regmap.c 59.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
/*
 * Register map access API
 *
 * Copyright 2011 Wolfson Microelectronics plc
 *
 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

13
#include <linux/device.h>
14
#include <linux/slab.h>
15
#include <linux/export.h>
16 17
#include <linux/mutex.h>
#include <linux/err.h>
18
#include <linux/rbtree.h>
19
#include <linux/sched.h>
20

M
Mark Brown 已提交
21 22 23
#define CREATE_TRACE_POINTS
#include <trace/events/regmap.h>

24
#include "internal.h"
25

26 27 28 29 30 31 32 33 34 35 36 37
/*
 * Sometimes for failures during very early init the trace
 * infrastructure isn't available early enough to be used.  For this
 * sort of problem defining LOG_DEVICE will add printks for basic
 * register I/O on a specific device.
 */
#undef LOG_DEVICE

static int _regmap_update_bits(struct regmap *map, unsigned int reg,
			       unsigned int mask, unsigned int val,
			       bool *change);

38 39
static int _regmap_bus_read(void *context, unsigned int reg,
			    unsigned int *val);
40 41 42 43
static int _regmap_bus_formatted_write(void *context, unsigned int reg,
				       unsigned int val);
static int _regmap_bus_raw_write(void *context, unsigned int reg,
				 unsigned int val);
44

45 46 47 48 49 50 51 52 53 54 55 56 57 58
bool regmap_reg_in_ranges(unsigned int reg,
			  const struct regmap_range *ranges,
			  unsigned int nranges)
{
	const struct regmap_range *r;
	int i;

	for (i = 0, r = ranges; i < nranges; i++, r++)
		if (regmap_reg_in_range(reg, r))
			return true;
	return false;
}
EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);

59 60
bool regmap_check_range_table(struct regmap *map, unsigned int reg,
			      const struct regmap_access_table *table)
61 62 63 64 65 66 67 68 69 70 71 72
{
	/* Check "no ranges" first */
	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
		return false;

	/* In case zero "yes ranges" are supplied, any reg is OK */
	if (!table->n_yes_ranges)
		return true;

	return regmap_reg_in_ranges(reg, table->yes_ranges,
				    table->n_yes_ranges);
}
73
EXPORT_SYMBOL_GPL(regmap_check_range_table);
74

75 76 77 78 79 80 81 82
bool regmap_writeable(struct regmap *map, unsigned int reg)
{
	if (map->max_register && reg > map->max_register)
		return false;

	if (map->writeable_reg)
		return map->writeable_reg(map->dev, reg);

83
	if (map->wr_table)
84
		return regmap_check_range_table(map, reg, map->wr_table);
85

86 87 88 89 90 91 92 93
	return true;
}

bool regmap_readable(struct regmap *map, unsigned int reg)
{
	if (map->max_register && reg > map->max_register)
		return false;

94 95 96
	if (map->format.format_write)
		return false;

97 98 99
	if (map->readable_reg)
		return map->readable_reg(map->dev, reg);

100
	if (map->rd_table)
101
		return regmap_check_range_table(map, reg, map->rd_table);
102

103 104 105 106 107
	return true;
}

bool regmap_volatile(struct regmap *map, unsigned int reg)
{
108
	if (!regmap_readable(map, reg))
109 110 111 112 113
		return false;

	if (map->volatile_reg)
		return map->volatile_reg(map->dev, reg);

114
	if (map->volatile_table)
115
		return regmap_check_range_table(map, reg, map->volatile_table);
116

117 118 119 120
	if (map->cache_ops)
		return false;
	else
		return true;
121 122 123 124
}

bool regmap_precious(struct regmap *map, unsigned int reg)
{
125
	if (!regmap_readable(map, reg))
126 127 128 129 130
		return false;

	if (map->precious_reg)
		return map->precious_reg(map->dev, reg);

131
	if (map->precious_table)
132
		return regmap_check_range_table(map, reg, map->precious_table);
133

134 135 136
	return false;
}

137
static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
P
Paul Bolle 已提交
138
	size_t num)
139 140 141 142 143 144 145 146 147 148
{
	unsigned int i;

	for (i = 0; i < num; i++)
		if (!regmap_volatile(map, reg + i))
			return false;

	return true;
}

149 150 151 152 153 154 155 156
static void regmap_format_2_6_write(struct regmap *map,
				     unsigned int reg, unsigned int val)
{
	u8 *out = map->work_buf;

	*out = (reg << 6) | val;
}

157 158 159 160 161 162 163 164 165 166 167 168 169 170
static void regmap_format_4_12_write(struct regmap *map,
				     unsigned int reg, unsigned int val)
{
	__be16 *out = map->work_buf;
	*out = cpu_to_be16((reg << 12) | val);
}

static void regmap_format_7_9_write(struct regmap *map,
				    unsigned int reg, unsigned int val)
{
	__be16 *out = map->work_buf;
	*out = cpu_to_be16((reg << 9) | val);
}

171 172 173 174 175 176 177 178 179 180
static void regmap_format_10_14_write(struct regmap *map,
				    unsigned int reg, unsigned int val)
{
	u8 *out = map->work_buf;

	out[2] = val;
	out[1] = (val >> 8) | (reg << 6);
	out[0] = reg >> 2;
}

181
static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
182 183 184
{
	u8 *b = buf;

185
	b[0] = val << shift;
186 187
}

188
static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
189 190 191
{
	__be16 *b = buf;

192
	b[0] = cpu_to_be16(val << shift);
193 194
}

195 196 197 198 199 200
static void regmap_format_16_native(void *buf, unsigned int val,
				    unsigned int shift)
{
	*(u16 *)buf = val << shift;
}

201
static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
202 203 204
{
	u8 *b = buf;

205 206
	val <<= shift;

207 208 209 210 211
	b[0] = val >> 16;
	b[1] = val >> 8;
	b[2] = val;
}

212
static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
213 214 215
{
	__be32 *b = buf;

216
	b[0] = cpu_to_be32(val << shift);
217 218
}

219 220 221 222 223 224
static void regmap_format_32_native(void *buf, unsigned int val,
				    unsigned int shift)
{
	*(u32 *)buf = val << shift;
}

225
static void regmap_parse_inplace_noop(void *buf)
226
{
227 228 229 230 231
}

static unsigned int regmap_parse_8(const void *buf)
{
	const u8 *b = buf;
232 233 234 235

	return b[0];
}

236 237 238 239 240 241 242 243
static unsigned int regmap_parse_16_be(const void *buf)
{
	const __be16 *b = buf;

	return be16_to_cpu(b[0]);
}

static void regmap_parse_16_be_inplace(void *buf)
244 245 246 247 248 249
{
	__be16 *b = buf;

	b[0] = be16_to_cpu(b[0]);
}

250
static unsigned int regmap_parse_16_native(const void *buf)
251 252 253 254
{
	return *(u16 *)buf;
}

255
static unsigned int regmap_parse_24(const void *buf)
256
{
257
	const u8 *b = buf;
258 259 260 261 262 263 264
	unsigned int ret = b[2];
	ret |= ((unsigned int)b[1]) << 8;
	ret |= ((unsigned int)b[0]) << 16;

	return ret;
}

265 266 267 268 269 270 271 272
static unsigned int regmap_parse_32_be(const void *buf)
{
	const __be32 *b = buf;

	return be32_to_cpu(b[0]);
}

static void regmap_parse_32_be_inplace(void *buf)
273 274 275 276 277 278
{
	__be32 *b = buf;

	b[0] = be32_to_cpu(b[0]);
}

279
static unsigned int regmap_parse_32_native(const void *buf)
280 281 282 283
{
	return *(u32 *)buf;
}

284
static void regmap_lock_mutex(void *__map)
285
{
286
	struct regmap *map = __map;
287 288 289
	mutex_lock(&map->mutex);
}

290
static void regmap_unlock_mutex(void *__map)
291
{
292
	struct regmap *map = __map;
293 294 295
	mutex_unlock(&map->mutex);
}

296
static void regmap_lock_spinlock(void *__map)
297
__acquires(&map->spinlock)
298
{
299
	struct regmap *map = __map;
300 301 302 303
	unsigned long flags;

	spin_lock_irqsave(&map->spinlock, flags);
	map->spinlock_flags = flags;
304 305
}

306
static void regmap_unlock_spinlock(void *__map)
307
__releases(&map->spinlock)
308
{
309
	struct regmap *map = __map;
310
	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
311 312
}

M
Mark Brown 已提交
313 314 315 316 317 318 319 320 321
static void dev_get_regmap_release(struct device *dev, void *res)
{
	/*
	 * We don't actually have anything to do here; the goal here
	 * is not to manage the regmap but to provide a simple way to
	 * get the regmap back given a struct device.
	 */
}

