rcar_gen3_thermal.c 12.9 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/*
 *  R-Car Gen3 THS thermal sensor driver
 *  Based on rcar_thermal.c and work from Hien Dang and Khiem Nguyen.
 *
 * Copyright (C) 2016 Renesas Electronics Corporation.
 * Copyright (C) 2016 Sang Engineering
 */
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
17
#include <linux/sys_soc.h>
18 19
#include <linux/thermal.h>

20
#include "thermal_core.h"
21
#include "thermal_hwmon.h"
22

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
/* Register offsets */
#define REG_GEN3_IRQSTR		0x04
#define REG_GEN3_IRQMSK		0x08
#define REG_GEN3_IRQCTL		0x0C
#define REG_GEN3_IRQEN		0x10
#define REG_GEN3_IRQTEMP1	0x14
#define REG_GEN3_IRQTEMP2	0x18
#define REG_GEN3_IRQTEMP3	0x1C
#define REG_GEN3_CTSR		0x20
#define REG_GEN3_THCTR		0x20
#define REG_GEN3_TEMP		0x28
#define REG_GEN3_THCODE1	0x50
#define REG_GEN3_THCODE2	0x54
#define REG_GEN3_THCODE3	0x58

38 39 40 41 42 43 44 45
/* IRQ{STR,MSK,EN} bits */
#define IRQ_TEMP1		BIT(0)
#define IRQ_TEMP2		BIT(1)
#define IRQ_TEMP3		BIT(2)
#define IRQ_TEMPD1		BIT(3)
#define IRQ_TEMPD2		BIT(4)
#define IRQ_TEMPD3		BIT(5)

46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
/* CTSR bits */
#define CTSR_PONM	BIT(8)
#define CTSR_AOUT	BIT(7)
#define CTSR_THBGR	BIT(5)
#define CTSR_VMEN	BIT(4)
#define CTSR_VMST	BIT(1)
#define CTSR_THSST	BIT(0)

/* THCTR bits */
#define THCTR_PONM	BIT(6)
#define THCTR_THSST	BIT(0)

#define CTEMP_MASK	0xFFF

#define MCELSIUS(temp)	((temp) * 1000)
#define GEN3_FUSE_MASK	0xFFF

#define TSC_MAX_NUM	3

65 66 67 68 69 70 71
/* default THCODE values if FUSEs are missing */
static const int thcode[TSC_MAX_NUM][3] = {
	{ 3397, 2800, 2221 },
	{ 3393, 2795, 2216 },
	{ 3389, 2805, 2237 },
};

72 73 74 75 76 77 78 79 80 81 82 83
/* Structure for thermal temperature calculation */
struct equation_coefs {
	int a1;
	int b1;
	int a2;
	int b2;
};

struct rcar_gen3_thermal_tsc {
	void __iomem *base;
	struct thermal_zone_device *zone;
	struct equation_coefs coef;
84
	int tj_t;
85
	int id; /* thermal channel id */
86 87 88 89
};

struct rcar_gen3_thermal_priv {
	struct rcar_gen3_thermal_tsc *tscs[TSC_MAX_NUM];
90
	unsigned int num_tscs;
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
	void (*thermal_init)(struct rcar_gen3_thermal_tsc *tsc);
};

static inline u32 rcar_gen3_thermal_read(struct rcar_gen3_thermal_tsc *tsc,
					 u32 reg)
{
	return ioread32(tsc->base + reg);
}

static inline void rcar_gen3_thermal_write(struct rcar_gen3_thermal_tsc *tsc,
					   u32 reg, u32 data)
{
	iowrite32(data, tsc->base + reg);
}

/*
 * Linear approximation for temperature
 *
 * [reg] = [temp] * a + b => [temp] = ([reg] - b) / a
 *
 * The constants a and b are calculated using two triplets of int values PTAT
 * and THCODE. PTAT and THCODE can either be read from hardware or use hard
 * coded values from driver. The formula to calculate a and b are taken from
 * BSP and sparsely documented and understood.
 *
 * Examining the linear formula and the formula used to calculate constants a
 * and b while knowing that the span for PTAT and THCODE values are between
 * 0x000 and 0xfff the largest integer possible is 0xfff * 0xfff == 0xffe001.
 * Integer also needs to be signed so that leaves 7 bits for binary
 * fixed point scaling.
 */

