rcar_gen3_thermal.c 13.0 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/*
 *  R-Car Gen3 THS thermal sensor driver
 *  Based on rcar_thermal.c and work from Hien Dang and Khiem Nguyen.
 *
 * Copyright (C) 2016 Renesas Electronics Corporation.
 * Copyright (C) 2016 Sang Engineering
 */
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
17
#include <linux/sys_soc.h>
18 19
#include <linux/thermal.h>

20
#include "thermal_core.h"
21
#include "thermal_hwmon.h"
22

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
/* Register offsets */
#define REG_GEN3_IRQSTR		0x04
#define REG_GEN3_IRQMSK		0x08
#define REG_GEN3_IRQCTL		0x0C
#define REG_GEN3_IRQEN		0x10
#define REG_GEN3_IRQTEMP1	0x14
#define REG_GEN3_IRQTEMP2	0x18
#define REG_GEN3_IRQTEMP3	0x1C
#define REG_GEN3_CTSR		0x20
#define REG_GEN3_THCTR		0x20
#define REG_GEN3_TEMP		0x28
#define REG_GEN3_THCODE1	0x50
#define REG_GEN3_THCODE2	0x54
#define REG_GEN3_THCODE3	0x58

38 39 40 41 42 43 44 45
/* IRQ{STR,MSK,EN} bits */
#define IRQ_TEMP1		BIT(0)
#define IRQ_TEMP2		BIT(1)
#define IRQ_TEMP3		BIT(2)
#define IRQ_TEMPD1		BIT(3)
#define IRQ_TEMPD2		BIT(4)
#define IRQ_TEMPD3		BIT(5)

46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
/* CTSR bits */
#define CTSR_PONM	BIT(8)
#define CTSR_AOUT	BIT(7)
#define CTSR_THBGR	BIT(5)
#define CTSR_VMEN	BIT(4)
#define CTSR_VMST	BIT(1)
#define CTSR_THSST	BIT(0)

/* THCTR bits */
#define THCTR_PONM	BIT(6)
#define THCTR_THSST	BIT(0)

#define CTEMP_MASK	0xFFF

#define MCELSIUS(temp)	((temp) * 1000)
#define GEN3_FUSE_MASK	0xFFF

63
#define TSC_MAX_NUM	5
64 65 66 67 68 69 70 71 72 73 74 75 76

/* Structure for thermal temperature calculation */
struct equation_coefs {
	int a1;
	int b1;
	int a2;
	int b2;
};

struct rcar_gen3_thermal_tsc {
	void __iomem *base;
	struct thermal_zone_device *zone;
	struct equation_coefs coef;
77
	int tj_t;
78
	int thcode[3];
79 80 81 82
};

struct rcar_gen3_thermal_priv {
	struct rcar_gen3_thermal_tsc *tscs[TSC_MAX_NUM];
83
	unsigned int num_tscs;
84
	void (*thermal_init)(struct rcar_gen3_thermal_tsc *tsc);
85
	int ptat[3];
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
};

static inline u32 rcar_gen3_thermal_read(struct rcar_gen3_thermal_tsc *tsc,
					 u32 reg)
{
	return ioread32(tsc->base + reg);
}

static inline void rcar_gen3_thermal_write(struct rcar_gen3_thermal_tsc *tsc,
					   u32 reg, u32 data)
{
	iowrite32(data, tsc->base + reg);
}

/*
 * Linear approximation for temperature
 *
 * [reg] = [temp] * a + b => [temp] = ([reg] - b) / a
 *
 * The constants a and b are calculated using two triplets of int values PTAT
 * and THCODE. PTAT and THCODE can either be read from hardware or use hard
 * coded values from driver. The formula to calculate a and b are taken from
 * BSP and sparsely documented and understood.
 *
 * Examining the linear formula and the formula used to calculate constants a
 * and b while knowing that the span for PTAT and THCODE values are between
 * 0x000 and 0xfff the largest integer possible is 0xfff * 0xfff == 0xffe001.
 * Integer also needs to be signed so that leaves 7 bits for binary
 * fixed point scaling.
 */