322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
static bool _regmap_range_add(struct regmap *map,
			      struct regmap_range_node *data)
{
	struct rb_root *root = &map->range_tree;
	struct rb_node **new = &(root->rb_node), *parent = NULL;

	while (*new) {
		struct regmap_range_node *this =
			container_of(*new, struct regmap_range_node, node);

		parent = *new;
		if (data->range_max < this->range_min)
			new = &((*new)->rb_left);
		else if (data->range_min > this->range_max)
			new = &((*new)->rb_right);
		else
			return false;
	}

	rb_link_node(&data->node, parent, new);
	rb_insert_color(&data->node, root);

	return true;
}

static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
						      unsigned int reg)
{
	struct rb_node *node = map->range_tree.rb_node;

	while (node) {
		struct regmap_range_node *this =
			container_of(node, struct regmap_range_node, node);

		if (reg < this->range_min)
			node = node->rb_left;
		else if (reg > this->range_max)
			node = node->rb_right;
		else
			return this;
	}

	return NULL;
}

static void regmap_range_exit(struct regmap *map)
{
	struct rb_node *next;
	struct regmap_range_node *range_node;

	next = rb_first(&map->range_tree);
	while (next) {
		range_node = rb_entry(next, struct regmap_range_node, node);
		next = rb_next(&range_node->node);
		rb_erase(&range_node->node, &map->range_tree);
		kfree(range_node);
	}

	kfree(map->selector_work_buf);
}

383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
int regmap_attach_dev(struct device *dev, struct regmap *map,
		      const struct regmap_config *config)
{
	struct regmap **m;

	map->dev = dev;

	regmap_debugfs_init(map, config->name);

	/* Add a devres resource for dev_get_regmap() */
	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
	if (!m) {
		regmap_debugfs_exit(map);
		return -ENOMEM;
	}
	*m = map;
	devres_add(dev, m);

	return 0;
}
EXPORT_SYMBOL_GPL(regmap_attach_dev);

405 406 407 408 409
/**
 * regmap_init(): Initialise register map
 *
 * @dev: Device that will be interacted with
 * @bus: Bus-specific callbacks to use with device
410
 * @bus_context: Data passed to bus-specific callbacks
411 412 413 414 415 416 417 418
 * @config: Configuration for register map
 *
 * The return value will be an ERR_PTR() on error or a valid pointer to
 * a struct regmap.  This function should generally not be called
 * directly, it should be called by bus-specific init functions.
 */
struct regmap *regmap_init(struct device *dev,
			   const struct regmap_bus *bus,
419
			   void *bus_context,
420 421
			   const struct regmap_config *config)
{
422
	struct regmap *map;
423
	int ret = -EINVAL;
424
	enum regmap_endian reg_endian, val_endian;
425
	int i, j;
426

427
	if (!config)
428
		goto err;
429 430 431 432 433 434 435

	map = kzalloc(sizeof(*map), GFP_KERNEL);
	if (map == NULL) {
		ret = -ENOMEM;
		goto err;
	}

436 437 438 439
	if (config->lock && config->unlock) {
		map->lock = config->lock;
		map->unlock = config->unlock;
		map->lock_arg = config->lock_arg;
440
	} else {
441 442
		if ((bus && bus->fast_io) ||
		    config->fast_io) {
443 444 445 446 447 448 449 450 451
			spin_lock_init(&map->spinlock);
			map->lock = regmap_lock_spinlock;
			map->unlock = regmap_unlock_spinlock;
		} else {
			mutex_init(&map->mutex);
			map->lock = regmap_lock_mutex;
			map->unlock = regmap_unlock_mutex;
		}
		map->lock_arg = map;
452
	}
453
	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
454
	map->format.pad_bytes = config->pad_bits / 8;
455
	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
456 457
	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
			config->val_bits + config->pad_bits, 8);
458
	map->reg_shift = config->pad_bits % 8;
459 460 461 462
	if (config->reg_stride)
		map->reg_stride = config->reg_stride;
	else
		map->reg_stride = 1;
463
	map->use_single_rw = config->use_single_rw;
464
	map->can_multi_write = config->can_multi_write;
465 466
	map->dev = dev;
	map->bus = bus;
467
	map->bus_context = bus_context;
468
	map->max_register = config->max_register;
469 470 471 472
	map->wr_table = config->wr_table;
	map->rd_table = config->rd_table;
	map->volatile_table = config->volatile_table;
	map->precious_table = config->precious_table;
473 474 475
	map->writeable_reg = config->writeable_reg;
	map->readable_reg = config->readable_reg;
	map->volatile_reg = config->volatile_reg;
476
	map->precious_reg = config->precious_reg;
477
	map->cache_type = config->cache_type;
M
Mark Brown 已提交
478
	map->name = config->name;
479

480 481
	spin_lock_init(&map->async_lock);
	INIT_LIST_HEAD(&map->async_list);
M
Mark Brown 已提交
482
	INIT_LIST_HEAD(&map->async_free);
483 484
	init_waitqueue_head(&map->async_waitq);

485 486 487
	if (config->read_flag_mask || config->write_flag_mask) {
		map->read_flag_mask = config->read_flag_mask;
		map->write_flag_mask = config->write_flag_mask;
488
	} else if (bus) {
489 490 491
		map->read_flag_mask = bus->read_flag_mask;
	}

492 493 494 495 496 497 498 499 500
	if (!bus) {
		map->reg_read  = config->reg_read;
		map->reg_write = config->reg_write;

		map->defer_caching = false;
		goto skip_format_initialization;
	} else {
		map->reg_read  = _regmap_bus_read;
	}
501

502 503 504 505 506 507 508 509 510 511 512 513
	reg_endian = config->reg_format_endian;
	if (reg_endian == REGMAP_ENDIAN_DEFAULT)
		reg_endian = bus->reg_format_endian_default;
	if (reg_endian == REGMAP_ENDIAN_DEFAULT)
		reg_endian = REGMAP_ENDIAN_BIG;

	val_endian = config->val_format_endian;
	if (val_endian == REGMAP_ENDIAN_DEFAULT)
		val_endian = bus->val_format_endian_default;
	if (val_endian == REGMAP_ENDIAN_DEFAULT)
		val_endian = REGMAP_ENDIAN_BIG;

514
	switch (config->reg_bits + map->reg_shift) {
515 516 517 518 519 520 521 522 523 524
	case 2:
		switch (config->val_bits) {
		case 6:
			map->format.format_write = regmap_format_2_6_write;
			break;
		default:
			goto err_map;
		}
		break;

525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
	case 4:
		switch (config->val_bits) {
		case 12:
			map->format.format_write = regmap_format_4_12_write;
			break;
		default:
			goto err_map;
		}
		break;

	case 7:
		switch (config->val_bits) {
		case 9:
			map->format.format_write = regmap_format_7_9_write;
			break;
		default:
			goto err_map;
		}
		break;

545 546 547 548 549 550 551 552 553 554
	case 10:
		switch (config->val_bits) {
		case 14:
			map->format.format_write = regmap_format_10_14_write;
			break;
		default:
			goto err_map;
		}
		break;

555 556 557 558 559
	case 8:
		map->format.format_reg = regmap_format_8;
		break;

	case 16:
560 561 562 563 564 565 566 567 568 569
		switch (reg_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_reg = regmap_format_16_be;
			break;
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_reg = regmap_format_16_native;
			break;
		default:
			goto err_map;
		}
570 571
		break;

572 573 574 575 576 577
	case 24:
		if (reg_endian != REGMAP_ENDIAN_BIG)
			goto err_map;
		map->format.format_reg = regmap_format_24;
		break;

578
	case 32:
579 580 581 582 583 584 585 586 587 588
		switch (reg_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_reg = regmap_format_32_be;
			break;
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_reg = regmap_format_32_native;
			break;
		default:
			goto err_map;
		}
589 590
		break;

591 592 593 594
	default:
		goto err_map;
	}

595 596 597
	if (val_endian == REGMAP_ENDIAN_NATIVE)
		map->format.parse_inplace = regmap_parse_inplace_noop;

598 599 600 601
	switch (config->val_bits) {
	case 8:
		map->format.format_val = regmap_format_8;
		map->format.parse_val = regmap_parse_8;
602
		map->format.parse_inplace = regmap_parse_inplace_noop;
603 604
		break;
	case 16:
605 606 607 608
		switch (val_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_val = regmap_format_16_be;
			map->format.parse_val = regmap_parse_16_be;
609
			map->format.parse_inplace = regmap_parse_16_be_inplace;
610 611 612 613 614 615 616 617
			break;
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_val = regmap_format_16_native;
			map->format.parse_val = regmap_parse_16_native;
			break;
		default:
			goto err_map;
		}
618
		break;
619
	case 24:
620 621
		if (val_endian != REGMAP_ENDIAN_BIG)
			goto err_map;
622 623 624
		map->format.format_val = regmap_format_24;
		map->format.parse_val = regmap_parse_24;
		break;
625
	case 32:
626 627 628 629
		switch (val_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_val = regmap_format_32_be;
			map->format.parse_val = regmap_parse_32_be;
630
			map->format.parse_inplace = regmap_parse_32_be_inplace;
631 632 633 634 635 636 637 638
			break;
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_val = regmap_format_32_native;
			map->format.parse_val = regmap_parse_32_native;
			break;
		default:
			goto err_map;
		}
639
		break;
640 641
	}

