return 0;
}

static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
{
	return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
		KVM_REG_ARM64_SYSREG |
		(reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
		(reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
		(reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
		(reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
		(reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
}

static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
{
	if (!*uind)
		return true;

	if (put_user(sys_reg_to_index(reg), *uind))
		return false;

	(*uind)++;
	return true;
}

2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413
static int walk_one_sys_reg(const struct sys_reg_desc *rd,
			    u64 __user **uind,
			    unsigned int *total)
{
	/*
	 * Ignore registers we trap but don't save,
	 * and for which no custom user accessor is provided.
	 */
	if (!(rd->reg || rd->get_user))
		return 0;

	if (!copy_reg_to_user(rd, uind))
		return -EFAULT;

	(*total)++;
	return 0;
}

2414 2415 2416 2417 2418 2419
/* Assumed ordered tables, see kvm_sys_reg_table_init. */
static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
{
	const struct sys_reg_desc *i1, *i2, *end1, *end2;
	unsigned int total = 0;
	size_t num;
2420
	int err;
2421 2422

	/* We check for duplicates here, to allow arch-specific overrides. */
2423
	i1 = get_target_table(vcpu->arch.target, true, &num);
2424 2425 2426 2427 2428 2429 2430 2431 2432 2433
	end1 = i1 + num;
	i2 = sys_reg_descs;
	end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);

	BUG_ON(i1 == end1 || i2 == end2);

	/* Walk carefully, as both tables may refer to the same register. */
	while (i1 || i2) {
		int cmp = cmp_sys_reg(i1, i2);
		/* target-specific overrides generic entry. */
2434 2435 2436 2437 2438 2439 2440
		if (cmp <= 0)
			err = walk_one_sys_reg(i1, &uind, &total);
		else
			err = walk_one_sys_reg(i2, &uind, &total);

		if (err)
			return err;
2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476

		if (cmp <= 0 && ++i1 == end1)
			i1 = NULL;
		if (cmp >= 0 && ++i2 == end2)
			i2 = NULL;
	}
	return total;
}

unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
{
	return ARRAY_SIZE(invariant_sys_regs)
		+ num_demux_regs()
		+ walk_sys_regs(vcpu, (u64 __user *)NULL);
}

int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
{
	unsigned int i;
	int err;

	/* Then give them all the invariant registers' indices. */
	for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
		if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
			return -EFAULT;
		uindices++;
	}

	err = walk_sys_regs(vcpu, uindices);
	if (err < 0)
		return err;
	uindices += err;

	return write_demux_regids(uindices);
}

2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490
static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n)
{
	unsigned int i;

	for (i = 1; i < n; i++) {
		if (cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
			kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
			return 1;
		}
	}

	return 0;
}

2491 2492 2493 2494 2495 2496
void kvm_sys_reg_table_init(void)
{
	unsigned int i;
	struct sys_reg_desc clidr;

	/* Make sure tables are unique and in order. */
2497 2498 2499 2500 2501 2502
	BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs)));
	BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs)));
	BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs)));
	BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
	BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs)));
	BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs)));
2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544

	/* We abuse the reset function to overwrite the table itself. */
	for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
		invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);

	/*
	 * CLIDR format is awkward, so clean it up.  See ARM B4.1.20:
	 *
	 *   If software reads the Cache Type fields from Ctype1
	 *   upwards, once it has seen a value of 0b000, no caches
	 *   exist at further-out levels of the hierarchy. So, for
	 *   example, if Ctype3 is the first Cache Type field with a
	 *   value of 0b000, the values of Ctype4 to Ctype7 must be
	 *   ignored.
	 */
	get_clidr_el1(NULL, &clidr); /* Ugly... */
	cache_levels = clidr.val;
	for (i = 0; i < 7; i++)
		if (((cache_levels >> (i*3)) & 7) == 0)
			break;
	/* Clear all higher bits. */
	cache_levels &= (1 << (i*3))-1;
}

/**
 * kvm_reset_sys_regs - sets system registers to reset value
 * @vcpu: The VCPU pointer
 *
 * This function finds the right table above and sets the registers on the
 * virtual CPU struct to their architecturally defined reset values.
 */
void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
{
	size_t num;
	const struct sys_reg_desc *table;

	/* Catch someone adding a register without putting in reset entry. */
	memset(&vcpu->arch.ctxt.sys_regs, 0x42, sizeof(vcpu->arch.ctxt.sys_regs));

	/* Generic chip reset first (so target could override). */
	reset_sys_reg_descs(vcpu, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));

2545
	table = get_target_table(vcpu->arch.target, true, &num);
2546 2547 2548
	reset_sys_reg_descs(vcpu, table, num);

	for (num = 1; num < NR_SYS_REGS; num++)
2549 2550
		if (__vcpu_sys_reg(vcpu, num) == 0x4242424242424242)
			panic("Didn't reset __vcpu_sys_reg(%zi)", num);
2551
}