#define FIXPT_SHIFT 7
#define FIXPT_INT(_x) ((_x) << FIXPT_SHIFT)
119
#define INT_FIXPT(_x) ((_x) >> FIXPT_SHIFT)
120 121 122 123 124 125 126 127
#define FIXPT_DIV(_a, _b) DIV_ROUND_CLOSEST(((_a) << FIXPT_SHIFT), (_b))
#define FIXPT_TO_MCELSIUS(_x) ((_x) * 1000 >> FIXPT_SHIFT)

#define RCAR3_THERMAL_GRAN 500 /* mili Celsius */

/* no idea where these constants come from */
#define TJ_3 -41

128 129
static void rcar_gen3_thermal_calc_coefs(struct rcar_gen3_thermal_priv *priv,
					 struct rcar_gen3_thermal_tsc *tsc,
130
					 int ths_tj_1)
131 132 133 134 135 136 137
{
	/* TODO: Find documentation and document constant calculation formula */

	/*
	 * Division is not scaled in BSP and if scaled it might overflow
	 * the dividend (4095 * 4095 << 14 > INT_MAX) so keep it unscaled
	 */
138 139
	tsc->tj_t = (FIXPT_INT((priv->ptat[1] - priv->ptat[2]) * (ths_tj_1 - TJ_3))
		     / (priv->ptat[0] - priv->ptat[2])) + FIXPT_INT(TJ_3);
140

141
	tsc->coef.a1 = FIXPT_DIV(FIXPT_INT(tsc->thcode[1] - tsc->thcode[2]),
142
				 tsc->tj_t - FIXPT_INT(TJ_3));
143
	tsc->coef.b1 = FIXPT_INT(tsc->thcode[2]) - tsc->coef.a1 * TJ_3;
144

145
	tsc->coef.a2 = FIXPT_DIV(FIXPT_INT(tsc->thcode[1] - tsc->thcode[0]),
146
				 tsc->tj_t - FIXPT_INT(ths_tj_1));
147
	tsc->coef.b2 = FIXPT_INT(tsc->thcode[0]) - tsc->coef.a2 * ths_tj_1;
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
}

static int rcar_gen3_thermal_round(int temp)
{
	int result, round_offs;

	round_offs = temp >= 0 ? RCAR3_THERMAL_GRAN / 2 :
		-RCAR3_THERMAL_GRAN / 2;
	result = (temp + round_offs) / RCAR3_THERMAL_GRAN;
	return result * RCAR3_THERMAL_GRAN;
}

static int rcar_gen3_thermal_get_temp(void *devdata, int *temp)
{
	struct rcar_gen3_thermal_tsc *tsc = devdata;
163
	int mcelsius, val;
164
	int reg;
165 166 167 168

	/* Read register and convert to mili Celsius */
	reg = rcar_gen3_thermal_read(tsc, REG_GEN3_TEMP) & CTEMP_MASK;

169
	if (reg <= tsc->thcode[1])
170 171 172 173 174 175
		val = FIXPT_DIV(FIXPT_INT(reg) - tsc->coef.b1,
				tsc->coef.a1);
	else
		val = FIXPT_DIV(FIXPT_INT(reg) - tsc->coef.b2,
				tsc->coef.a2);
	mcelsius = FIXPT_TO_MCELSIUS(val);
176

177
	/* Guaranteed operating range is -40C to 125C. */
178 179 180 181 182 183 184

	/* Round value to device granularity setting */
	*temp = rcar_gen3_thermal_round(mcelsius);

	return 0;
}

185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
static int rcar_gen3_thermal_mcelsius_to_temp(struct rcar_gen3_thermal_tsc *tsc,
					      int mcelsius)
{
	int celsius, val;

	celsius = DIV_ROUND_CLOSEST(mcelsius, 1000);
	if (celsius <= INT_FIXPT(tsc->tj_t))
		val = celsius * tsc->coef.a1 + tsc->coef.b1;
	else
		val = celsius * tsc->coef.a2 + tsc->coef.b2;

	return INT_FIXPT(val);
}

static int rcar_gen3_thermal_set_trips(void *devdata, int low, int high)
{
	struct rcar_gen3_thermal_tsc *tsc = devdata;
	u32 irqmsk = 0;

	if (low != -INT_MAX) {
		irqmsk |= IRQ_TEMPD1;
		rcar_gen3_thermal_write(tsc, REG_GEN3_IRQTEMP1,
					rcar_gen3_thermal_mcelsius_to_temp(tsc, low));
	}