642 643 644 645
	if (map->format.format_write) {
		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
		    (val_endian != REGMAP_ENDIAN_BIG))
			goto err_map;
646
		map->use_single_rw = true;
647
	}
648

649 650 651 652
	if (!map->format.format_write &&
	    !(map->format.format_reg && map->format.format_val))
		goto err_map;

653
	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
654 655
	if (map->work_buf == NULL) {
		ret = -ENOMEM;
656
		goto err_map;
657 658
	}

659 660
	if (map->format.format_write) {
		map->defer_caching = false;
661
		map->reg_write = _regmap_bus_formatted_write;
662 663
	} else if (map->format.format_val) {
		map->defer_caching = true;
664
		map->reg_write = _regmap_bus_raw_write;
665 666 667
	}

skip_format_initialization:
668

669
	map->range_tree = RB_ROOT;
M
Mark Brown 已提交
670
	for (i = 0; i < config->num_ranges; i++) {
671 672 673 674
		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
		struct regmap_range_node *new;

		/* Sanity check */
675 676 677
		if (range_cfg->range_max < range_cfg->range_min) {
			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
				range_cfg->range_max, range_cfg->range_min);
678
			goto err_range;
679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
		}

		if (range_cfg->range_max > map->max_register) {
			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
				range_cfg->range_max, map->max_register);
			goto err_range;
		}

		if (range_cfg->selector_reg > map->max_register) {
			dev_err(map->dev,
				"Invalid range %d: selector out of map\n", i);
			goto err_range;
		}

		if (range_cfg->window_len == 0) {
			dev_err(map->dev, "Invalid range %d: window_len 0\n",
				i);
			goto err_range;
		}
698 699 700

		/* Make sure, that this register range has no selector
		   or data window within its boundary */
M
Mark Brown 已提交
701
		for (j = 0; j < config->num_ranges; j++) {
702 703 704 705 706
			unsigned sel_reg = config->ranges[j].selector_reg;
			unsigned win_min = config->ranges[j].window_start;
			unsigned win_max = win_min +
					   config->ranges[j].window_len - 1;

707 708 709 710
			/* Allow data window inside its own virtual range */
			if (j == i)
				continue;

711 712
			if (range_cfg->range_min <= sel_reg &&
			    sel_reg <= range_cfg->range_max) {
713 714 715
				dev_err(map->dev,
					"Range %d: selector for %d in window\n",
					i, j);
716 717 718 719 720
				goto err_range;
			}

			if (!(win_max < range_cfg->range_min ||
			      win_min > range_cfg->range_max)) {
721 722 723
				dev_err(map->dev,
					"Range %d: window for %d in window\n",
					i, j);
724 725 726 727 728 729 730 731 732 733
				goto err_range;
			}
		}

		new = kzalloc(sizeof(*new), GFP_KERNEL);
		if (new == NULL) {
			ret = -ENOMEM;
			goto err_range;
		}

734
		new->map = map;
M
Mark Brown 已提交
735
		new->name = range_cfg->name;
736 737 738 739 740 741 742 743
		new->range_min = range_cfg->range_min;
		new->range_max = range_cfg->range_max;
		new->selector_reg = range_cfg->selector_reg;
		new->selector_mask = range_cfg->selector_mask;
		new->selector_shift = range_cfg->selector_shift;
		new->window_start = range_cfg->window_start;
		new->window_len = range_cfg->window_len;

N
Nenghua Cao 已提交
744
		if (!_regmap_range_add(map, new)) {
745
			dev_err(map->dev, "Failed to add range %d\n", i);
746 747 748 749 750 751 752 753 754 755 756 757 758
			kfree(new);
			goto err_range;
		}

		if (map->selector_work_buf == NULL) {
			map->selector_work_buf =
				kzalloc(map->format.buf_size, GFP_KERNEL);
			if (map->selector_work_buf == NULL) {
				ret = -ENOMEM;
				goto err_range;
			}
		}
	}
759

760
	ret = regcache_init(map, config);
761
	if (ret != 0)
762 763
		goto err_range;

764
	if (dev) {
765 766 767
		ret = regmap_attach_dev(dev, map, config);
		if (ret != 0)
			goto err_regcache;
768
	}
M
Mark Brown 已提交
769

770 771
	return map;

772
err_regcache:
M
Mark Brown 已提交
773
	regcache_exit(map);
774 775
err_range:
	regmap_range_exit(map);
776
	kfree(map->work_buf);
777 778 779 780 781 782 783
err_map:
	kfree(map);
err:
	return ERR_PTR(ret);
}
EXPORT_SYMBOL_GPL(regmap_init);

784 785 786 787 788 789 790 791 792 793
static void devm_regmap_release(struct device *dev, void *res)
{
	regmap_exit(*(struct regmap **)res);
}

/**
 * devm_regmap_init(): Initialise managed register map
 *
 * @dev: Device that will be interacted with
 * @bus: Bus-specific callbacks to use with device
794
 * @bus_context: Data passed to bus-specific callbacks
795 796 797 798 799 800 801 802 803
 * @config: Configuration for register map
 *
 * The return value will be an ERR_PTR() on error or a valid pointer
 * to a struct regmap.  This function should generally not be called
 * directly, it should be called by bus-specific init functions.  The
 * map will be automatically freed by the device management code.
 */
struct regmap *devm_regmap_init(struct device *dev,
				const struct regmap_bus *bus,
804
				void *bus_context,
805 806 807 808 809 810 811 812
				const struct regmap_config *config)
{
	struct regmap **ptr, *regmap;

	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
	if (!ptr)
		return ERR_PTR(-ENOMEM);

813
	regmap = regmap_init(dev, bus, bus_context, config);
814 815 816 817 818 819 820 821 822 823 824
	if (!IS_ERR(regmap)) {
		*ptr = regmap;
		devres_add(dev, ptr);
	} else {
		devres_free(ptr);
	}

	return regmap;
}
EXPORT_SYMBOL_GPL(devm_regmap_init);

825 826 827 828 829 830 831 832
static void regmap_field_init(struct regmap_field *rm_field,
	struct regmap *regmap, struct reg_field reg_field)
{
	int field_bits = reg_field.msb - reg_field.lsb + 1;
	rm_field->regmap = regmap;
	rm_field->reg = reg_field.reg;
	rm_field->shift = reg_field.lsb;
	rm_field->mask = ((BIT(field_bits) - 1) << reg_field.lsb);
833 834
	rm_field->id_size = reg_field.id_size;
	rm_field->id_offset = reg_field.id_offset;
835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
}

/**
 * devm_regmap_field_alloc(): Allocate and initialise a register field
 * in a register map.
 *
 * @dev: Device that will be interacted with
 * @regmap: regmap bank in which this register field is located.
 * @reg_field: Register field with in the bank.
 *
 * The return value will be an ERR_PTR() on error or a valid pointer
 * to a struct regmap_field. The regmap_field will be automatically freed
 * by the device management code.
 */
struct regmap_field *devm_regmap_field_alloc(struct device *dev,
		struct regmap *regmap, struct reg_field reg_field)
{
	struct regmap_field *rm_field = devm_kzalloc(dev,
					sizeof(*rm_field), GFP_KERNEL);
	if (!rm_field)
		return ERR_PTR(-ENOMEM);

	regmap_field_init(rm_field, regmap, reg_field);

	return rm_field;

}
EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);

/**
 * devm_regmap_field_free(): Free register field allocated using
 * devm_regmap_field_alloc. Usally drivers need not call this function,
 * as the memory allocated via devm will be freed as per device-driver
 * life-cyle.
 *
 * @dev: Device that will be interacted with
 * @field: regmap field which should be freed.
 */
void devm_regmap_field_free(struct device *dev,
	struct regmap_field *field)
{
	devm_kfree(dev, field);
}
EXPORT_SYMBOL_GPL(devm_regmap_field_free);

/**
 * regmap_field_alloc(): Allocate and initialise a register field
 * in a register map.
 *
 * @regmap: regmap bank in which this register field is located.
 * @reg_field: Register field with in the bank.
 *
 * The return value will be an ERR_PTR() on error or a valid pointer
 * to a struct regmap_field. The regmap_field should be freed by the
 * user once its finished working with it using regmap_field_free().
 */
struct regmap_field *regmap_field_alloc(struct regmap *regmap,
		struct reg_field reg_field)
{
	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);

	if (!rm_field)
		return ERR_PTR(-ENOMEM);

	regmap_field_init(rm_field, regmap, reg_field);

	return rm_field;
}
EXPORT_SYMBOL_GPL(regmap_field_alloc);

/**
 * regmap_field_free(): Free register field allocated using regmap_field_alloc
 *
 * @field: regmap field which should be freed.
 */
void regmap_field_free(struct regmap_field *field)
{
	kfree(field);
}
EXPORT_SYMBOL_GPL(regmap_field_free);