#define FIXPT_SHIFT 7
#define FIXPT_INT(_x) ((_x) << FIXPT_SHIFT)
125
#define INT_FIXPT(_x) ((_x) >> FIXPT_SHIFT)
126 127 128 129 130 131 132 133
#define FIXPT_DIV(_a, _b) DIV_ROUND_CLOSEST(((_a) << FIXPT_SHIFT), (_b))
#define FIXPT_TO_MCELSIUS(_x) ((_x) * 1000 >> FIXPT_SHIFT)

#define RCAR3_THERMAL_GRAN 500 /* mili Celsius */

/* no idea where these constants come from */
#define TJ_3 -41

134
static void rcar_gen3_thermal_calc_coefs(struct rcar_gen3_thermal_tsc *tsc,
135
					 int *ptat, const int *thcode,
136
					 int ths_tj_1)
137 138 139 140 141 142 143
{
	/* TODO: Find documentation and document constant calculation formula */

	/*
	 * Division is not scaled in BSP and if scaled it might overflow
	 * the dividend (4095 * 4095 << 14 > INT_MAX) so keep it unscaled
	 */
144 145
	tsc->tj_t = (FIXPT_INT((ptat[1] - ptat[2]) * 157)
		     / (ptat[0] - ptat[2])) + FIXPT_INT(TJ_3);
146

147 148 149
	tsc->coef.a1 = FIXPT_DIV(FIXPT_INT(thcode[1] - thcode[2]),
				 tsc->tj_t - FIXPT_INT(TJ_3));
	tsc->coef.b1 = FIXPT_INT(thcode[2]) - tsc->coef.a1 * TJ_3;
150

151 152 153
	tsc->coef.a2 = FIXPT_DIV(FIXPT_INT(thcode[1] - thcode[0]),
				 tsc->tj_t - FIXPT_INT(ths_tj_1));
	tsc->coef.b2 = FIXPT_INT(thcode[0]) - tsc->coef.a2 * ths_tj_1;
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
}

static int rcar_gen3_thermal_round(int temp)
{
	int result, round_offs;

	round_offs = temp >= 0 ? RCAR3_THERMAL_GRAN / 2 :
		-RCAR3_THERMAL_GRAN / 2;
	result = (temp + round_offs) / RCAR3_THERMAL_GRAN;
	return result * RCAR3_THERMAL_GRAN;
}

static int rcar_gen3_thermal_get_temp(void *devdata, int *temp)
{
	struct rcar_gen3_thermal_tsc *tsc = devdata;
169
	int mcelsius, val;
170 171 172 173 174
	u32 reg;

	/* Read register and convert to mili Celsius */
	reg = rcar_gen3_thermal_read(tsc, REG_GEN3_TEMP) & CTEMP_MASK;

175 176 177 178 179 180 181
	if (reg <= thcode[tsc->id][1])
		val = FIXPT_DIV(FIXPT_INT(reg) - tsc->coef.b1,
				tsc->coef.a1);
	else
		val = FIXPT_DIV(FIXPT_INT(reg) - tsc->coef.b2,
				tsc->coef.a2);
	mcelsius = FIXPT_TO_MCELSIUS(val);
182

183
	/* Guaranteed operating range is -40C to 125C. */
184 185 186 187 188 189 190

	/* Round value to device granularity setting */
	*temp = rcar_gen3_thermal_round(mcelsius);

	return 0;
}

191 192 193
static int rcar_gen3_thermal_mcelsius_to_temp(struct rcar_gen3_thermal_tsc *tsc,
					      int mcelsius)
{
194
	int celsius, val;
195 196

	celsius = DIV_ROUND_CLOSEST(mcelsius, 1000);
197 198 199 200
	if (celsius <= INT_FIXPT(tsc->tj_t))
		val = celsius * tsc->coef.a1 + tsc->coef.b1;
	else
		val = celsius * tsc->coef.a2 + tsc->coef.b2;
201