	if (high != INT_MAX) {
		irqmsk |= IRQ_TEMP2;
		rcar_gen3_thermal_write(tsc, REG_GEN3_IRQTEMP2,
					rcar_gen3_thermal_mcelsius_to_temp(tsc, high));
	}

	rcar_gen3_thermal_write(tsc, REG_GEN3_IRQMSK, irqmsk);

	return 0;
}

static struct thermal_zone_of_device_ops rcar_gen3_tz_of_ops = {
222
	.get_temp	= rcar_gen3_thermal_get_temp,
223
	.set_trips	= rcar_gen3_thermal_set_trips,
224 225
};

226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
static irqreturn_t rcar_gen3_thermal_irq(int irq, void *data)
{
	struct rcar_gen3_thermal_priv *priv = data;
	unsigned int i;
	u32 status;

	for (i = 0; i < priv->num_tscs; i++) {
		status = rcar_gen3_thermal_read(priv->tscs[i], REG_GEN3_IRQSTR);
		rcar_gen3_thermal_write(priv->tscs[i], REG_GEN3_IRQSTR, 0);
		if (status)
			thermal_zone_device_update(priv->tscs[i]->zone,
						   THERMAL_EVENT_UNSPECIFIED);
	}

	return IRQ_HANDLED;
}

243 244 245 246 247 248
static const struct soc_device_attribute r8a7795es1[] = {
	{ .soc_id = "r8a7795", .revision = "ES1.*" },
	{ /* sentinel */ }
};

static void rcar_gen3_thermal_init_r8a7795es1(struct rcar_gen3_thermal_tsc *tsc)
249 250 251 252 253 254 255
{
	rcar_gen3_thermal_write(tsc, REG_GEN3_CTSR,  CTSR_THBGR);
	rcar_gen3_thermal_write(tsc, REG_GEN3_CTSR,  0x0);

	usleep_range(1000, 2000);

	rcar_gen3_thermal_write(tsc, REG_GEN3_CTSR, CTSR_PONM);
256

257
	rcar_gen3_thermal_write(tsc, REG_GEN3_IRQCTL, 0x3F);
258
	rcar_gen3_thermal_write(tsc, REG_GEN3_IRQMSK, 0);
259 260 261
	if (tsc->zone->ops->set_trips)
		rcar_gen3_thermal_write(tsc, REG_GEN3_IRQEN,
					IRQ_TEMPD1 | IRQ_TEMP2);
262

263 264 265 266 267 268 269 270 271 272 273 274
	rcar_gen3_thermal_write(tsc, REG_GEN3_CTSR,
				CTSR_PONM | CTSR_AOUT | CTSR_THBGR | CTSR_VMEN);

	usleep_range(100, 200);

	rcar_gen3_thermal_write(tsc, REG_GEN3_CTSR,
				CTSR_PONM | CTSR_AOUT | CTSR_THBGR | CTSR_VMEN |
				CTSR_VMST | CTSR_THSST);

	usleep_range(1000, 2000);
}

275
static void rcar_gen3_thermal_init(struct rcar_gen3_thermal_tsc *tsc)
276 277 278 279 280 281 282 283 284
{
	u32 reg_val;

	reg_val = rcar_gen3_thermal_read(tsc, REG_GEN3_THCTR);
	reg_val &= ~THCTR_PONM;
	rcar_gen3_thermal_write(tsc, REG_GEN3_THCTR, reg_val);

	usleep_range(1000, 2000);

285
	rcar_gen3_thermal_write(tsc, REG_GEN3_IRQCTL, 0);
286
	rcar_gen3_thermal_write(tsc, REG_GEN3_IRQMSK, 0);
287 288 289
	if (tsc->zone->ops->set_trips)
		rcar_gen3_thermal_write(tsc, REG_GEN3_IRQEN,
					IRQ_TEMPD1 | IRQ_TEMP2);
290