916 917 918 919 920 921 922 923 924 925
/**
 * regmap_reinit_cache(): Reinitialise the current register cache
 *
 * @map: Register map to operate on.
 * @config: New configuration.  Only the cache data will be used.
 *
 * Discard any existing register cache for the map and initialize a
 * new cache.  This can be used to restore the cache to defaults or to
 * update the cache configuration to reflect runtime discovery of the
 * hardware.
926 927 928
 *
 * No explicit locking is done here, the user needs to ensure that
 * this function will not race with other calls to regmap.
929 930 931 932
 */
int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
{
	regcache_exit(map);
933
	regmap_debugfs_exit(map);
934 935 936 937 938 939 940 941

	map->max_register = config->max_register;
	map->writeable_reg = config->writeable_reg;
	map->readable_reg = config->readable_reg;
	map->volatile_reg = config->volatile_reg;
	map->precious_reg = config->precious_reg;
	map->cache_type = config->cache_type;

942
	regmap_debugfs_init(map, config->name);
943

944 945 946
	map->cache_bypass = false;
	map->cache_only = false;

947
	return regcache_init(map, config);
948
}
949
EXPORT_SYMBOL_GPL(regmap_reinit_cache);
950

951 952 953 954 955
/**
 * regmap_exit(): Free a previously allocated register map
 */
void regmap_exit(struct regmap *map)
{
M
Mark Brown 已提交
956 957
	struct regmap_async *async;

958
	regcache_exit(map);
959
	regmap_debugfs_exit(map);
960
	regmap_range_exit(map);
961
	if (map->bus && map->bus->free_context)
962
		map->bus->free_context(map->bus_context);
963
	kfree(map->work_buf);
M
Mark Brown 已提交
964 965 966 967 968 969 970 971
	while (!list_empty(&map->async_free)) {
		async = list_first_entry_or_null(&map->async_free,
						 struct regmap_async,
						 list);
		list_del(&async->list);
		kfree(async->work_buf);
		kfree(async);
	}
972 973 974 975
	kfree(map);
}
EXPORT_SYMBOL_GPL(regmap_exit);

M
Mark Brown 已提交
976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
static int dev_get_regmap_match(struct device *dev, void *res, void *data)
{
	struct regmap **r = res;
	if (!r || !*r) {
		WARN_ON(!r || !*r);
		return 0;
	}

	/* If the user didn't specify a name match any */
	if (data)
		return (*r)->name == data;
	else
		return 1;
}

/**
 * dev_get_regmap(): Obtain the regmap (if any) for a device
 *
 * @dev: Device to retrieve the map for
 * @name: Optional name for the register map, usually NULL.
 *
 * Returns the regmap for the device if one is present, or NULL.  If
 * name is specified then it must match the name specified when
 * registering the device, if it is NULL then the first regmap found
 * will be used.  Devices with multiple register maps are very rare,
 * generic code should normally not need to specify a name.
 */
struct regmap *dev_get_regmap(struct device *dev, const char *name)
{
	struct regmap **r = devres_find(dev, dev_get_regmap_release,
					dev_get_regmap_match, (void *)name);

	if (!r)
		return NULL;
	return *r;
}
EXPORT_SYMBOL_GPL(dev_get_regmap);

1014
static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1015
			       struct regmap_range_node *range,
1016 1017 1018 1019 1020 1021 1022 1023
			       unsigned int val_num)
{
	void *orig_work_buf;
	unsigned int win_offset;
	unsigned int win_page;
	bool page_chg;
	int ret;

1024 1025
	win_offset = (*reg - range->range_min) % range->window_len;
	win_page = (*reg - range->range_min) / range->window_len;
1026

1027 1028 1029 1030
	if (val_num > 1) {
		/* Bulk write shouldn't cross range boundary */
		if (*reg + val_num - 1 > range->range_max)
			return -EINVAL;
1031

1032 1033 1034 1035
		/* ... or single page boundary */
		if (val_num > range->window_len - win_offset)
			return -EINVAL;
	}
1036

1037 1038 1039 1040 1041 1042 1043 1044
	/* It is possible to have selector register inside data window.
	   In that case, selector register is located on every page and
	   it needs no page switching, when accessed alone. */
	if (val_num > 1 ||
	    range->window_start + win_offset != range->selector_reg) {
		/* Use separate work_buf during page switching */
		orig_work_buf = map->work_buf;
		map->work_buf = map->selector_work_buf;
1045

1046 1047 1048 1049
		ret = _regmap_update_bits(map, range->selector_reg,
					  range->selector_mask,
					  win_page << range->selector_shift,
					  &page_chg);
1050

1051
		map->work_buf = orig_work_buf;
1052

1053
		if (ret != 0)
1054
			return ret;
1055 1056
	}

1057 1058
	*reg = range->window_start + win_offset;

1059 1060 1061
	return 0;
}

1062
int _regmap_raw_write(struct regmap *map, unsigned int reg,
1063
		      const void *val, size_t val_len)
1064
{
1065
	struct regmap_range_node *range;
1066
	unsigned long flags;
1067
	u8 *u8 = map->work_buf;
1068 1069
	void *work_val = map->work_buf + map->format.reg_bytes +
		map->format.pad_bytes;
1070 1071 1072
	void *buf;
	int ret = -ENOTSUPP;
	size_t len;
1073 1074
	int i;

1075
	WARN_ON(!map->bus);
1076

1077 1078 1079
	/* Check for unwritable registers before we start */
	if (map->writeable_reg)
		for (i = 0; i < val_len / map->format.val_bytes; i++)
1080 1081
			if (!map->writeable_reg(map->dev,
						reg + (i * map->reg_stride)))
1082
				return -EINVAL;
1083

1084 1085 1086 1087
	if (!map->cache_bypass && map->format.parse_val) {
		unsigned int ival;
		int val_bytes = map->format.val_bytes;
		for (i = 0; i < val_len / val_bytes; i++) {
1088
			ival = map->format.parse_val(val + (i * val_bytes));
1089 1090
			ret = regcache_write(map, reg + (i * map->reg_stride),
					     ival);
1091 1092
			if (ret) {
				dev_err(map->dev,
1093
					"Error in caching of register: %x ret: %d\n",
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
					reg + i, ret);
				return ret;
			}
		}
		if (map->cache_only) {
			map->cache_dirty = true;
			return 0;
		}
	}

1104 1105
	range = _regmap_range_lookup(map, reg);
	if (range) {
1106 1107 1108 1109 1110 1111
		int val_num = val_len / map->format.val_bytes;
		int win_offset = (reg - range->range_min) % range->window_len;
		int win_residue = range->window_len - win_offset;

		/* If the write goes beyond the end of the window split it */
		while (val_num > win_residue) {
1112
			dev_dbg(map->dev, "Writing window %d/%zu\n",
1113 1114
				win_residue, val_len / map->format.val_bytes);
			ret = _regmap_raw_write(map, reg, val, win_residue *
1115
						map->format.val_bytes);
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
			if (ret != 0)
				return ret;

			reg += win_residue;
			val_num -= win_residue;
			val += win_residue * map->format.val_bytes;
			val_len -= win_residue * map->format.val_bytes;

			win_offset = (reg - range->range_min) %
				range->window_len;
			win_residue = range->window_len - win_offset;
		}

		ret = _regmap_select_page(map, &reg, range, val_num);
1130
		if (ret != 0)
1131 1132
			return ret;
	}
1133

1134
	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1135

1136 1137
	u8[0] |= map->write_flag_mask;

1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
	/*
	 * Essentially all I/O mechanisms will be faster with a single
	 * buffer to write.  Since register syncs often generate raw
	 * writes of single registers optimise that case.
	 */
	if (val != work_val && val_len == map->format.val_bytes) {
		memcpy(work_val, val, map->format.val_bytes);
		val = work_val;
	}

1148
	if (map->async && map->bus->async_write) {
M
Mark Brown 已提交
1149
		struct regmap_async *async;
1150

1151 1152
		trace_regmap_async_write_start(map->dev, reg, val_len);

M
Mark Brown 已提交
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
		spin_lock_irqsave(&map->async_lock, flags);
		async = list_first_entry_or_null(&map->async_free,
						 struct regmap_async,
						 list);
		if (async)
			list_del(&async->list);
		spin_unlock_irqrestore(&map->async_lock, flags);

		if (!async) {
			async = map->bus->async_alloc();
			if (!async)
				return -ENOMEM;

			async->work_buf = kzalloc(map->format.buf_size,
						  GFP_KERNEL | GFP_DMA);
			if (!async->work_buf) {
				kfree(async);
				return -ENOMEM;
			}
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
		}

		async->map = map;

		/* If the caller supplied the value we can use it safely. */
		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
		       map->format.reg_bytes + map->format.val_bytes);

		spin_lock_irqsave(&map->async_lock, flags);
		list_add_tail(&async->list, &map->async_list);
		spin_unlock_irqrestore(&map->async_lock, flags);

