rdma.c 50.3 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * NVMe over Fabrics RDMA target.
 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
 */
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/atomic.h>
#include <linux/ctype.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/nvme.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/wait.h>
#include <linux/inet.h>
#include <asm/unaligned.h>

#include <rdma/ib_verbs.h>
#include <rdma/rdma_cm.h>
#include <rdma/rw.h>

#include <linux/nvme-rdma.h>
#include "nvmet.h"

/*
28
 * We allow at least 1 page, up to 4 SGEs, and up to 16KB of inline data
29
 */
30 31 32
#define NVMET_RDMA_DEFAULT_INLINE_DATA_SIZE	PAGE_SIZE
#define NVMET_RDMA_MAX_INLINE_SGE		4
#define NVMET_RDMA_MAX_INLINE_DATA_SIZE		max_t(int, SZ_16K, PAGE_SIZE)
33

34 35
/* Assume mpsmin == device_page_size == 4KB */
#define NVMET_RDMA_MAX_MDTS			8
36
#define NVMET_RDMA_MAX_METADATA_MDTS		5
37

38 39
struct nvmet_rdma_srq;

40
struct nvmet_rdma_cmd {
41
	struct ib_sge		sge[NVMET_RDMA_MAX_INLINE_SGE + 1];
42 43
	struct ib_cqe		cqe;
	struct ib_recv_wr	wr;
44
	struct scatterlist	inline_sg[NVMET_RDMA_MAX_INLINE_SGE];
45 46
	struct nvme_command     *nvme_cmd;
	struct nvmet_rdma_queue	*queue;
47
	struct nvmet_rdma_srq   *nsrq;
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
};

enum {
	NVMET_RDMA_REQ_INLINE_DATA	= (1 << 0),
	NVMET_RDMA_REQ_INVALIDATE_RKEY	= (1 << 1),
};

struct nvmet_rdma_rsp {
	struct ib_sge		send_sge;
	struct ib_cqe		send_cqe;
	struct ib_send_wr	send_wr;

	struct nvmet_rdma_cmd	*cmd;
	struct nvmet_rdma_queue	*queue;

	struct ib_cqe		read_cqe;
64
	struct ib_cqe		write_cqe;
65 66 67 68
	struct rdma_rw_ctx	rw;

	struct nvmet_req	req;

69
	bool			allocated;
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
	u8			n_rdma;
	u32			flags;
	u32			invalidate_rkey;

	struct list_head	wait_list;
	struct list_head	free_list;
};

enum nvmet_rdma_queue_state {
	NVMET_RDMA_Q_CONNECTING,
	NVMET_RDMA_Q_LIVE,
	NVMET_RDMA_Q_DISCONNECTING,
};

struct nvmet_rdma_queue {
	struct rdma_cm_id	*cm_id;
86
	struct ib_qp		*qp;
87 88 89 90
	struct nvmet_port	*port;
	struct ib_cq		*cq;
	atomic_t		sq_wr_avail;
	struct nvmet_rdma_device *dev;
91
	struct nvmet_rdma_srq   *nsrq;
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
	spinlock_t		state_lock;
	enum nvmet_rdma_queue_state state;
	struct nvmet_cq		nvme_cq;
	struct nvmet_sq		nvme_sq;

	struct nvmet_rdma_rsp	*rsps;
	struct list_head	free_rsps;
	spinlock_t		rsps_lock;
	struct nvmet_rdma_cmd	*cmds;

	struct work_struct	release_work;
	struct list_head	rsp_wait_list;
	struct list_head	rsp_wr_wait_list;
	spinlock_t		rsp_wr_wait_lock;

	int			idx;
	int			host_qid;
109
	int			comp_vector;
110 111 112 113 114 115
	int			recv_queue_size;
	int			send_queue_size;

	struct list_head	queue_list;
};

116 117 118 119 120 121 122
struct nvmet_rdma_port {
	struct nvmet_port	*nport;
	struct sockaddr_storage addr;
	struct rdma_cm_id	*cm_id;
	struct delayed_work	repair_work;
};

123 124 125 126 127 128
struct nvmet_rdma_srq {
	struct ib_srq            *srq;
	struct nvmet_rdma_cmd    *cmds;
	struct nvmet_rdma_device *ndev;
};

129 130 131
struct nvmet_rdma_device {
	struct ib_device	*device;
	struct ib_pd		*pd;
132 133
	struct nvmet_rdma_srq	**srqs;
	int			srq_count;
134 135 136
	size_t			srq_size;
	struct kref		ref;
	struct list_head	entry;
137 138
	int			inline_data_size;
	int			inline_page_count;
139 140 141 142 143 144
};

static bool nvmet_rdma_use_srq;
module_param_named(use_srq, nvmet_rdma_use_srq, bool, 0444);
MODULE_PARM_DESC(use_srq, "Use shared receive queue.");

145 146 147 148 149 150 151 152 153 154
static int srq_size_set(const char *val, const struct kernel_param *kp);
static const struct kernel_param_ops srq_size_ops = {
	.set = srq_size_set,
	.get = param_get_int,
};

static int nvmet_rdma_srq_size = 1024;
module_param_cb(srq_size, &srq_size_ops, &nvmet_rdma_srq_size, 0644);
MODULE_PARM_DESC(srq_size, "set Shared Receive Queue (SRQ) size, should >= 256 (default: 1024)");

155 156 157 158 159 160 161 162 163 164 165
static DEFINE_IDA(nvmet_rdma_queue_ida);
static LIST_HEAD(nvmet_rdma_queue_list);
static DEFINE_MUTEX(nvmet_rdma_queue_mutex);

static LIST_HEAD(device_list);
static DEFINE_MUTEX(device_list_mutex);

static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp);
static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc);
static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc);
166
static void nvmet_rdma_write_data_done(struct ib_cq *cq, struct ib_wc *wc);
167 168
static void nvmet_rdma_qp_event(struct ib_event *event, void *priv);
static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue);
169 170 171 172
static void nvmet_rdma_free_rsp(struct nvmet_rdma_device *ndev,
				struct nvmet_rdma_rsp *r);
static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device *ndev,
				struct nvmet_rdma_rsp *r);
173

174
static const struct nvmet_fabrics_ops nvmet_rdma_ops;
175

176 177 178 179 180 181 182 183 184 185 186
static int srq_size_set(const char *val, const struct kernel_param *kp)
{
	int n = 0, ret;

	ret = kstrtoint(val, 10, &n);
	if (ret != 0 || n < 256)
		return -EINVAL;

	return param_set_int(val, kp);
}

187 188 189 190 191
static int num_pages(int len)
{
	return 1 + (((len - 1) & PAGE_MASK) >> PAGE_SHIFT);
}

192 193 194
static inline bool nvmet_rdma_need_data_in(struct nvmet_rdma_rsp *rsp)
{
	return nvme_is_write(rsp->req.cmd) &&
195
		rsp->req.transfer_len &&
196 197 198 199 200 201
		!(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA);
}

static inline bool nvmet_rdma_need_data_out(struct nvmet_rdma_rsp *rsp)
{
	return !nvme_is_write(rsp->req.cmd) &&
202
		rsp->req.transfer_len &&
203
		!rsp->req.cqe->status &&
204 205 206 207 208 209 210 211 212 213
		!(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA);
}

static inline struct nvmet_rdma_rsp *
nvmet_rdma_get_rsp(struct nvmet_rdma_queue *queue)
{
	struct nvmet_rdma_rsp *rsp;
	unsigned long flags;

	spin_lock_irqsave(&queue->rsps_lock, flags);
214
	rsp = list_first_entry_or_null(&queue->free_rsps,
215
				struct nvmet_rdma_rsp, free_list);
216 217
	if (likely(rsp))
		list_del(&rsp->free_list);
218 219
	spin_unlock_irqrestore(&queue->rsps_lock, flags);

220
	if (unlikely(!rsp)) {
221 222 223
		int ret;

		rsp = kzalloc(sizeof(*rsp), GFP_KERNEL);
224 225
		if (unlikely(!rsp))
			return NULL;
226 227 228 229 230 231
		ret = nvmet_rdma_alloc_rsp(queue->dev, rsp);
		if (unlikely(ret)) {
			kfree(rsp);
			return NULL;
		}

232 233 234
		rsp->allocated = true;
	}

235 236 237 238 239 240 241 242
	return rsp;
}

static inline void
nvmet_rdma_put_rsp(struct nvmet_rdma_rsp *rsp)
{
	unsigned long flags;

243
	if (unlikely(rsp->allocated)) {
244
		nvmet_rdma_free_rsp(rsp->queue->dev, rsp);
245 246 247 248
		kfree(rsp);
		return;
	}