202
	return INT_FIXPT(val);
203 204
}

205
static int rcar_gen3_thermal_update_range(struct rcar_gen3_thermal_tsc *tsc)
206
{
207 208 209
	int temperature, low, high;

	rcar_gen3_thermal_get_temp(tsc, &temperature);
210

211 212
	low = temperature - MCELSIUS(1);
	high = temperature + MCELSIUS(1);
213 214 215 216 217 218 219 220 221 222

	rcar_gen3_thermal_write(tsc, REG_GEN3_IRQTEMP1,
				rcar_gen3_thermal_mcelsius_to_temp(tsc, low));

	rcar_gen3_thermal_write(tsc, REG_GEN3_IRQTEMP2,
				rcar_gen3_thermal_mcelsius_to_temp(tsc, high));

	return 0;
}

223
static const struct thermal_zone_of_device_ops rcar_gen3_tz_of_ops = {
224 225 226
	.get_temp	= rcar_gen3_thermal_get_temp,
};

227 228 229 230 231 232 233 234 235 236 237 238 239
static void rcar_thermal_irq_set(struct rcar_gen3_thermal_priv *priv, bool on)
{
	unsigned int i;
	u32 val = on ? IRQ_TEMPD1 | IRQ_TEMP2 : 0;

	for (i = 0; i < priv->num_tscs; i++)
		rcar_gen3_thermal_write(priv->tscs[i], REG_GEN3_IRQMSK, val);
}

static irqreturn_t rcar_gen3_thermal_irq(int irq, void *data)
{
	struct rcar_gen3_thermal_priv *priv = data;
	u32 status;
240
	int i;
241 242 243 244

	for (i = 0; i < priv->num_tscs; i++) {
		status = rcar_gen3_thermal_read(priv->tscs[i], REG_GEN3_IRQSTR);
		rcar_gen3_thermal_write(priv->tscs[i], REG_GEN3_IRQSTR, 0);
245 246
		if (status) {
			rcar_gen3_thermal_update_range(priv->tscs[i]);
247 248
			thermal_zone_device_update(priv->tscs[i]->zone,
						   THERMAL_EVENT_UNSPECIFIED);
249
		}
250 251 252 253 254
	}

	return IRQ_HANDLED;
}

255 256 257 258 259 260
static const struct soc_device_attribute r8a7795es1[] = {
	{ .soc_id = "r8a7795", .revision = "ES1.*" },
	{ /* sentinel */ }
};

static void rcar_gen3_thermal_init_r8a7795es1(struct rcar_gen3_thermal_tsc *tsc)
261 262 263 264 265 266 267
{
	rcar_gen3_thermal_write(tsc, REG_GEN3_CTSR,  CTSR_THBGR);
	rcar_gen3_thermal_write(tsc, REG_GEN3_CTSR,  0x0);

	usleep_range(1000, 2000);

	rcar_gen3_thermal_write(tsc, REG_GEN3_CTSR, CTSR_PONM);
268

269
	rcar_gen3_thermal_write(tsc, REG_GEN3_IRQCTL, 0x3F);
270 271 272
	rcar_gen3_thermal_write(tsc, REG_GEN3_IRQMSK, 0);
	rcar_gen3_thermal_write(tsc, REG_GEN3_IRQEN, IRQ_TEMPD1 | IRQ_TEMP2);

273 274 275 276 277 278 279 280 281 282 283 284
	rcar_gen3_thermal_write(tsc, REG_GEN3_CTSR,
				CTSR_PONM | CTSR_AOUT | CTSR_THBGR | CTSR_VMEN);

	usleep_range(100, 200);

	rcar_gen3_thermal_write(tsc, REG_GEN3_CTSR,
				CTSR_PONM | CTSR_AOUT | CTSR_THBGR | CTSR_VMEN |
				CTSR_VMST | CTSR_THSST);

	usleep_range(1000, 2000);
}

285
static void rcar_gen3_thermal_init(struct rcar_gen3_thermal_tsc *tsc)
286 287 288 289 290 291 292 293 294
{
	u32 reg_val;

	reg_val = rcar_gen3_thermal_read(tsc, REG_GEN3_THCTR);
	reg_val &= ~THCTR_PONM;
	rcar_gen3_thermal_write(tsc, REG_GEN3_THCTR, reg_val);

	usleep_range(1000, 2000);