1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
		if (val != work_val)
			ret = map->bus->async_write(map->bus_context,
						    async->work_buf,
						    map->format.reg_bytes +
						    map->format.pad_bytes,
						    val, val_len, async);
		else
			ret = map->bus->async_write(map->bus_context,
						    async->work_buf,
						    map->format.reg_bytes +
						    map->format.pad_bytes +
						    val_len, NULL, 0, async);
1196 1197 1198 1199 1200 1201

		if (ret != 0) {
			dev_err(map->dev, "Failed to schedule write: %d\n",
				ret);

			spin_lock_irqsave(&map->async_lock, flags);
M
Mark Brown 已提交
1202
			list_move(&async->list, &map->async_free);
1203 1204
			spin_unlock_irqrestore(&map->async_lock, flags);
		}
M
Mark Brown 已提交
1205 1206

		return ret;
1207 1208
	}

M
Mark Brown 已提交
1209 1210 1211
	trace_regmap_hw_write_start(map->dev, reg,
				    val_len / map->format.val_bytes);

1212 1213 1214 1215
	/* If we're doing a single register write we can probably just
	 * send the work_buf directly, otherwise try to do a gather
	 * write.
	 */
1216
	if (val == work_val)
1217
		ret = map->bus->write(map->bus_context, map->work_buf,
1218 1219 1220
				      map->format.reg_bytes +
				      map->format.pad_bytes +
				      val_len);
1221
	else if (map->bus->gather_write)
1222
		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1223 1224
					     map->format.reg_bytes +
					     map->format.pad_bytes,
1225 1226
					     val, val_len);

1227
	/* If that didn't work fall back on linearising by hand. */
1228
	if (ret == -ENOTSUPP) {
1229 1230
		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
		buf = kzalloc(len, GFP_KERNEL);
1231 1232 1233 1234
		if (!buf)
			return -ENOMEM;

		memcpy(buf, map->work_buf, map->format.reg_bytes);
1235 1236
		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
		       val, val_len);
1237
		ret = map->bus->write(map->bus_context, buf, len);
1238 1239 1240 1241

		kfree(buf);
	}

M
Mark Brown 已提交
1242 1243 1244
	trace_regmap_hw_write_done(map->dev, reg,
				   val_len / map->format.val_bytes);

1245 1246 1247
	return ret;
}

1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
/**
 * regmap_can_raw_write - Test if regmap_raw_write() is supported
 *
 * @map: Map to check.
 */
bool regmap_can_raw_write(struct regmap *map)
{
	return map->bus && map->format.format_val && map->format.format_reg;
}
EXPORT_SYMBOL_GPL(regmap_can_raw_write);

1259 1260 1261 1262 1263 1264 1265
static int _regmap_bus_formatted_write(void *context, unsigned int reg,
				       unsigned int val)
{
	int ret;
	struct regmap_range_node *range;
	struct regmap *map = context;

1266
	WARN_ON(!map->bus || !map->format.format_write);
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291

	range = _regmap_range_lookup(map, reg);
	if (range) {
		ret = _regmap_select_page(map, &reg, range, 1);
		if (ret != 0)
			return ret;
	}

	map->format.format_write(map, reg, val);

	trace_regmap_hw_write_start(map->dev, reg, 1);

	ret = map->bus->write(map->bus_context, map->work_buf,
			      map->format.buf_size);

	trace_regmap_hw_write_done(map->dev, reg, 1);

	return ret;
}

static int _regmap_bus_raw_write(void *context, unsigned int reg,
				 unsigned int val)
{
	struct regmap *map = context;

1292
	WARN_ON(!map->bus || !map->format.format_val);
1293 1294 1295 1296 1297 1298 1299

	map->format.format_val(map->work_buf + map->format.reg_bytes
			       + map->format.pad_bytes, val, 0);
	return _regmap_raw_write(map, reg,
				 map->work_buf +
				 map->format.reg_bytes +
				 map->format.pad_bytes,
1300
				 map->format.val_bytes);
1301 1302
}

1303 1304 1305 1306 1307
static inline void *_regmap_map_get_context(struct regmap *map)
{
	return (map->bus) ? map : map->bus_context;
}

1308 1309
int _regmap_write(struct regmap *map, unsigned int reg,
		  unsigned int val)
1310
{
M
Mark Brown 已提交
1311
	int ret;
1312
	void *context = _regmap_map_get_context(map);
1313

1314 1315 1316
	if (!regmap_writeable(map, reg))
		return -EIO;

1317
	if (!map->cache_bypass && !map->defer_caching) {
1318 1319 1320
		ret = regcache_write(map, reg, val);
		if (ret != 0)
			return ret;
1321 1322
		if (map->cache_only) {
			map->cache_dirty = true;
1323
			return 0;
1324
		}
1325 1326
	}

1327 1328 1329 1330 1331
#ifdef LOG_DEVICE
	if (strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
		dev_info(map->dev, "%x <= %x\n", reg, val);
#endif

M
Mark Brown 已提交
1332 1333
	trace_regmap_reg_write(map->dev, reg, val);

1334
	return map->reg_write(context, reg, val);
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
}

/**
 * regmap_write(): Write a value to a single register
 *
 * @map: Register map to write to
 * @reg: Register to write to
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
{
	int ret;

1351 1352 1353
	if (reg % map->reg_stride)
		return -EINVAL;

1354
	map->lock(map->lock_arg);
1355 1356 1357

	ret = _regmap_write(map, reg, val);

1358
	map->unlock(map->lock_arg);
1359 1360 1361 1362 1363

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_write);

1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
/**
 * regmap_write_async(): Write a value to a single register asynchronously
 *
 * @map: Register map to write to
 * @reg: Register to write to
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
{
	int ret;

	if (reg % map->reg_stride)
		return -EINVAL;

	map->lock(map->lock_arg);

	map->async = true;

	ret = _regmap_write(map, reg, val);

	map->async = false;

	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_write_async);

1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
/**
 * regmap_raw_write(): Write raw values to one or more registers
 *
 * @map: Register map to write to
 * @reg: Initial register to write to
 * @val: Block of data to be written, laid out for direct transmission to the
 *       device
 * @val_len: Length of data pointed to by val.
 *
 * This function is intended to be used for things like firmware
 * download where a large block of data needs to be transferred to the
 * device.  No formatting will be done on the data provided.
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_raw_write(struct regmap *map, unsigned int reg,
		     const void *val, size_t val_len)
{
	int ret;

1416
	if (!regmap_can_raw_write(map))
1417
		return -EINVAL;
1418 1419 1420
	if (val_len % map->format.val_bytes)
		return -EINVAL;

1421
	map->lock(map->lock_arg);
1422

1423
	ret = _regmap_raw_write(map, reg, val, val_len);
1424

1425
	map->unlock(map->lock_arg);
1426 1427 1428 1429 1430

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_raw_write);

1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
/**
 * regmap_field_write(): Write a value to a single register field
 *
 * @field: Register field to write to
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_field_write(struct regmap_field *field, unsigned int val)
{
	return regmap_update_bits(field->regmap, field->reg,
				field->mask, val << field->shift);
}
EXPORT_SYMBOL_GPL(regmap_field_write);

1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
/**
 * regmap_field_update_bits():	Perform a read/modify/write cycle
 *                              on the register field
 *
 * @field: Register field to write to
 * @mask: Bitmask to change
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_field_update_bits(struct regmap_field *field, unsigned int mask, unsigned int val)
{
	mask = (mask << field->shift) & field->mask;

	return regmap_update_bits(field->regmap, field->reg,
				  mask, val << field->shift);
}
EXPORT_SYMBOL_GPL(regmap_field_update_bits);

1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
/**
 * regmap_fields_write(): Write a value to a single register field with port ID
 *
 * @field: Register field to write to
 * @id: port ID
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_fields_write(struct regmap_field *field, unsigned int id,
			unsigned int val)
{
	if (id >= field->id_size)
		return -EINVAL;

	return regmap_update_bits(field->regmap,
				  field->reg + (field->id_offset * id),
				  field->mask, val << field->shift);
}
EXPORT_SYMBOL_GPL(regmap_fields_write);

/**
 * regmap_fields_update_bits():	Perform a read/modify/write cycle
 *                              on the register field
 *
 * @field: Register field to write to
 * @id: port ID
 * @mask: Bitmask to change
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_fields_update_bits(struct regmap_field *field,  unsigned int id,
			      unsigned int mask, unsigned int val)
{
	if (id >= field->id_size)
		return -EINVAL;

	mask = (mask << field->shift) & field->mask;

	return regmap_update_bits(field->regmap,
				  field->reg + (field->id_offset * id),
				  mask, val << field->shift);
}
EXPORT_SYMBOL_GPL(regmap_fields_update_bits);

1515 1516 1517 1518 1519 1520 1521 1522 1523
/*
 * regmap_bulk_write(): Write multiple registers to the device
 *
 * @map: Register map to write to
 * @reg: First register to be write from
 * @val: Block of data to be written, in native register size for device
 * @val_count: Number of registers to write
 *
 * This function is intended to be used for writing a large block of
1524
 * data to the device either in single transfer or multiple transfer.
1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
		     size_t val_count)
{
	int ret = 0, i;
	size_t val_bytes = map->format.val_bytes;