249 250 251 252 253
	spin_lock_irqsave(&rsp->queue->rsps_lock, flags);
	list_add_tail(&rsp->free_list, &rsp->queue->free_rsps);
	spin_unlock_irqrestore(&rsp->queue->rsps_lock, flags);
}

254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
static void nvmet_rdma_free_inline_pages(struct nvmet_rdma_device *ndev,
				struct nvmet_rdma_cmd *c)
{
	struct scatterlist *sg;
	struct ib_sge *sge;
	int i;

	if (!ndev->inline_data_size)
		return;

	sg = c->inline_sg;
	sge = &c->sge[1];

	for (i = 0; i < ndev->inline_page_count; i++, sg++, sge++) {
		if (sge->length)
			ib_dma_unmap_page(ndev->device, sge->addr,
					sge->length, DMA_FROM_DEVICE);
		if (sg_page(sg))
			__free_page(sg_page(sg));
	}
}

static int nvmet_rdma_alloc_inline_pages(struct nvmet_rdma_device *ndev,
				struct nvmet_rdma_cmd *c)
{
	struct scatterlist *sg;
	struct ib_sge *sge;
	struct page *pg;
	int len;
	int i;

	if (!ndev->inline_data_size)
		return 0;

	sg = c->inline_sg;
	sg_init_table(sg, ndev->inline_page_count);
	sge = &c->sge[1];
	len = ndev->inline_data_size;

	for (i = 0; i < ndev->inline_page_count; i++, sg++, sge++) {
		pg = alloc_page(GFP_KERNEL);
		if (!pg)
			goto out_err;
		sg_assign_page(sg, pg);
		sge->addr = ib_dma_map_page(ndev->device,
			pg, 0, PAGE_SIZE, DMA_FROM_DEVICE);
		if (ib_dma_mapping_error(ndev->device, sge->addr))
			goto out_err;
		sge->length = min_t(int, len, PAGE_SIZE);
		sge->lkey = ndev->pd->local_dma_lkey;
		len -= sge->length;
	}

	return 0;
out_err:
	for (; i >= 0; i--, sg--, sge--) {
		if (sge->length)
			ib_dma_unmap_page(ndev->device, sge->addr,
					sge->length, DMA_FROM_DEVICE);
		if (sg_page(sg))
			__free_page(sg_page(sg));
	}
	return -ENOMEM;
}

319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
static int nvmet_rdma_alloc_cmd(struct nvmet_rdma_device *ndev,
			struct nvmet_rdma_cmd *c, bool admin)
{
	/* NVMe command / RDMA RECV */
	c->nvme_cmd = kmalloc(sizeof(*c->nvme_cmd), GFP_KERNEL);
	if (!c->nvme_cmd)
		goto out;

	c->sge[0].addr = ib_dma_map_single(ndev->device, c->nvme_cmd,
			sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
	if (ib_dma_mapping_error(ndev->device, c->sge[0].addr))
		goto out_free_cmd;

	c->sge[0].length = sizeof(*c->nvme_cmd);
	c->sge[0].lkey = ndev->pd->local_dma_lkey;

335 336
	if (!admin && nvmet_rdma_alloc_inline_pages(ndev, c))
		goto out_unmap_cmd;
337 338 339 340 341

	c->cqe.done = nvmet_rdma_recv_done;

	c->wr.wr_cqe = &c->cqe;
	c->wr.sg_list = c->sge;
342
	c->wr.num_sge = admin ? 1 : ndev->inline_page_count + 1;
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358

	return 0;

out_unmap_cmd:
	ib_dma_unmap_single(ndev->device, c->sge[0].addr,
			sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
out_free_cmd:
	kfree(c->nvme_cmd);

out:
	return -ENOMEM;
}

static void nvmet_rdma_free_cmd(struct nvmet_rdma_device *ndev,
		struct nvmet_rdma_cmd *c, bool admin)
{
359 360
	if (!admin)
		nvmet_rdma_free_inline_pages(ndev, c);
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
	ib_dma_unmap_single(ndev->device, c->sge[0].addr,
				sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
	kfree(c->nvme_cmd);
}

static struct nvmet_rdma_cmd *
nvmet_rdma_alloc_cmds(struct nvmet_rdma_device *ndev,
		int nr_cmds, bool admin)
{
	struct nvmet_rdma_cmd *cmds;
	int ret = -EINVAL, i;

	cmds = kcalloc(nr_cmds, sizeof(struct nvmet_rdma_cmd), GFP_KERNEL);
	if (!cmds)
		goto out;

	for (i = 0; i < nr_cmds; i++) {
		ret = nvmet_rdma_alloc_cmd(ndev, cmds + i, admin);
		if (ret)
			goto out_free;
	}

	return cmds;

out_free:
	while (--i >= 0)
		nvmet_rdma_free_cmd(ndev, cmds + i, admin);
	kfree(cmds);
out:
	return ERR_PTR(ret);
}

static void nvmet_rdma_free_cmds(struct nvmet_rdma_device *ndev,
		struct nvmet_rdma_cmd *cmds, int nr_cmds, bool admin)
{
	int i;

	for (i = 0; i < nr_cmds; i++)
		nvmet_rdma_free_cmd(ndev, cmds + i, admin);
	kfree(cmds);
}

static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device *ndev,
		struct nvmet_rdma_rsp *r)
{
	/* NVMe CQE / RDMA SEND */
407 408
	r->req.cqe = kmalloc(sizeof(*r->req.cqe), GFP_KERNEL);
	if (!r->req.cqe)
409 410
		goto out;

411 412
	r->send_sge.addr = ib_dma_map_single(ndev->device, r->req.cqe,
			sizeof(*r->req.cqe), DMA_TO_DEVICE);
413 414 415
	if (ib_dma_mapping_error(ndev->device, r->send_sge.addr))
		goto out_free_rsp;

416
	r->req.p2p_client = &ndev->device->dev;
417
	r->send_sge.length = sizeof(*r->req.cqe);
418 419 420 421 422 423 424 425 426 427 428
	r->send_sge.lkey = ndev->pd->local_dma_lkey;

	r->send_cqe.done = nvmet_rdma_send_done;

	r->send_wr.wr_cqe = &r->send_cqe;
	r->send_wr.sg_list = &r->send_sge;
	r->send_wr.num_sge = 1;
	r->send_wr.send_flags = IB_SEND_SIGNALED;

	/* Data In / RDMA READ */
	r->read_cqe.done = nvmet_rdma_read_data_done;
429 430 431
	/* Data Out / RDMA WRITE */
	r->write_cqe.done = nvmet_rdma_write_data_done;

432 433 434
	return 0;

out_free_rsp:
435
	kfree(r->req.cqe);
436 437 438 439 440 441 442 443
out:
	return -ENOMEM;
}

static void nvmet_rdma_free_rsp(struct nvmet_rdma_device *ndev,
		struct nvmet_rdma_rsp *r)
{
	ib_dma_unmap_single(ndev->device, r->send_sge.addr,
444 445
				sizeof(*r->req.cqe), DMA_TO_DEVICE);
	kfree(r->req.cqe);
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
}

static int
nvmet_rdma_alloc_rsps(struct nvmet_rdma_queue *queue)
{
	struct nvmet_rdma_device *ndev = queue->dev;
	int nr_rsps = queue->recv_queue_size * 2;
	int ret = -EINVAL, i;

	queue->rsps = kcalloc(nr_rsps, sizeof(struct nvmet_rdma_rsp),
			GFP_KERNEL);
	if (!queue->rsps)
		goto out;

	for (i = 0; i < nr_rsps; i++) {
		struct nvmet_rdma_rsp *rsp = &queue->rsps[i];

		ret = nvmet_rdma_alloc_rsp(ndev, rsp);
		if (ret)
			goto out_free;

		list_add_tail(&rsp->free_list, &queue->free_rsps);
	}

	return 0;

out_free:
	while (--i >= 0) {
		struct nvmet_rdma_rsp *rsp = &queue->rsps[i];

		list_del(&rsp->free_list);
		nvmet_rdma_free_rsp(ndev, rsp);
	}
	kfree(queue->rsps);
out:
	return ret;
}

static void nvmet_rdma_free_rsps(struct nvmet_rdma_queue *queue)
{
	struct nvmet_rdma_device *ndev = queue->dev;
	int i, nr_rsps = queue->recv_queue_size * 2;

	for (i = 0; i < nr_rsps; i++) {
		struct nvmet_rdma_rsp *rsp = &queue->rsps[i];

		list_del(&rsp->free_list);
		nvmet_rdma_free_rsp(ndev, rsp);
	}
	kfree(queue->rsps);
}

static int nvmet_rdma_post_recv(struct nvmet_rdma_device *ndev,
		struct nvmet_rdma_cmd *cmd)
{
501
	int ret;
502