295
	rcar_gen3_thermal_write(tsc, REG_GEN3_IRQCTL, 0);
296 297 298
	rcar_gen3_thermal_write(tsc, REG_GEN3_IRQMSK, 0);
	rcar_gen3_thermal_write(tsc, REG_GEN3_IRQEN, IRQ_TEMPD1 | IRQ_TEMP2);

299 300 301
	reg_val = rcar_gen3_thermal_read(tsc, REG_GEN3_THCTR);
	reg_val |= THCTR_THSST;
	rcar_gen3_thermal_write(tsc, REG_GEN3_THCTR, reg_val);
302 303

	usleep_range(1000, 2000);
304 305
}

306 307
static const int rcar_gen3_ths_tj_1 = 126;
static const int rcar_gen3_ths_tj_1_m3_w = 116;
308
static const struct of_device_id rcar_gen3_thermal_dt_ids[] = {
309 310 311 312
	{
		.compatible = "renesas,r8a774a1-thermal",
		.data = &rcar_gen3_ths_tj_1_m3_w,
	},
313 314 315 316
	{
		.compatible = "renesas,r8a774b1-thermal",
		.data = &rcar_gen3_ths_tj_1,
	},
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
	{
		.compatible = "renesas,r8a7795-thermal",
		.data = &rcar_gen3_ths_tj_1,
	},
	{
		.compatible = "renesas,r8a7796-thermal",
		.data = &rcar_gen3_ths_tj_1_m3_w,
	},
	{
		.compatible = "renesas,r8a77965-thermal",
		.data = &rcar_gen3_ths_tj_1,
	},
	{
		.compatible = "renesas,r8a77980-thermal",
		.data = &rcar_gen3_ths_tj_1,
	},
333 334 335 336 337 338 339
	{},
};
MODULE_DEVICE_TABLE(of, rcar_gen3_thermal_dt_ids);

static int rcar_gen3_thermal_remove(struct platform_device *pdev)
{
	struct device *dev = &pdev->dev;
340 341 342
	struct rcar_gen3_thermal_priv *priv = dev_get_drvdata(dev);

	rcar_thermal_irq_set(priv, false);
343 344 345 346 347 348 349

	pm_runtime_put(dev);
	pm_runtime_disable(dev);

	return 0;
}

350 351 352 353 354 355 356
static void rcar_gen3_hwmon_action(void *data)
{
	struct thermal_zone_device *zone = data;

	thermal_remove_hwmon_sysfs(zone);
}

357 358 359 360
static int rcar_gen3_thermal_probe(struct platform_device *pdev)
{
	struct rcar_gen3_thermal_priv *priv;
	struct device *dev = &pdev->dev;
361
	const int *rcar_gen3_ths_tj_1 = of_device_get_match_data(dev);
362 363
	struct resource *res;
	struct thermal_zone_device *zone;
364 365
	int ret, irq, i;
	char *irqname;
366 367 368

	/* default values if FUSEs are missing */
	/* TODO: Read values from hardware on supported platforms */
369
	int ptat[3] = { 2631, 1509, 435 };
370 371 372 373 374

	priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
	if (!priv)
		return -ENOMEM;

375 376 377
	priv->thermal_init = rcar_gen3_thermal_init;
	if (soc_device_match(r8a7795es1))
		priv->thermal_init = rcar_gen3_thermal_init_r8a7795es1;
378

379 380
	platform_set_drvdata(pdev, priv);

381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
	/*
	 * Request 2 (of the 3 possible) IRQs, the driver only needs to
	 * to trigger on the low and high trip points of the current
	 * temp window at this point.
	 */
	for (i = 0; i < 2; i++) {
		irq = platform_get_irq(pdev, i);
		if (irq < 0)
			return irq;

		irqname = devm_kasprintf(dev, GFP_KERNEL, "%s:ch%d",
					 dev_name(dev), i);
		if (!irqname)
			return -ENOMEM;

396 397 398
		ret = devm_request_threaded_irq(dev, irq, NULL,
						rcar_gen3_thermal_irq,
						IRQF_ONESHOT, irqname, priv);
399 400 401 402
		if (ret)
			return ret;
	}