1535
	if (map->bus && !map->format.parse_inplace)
1536
		return -EINVAL;
1537 1538
	if (reg % map->reg_stride)
		return -EINVAL;
1539

1540 1541 1542 1543 1544
	/*
	 * Some devices don't support bulk write, for
	 * them we have a series of single write operations.
	 */
	if (!map->bus || map->use_single_rw) {
1545
		map->lock(map->lock_arg);
1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
		for (i = 0; i < val_count; i++) {
			unsigned int ival;

			switch (val_bytes) {
			case 1:
				ival = *(u8 *)(val + (i * val_bytes));
				break;
			case 2:
				ival = *(u16 *)(val + (i * val_bytes));
				break;
			case 4:
				ival = *(u32 *)(val + (i * val_bytes));
				break;
#ifdef CONFIG_64BIT
			case 8:
				ival = *(u64 *)(val + (i * val_bytes));
				break;
#endif
			default:
				ret = -EINVAL;
				goto out;
			}
1568

1569 1570 1571 1572 1573
			ret = _regmap_write(map, reg + (i * map->reg_stride),
					ival);
			if (ret != 0)
				goto out;
		}
1574 1575
out:
		map->unlock(map->lock_arg);
1576
	} else {
1577 1578
		void *wval;

1579 1580 1581
		wval = kmemdup(val, val_count * val_bytes, GFP_KERNEL);
		if (!wval) {
			dev_err(map->dev, "Error in memory allocation\n");
1582
			return -ENOMEM;
1583 1584
		}
		for (i = 0; i < val_count * val_bytes; i += val_bytes)
1585
			map->format.parse_inplace(wval + i);
1586

1587
		map->lock(map->lock_arg);
1588
		ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count);
1589
		map->unlock(map->lock_arg);
1590 1591

		kfree(wval);
1592
	}
1593 1594 1595 1596
	return ret;
}
EXPORT_SYMBOL_GPL(regmap_bulk_write);

1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
/*
 * _regmap_raw_multi_reg_write()
 *
 * the (register,newvalue) pairs in regs have not been formatted, but
 * they are all in the same page and have been changed to being page
 * relative. The page register has been written if that was neccessary.
 */
static int _regmap_raw_multi_reg_write(struct regmap *map,
				       const struct reg_default *regs,
				       size_t num_regs)
{
	int ret;
	void *buf;
	int i;
	u8 *u8;
	size_t val_bytes = map->format.val_bytes;
	size_t reg_bytes = map->format.reg_bytes;
	size_t pad_bytes = map->format.pad_bytes;
	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
	size_t len = pair_size * num_regs;

1618 1619 1620
	if (!len)
		return -EINVAL;

1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
	buf = kzalloc(len, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	/* We have to linearise by hand. */

	u8 = buf;

	for (i = 0; i < num_regs; i++) {
		int reg = regs[i].reg;
		int val = regs[i].def;
		trace_regmap_hw_write_start(map->dev, reg, 1);
		map->format.format_reg(u8, reg, map->reg_shift);
		u8 += reg_bytes + pad_bytes;
		map->format.format_val(u8, val, 0);
		u8 += val_bytes;
	}
	u8 = buf;
	*u8 |= map->write_flag_mask;

	ret = map->bus->write(map->bus_context, buf, len);

	kfree(buf);

	for (i = 0; i < num_regs; i++) {
		int reg = regs[i].reg;
		trace_regmap_hw_write_done(map->dev, reg, 1);
	}
	return ret;
}

static unsigned int _regmap_register_page(struct regmap *map,
					  unsigned int reg,
					  struct regmap_range_node *range)
{
	unsigned int win_page = (reg - range->range_min) / range->window_len;

	return win_page;
}

static int _regmap_range_multi_paged_reg_write(struct regmap *map,
					       struct reg_default *regs,
					       size_t num_regs)
{
	int ret;
	int i, n;
	struct reg_default *base;
1668
	unsigned int this_page = 0;
1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
	/*
	 * the set of registers are not neccessarily in order, but
	 * since the order of write must be preserved this algorithm
	 * chops the set each time the page changes
	 */
	base = regs;
	for (i = 0, n = 0; i < num_regs; i++, n++) {
		unsigned int reg = regs[i].reg;
		struct regmap_range_node *range;

		range = _regmap_range_lookup(map, reg);
		if (range) {
			unsigned int win_page = _regmap_register_page(map, reg,
								      range);

			if (i == 0)
				this_page = win_page;
			if (win_page != this_page) {
				this_page = win_page;
				ret = _regmap_raw_multi_reg_write(map, base, n);
				if (ret != 0)
					return ret;
				base += n;
				n = 0;
			}
			ret = _regmap_select_page(map, &base[n].reg, range, 1);
			if (ret != 0)
				return ret;
		}
	}
	if (n > 0)
		return _regmap_raw_multi_reg_write(map, base, n);
	return 0;
}

1704 1705
static int _regmap_multi_reg_write(struct regmap *map,
				   const struct reg_default *regs,
1706
				   size_t num_regs)
1707
{
1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
	int i;
	int ret;

	if (!map->can_multi_write) {
		for (i = 0; i < num_regs; i++) {
			ret = _regmap_write(map, regs[i].reg, regs[i].def);
			if (ret != 0)
				return ret;
		}
		return 0;
	}

	if (!map->format.parse_inplace)
		return -EINVAL;

	if (map->writeable_reg)
		for (i = 0; i < num_regs; i++) {
			int reg = regs[i].reg;
			if (!map->writeable_reg(map->dev, reg))
				return -EINVAL;
			if (reg % map->reg_stride)
				return -EINVAL;
		}

	if (!map->cache_bypass) {
		for (i = 0; i < num_regs; i++) {
			unsigned int val = regs[i].def;
			unsigned int reg = regs[i].reg;
			ret = regcache_write(map, reg, val);
			if (ret) {
				dev_err(map->dev,
				"Error in caching of register: %x ret: %d\n",
								reg, ret);
				return ret;
			}
		}
		if (map->cache_only) {
			map->cache_dirty = true;
			return 0;
		}
	}

	WARN_ON(!map->bus);
1751 1752

	for (i = 0; i < num_regs; i++) {
1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765
		unsigned int reg = regs[i].reg;
		struct regmap_range_node *range;
		range = _regmap_range_lookup(map, reg);
		if (range) {
			size_t len = sizeof(struct reg_default)*num_regs;
			struct reg_default *base = kmemdup(regs, len,
							   GFP_KERNEL);
			if (!base)
				return -ENOMEM;
			ret = _regmap_range_multi_paged_reg_write(map, base,
								  num_regs);
			kfree(base);

1766 1767 1768
			return ret;
		}
	}
1769
	return _regmap_raw_multi_reg_write(map, regs, num_regs);
1770 1771
}

1772 1773 1774
/*
 * regmap_multi_reg_write(): Write multiple registers to the device
 *
1775 1776
 * where the set of register,value pairs are supplied in any order,
 * possibly not all in a single range.
1777 1778 1779 1780 1781
 *
 * @map: Register map to write to
 * @regs: Array of structures containing register,value to be written
 * @num_regs: Number of registers to write
 *
1782 1783 1784 1785 1786
 * The 'normal' block write mode will send ultimately send data on the
 * target bus as R,V1,V2,V3,..,Vn where successively higer registers are
 * addressed. However, this alternative block multi write mode will send
 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
 * must of course support the mode.
1787
 *
1788 1789
 * A value of zero will be returned on success, a negative errno will be
 * returned in error cases.
1790
 */
1791 1792
int regmap_multi_reg_write(struct regmap *map, const struct reg_default *regs,
			   int num_regs)
1793
{
1794
	int ret;
1795 1796 1797

	map->lock(map->lock_arg);

1798 1799
	ret = _regmap_multi_reg_write(map, regs, num_regs);

1800 1801 1802 1803 1804 1805
	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_multi_reg_write);

1806 1807 1808 1809
/*
 * regmap_multi_reg_write_bypassed(): Write multiple registers to the
 *                                    device but not the cache
 *
1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822
 * where the set of register are supplied in any order
 *
 * @map: Register map to write to
 * @regs: Array of structures containing register,value to be written
 * @num_regs: Number of registers to write
 *
 * This function is intended to be used for writing a large block of data
 * atomically to the device in single transfer for those I2C client devices
 * that implement this alternative block write mode.
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
1823 1824 1825
int regmap_multi_reg_write_bypassed(struct regmap *map,
				    const struct reg_default *regs,
				    int num_regs)
1826
{
1827 1828
	int ret;
	bool bypass;
1829 1830 1831

	map->lock(map->lock_arg);

1832 1833 1834 1835 1836 1837 1838
	bypass = map->cache_bypass;
	map->cache_bypass = true;

	ret = _regmap_multi_reg_write(map, regs, num_regs);

	map->cache_bypass = bypass;