503 504 505 506
	ib_dma_sync_single_for_device(ndev->device,
		cmd->sge[0].addr, cmd->sge[0].length,
		DMA_FROM_DEVICE);

507 508
	if (cmd->nsrq)
		ret = ib_post_srq_recv(cmd->nsrq->srq, &cmd->wr, NULL);
509
	else
510
		ret = ib_post_recv(cmd->queue->qp, &cmd->wr, NULL);
511 512 513 514 515

	if (unlikely(ret))
		pr_err("post_recv cmd failed\n");

	return ret;
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
}

static void nvmet_rdma_process_wr_wait_list(struct nvmet_rdma_queue *queue)
{
	spin_lock(&queue->rsp_wr_wait_lock);
	while (!list_empty(&queue->rsp_wr_wait_list)) {
		struct nvmet_rdma_rsp *rsp;
		bool ret;

		rsp = list_entry(queue->rsp_wr_wait_list.next,
				struct nvmet_rdma_rsp, wait_list);
		list_del(&rsp->wait_list);

		spin_unlock(&queue->rsp_wr_wait_lock);
		ret = nvmet_rdma_execute_command(rsp);
		spin_lock(&queue->rsp_wr_wait_lock);

		if (!ret) {
			list_add(&rsp->wait_list, &queue->rsp_wr_wait_list);
			break;
		}
	}
	spin_unlock(&queue->rsp_wr_wait_lock);
}

541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
static u16 nvmet_rdma_check_pi_status(struct ib_mr *sig_mr)
{
	struct ib_mr_status mr_status;
	int ret;
	u16 status = 0;

	ret = ib_check_mr_status(sig_mr, IB_MR_CHECK_SIG_STATUS, &mr_status);
	if (ret) {
		pr_err("ib_check_mr_status failed, ret %d\n", ret);
		return NVME_SC_INVALID_PI;
	}

	if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) {
		switch (mr_status.sig_err.err_type) {
		case IB_SIG_BAD_GUARD:
			status = NVME_SC_GUARD_CHECK;
			break;
		case IB_SIG_BAD_REFTAG:
			status = NVME_SC_REFTAG_CHECK;
			break;
		case IB_SIG_BAD_APPTAG:
			status = NVME_SC_APPTAG_CHECK;
			break;
		}
		pr_err("PI error found type %d expected 0x%x vs actual 0x%x\n",
		       mr_status.sig_err.err_type,
		       mr_status.sig_err.expected,
		       mr_status.sig_err.actual);
	}

	return status;
}

static void nvmet_rdma_set_sig_domain(struct blk_integrity *bi,
		struct nvme_command *cmd, struct ib_sig_domain *domain,
		u16 control, u8 pi_type)
{
	domain->sig_type = IB_SIG_TYPE_T10_DIF;
	domain->sig.dif.bg_type = IB_T10DIF_CRC;
	domain->sig.dif.pi_interval = 1 << bi->interval_exp;
	domain->sig.dif.ref_tag = le32_to_cpu(cmd->rw.reftag);
	if (control & NVME_RW_PRINFO_PRCHK_REF)
		domain->sig.dif.ref_remap = true;

	domain->sig.dif.app_tag = le16_to_cpu(cmd->rw.apptag);
	domain->sig.dif.apptag_check_mask = le16_to_cpu(cmd->rw.appmask);
	domain->sig.dif.app_escape = true;
	if (pi_type == NVME_NS_DPS_PI_TYPE3)
		domain->sig.dif.ref_escape = true;
}

static void nvmet_rdma_set_sig_attrs(struct nvmet_req *req,
				     struct ib_sig_attrs *sig_attrs)
{
	struct nvme_command *cmd = req->cmd;
	u16 control = le16_to_cpu(cmd->rw.control);
	u8 pi_type = req->ns->pi_type;
	struct blk_integrity *bi;

	bi = bdev_get_integrity(req->ns->bdev);

	memset(sig_attrs, 0, sizeof(*sig_attrs));

	if (control & NVME_RW_PRINFO_PRACT) {
		/* for WRITE_INSERT/READ_STRIP no wire domain */
		sig_attrs->wire.sig_type = IB_SIG_TYPE_NONE;
		nvmet_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control,
					  pi_type);
		/* Clear the PRACT bit since HCA will generate/verify the PI */
		control &= ~NVME_RW_PRINFO_PRACT;
		cmd->rw.control = cpu_to_le16(control);
		/* PI is added by the HW */
		req->transfer_len += req->metadata_len;
	} else {
		/* for WRITE_PASS/READ_PASS both wire/memory domains exist */
		nvmet_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control,
					  pi_type);
		nvmet_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control,
					  pi_type);
	}

	if (control & NVME_RW_PRINFO_PRCHK_REF)
		sig_attrs->check_mask |= IB_SIG_CHECK_REFTAG;
	if (control & NVME_RW_PRINFO_PRCHK_GUARD)
		sig_attrs->check_mask |= IB_SIG_CHECK_GUARD;
	if (control & NVME_RW_PRINFO_PRCHK_APP)
		sig_attrs->check_mask |= IB_SIG_CHECK_APPTAG;
}

static int nvmet_rdma_rw_ctx_init(struct nvmet_rdma_rsp *rsp, u64 addr, u32 key,
				  struct ib_sig_attrs *sig_attrs)
{
	struct rdma_cm_id *cm_id = rsp->queue->cm_id;
	struct nvmet_req *req = &rsp->req;
	int ret;

	if (req->metadata_len)
		ret = rdma_rw_ctx_signature_init(&rsp->rw, cm_id->qp,
			cm_id->port_num, req->sg, req->sg_cnt,
			req->metadata_sg, req->metadata_sg_cnt, sig_attrs,
			addr, key, nvmet_data_dir(req));
	else
		ret = rdma_rw_ctx_init(&rsp->rw, cm_id->qp, cm_id->port_num,
				       req->sg, req->sg_cnt, 0, addr, key,
				       nvmet_data_dir(req));

	return ret;
}

static void nvmet_rdma_rw_ctx_destroy(struct nvmet_rdma_rsp *rsp)
{
	struct rdma_cm_id *cm_id = rsp->queue->cm_id;
	struct nvmet_req *req = &rsp->req;

	if (req->metadata_len)
		rdma_rw_ctx_destroy_signature(&rsp->rw, cm_id->qp,
			cm_id->port_num, req->sg, req->sg_cnt,
			req->metadata_sg, req->metadata_sg_cnt,
			nvmet_data_dir(req));
	else
		rdma_rw_ctx_destroy(&rsp->rw, cm_id->qp, cm_id->port_num,
				    req->sg, req->sg_cnt, nvmet_data_dir(req));
}
664 665 666 667 668 669 670

static void nvmet_rdma_release_rsp(struct nvmet_rdma_rsp *rsp)
{
	struct nvmet_rdma_queue *queue = rsp->queue;

	atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail);

671 672
	if (rsp->n_rdma)
		nvmet_rdma_rw_ctx_destroy(rsp);
673

674
	if (rsp->req.sg != rsp->cmd->inline_sg)
675
		nvmet_req_free_sgls(&rsp->req);
676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700

	if (unlikely(!list_empty_careful(&queue->rsp_wr_wait_list)))
		nvmet_rdma_process_wr_wait_list(queue);

	nvmet_rdma_put_rsp(rsp);
}

static void nvmet_rdma_error_comp(struct nvmet_rdma_queue *queue)
{
	if (queue->nvme_sq.ctrl) {
		nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl);
	} else {
		/*
		 * we didn't setup the controller yet in case
		 * of admin connect error, just disconnect and
		 * cleanup the queue
		 */
		nvmet_rdma_queue_disconnect(queue);
	}
}

static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
{
	struct nvmet_rdma_rsp *rsp =
		container_of(wc->wr_cqe, struct nvmet_rdma_rsp, send_cqe);
701
	struct nvmet_rdma_queue *queue = cq->cq_context;
702 703 704 705 706 707 708

	nvmet_rdma_release_rsp(rsp);

	if (unlikely(wc->status != IB_WC_SUCCESS &&
		     wc->status != IB_WC_WR_FLUSH_ERR)) {
		pr_err("SEND for CQE 0x%p failed with status %s (%d).\n",
			wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status);
709
		nvmet_rdma_error_comp(queue);
710 711 712 713 714 715 716 717
	}
}

static void nvmet_rdma_queue_response(struct nvmet_req *req)
{
	struct nvmet_rdma_rsp *rsp =
		container_of(req, struct nvmet_rdma_rsp, req);
	struct rdma_cm_id *cm_id = rsp->queue->cm_id;
718
	struct ib_send_wr *first_wr;
719 720 721 722 723 724 725 726

	if (rsp->flags & NVMET_RDMA_REQ_INVALIDATE_RKEY) {
		rsp->send_wr.opcode = IB_WR_SEND_WITH_INV;
		rsp->send_wr.ex.invalidate_rkey = rsp->invalidate_rkey;
	} else {
		rsp->send_wr.opcode = IB_WR_SEND;
	}