403 404 405 406 407 408
	pm_runtime_enable(dev);
	pm_runtime_get_sync(dev);

	for (i = 0; i < TSC_MAX_NUM; i++) {
		struct rcar_gen3_thermal_tsc *tsc;

409 410 411 412
		res = platform_get_resource(pdev, IORESOURCE_MEM, i);
		if (!res)
			break;

413 414 415 416 417 418 419 420 421 422 423
		tsc = devm_kzalloc(dev, sizeof(*tsc), GFP_KERNEL);
		if (!tsc) {
			ret = -ENOMEM;
			goto error_unregister;
		}

		tsc->base = devm_ioremap_resource(dev, res);
		if (IS_ERR(tsc->base)) {
			ret = PTR_ERR(tsc->base);
			goto error_unregister;
		}
424
		tsc->id = i;
425 426 427

		priv->tscs[i] = tsc;

428
		priv->thermal_init(tsc);
429
		rcar_gen3_thermal_calc_coefs(tsc, ptat, thcode[i],
430
					     *rcar_gen3_ths_tj_1);
431 432 433 434 435 436 437 438 439

		zone = devm_thermal_zone_of_sensor_register(dev, i, tsc,
							    &rcar_gen3_tz_of_ops);
		if (IS_ERR(zone)) {
			dev_err(dev, "Can't register thermal zone\n");
			ret = PTR_ERR(zone);
			goto error_unregister;
		}
		tsc->zone = zone;
440

441 442 443 444 445
		tsc->zone->tzp->no_hwmon = false;
		ret = thermal_add_hwmon_sysfs(tsc->zone);
		if (ret)
			goto error_unregister;

446
		ret = devm_add_action_or_reset(dev, rcar_gen3_hwmon_action, zone);
447
		if (ret)
448 449
			goto error_unregister;

450 451 452 453
		ret = of_thermal_get_ntrips(tsc->zone);
		if (ret < 0)
			goto error_unregister;

454 455
		rcar_gen3_thermal_update_range(tsc);

456
		dev_info(dev, "TSC%d: Loaded %d trip points\n", i, ret);
457 458
	}

459 460 461 462 463 464 465
	priv->num_tscs = i;

	if (!priv->num_tscs) {
		ret = -ENODEV;
		goto error_unregister;
	}

466 467
	rcar_thermal_irq_set(priv, true);

468 469 470 471 472 473 474 475
	return 0;

error_unregister:
	rcar_gen3_thermal_remove(pdev);

	return ret;
}

476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
static int __maybe_unused rcar_gen3_thermal_suspend(struct device *dev)
{
	struct rcar_gen3_thermal_priv *priv = dev_get_drvdata(dev);

	rcar_thermal_irq_set(priv, false);

	return 0;
}

static int __maybe_unused rcar_gen3_thermal_resume(struct device *dev)
{
	struct rcar_gen3_thermal_priv *priv = dev_get_drvdata(dev);
	unsigned int i;

	for (i = 0; i < priv->num_tscs; i++) {
		struct rcar_gen3_thermal_tsc *tsc = priv->tscs[i];

493
		priv->thermal_init(tsc);
494
		rcar_gen3_thermal_update_range(tsc);
495 496 497 498 499 500 501 502 503 504
	}

	rcar_thermal_irq_set(priv, true);

	return 0;
}

static SIMPLE_DEV_PM_OPS(rcar_gen3_thermal_pm_ops, rcar_gen3_thermal_suspend,
			 rcar_gen3_thermal_resume);

505 506 507
static struct platform_driver rcar_gen3_thermal_driver = {
	.driver	= {
		.name	= "rcar_gen3_thermal",
508
		.pm = &rcar_gen3_thermal_pm_ops,
509 510 511 512 513 514 515 516 517 518
		.of_match_table = rcar_gen3_thermal_dt_ids,
	},
	.probe		= rcar_gen3_thermal_probe,
	.remove		= rcar_gen3_thermal_remove,
};
module_platform_driver(rcar_gen3_thermal_driver);

MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("R-Car Gen3 THS thermal sensor driver");
MODULE_AUTHOR("Wolfram Sang <wsa+renesas@sang-engineering.com>");