1839 1840 1841 1842
	map->unlock(map->lock_arg);

	return ret;
}
1843
EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
1844

1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878
/**
 * regmap_raw_write_async(): Write raw values to one or more registers
 *                           asynchronously
 *
 * @map: Register map to write to
 * @reg: Initial register to write to
 * @val: Block of data to be written, laid out for direct transmission to the
 *       device.  Must be valid until regmap_async_complete() is called.
 * @val_len: Length of data pointed to by val.
 *
 * This function is intended to be used for things like firmware
 * download where a large block of data needs to be transferred to the
 * device.  No formatting will be done on the data provided.
 *
 * If supported by the underlying bus the write will be scheduled
 * asynchronously, helping maximise I/O speed on higher speed buses
 * like SPI.  regmap_async_complete() can be called to ensure that all
 * asynchrnous writes have been completed.
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_raw_write_async(struct regmap *map, unsigned int reg,
			   const void *val, size_t val_len)
{
	int ret;

	if (val_len % map->format.val_bytes)
		return -EINVAL;
	if (reg % map->reg_stride)
		return -EINVAL;

	map->lock(map->lock_arg);

1879 1880 1881 1882 1883
	map->async = true;

	ret = _regmap_raw_write(map, reg, val, val_len);

	map->async = false;
1884 1885 1886 1887 1888 1889 1890

	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_raw_write_async);

1891 1892 1893
static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
			    unsigned int val_len)
{
1894
	struct regmap_range_node *range;
1895 1896 1897
	u8 *u8 = map->work_buf;
	int ret;

1898
	WARN_ON(!map->bus);
1899

1900 1901 1902 1903
	range = _regmap_range_lookup(map, reg);
	if (range) {
		ret = _regmap_select_page(map, &reg, range,
					  val_len / map->format.val_bytes);
1904
		if (ret != 0)
1905 1906
			return ret;
	}
1907

1908
	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1909 1910

	/*
1911
	 * Some buses or devices flag reads by setting the high bits in the
1912 1913 1914 1915
	 * register addresss; since it's always the high bits for all
	 * current formats we can do this here rather than in
	 * formatting.  This may break if we get interesting formats.
	 */
1916
	u8[0] |= map->read_flag_mask;
1917

M
Mark Brown 已提交
1918 1919 1920
	trace_regmap_hw_read_start(map->dev, reg,
				   val_len / map->format.val_bytes);

1921
	ret = map->bus->read(map->bus_context, map->work_buf,
1922
			     map->format.reg_bytes + map->format.pad_bytes,
M
Mark Brown 已提交
1923
			     val, val_len);
1924

M
Mark Brown 已提交
1925 1926 1927 1928
	trace_regmap_hw_read_done(map->dev, reg,
				  val_len / map->format.val_bytes);

	return ret;
1929 1930
}

1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
static int _regmap_bus_read(void *context, unsigned int reg,
			    unsigned int *val)
{
	int ret;
	struct regmap *map = context;

	if (!map->format.parse_val)
		return -EINVAL;

	ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
	if (ret == 0)
		*val = map->format.parse_val(map->work_buf);

	return ret;
}

1947 1948 1949 1950
static int _regmap_read(struct regmap *map, unsigned int reg,
			unsigned int *val)
{
	int ret;
1951 1952
	void *context = _regmap_map_get_context(map);

1953
	WARN_ON(!map->reg_read);
1954

1955 1956 1957 1958 1959 1960 1961 1962 1963
	if (!map->cache_bypass) {
		ret = regcache_read(map, reg, val);
		if (ret == 0)
			return 0;
	}

	if (map->cache_only)
		return -EBUSY;

1964 1965 1966
	if (!regmap_readable(map, reg))
		return -EIO;

1967
	ret = map->reg_read(context, reg, val);
M
Mark Brown 已提交
1968
	if (ret == 0) {
1969 1970 1971 1972 1973
#ifdef LOG_DEVICE
		if (strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
			dev_info(map->dev, "%x => %x\n", reg, *val);
#endif

M
Mark Brown 已提交
1974
		trace_regmap_reg_read(map->dev, reg, *val);
1975

1976 1977 1978
		if (!map->cache_bypass)
			regcache_write(map, reg, *val);
	}
1979

1980 1981 1982 1983 1984 1985
	return ret;
}

/**
 * regmap_read(): Read a value from a single register
 *
1986
 * @map: Register map to read from
1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
 * @reg: Register to be read from
 * @val: Pointer to store read value
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
{
	int ret;

1997 1998 1999
	if (reg % map->reg_stride)
		return -EINVAL;

2000
	map->lock(map->lock_arg);
2001 2002 2003

	ret = _regmap_read(map, reg, val);

2004
	map->unlock(map->lock_arg);
2005 2006 2007 2008 2009 2010 2011 2012

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_read);

/**
 * regmap_raw_read(): Read raw data from the device
 *
2013
 * @map: Register map to read from
2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
 * @reg: First register to be read from
 * @val: Pointer to store read value
 * @val_len: Size of data to read
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
		    size_t val_len)
{
2024 2025 2026 2027
	size_t val_bytes = map->format.val_bytes;
	size_t val_count = val_len / val_bytes;
	unsigned int v;
	int ret, i;
2028

2029 2030
	if (!map->bus)
		return -EINVAL;
2031 2032
	if (val_len % map->format.val_bytes)
		return -EINVAL;
2033 2034
	if (reg % map->reg_stride)
		return -EINVAL;
2035

2036
	map->lock(map->lock_arg);
2037

2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
	    map->cache_type == REGCACHE_NONE) {
		/* Physical block read if there's no cache involved */
		ret = _regmap_raw_read(map, reg, val, val_len);

	} else {
		/* Otherwise go word by word for the cache; should be low
		 * cost as we expect to hit the cache.
		 */
		for (i = 0; i < val_count; i++) {
2048 2049
			ret = _regmap_read(map, reg + (i * map->reg_stride),
					   &v);
2050 2051 2052
			if (ret != 0)
				goto out;

2053
			map->format.format_val(val + (i * val_bytes), v, 0);
2054 2055
		}
	}
2056

2057
 out:
2058
	map->unlock(map->lock_arg);
2059 2060 2061 2062 2063

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_raw_read);

2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088
/**
 * regmap_field_read(): Read a value to a single register field
 *
 * @field: Register field to read from
 * @val: Pointer to store read value
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_field_read(struct regmap_field *field, unsigned int *val)
{
	int ret;
	unsigned int reg_val;
	ret = regmap_read(field->regmap, field->reg, &reg_val);
	if (ret != 0)
		return ret;

	reg_val &= field->mask;
	reg_val >>= field->shift;
	*val = reg_val;

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_field_read);

2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121
/**
 * regmap_fields_read(): Read a value to a single register field with port ID
 *
 * @field: Register field to read from
 * @id: port ID
 * @val: Pointer to store read value
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_fields_read(struct regmap_field *field, unsigned int id,
		       unsigned int *val)
{
	int ret;
	unsigned int reg_val;

	if (id >= field->id_size)
		return -EINVAL;

	ret = regmap_read(field->regmap,
			  field->reg + (field->id_offset * id),
			  &reg_val);
	if (ret != 0)
		return ret;

	reg_val &= field->mask;
	reg_val >>= field->shift;
	*val = reg_val;

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_fields_read);

2122 2123 2124
/**
 * regmap_bulk_read(): Read multiple registers from the device
 *
2125
 * @map: Register map to read from
2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137
 * @reg: First register to be read from
 * @val: Pointer to store read value, in native register size for device
 * @val_count: Number of registers to read
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
		     size_t val_count)
{
	int ret, i;
	size_t val_bytes = map->format.val_bytes;
2138
	bool vol = regmap_volatile_range(map, reg, val_count);
2139

2140 2141
	if (reg % map->reg_stride)
		return -EINVAL;
2142

2143
	if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162
		/*
		 * Some devices does not support bulk read, for
		 * them we have a series of single read operations.
		 */
		if (map->use_single_rw) {
			for (i = 0; i < val_count; i++) {
				ret = regmap_raw_read(map,
						reg + (i * map->reg_stride),
						val + (i * val_bytes),
						val_bytes);
				if (ret != 0)
					return ret;
			}
		} else {
			ret = regmap_raw_read(map, reg, val,
					      val_bytes * val_count);
			if (ret != 0)
				return ret;
		}
2163 2164

		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2165
			map->format.parse_inplace(val + i);
2166 2167
	} else {
		for (i = 0; i < val_count; i++) {
2168
			unsigned int ival;
2169
			ret = regmap_read(map, reg + (i * map->reg_stride),
2170
					  &ival);
2171 2172
			if (ret != 0)
				return ret;
2173
			memcpy(val + (i * val_bytes), &ival, val_bytes);
2174 2175
		}
	}
2176 2177 2178 2179 2180

	return 0;
}
EXPORT_SYMBOL_GPL(regmap_bulk_read);