727 728 729 730 731 732 733 734
	if (nvmet_rdma_need_data_out(rsp)) {
		if (rsp->req.metadata_len)
			first_wr = rdma_rw_ctx_wrs(&rsp->rw, cm_id->qp,
					cm_id->port_num, &rsp->write_cqe, NULL);
		else
			first_wr = rdma_rw_ctx_wrs(&rsp->rw, cm_id->qp,
					cm_id->port_num, NULL, &rsp->send_wr);
	} else {
735
		first_wr = &rsp->send_wr;
736
	}
737 738

	nvmet_rdma_post_recv(rsp->queue->dev, rsp->cmd);
739 740 741 742 743

	ib_dma_sync_single_for_device(rsp->queue->dev->device,
		rsp->send_sge.addr, rsp->send_sge.length,
		DMA_TO_DEVICE);

744
	if (unlikely(ib_post_send(cm_id->qp, first_wr, NULL))) {
745 746 747 748 749 750 751 752 753 754
		pr_err("sending cmd response failed\n");
		nvmet_rdma_release_rsp(rsp);
	}
}

static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc)
{
	struct nvmet_rdma_rsp *rsp =
		container_of(wc->wr_cqe, struct nvmet_rdma_rsp, read_cqe);
	struct nvmet_rdma_queue *queue = cq->cq_context;
755
	u16 status = 0;
756 757 758 759 760 761

	WARN_ON(rsp->n_rdma <= 0);
	atomic_add(rsp->n_rdma, &queue->sq_wr_avail);
	rsp->n_rdma = 0;

	if (unlikely(wc->status != IB_WC_SUCCESS)) {
762
		nvmet_rdma_rw_ctx_destroy(rsp);
763
		nvmet_req_uninit(&rsp->req);
764 765 766 767 768 769 770 771 772
		nvmet_rdma_release_rsp(rsp);
		if (wc->status != IB_WC_WR_FLUSH_ERR) {
			pr_info("RDMA READ for CQE 0x%p failed with status %s (%d).\n",
				wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status);
			nvmet_rdma_error_comp(queue);
		}
		return;
	}

773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
	if (rsp->req.metadata_len)
		status = nvmet_rdma_check_pi_status(rsp->rw.reg->mr);
	nvmet_rdma_rw_ctx_destroy(rsp);

	if (unlikely(status))
		nvmet_req_complete(&rsp->req, status);
	else
		rsp->req.execute(&rsp->req);
}

static void nvmet_rdma_write_data_done(struct ib_cq *cq, struct ib_wc *wc)
{
	struct nvmet_rdma_rsp *rsp =
		container_of(wc->wr_cqe, struct nvmet_rdma_rsp, write_cqe);
	struct nvmet_rdma_queue *queue = cq->cq_context;
	struct rdma_cm_id *cm_id = rsp->queue->cm_id;
	u16 status;

	if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY))
		return;

	WARN_ON(rsp->n_rdma <= 0);
	atomic_add(rsp->n_rdma, &queue->sq_wr_avail);
	rsp->n_rdma = 0;

	if (unlikely(wc->status != IB_WC_SUCCESS)) {
		nvmet_rdma_rw_ctx_destroy(rsp);
		nvmet_req_uninit(&rsp->req);
		nvmet_rdma_release_rsp(rsp);
		if (wc->status != IB_WC_WR_FLUSH_ERR) {
			pr_info("RDMA WRITE for CQE 0x%p failed with status %s (%d).\n",
				wc->wr_cqe, ib_wc_status_msg(wc->status),
				wc->status);
			nvmet_rdma_error_comp(queue);
		}
		return;
	}

	/*
	 * Upon RDMA completion check the signature status
	 * - if succeeded send good NVMe response
	 * - if failed send bad NVMe response with appropriate error
	 */
	status = nvmet_rdma_check_pi_status(rsp->rw.reg->mr);
	if (unlikely(status))
		rsp->req.cqe->status = cpu_to_le16(status << 1);
	nvmet_rdma_rw_ctx_destroy(rsp);

	if (unlikely(ib_post_send(cm_id->qp, &rsp->send_wr, NULL))) {
		pr_err("sending cmd response failed\n");
		nvmet_rdma_release_rsp(rsp);
	}
825 826 827 828 829
}

static void nvmet_rdma_use_inline_sg(struct nvmet_rdma_rsp *rsp, u32 len,
		u64 off)
{
830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
	int sg_count = num_pages(len);
	struct scatterlist *sg;
	int i;

	sg = rsp->cmd->inline_sg;
	for (i = 0; i < sg_count; i++, sg++) {
		if (i < sg_count - 1)
			sg_unmark_end(sg);
		else
			sg_mark_end(sg);
		sg->offset = off;
		sg->length = min_t(int, len, PAGE_SIZE - off);
		len -= sg->length;
		if (!i)
			off = 0;
	}

	rsp->req.sg = rsp->cmd->inline_sg;
	rsp->req.sg_cnt = sg_count;
849 850 851 852 853 854 855 856
}

static u16 nvmet_rdma_map_sgl_inline(struct nvmet_rdma_rsp *rsp)
{
	struct nvme_sgl_desc *sgl = &rsp->req.cmd->common.dptr.sgl;
	u64 off = le64_to_cpu(sgl->addr);
	u32 len = le32_to_cpu(sgl->length);

857 858 859
	if (!nvme_is_write(rsp->req.cmd)) {
		rsp->req.error_loc =
			offsetof(struct nvme_common_command, opcode);
860
		return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
861
	}
862

863
	if (off + len > rsp->queue->dev->inline_data_size) {
864 865 866 867 868 869 870 871 872 873
		pr_err("invalid inline data offset!\n");
		return NVME_SC_SGL_INVALID_OFFSET | NVME_SC_DNR;
	}

	/* no data command? */
	if (!len)
		return 0;

	nvmet_rdma_use_inline_sg(rsp, len, off);
	rsp->flags |= NVMET_RDMA_REQ_INLINE_DATA;
874
	rsp->req.transfer_len += len;
875 876 877 878 879 880 881 882
	return 0;
}

static u16 nvmet_rdma_map_sgl_keyed(struct nvmet_rdma_rsp *rsp,
		struct nvme_keyed_sgl_desc *sgl, bool invalidate)
{
	u64 addr = le64_to_cpu(sgl->addr);
	u32 key = get_unaligned_le32(sgl->key);
883
	struct ib_sig_attrs sig_attrs;
884 885
	int ret;

886 887
	rsp->req.transfer_len = get_unaligned_le24(sgl->length);

888
	/* no data command? */
889
	if (!rsp->req.transfer_len)
890 891
		return 0;

892 893 894
	if (rsp->req.metadata_len)
		nvmet_rdma_set_sig_attrs(&rsp->req, &sig_attrs);

895
	ret = nvmet_req_alloc_sgls(&rsp->req);
896
	if (unlikely(ret < 0))
897
		goto error_out;
898

899
	ret = nvmet_rdma_rw_ctx_init(rsp, addr, key, &sig_attrs);
900
	if (unlikely(ret < 0))
901
		goto error_out;
902 903 904 905 906 907 908 909
	rsp->n_rdma += ret;

	if (invalidate) {
		rsp->invalidate_rkey = key;
		rsp->flags |= NVMET_RDMA_REQ_INVALIDATE_RKEY;
	}

	return 0;
910 911 912 913

error_out:
	rsp->req.transfer_len = 0;
	return NVME_SC_INTERNAL;
914 915 916 917 918 919 920 921 922 923 924 925 926
}

static u16 nvmet_rdma_map_sgl(struct nvmet_rdma_rsp *rsp)
{
	struct nvme_keyed_sgl_desc *sgl = &rsp->req.cmd->common.dptr.ksgl;

	switch (sgl->type >> 4) {
	case NVME_SGL_FMT_DATA_DESC:
		switch (sgl->type & 0xf) {
		case NVME_SGL_FMT_OFFSET:
			return nvmet_rdma_map_sgl_inline(rsp);
		default:
			pr_err("invalid SGL subtype: %#x\n", sgl->type);
927 928
			rsp->req.error_loc =
				offsetof(struct nvme_common_command, dptr);
929 930 931 932 933 934 935 936 937 938
			return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
		}
	case NVME_KEY_SGL_FMT_DATA_DESC:
		switch (sgl->type & 0xf) {
		case NVME_SGL_FMT_ADDRESS | NVME_SGL_FMT_INVALIDATE:
			return nvmet_rdma_map_sgl_keyed(rsp, sgl, true);
		case NVME_SGL_FMT_ADDRESS:
			return nvmet_rdma_map_sgl_keyed(rsp, sgl, false);
		default:
			pr_err("invalid SGL subtype: %#x\n", sgl->type);
939 940
			rsp->req.error_loc =
				offsetof(struct nvme_common_command, dptr);
941 942 943 944
			return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
		}
	default:
		pr_err("invalid SGL type: %#x\n", sgl->type);
945
		rsp->req.error_loc = offsetof(struct nvme_common_command, dptr);
946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
		return NVME_SC_SGL_INVALID_TYPE | NVME_SC_DNR;
	}
}