291 292 293
	reg_val = rcar_gen3_thermal_read(tsc, REG_GEN3_THCTR);
	reg_val |= THCTR_THSST;
	rcar_gen3_thermal_write(tsc, REG_GEN3_THCTR, reg_val);
294 295

	usleep_range(1000, 2000);
296 297
}

298 299
static const int rcar_gen3_ths_tj_1 = 126;
static const int rcar_gen3_ths_tj_1_m3_w = 116;
300
static const struct of_device_id rcar_gen3_thermal_dt_ids[] = {
301 302 303 304
	{
		.compatible = "renesas,r8a774a1-thermal",
		.data = &rcar_gen3_ths_tj_1_m3_w,
	},
305 306 307 308
	{
		.compatible = "renesas,r8a774b1-thermal",
		.data = &rcar_gen3_ths_tj_1,
	},
309 310 311 312
	{
		.compatible = "renesas,r8a774e1-thermal",
		.data = &rcar_gen3_ths_tj_1,
	},
313 314 315 316 317 318 319 320
	{
		.compatible = "renesas,r8a7795-thermal",
		.data = &rcar_gen3_ths_tj_1,
	},
	{
		.compatible = "renesas,r8a7796-thermal",
		.data = &rcar_gen3_ths_tj_1_m3_w,
	},
321 322 323 324
	{
		.compatible = "renesas,r8a77961-thermal",
		.data = &rcar_gen3_ths_tj_1_m3_w,
	},
325 326 327 328 329 330 331 332
	{
		.compatible = "renesas,r8a77965-thermal",
		.data = &rcar_gen3_ths_tj_1,
	},
	{
		.compatible = "renesas,r8a77980-thermal",
		.data = &rcar_gen3_ths_tj_1,
	},
333 334 335 336
	{
		.compatible = "renesas,r8a779a0-thermal",
		.data = &rcar_gen3_ths_tj_1,
	},
337 338 339 340 341 342 343 344 345 346 347 348 349 350
	{},
};
MODULE_DEVICE_TABLE(of, rcar_gen3_thermal_dt_ids);

static int rcar_gen3_thermal_remove(struct platform_device *pdev)
{
	struct device *dev = &pdev->dev;

	pm_runtime_put(dev);
	pm_runtime_disable(dev);

	return 0;
}

351 352 353 354 355 356 357
static void rcar_gen3_hwmon_action(void *data)
{
	struct thermal_zone_device *zone = data;

	thermal_remove_hwmon_sysfs(zone);
}

358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
static int rcar_gen3_thermal_request_irqs(struct rcar_gen3_thermal_priv *priv,
					  struct platform_device *pdev)
{
	struct device *dev = &pdev->dev;
	unsigned int i;
	char *irqname;
	int ret, irq;

	for (i = 0; i < 2; i++) {
		irq = platform_get_irq_optional(pdev, i);
		if (irq < 0)
			return irq;

		irqname = devm_kasprintf(dev, GFP_KERNEL, "%s:ch%d",
					 dev_name(dev), i);
		if (!irqname)
			return -ENOMEM;

		ret = devm_request_threaded_irq(dev, irq, NULL,
						rcar_gen3_thermal_irq,
						IRQF_ONESHOT, irqname, priv);
		if (ret)
			return ret;
	}

	return 0;
}

386 387 388 389
static int rcar_gen3_thermal_probe(struct platform_device *pdev)
{
	struct rcar_gen3_thermal_priv *priv;
	struct device *dev = &pdev->dev;
390
	const int *ths_tj_1 = of_device_get_match_data(dev);
391 392
	struct resource *res;
	struct thermal_zone_device *zone;
393 394
	unsigned int i;
	int ret;
395

396
	/* Default THCODE values in case FUSEs are not set. */
397
	/* TODO: Read values from hardware on supported platforms */
398 399 400 401 402 403 404
	static const int thcodes[TSC_MAX_NUM][3] = {
		{ 3397, 2800, 2221 },
		{ 3393, 2795, 2216 },
		{ 3389, 2805, 2237 },
		{ 3415, 2694, 2195 },
		{ 3356, 2724, 2244 },
	};
405 406 407 408 409

	priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
	if (!priv)
		return -ENOMEM;

410 411 412
	priv->thermal_init = rcar_gen3_thermal_init;
	if (soc_device_match(r8a7795es1))
		priv->thermal_init = rcar_gen3_thermal_init_r8a7795es1;
413

414 415 416 417
	priv->ptat[0] = 2631;
	priv->ptat[1] = 1509;
	priv->ptat[2] = 435;