2181 2182 2183
static int _regmap_update_bits(struct regmap *map, unsigned int reg,
			       unsigned int mask, unsigned int val,
			       bool *change)
2184 2185
{
	int ret;
2186
	unsigned int tmp, orig;
2187

2188
	ret = _regmap_read(map, reg, &orig);
2189
	if (ret != 0)
2190
		return ret;
2191

2192
	tmp = orig & ~mask;
2193 2194
	tmp |= val & mask;

2195
	if (tmp != orig) {
2196
		ret = _regmap_write(map, reg, tmp);
2197 2198
		if (change)
			*change = true;
2199
	} else {
2200 2201
		if (change)
			*change = false;
2202
	}
2203 2204 2205

	return ret;
}
2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219

/**
 * regmap_update_bits: Perform a read/modify/write cycle on the register map
 *
 * @map: Register map to update
 * @reg: Register to update
 * @mask: Bitmask to change
 * @val: New value for bitmask
 *
 * Returns zero for success, a negative number on error.
 */
int regmap_update_bits(struct regmap *map, unsigned int reg,
		       unsigned int mask, unsigned int val)
{
2220 2221
	int ret;

2222
	map->lock(map->lock_arg);
2223
	ret = _regmap_update_bits(map, reg, mask, val, NULL);
2224
	map->unlock(map->lock_arg);
2225 2226

	return ret;
2227
}
2228
EXPORT_SYMBOL_GPL(regmap_update_bits);
2229

2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253
/**
 * regmap_update_bits_async: Perform a read/modify/write cycle on the register
 *                           map asynchronously
 *
 * @map: Register map to update
 * @reg: Register to update
 * @mask: Bitmask to change
 * @val: New value for bitmask
 *
 * With most buses the read must be done synchronously so this is most
 * useful for devices with a cache which do not need to interact with
 * the hardware to determine the current register value.
 *
 * Returns zero for success, a negative number on error.
 */
int regmap_update_bits_async(struct regmap *map, unsigned int reg,
			     unsigned int mask, unsigned int val)
{
	int ret;

	map->lock(map->lock_arg);

	map->async = true;

2254
	ret = _regmap_update_bits(map, reg, mask, val, NULL);
2255 2256 2257 2258 2259 2260 2261 2262 2263

	map->async = false;

	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_update_bits_async);

2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279
/**
 * regmap_update_bits_check: Perform a read/modify/write cycle on the
 *                           register map and report if updated
 *
 * @map: Register map to update
 * @reg: Register to update
 * @mask: Bitmask to change
 * @val: New value for bitmask
 * @change: Boolean indicating if a write was done
 *
 * Returns zero for success, a negative number on error.
 */
int regmap_update_bits_check(struct regmap *map, unsigned int reg,
			     unsigned int mask, unsigned int val,
			     bool *change)
{
2280 2281
	int ret;

2282
	map->lock(map->lock_arg);
2283
	ret = _regmap_update_bits(map, reg, mask, val, change);
2284
	map->unlock(map->lock_arg);
2285
	return ret;
2286 2287 2288
}
EXPORT_SYMBOL_GPL(regmap_update_bits_check);

2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325
/**
 * regmap_update_bits_check_async: Perform a read/modify/write cycle on the
 *                                 register map asynchronously and report if
 *                                 updated
 *
 * @map: Register map to update
 * @reg: Register to update
 * @mask: Bitmask to change
 * @val: New value for bitmask
 * @change: Boolean indicating if a write was done
 *
 * With most buses the read must be done synchronously so this is most
 * useful for devices with a cache which do not need to interact with
 * the hardware to determine the current register value.
 *
 * Returns zero for success, a negative number on error.
 */
int regmap_update_bits_check_async(struct regmap *map, unsigned int reg,
				   unsigned int mask, unsigned int val,
				   bool *change)
{
	int ret;

	map->lock(map->lock_arg);

	map->async = true;

	ret = _regmap_update_bits(map, reg, mask, val, change);

	map->async = false;

	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_update_bits_check_async);

2326 2327 2328 2329 2330
void regmap_async_complete_cb(struct regmap_async *async, int ret)
{
	struct regmap *map = async->map;
	bool wake;

2331 2332
	trace_regmap_async_io_complete(map->dev);

2333
	spin_lock(&map->async_lock);
M
Mark Brown 已提交
2334
	list_move(&async->list, &map->async_free);
2335 2336 2337 2338 2339 2340 2341 2342 2343 2344
	wake = list_empty(&map->async_list);

	if (ret != 0)
		map->async_ret = ret;

	spin_unlock(&map->async_lock);

	if (wake)
		wake_up(&map->async_waitq);
}
2345
EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372

static int regmap_async_is_done(struct regmap *map)
{
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&map->async_lock, flags);
	ret = list_empty(&map->async_list);
	spin_unlock_irqrestore(&map->async_lock, flags);

	return ret;
}

/**
 * regmap_async_complete: Ensure all asynchronous I/O has completed.
 *
 * @map: Map to operate on.
 *
 * Blocks until any pending asynchronous I/O has completed.  Returns
 * an error code for any failed I/O operations.
 */
int regmap_async_complete(struct regmap *map)
{
	unsigned long flags;
	int ret;

	/* Nothing to do with no async support */
2373
	if (!map->bus || !map->bus->async_write)
2374 2375
		return 0;

2376 2377
	trace_regmap_async_complete_start(map->dev);

2378 2379 2380 2381 2382 2383 2384
	wait_event(map->async_waitq, regmap_async_is_done(map));

	spin_lock_irqsave(&map->async_lock, flags);
	ret = map->async_ret;
	map->async_ret = 0;
	spin_unlock_irqrestore(&map->async_lock, flags);

2385 2386
	trace_regmap_async_complete_done(map->dev);

2387 2388
	return ret;
}
2389
EXPORT_SYMBOL_GPL(regmap_async_complete);
2390

M
Mark Brown 已提交
2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403
/**
 * regmap_register_patch: Register and apply register updates to be applied
 *                        on device initialistion
 *
 * @map: Register map to apply updates to.
 * @regs: Values to update.
 * @num_regs: Number of entries in regs.
 *
 * Register a set of register updates to be applied to the device
 * whenever the device registers are synchronised with the cache and
 * apply them immediately.  Typically this is used to apply
 * corrections to be applied to the device defaults on startup, such
 * as the updates some vendors provide to undocumented registers.
2404 2405 2406
 *
 * The caller must ensure that this function cannot be called
 * concurrently with either itself or regcache_sync().
M
Mark Brown 已提交
2407 2408 2409 2410
 */
int regmap_register_patch(struct regmap *map, const struct reg_default *regs,
			  int num_regs)
{
2411
	struct reg_default *p;
2412
	int ret;
M
Mark Brown 已提交
2413 2414
	bool bypass;

2415 2416 2417 2418
	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
	    num_regs))
		return 0;

2419 2420 2421 2422 2423 2424 2425
	p = krealloc(map->patch,
		     sizeof(struct reg_default) * (map->patch_regs + num_regs),
		     GFP_KERNEL);
	if (p) {
		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
		map->patch = p;
		map->patch_regs += num_regs;
M
Mark Brown 已提交
2426
	} else {
2427
		return -ENOMEM;
M
Mark Brown 已提交
2428 2429
	}

2430
	map->lock(map->lock_arg);
M
Mark Brown 已提交
2431 2432 2433 2434

	bypass = map->cache_bypass;

	map->cache_bypass = true;
2435
	map->async = true;
M
Mark Brown 已提交
2436

2437 2438 2439
	ret = _regmap_multi_reg_write(map, regs, num_regs);
	if (ret != 0)
		goto out;
M
Mark Brown 已提交
2440 2441

out:
2442
	map->async = false;
M
Mark Brown 已提交
2443 2444
	map->cache_bypass = bypass;

2445
	map->unlock(map->lock_arg);
M
Mark Brown 已提交
2446

2447 2448
	regmap_async_complete(map);

M
Mark Brown 已提交
2449 2450 2451 2452
	return ret;
}
EXPORT_SYMBOL_GPL(regmap_register_patch);

2453
/*
2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467
 * regmap_get_val_bytes(): Report the size of a register value
 *
 * Report the size of a register value, mainly intended to for use by
 * generic infrastructure built on top of regmap.
 */
int regmap_get_val_bytes(struct regmap *map)
{
	if (map->format.format_write)
		return -EINVAL;

	return map->format.val_bytes;
}
EXPORT_SYMBOL_GPL(regmap_get_val_bytes);

N
Nenghua Cao 已提交
2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479
int regmap_parse_val(struct regmap *map, const void *buf,
			unsigned int *val)
{
	if (!map->format.parse_val)
		return -EINVAL;

	*val = map->format.parse_val(buf);

	return 0;
}
EXPORT_SYMBOL_GPL(regmap_parse_val);

2480 2481 2482 2483 2484 2485 2486
static int __init regmap_initcall(void)
{
	regmap_debugfs_initcall();

	return 0;
}
postcore_initcall(regmap_initcall);