static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp)
{
	struct nvmet_rdma_queue *queue = rsp->queue;

	if (unlikely(atomic_sub_return(1 + rsp->n_rdma,
			&queue->sq_wr_avail) < 0)) {
		pr_debug("IB send queue full (needed %d): queue %u cntlid %u\n",
				1 + rsp->n_rdma, queue->idx,
				queue->nvme_sq.ctrl->cntlid);
		atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail);
		return false;
	}

	if (nvmet_rdma_need_data_in(rsp)) {
964
		if (rdma_rw_ctx_post(&rsp->rw, queue->qp,
965 966 967
				queue->cm_id->port_num, &rsp->read_cqe, NULL))
			nvmet_req_complete(&rsp->req, NVME_SC_DATA_XFER_ERROR);
	} else {
968
		rsp->req.execute(&rsp->req);
969 970 971 972 973 974 975 976 977 978
	}

	return true;
}

static void nvmet_rdma_handle_command(struct nvmet_rdma_queue *queue,
		struct nvmet_rdma_rsp *cmd)
{
	u16 status;

979 980 981 982 983 984 985
	ib_dma_sync_single_for_cpu(queue->dev->device,
		cmd->cmd->sge[0].addr, cmd->cmd->sge[0].length,
		DMA_FROM_DEVICE);
	ib_dma_sync_single_for_cpu(queue->dev->device,
		cmd->send_sge.addr, cmd->send_sge.length,
		DMA_TO_DEVICE);

986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
	if (!nvmet_req_init(&cmd->req, &queue->nvme_cq,
			&queue->nvme_sq, &nvmet_rdma_ops))
		return;

	status = nvmet_rdma_map_sgl(cmd);
	if (status)
		goto out_err;

	if (unlikely(!nvmet_rdma_execute_command(cmd))) {
		spin_lock(&queue->rsp_wr_wait_lock);
		list_add_tail(&cmd->wait_list, &queue->rsp_wr_wait_list);
		spin_unlock(&queue->rsp_wr_wait_lock);
	}

	return;

out_err:
	nvmet_req_complete(&cmd->req, status);
}

static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
{
	struct nvmet_rdma_cmd *cmd =
		container_of(wc->wr_cqe, struct nvmet_rdma_cmd, cqe);
	struct nvmet_rdma_queue *queue = cq->cq_context;
	struct nvmet_rdma_rsp *rsp;

	if (unlikely(wc->status != IB_WC_SUCCESS)) {
		if (wc->status != IB_WC_WR_FLUSH_ERR) {
			pr_err("RECV for CQE 0x%p failed with status %s (%d)\n",
				wc->wr_cqe, ib_wc_status_msg(wc->status),
				wc->status);
			nvmet_rdma_error_comp(queue);
		}
		return;
	}

	if (unlikely(wc->byte_len < sizeof(struct nvme_command))) {
		pr_err("Ctrl Fatal Error: capsule size less than 64 bytes\n");
		nvmet_rdma_error_comp(queue);
		return;
	}

	cmd->queue = queue;
	rsp = nvmet_rdma_get_rsp(queue);
1031 1032 1033 1034 1035 1036 1037 1038 1039
	if (unlikely(!rsp)) {
		/*
		 * we get here only under memory pressure,
		 * silently drop and have the host retry
		 * as we can't even fail it.
		 */
		nvmet_rdma_post_recv(queue->dev, cmd);
		return;
	}
1040
	rsp->queue = queue;
1041 1042 1043
	rsp->cmd = cmd;
	rsp->flags = 0;
	rsp->req.cmd = cmd->nvme_cmd;
1044 1045
	rsp->req.port = queue->port;
	rsp->n_rdma = 0;
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061

	if (unlikely(queue->state != NVMET_RDMA_Q_LIVE)) {
		unsigned long flags;

		spin_lock_irqsave(&queue->state_lock, flags);
		if (queue->state == NVMET_RDMA_Q_CONNECTING)
			list_add_tail(&rsp->wait_list, &queue->rsp_wait_list);
		else
			nvmet_rdma_put_rsp(rsp);
		spin_unlock_irqrestore(&queue->state_lock, flags);
		return;
	}

	nvmet_rdma_handle_command(queue, rsp);
}

1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
static void nvmet_rdma_destroy_srq(struct nvmet_rdma_srq *nsrq)
{
	nvmet_rdma_free_cmds(nsrq->ndev, nsrq->cmds, nsrq->ndev->srq_size,
			     false);
	ib_destroy_srq(nsrq->srq);

	kfree(nsrq);
}

static void nvmet_rdma_destroy_srqs(struct nvmet_rdma_device *ndev)
1072
{
1073 1074 1075
	int i;

	if (!ndev->srqs)
1076 1077
		return;

1078 1079 1080 1081
	for (i = 0; i < ndev->srq_count; i++)
		nvmet_rdma_destroy_srq(ndev->srqs[i]);

	kfree(ndev->srqs);
1082 1083
}

1084 1085
static struct nvmet_rdma_srq *
nvmet_rdma_init_srq(struct nvmet_rdma_device *ndev)
1086 1087
{
	struct ib_srq_init_attr srq_attr = { NULL, };
1088 1089
	size_t srq_size = ndev->srq_size;
	struct nvmet_rdma_srq *nsrq;
1090 1091 1092
	struct ib_srq *srq;
	int ret, i;

1093 1094 1095
	nsrq = kzalloc(sizeof(*nsrq), GFP_KERNEL);
	if (!nsrq)
		return ERR_PTR(-ENOMEM);
1096 1097

	srq_attr.attr.max_wr = srq_size;
1098
	srq_attr.attr.max_sge = 1 + ndev->inline_page_count;
1099 1100 1101 1102
	srq_attr.attr.srq_limit = 0;
	srq_attr.srq_type = IB_SRQT_BASIC;
	srq = ib_create_srq(ndev->pd, &srq_attr);
	if (IS_ERR(srq)) {
1103 1104
		ret = PTR_ERR(srq);
		goto out_free;
1105 1106
	}

1107 1108 1109
	nsrq->cmds = nvmet_rdma_alloc_cmds(ndev, srq_size, false);
	if (IS_ERR(nsrq->cmds)) {
		ret = PTR_ERR(nsrq->cmds);
1110 1111 1112
		goto out_destroy_srq;
	}

1113 1114
	nsrq->srq = srq;
	nsrq->ndev = ndev;
1115

1116
	for (i = 0; i < srq_size; i++) {
1117 1118
		nsrq->cmds[i].nsrq = nsrq;
		ret = nvmet_rdma_post_recv(ndev, &nsrq->cmds[i]);
1119 1120 1121
		if (ret)
			goto out_free_cmds;
	}
1122

1123
	return nsrq;
1124

1125
out_free_cmds:
1126
	nvmet_rdma_free_cmds(ndev, nsrq->cmds, srq_size, false);
1127 1128
out_destroy_srq:
	ib_destroy_srq(srq);
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
out_free:
	kfree(nsrq);
	return ERR_PTR(ret);
}

static int nvmet_rdma_init_srqs(struct nvmet_rdma_device *ndev)
{
	int i, ret;

	if (!ndev->device->attrs.max_srq_wr || !ndev->device->attrs.max_srq) {
		/*
		 * If SRQs aren't supported we just go ahead and use normal
		 * non-shared receive queues.
		 */
		pr_info("SRQ requested but not supported.\n");
		return 0;
	}

	ndev->srq_size = min(ndev->device->attrs.max_srq_wr,
			     nvmet_rdma_srq_size);
	ndev->srq_count = min(ndev->device->num_comp_vectors,
			      ndev->device->attrs.max_srq);

	ndev->srqs = kcalloc(ndev->srq_count, sizeof(*ndev->srqs), GFP_KERNEL);
	if (!ndev->srqs)
		return -ENOMEM;

	for (i = 0; i < ndev->srq_count; i++) {
		ndev->srqs[i] = nvmet_rdma_init_srq(ndev);
		if (IS_ERR(ndev->srqs[i])) {
			ret = PTR_ERR(ndev->srqs[i]);
			goto err_srq;
		}
	}

	return 0;

err_srq:
	while (--i >= 0)
		nvmet_rdma_destroy_srq(ndev->srqs[i]);
	kfree(ndev->srqs);
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
	return ret;
}

static void nvmet_rdma_free_dev(struct kref *ref)
{
	struct nvmet_rdma_device *ndev =
		container_of(ref, struct nvmet_rdma_device, ref);

	mutex_lock(&device_list_mutex);
	list_del(&ndev->entry);
	mutex_unlock(&device_list_mutex);