418 419
	platform_set_drvdata(pdev, priv);

420 421 422
	if (rcar_gen3_thermal_request_irqs(priv, pdev))
		rcar_gen3_tz_of_ops.set_trips = NULL;

423 424 425 426 427 428
	pm_runtime_enable(dev);
	pm_runtime_get_sync(dev);

	for (i = 0; i < TSC_MAX_NUM; i++) {
		struct rcar_gen3_thermal_tsc *tsc;

429 430 431 432
		res = platform_get_resource(pdev, IORESOURCE_MEM, i);
		if (!res)
			break;

433 434 435 436 437 438 439 440 441 442 443
		tsc = devm_kzalloc(dev, sizeof(*tsc), GFP_KERNEL);
		if (!tsc) {
			ret = -ENOMEM;
			goto error_unregister;
		}

		tsc->base = devm_ioremap_resource(dev, res);
		if (IS_ERR(tsc->base)) {
			ret = PTR_ERR(tsc->base);
			goto error_unregister;
		}
444 445 446 447

		tsc->thcode[0] = thcodes[i][0];
		tsc->thcode[1] = thcodes[i][1];
		tsc->thcode[2] = thcodes[i][2];
448 449 450 451 452 453 454 455 456 457 458

		priv->tscs[i] = tsc;

		zone = devm_thermal_zone_of_sensor_register(dev, i, tsc,
							    &rcar_gen3_tz_of_ops);
		if (IS_ERR(zone)) {
			dev_err(dev, "Can't register thermal zone\n");
			ret = PTR_ERR(zone);
			goto error_unregister;
		}
		tsc->zone = zone;
459

460
		priv->thermal_init(tsc);
461
		rcar_gen3_thermal_calc_coefs(priv, tsc, *ths_tj_1);
462

463 464 465 466 467
		tsc->zone->tzp->no_hwmon = false;
		ret = thermal_add_hwmon_sysfs(tsc->zone);
		if (ret)
			goto error_unregister;

468
		ret = devm_add_action_or_reset(dev, rcar_gen3_hwmon_action, zone);
469
		if (ret)
470 471
			goto error_unregister;

472 473 474 475
		ret = of_thermal_get_ntrips(tsc->zone);
		if (ret < 0)
			goto error_unregister;

476
		dev_info(dev, "TSC%u: Loaded %d trip points\n", i, ret);
477 478
	}

479 480 481 482 483 484 485
	priv->num_tscs = i;

	if (!priv->num_tscs) {
		ret = -ENODEV;
		goto error_unregister;
	}

486 487 488 489 490 491 492 493
	return 0;

error_unregister:
	rcar_gen3_thermal_remove(pdev);

	return ret;
}

494 495 496 497 498 499 500
static int __maybe_unused rcar_gen3_thermal_resume(struct device *dev)
{
	struct rcar_gen3_thermal_priv *priv = dev_get_drvdata(dev);
	unsigned int i;

	for (i = 0; i < priv->num_tscs; i++) {
		struct rcar_gen3_thermal_tsc *tsc = priv->tscs[i];
501
		struct thermal_zone_device *zone = tsc->zone;
502

503
		priv->thermal_init(tsc);
504 505 506
		if (zone->ops->set_trips)
			rcar_gen3_thermal_set_trips(tsc, zone->prev_low_trip,
						    zone->prev_high_trip);
507 508 509 510 511
	}

	return 0;
}

512
static SIMPLE_DEV_PM_OPS(rcar_gen3_thermal_pm_ops, NULL,
513 514
			 rcar_gen3_thermal_resume);

515 516 517
static struct platform_driver rcar_gen3_thermal_driver = {
	.driver	= {
		.name	= "rcar_gen3_thermal",
518
		.pm = &rcar_gen3_thermal_pm_ops,
519 520 521 522 523 524 525 526 527 528
		.of_match_table = rcar_gen3_thermal_dt_ids,
	},
	.probe		= rcar_gen3_thermal_probe,
	.remove		= rcar_gen3_thermal_remove,
};
module_platform_driver(rcar_gen3_thermal_driver);

MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("R-Car Gen3 THS thermal sensor driver");
MODULE_AUTHOR("Wolfram Sang <wsa+renesas@sang-engineering.com>");