1182
	nvmet_rdma_destroy_srqs(ndev);
1183 1184 1185 1186 1187 1188 1189 1190
	ib_dealloc_pd(ndev->pd);

	kfree(ndev);
}

static struct nvmet_rdma_device *
nvmet_rdma_find_get_device(struct rdma_cm_id *cm_id)
{
1191 1192
	struct nvmet_rdma_port *port = cm_id->context;
	struct nvmet_port *nport = port->nport;
1193
	struct nvmet_rdma_device *ndev;
1194 1195
	int inline_page_count;
	int inline_sge_count;
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
	int ret;

	mutex_lock(&device_list_mutex);
	list_for_each_entry(ndev, &device_list, entry) {
		if (ndev->device->node_guid == cm_id->device->node_guid &&
		    kref_get_unless_zero(&ndev->ref))
			goto out_unlock;
	}

	ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
	if (!ndev)
		goto out_err;

1209
	inline_page_count = num_pages(nport->inline_data_size);
1210
	inline_sge_count = max(cm_id->device->attrs.max_sge_rd,
1211
				cm_id->device->attrs.max_recv_sge) - 1;
1212 1213
	if (inline_page_count > inline_sge_count) {
		pr_warn("inline_data_size %d cannot be supported by device %s. Reducing to %lu.\n",
1214
			nport->inline_data_size, cm_id->device->name,
1215
			inline_sge_count * PAGE_SIZE);
1216
		nport->inline_data_size = inline_sge_count * PAGE_SIZE;
1217 1218
		inline_page_count = inline_sge_count;
	}
1219
	ndev->inline_data_size = nport->inline_data_size;
1220
	ndev->inline_page_count = inline_page_count;
1221 1222 1223
	ndev->device = cm_id->device;
	kref_init(&ndev->ref);

1224
	ndev->pd = ib_alloc_pd(ndev->device, 0);
1225 1226 1227 1228
	if (IS_ERR(ndev->pd))
		goto out_free_dev;

	if (nvmet_rdma_use_srq) {
1229
		ret = nvmet_rdma_init_srqs(ndev);
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
		if (ret)
			goto out_free_pd;
	}

	list_add(&ndev->entry, &device_list);
out_unlock:
	mutex_unlock(&device_list_mutex);
	pr_debug("added %s.\n", ndev->device->name);
	return ndev;

out_free_pd:
	ib_dealloc_pd(ndev->pd);
out_free_dev:
	kfree(ndev);
out_err:
	mutex_unlock(&device_list_mutex);
	return NULL;
}

static int nvmet_rdma_create_queue_ib(struct nvmet_rdma_queue *queue)
{
	struct ib_qp_init_attr qp_attr;
	struct nvmet_rdma_device *ndev = queue->dev;
1253
	int nr_cqe, ret, i, factor;
1254 1255 1256 1257 1258 1259 1260

	/*
	 * Reserve CQ slots for RECV + RDMA_READ/RDMA_WRITE + RDMA_SEND.
	 */
	nr_cqe = queue->recv_queue_size + 2 * queue->send_queue_size;

	queue->cq = ib_alloc_cq(ndev->device, queue,
1261
			nr_cqe + 1, queue->comp_vector,
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
			IB_POLL_WORKQUEUE);
	if (IS_ERR(queue->cq)) {
		ret = PTR_ERR(queue->cq);
		pr_err("failed to create CQ cqe= %d ret= %d\n",
		       nr_cqe + 1, ret);
		goto out;
	}

	memset(&qp_attr, 0, sizeof(qp_attr));
	qp_attr.qp_context = queue;
	qp_attr.event_handler = nvmet_rdma_qp_event;
	qp_attr.send_cq = queue->cq;
	qp_attr.recv_cq = queue->cq;
	qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
	qp_attr.qp_type = IB_QPT_RC;
	/* +1 for drain */
	qp_attr.cap.max_send_wr = queue->send_queue_size + 1;
1279 1280 1281
	factor = rdma_rw_mr_factor(ndev->device, queue->cm_id->port_num,
				   1 << NVMET_RDMA_MAX_MDTS);
	qp_attr.cap.max_rdma_ctxs = queue->send_queue_size * factor;
1282
	qp_attr.cap.max_send_sge = max(ndev->device->attrs.max_sge_rd,
1283
					ndev->device->attrs.max_send_sge);
1284

1285 1286
	if (queue->nsrq) {
		qp_attr.srq = queue->nsrq->srq;
1287 1288 1289
	} else {
		/* +1 for drain */
		qp_attr.cap.max_recv_wr = 1 + queue->recv_queue_size;
1290
		qp_attr.cap.max_recv_sge = 1 + ndev->inline_page_count;
1291 1292
	}

1293 1294 1295
	if (queue->port->pi_enable && queue->host_qid)
		qp_attr.create_flags |= IB_QP_CREATE_INTEGRITY_EN;

1296 1297 1298 1299 1300
	ret = rdma_create_qp(queue->cm_id, ndev->pd, &qp_attr);
	if (ret) {
		pr_err("failed to create_qp ret= %d\n", ret);
		goto err_destroy_cq;
	}
1301
	queue->qp = queue->cm_id->qp;
1302 1303 1304 1305 1306 1307 1308

	atomic_set(&queue->sq_wr_avail, qp_attr.cap.max_send_wr);

	pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n",
		 __func__, queue->cq->cqe, qp_attr.cap.max_send_sge,
		 qp_attr.cap.max_send_wr, queue->cm_id);

1309
	if (!queue->nsrq) {
1310 1311
		for (i = 0; i < queue->recv_queue_size; i++) {
			queue->cmds[i].queue = queue;
1312 1313 1314
			ret = nvmet_rdma_post_recv(ndev, &queue->cmds[i]);
			if (ret)
				goto err_destroy_qp;
1315 1316 1317 1318 1319 1320
		}
	}

out:
	return ret;

1321 1322
err_destroy_qp:
	rdma_destroy_qp(queue->cm_id);
1323 1324 1325 1326 1327 1328 1329
err_destroy_cq:
	ib_free_cq(queue->cq);
	goto out;
}

static void nvmet_rdma_destroy_queue_ib(struct nvmet_rdma_queue *queue)
{
1330 1331 1332 1333
	ib_drain_qp(queue->qp);
	if (queue->cm_id)
		rdma_destroy_id(queue->cm_id);
	ib_destroy_qp(queue->qp);
1334 1335 1336 1337 1338
	ib_free_cq(queue->cq);
}

static void nvmet_rdma_free_queue(struct nvmet_rdma_queue *queue)
{
1339
	pr_debug("freeing queue %d\n", queue->idx);
1340 1341 1342 1343

	nvmet_sq_destroy(&queue->nvme_sq);

	nvmet_rdma_destroy_queue_ib(queue);
1344
	if (!queue->nsrq) {
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
		nvmet_rdma_free_cmds(queue->dev, queue->cmds,
				queue->recv_queue_size,
				!queue->host_qid);
	}
	nvmet_rdma_free_rsps(queue);
	ida_simple_remove(&nvmet_rdma_queue_ida, queue->idx);
	kfree(queue);
}

static void nvmet_rdma_release_queue_work(struct work_struct *w)
{
	struct nvmet_rdma_queue *queue =
		container_of(w, struct nvmet_rdma_queue, release_work);
	struct nvmet_rdma_device *dev = queue->dev;

	nvmet_rdma_free_queue(queue);
1361

1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
	kref_put(&dev->ref, nvmet_rdma_free_dev);
}

static int
nvmet_rdma_parse_cm_connect_req(struct rdma_conn_param *conn,
				struct nvmet_rdma_queue *queue)
{
	struct nvme_rdma_cm_req *req;

	req = (struct nvme_rdma_cm_req *)conn->private_data;
	if (!req || conn->private_data_len == 0)
		return NVME_RDMA_CM_INVALID_LEN;

	if (le16_to_cpu(req->recfmt) != NVME_RDMA_CM_FMT_1_0)
		return NVME_RDMA_CM_INVALID_RECFMT;

	queue->host_qid = le16_to_cpu(req->qid);

	/*
1381
	 * req->hsqsize corresponds to our recv queue size plus 1
1382 1383
	 * req->hrqsize corresponds to our send queue size
	 */
1384
	queue->recv_queue_size = le16_to_cpu(req->hsqsize) + 1;
1385 1386
	queue->send_queue_size = le16_to_cpu(req->hrqsize);

1387
	if (!queue->host_qid && queue->recv_queue_size > NVME_AQ_DEPTH)
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
		return NVME_RDMA_CM_INVALID_HSQSIZE;

	/* XXX: Should we enforce some kind of max for IO queues? */

	return 0;
}

static int nvmet_rdma_cm_reject(struct rdma_cm_id *cm_id,
				enum nvme_rdma_cm_status status)
{
	struct nvme_rdma_cm_rej rej;

1400 1401 1402
	pr_debug("rejecting connect request: status %d (%s)\n",
		 status, nvme_rdma_cm_msg(status));

1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
	rej.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
	rej.sts = cpu_to_le16(status);

	return rdma_reject(cm_id, (void *)&rej, sizeof(rej));
}

static struct nvmet_rdma_queue *
nvmet_rdma_alloc_queue(struct nvmet_rdma_device *ndev,
		struct rdma_cm_id *cm_id,
		struct rdma_cm_event *event)
{
1414
	struct nvmet_rdma_port *port = cm_id->context;
1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
	struct nvmet_rdma_queue *queue;
	int ret;

	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
	if (!queue) {
		ret = NVME_RDMA_CM_NO_RSC;
		goto out_reject;
	}

	ret = nvmet_sq_init(&queue->nvme_sq);
B
Bart Van Assche 已提交
1425 1426
	if (ret) {
		ret = NVME_RDMA_CM_NO_RSC;
1427
		goto out_free_queue;
B
Bart Van Assche 已提交
1428
	}
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440

	ret = nvmet_rdma_parse_cm_connect_req(&event->param.conn, queue);
	if (ret)
		goto out_destroy_sq;

	/*
	 * Schedules the actual release because calling rdma_destroy_id from
	 * inside a CM callback would trigger a deadlock. (great API design..)
	 */
	INIT_WORK(&queue->release_work, nvmet_rdma_release_queue_work);
	queue->dev = ndev;
	queue->cm_id = cm_id;
1441
	queue->port = port->nport;
1442 1443 1444 1445 1446 1447 1448 1449

	spin_lock_init(&queue->state_lock);
	queue->state = NVMET_RDMA_Q_CONNECTING;
	INIT_LIST_HEAD(&queue->rsp_wait_list);
	INIT_LIST_HEAD(&queue->rsp_wr_wait_list);
	spin_lock_init(&queue->rsp_wr_wait_lock);
	INIT_LIST_HEAD(&queue->free_rsps);
	spin_lock_init(&queue->rsps_lock);
1450
	INIT_LIST_HEAD(&queue->queue_list);
1451 1452 1453 1454

	queue->idx = ida_simple_get(&nvmet_rdma_queue_ida, 0, 0, GFP_KERNEL);
	if (queue->idx < 0) {
		ret = NVME_RDMA_CM_NO_RSC;
1455
		goto out_destroy_sq;
1456 1457
	}

1458 1459 1460 1461 1462 1463 1464 1465
	/*
	 * Spread the io queues across completion vectors,
	 * but still keep all admin queues on vector 0.
	 */
	queue->comp_vector = !queue->host_qid ? 0 :
		queue->idx % ndev->device->num_comp_vectors;


1466 1467 1468 1469 1470 1471
	ret = nvmet_rdma_alloc_rsps(queue);
	if (ret) {
		ret = NVME_RDMA_CM_NO_RSC;
		goto out_ida_remove;
	}

1472 1473 1474
	if (ndev->srqs) {
		queue->nsrq = ndev->srqs[queue->comp_vector % ndev->srq_count];
	} else {
1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
		queue->cmds = nvmet_rdma_alloc_cmds(ndev,
				queue->recv_queue_size,
				!queue->host_qid);
		if (IS_ERR(queue->cmds)) {
			ret = NVME_RDMA_CM_NO_RSC;
			goto out_free_responses;
		}
	}

	ret = nvmet_rdma_create_queue_ib(queue);
	if (ret) {
		pr_err("%s: creating RDMA queue failed (%d).\n",
			__func__, ret);
		ret = NVME_RDMA_CM_NO_RSC;
		goto out_free_cmds;
	}

	return queue;

out_free_cmds:
1495
	if (!queue->nsrq) {
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
		nvmet_rdma_free_cmds(queue->dev, queue->cmds,
				queue->recv_queue_size,
				!queue->host_qid);
	}
out_free_responses:
	nvmet_rdma_free_rsps(queue);
out_ida_remove:
	ida_simple_remove(&nvmet_rdma_queue_ida, queue->idx);
out_destroy_sq:
	nvmet_sq_destroy(&queue->nvme_sq);
out_free_queue:
	kfree(queue);
out_reject:
	nvmet_rdma_cm_reject(cm_id, ret);
	return NULL;
}

static void nvmet_rdma_qp_event(struct ib_event *event, void *priv)
{
	struct nvmet_rdma_queue *queue = priv;

	switch (event->event) {
	case IB_EVENT_COMM_EST:
		rdma_notify(queue->cm_id, event->event);
		break;
1521 1522 1523 1524
	case IB_EVENT_QP_LAST_WQE_REACHED:
		pr_debug("received last WQE reached event for queue=0x%p\n",
			 queue);
		break;
1525
	default:
1526 1527
		pr_err("received IB QP event: %s (%d)\n",
		       ib_event_msg(event->event), event->event);
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
		break;
	}
}

static int nvmet_rdma_cm_accept(struct rdma_cm_id *cm_id,
		struct nvmet_rdma_queue *queue,
		struct rdma_conn_param *p)
{
	struct rdma_conn_param  param = { };
	struct nvme_rdma_cm_rep priv = { };
	int ret = -ENOMEM;

	param.rnr_retry_count = 7;
	param.flow_control = 1;
	param.initiator_depth = min_t(u8, p->initiator_depth,
		queue->dev->device->attrs.max_qp_init_rd_atom);
	param.private_data = &priv;
	param.private_data_len = sizeof(priv);
	priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
	priv.crqsize = cpu_to_le16(queue->recv_queue_size);

	ret = rdma_accept(cm_id, &param);
	if (ret)
		pr_err("rdma_accept failed (error code = %d)\n", ret);

	return ret;
}

static int nvmet_rdma_queue_connect(struct rdma_cm_id *cm_id,
		struct rdma_cm_event *event)
{
	struct nvmet_rdma_device *ndev;
	struct nvmet_rdma_queue *queue;
	int ret = -EINVAL;

	ndev = nvmet_rdma_find_get_device(cm_id);
	if (!ndev) {
		nvmet_rdma_cm_reject(cm_id, NVME_RDMA_CM_NO_RSC);
		return -ECONNREFUSED;
	}

	queue = nvmet_rdma_alloc_queue(ndev, cm_id, event);
	if (!queue) {
		ret = -ENOMEM;
		goto put_device;
	}

1575 1576
	if (queue->host_qid == 0) {
		/* Let inflight controller teardown complete */
1577
		flush_scheduled_work();
1578 1579
	}

1580
	ret = nvmet_rdma_cm_accept(cm_id, queue, &event->param.conn);
1581
	if (ret) {
1582 1583 1584 1585 1586 1587
		/*
		 * Don't destroy the cm_id in free path, as we implicitly
		 * destroy the cm_id here with non-zero ret code.
		 */
		queue->cm_id = NULL;
		goto free_queue;
1588
	}
1589 1590 1591 1592 1593 1594 1595

	mutex_lock(&nvmet_rdma_queue_mutex);
	list_add_tail(&queue->queue_list, &nvmet_rdma_queue_list);
	mutex_unlock(&nvmet_rdma_queue_mutex);

	return 0;

1596 1597
free_queue:
	nvmet_rdma_free_queue(queue);
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642
put_device:
	kref_put(&ndev->ref, nvmet_rdma_free_dev);

	return ret;
}

static void nvmet_rdma_queue_established(struct nvmet_rdma_queue *queue)
{
	unsigned long flags;

	spin_lock_irqsave(&queue->state_lock, flags);
	if (queue->state != NVMET_RDMA_Q_CONNECTING) {
		pr_warn("trying to establish a connected queue\n");
		goto out_unlock;
	}
	queue->state = NVMET_RDMA_Q_LIVE;

	while (!list_empty(&queue->rsp_wait_list)) {
		struct nvmet_rdma_rsp *cmd;

		cmd = list_first_entry(&queue->rsp_wait_list,
					struct nvmet_rdma_rsp, wait_list);
		list_del(&cmd->wait_list);

		spin_unlock_irqrestore(&queue->state_lock, flags);
		nvmet_rdma_handle_command(queue, cmd);
		spin_lock_irqsave(&queue->state_lock, flags);
	}

out_unlock:
	spin_unlock_irqrestore(&queue->state_lock, flags);
}

static void __nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue)
{
	bool disconnect = false;
	unsigned long flags;

	pr_debug("cm_id= %p queue->state= %d\n", queue->cm_id, queue->state);

	spin_lock_irqsave(&queue->state_lock, flags);
	switch (queue->state) {
	case NVMET_RDMA_Q_CONNECTING:
	case NVMET_RDMA_Q_LIVE:
		queue->state = NVMET_RDMA_Q_DISCONNECTING;
1643
		disconnect = true;
1644 1645 1646 1647 1648 1649 1650 1651
		break;
	case NVMET_RDMA_Q_DISCONNECTING:
		break;
	}
	spin_unlock_irqrestore(&queue->state_lock, flags);

	if (disconnect) {
		rdma_disconnect(queue->cm_id);
1652
		schedule_work(&queue->release_work);
1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675
	}
}

static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue)
{
	bool disconnect = false;

	mutex_lock(&nvmet_rdma_queue_mutex);
	if (!list_empty(&queue->queue_list)) {
		list_del_init(&queue->queue_list);
		disconnect = true;
	}
	mutex_unlock(&nvmet_rdma_queue_mutex);

	if (disconnect)
		__nvmet_rdma_queue_disconnect(queue);
}

static void nvmet_rdma_queue_connect_fail(struct rdma_cm_id *cm_id,
		struct nvmet_rdma_queue *queue)
{
	WARN_ON_ONCE(queue->state != NVMET_RDMA_Q_CONNECTING);

1676 1677 1678 1679 1680 1681
	mutex_lock(&nvmet_rdma_queue_mutex);
	if (!list_empty(&queue->queue_list))
		list_del_init(&queue->queue_list);
	mutex_unlock(&nvmet_rdma_queue_mutex);

	pr_err("failed to connect queue %d\n", queue->idx);
1682
	schedule_work(&queue->release_work);
1683 1684
}

1685 1686
/**
 * nvme_rdma_device_removal() - Handle RDMA device removal
1687
 * @cm_id:	rdma_cm id, used for nvmet port
1688 1689 1690
 * @queue:      nvmet rdma queue (cm id qp_context)
 *
 * DEVICE_REMOVAL event notifies us that the RDMA device is about
1691 1692 1693
 * to unplug. Note that this event can be generated on a normal
 * queue cm_id and/or a device bound listener cm_id (where in this
 * case queue will be null).
1694
 *
1695 1696
 * We registered an ib_client to handle device removal for queues,
 * so we only need to handle the listening port cm_ids. In this case
1697 1698 1699 1700 1701 1702
 * we nullify the priv to prevent double cm_id destruction and destroying
 * the cm_id implicitely by returning a non-zero rc to the callout.
 */
static int nvmet_rdma_device_removal(struct rdma_cm_id *cm_id,
		struct nvmet_rdma_queue *queue)
{
1703
	struct nvmet_rdma_port *port;
1704

1705
	if (queue) {
1706
		/*
1707 1708 1709
		 * This is a queue cm_id. we have registered
		 * an ib_client to handle queues removal
		 * so don't interfear and just return.
1710
		 */
1711
		return 0;
1712 1713
	}

1714 1715 1716 1717 1718 1719 1720 1721
	port = cm_id->context;

	/*
	 * This is a listener cm_id. Make sure that
	 * future remove_port won't invoke a double
	 * cm_id destroy. use atomic xchg to make sure
	 * we don't compete with remove_port.
	 */
1722
	if (xchg(&port->cm_id, NULL) != cm_id)
1723 1724
		return 0;

1725 1726 1727 1728 1729 1730 1731
	/*
	 * We need to return 1 so that the core will destroy
	 * it's own ID.  What a great API design..
	 */
	return 1;
}

1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752
static int nvmet_rdma_cm_handler(struct rdma_cm_id *cm_id,
		struct rdma_cm_event *event)
{
	struct nvmet_rdma_queue *queue = NULL;
	int ret = 0;

	if (cm_id->qp)
		queue = cm_id->qp->qp_context;

	pr_debug("%s (%d): status %d id %p\n",
		rdma_event_msg(event->event), event->event,
		event->status, cm_id);

	switch (event->event) {
	case RDMA_CM_EVENT_CONNECT_REQUEST:
		ret = nvmet_rdma_queue_connect(cm_id, event);
		break;
	case RDMA_CM_EVENT_ESTABLISHED:
		nvmet_rdma_queue_established(queue);
		break;
	case RDMA_CM_EVENT_ADDR_CHANGE:
1753 1754 1755 1756 1757 1758 1759
		if (!queue) {
			struct nvmet_rdma_port *port = cm_id->context;

			schedule_delayed_work(&port->repair_work, 0);
			break;
		}
		/* FALLTHROUGH */
1760 1761
	case RDMA_CM_EVENT_DISCONNECTED:
	case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1762
		nvmet_rdma_queue_disconnect(queue);
1763 1764 1765
		break;
	case RDMA_CM_EVENT_DEVICE_REMOVAL:
		ret = nvmet_rdma_device_removal(cm_id, queue);
1766 1767
		break;
	case RDMA_CM_EVENT_REJECTED:
1768 1769 1770
		pr_debug("Connection rejected: %s\n",
			 rdma_reject_msg(cm_id, event->status));
		/* FALLTHROUGH */
1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
	case RDMA_CM_EVENT_UNREACHABLE:
	case RDMA_CM_EVENT_CONNECT_ERROR:
		nvmet_rdma_queue_connect_fail(cm_id, queue);
		break;
	default:
		pr_err("received unrecognized RDMA CM event %d\n",
			event->event);
		break;
	}

	return ret;
}

static void nvmet_rdma_delete_ctrl(struct nvmet_ctrl *ctrl)
{
	struct nvmet_rdma_queue *queue;

restart:
	mutex_lock(&nvmet_rdma_queue_mutex);
	list_for_each_entry(queue, &nvmet_rdma_queue_list, queue_list) {
		if (queue->nvme_sq.ctrl == ctrl) {
			list_del_init(&queue->queue_list);
			mutex_unlock(&nvmet_rdma_queue_mutex);

			__nvmet_rdma_queue_disconnect(queue);
			goto restart;
		}
	}
	mutex_unlock(&nvmet_rdma_queue_mutex);
}

1802
static void nvmet_rdma_disable_port(struct nvmet_rdma_port *port)
1803
{
1804
	struct rdma_cm_id *cm_id = xchg(&port->cm_id, NULL);
1805

1806 1807 1808
	if (cm_id)
		rdma_destroy_id(cm_id);
}
1809

1810 1811 1812 1813 1814
static int nvmet_rdma_enable_port(struct nvmet_rdma_port *port)
{
	struct sockaddr *addr = (struct sockaddr *)&port->addr;
	struct rdma_cm_id *cm_id;
	int ret;
1815 1816 1817 1818 1819 1820 1821 1822

	cm_id = rdma_create_id(&init_net, nvmet_rdma_cm_handler, port,
			RDMA_PS_TCP, IB_QPT_RC);
	if (IS_ERR(cm_id)) {
		pr_err("CM ID creation failed\n");
		return PTR_ERR(cm_id);
	}

1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
	/*
	 * Allow both IPv4 and IPv6 sockets to bind a single port
	 * at the same time.
	 */
	ret = rdma_set_afonly(cm_id, 1);
	if (ret) {
		pr_err("rdma_set_afonly failed (%d)\n", ret);
		goto out_destroy_id;
	}

1833
	ret = rdma_bind_addr(cm_id, addr);
1834
	if (ret) {
1835
		pr_err("binding CM ID to %pISpcs failed (%d)\n", addr, ret);
1836 1837 1838 1839 1840
		goto out_destroy_id;
	}

	ret = rdma_listen(cm_id, 128);
	if (ret) {
1841
		pr_err("listening to %pISpcs failed (%d)\n", addr, ret);
1842 1843 1844
		goto out_destroy_id;
	}

1845 1846 1847 1848 1849 1850 1851 1852
	if (port->nport->pi_enable &&
	    !(cm_id->device->attrs.device_cap_flags &
	      IB_DEVICE_INTEGRITY_HANDOVER)) {
		pr_err("T10-PI is not supported for %pISpcs\n", addr);
		ret = -EINVAL;
		goto out_destroy_id;
	}

1853
	port->cm_id = cm_id;
1854 1855 1856 1857 1858 1859 1860
	return 0;

out_destroy_id:
	rdma_destroy_id(cm_id);
	return ret;
}

1861
static void nvmet_rdma_repair_port_work(struct work_struct *w)
1862
{
1863 1864 1865
	struct nvmet_rdma_port *port = container_of(to_delayed_work(w),
			struct nvmet_rdma_port, repair_work);
	int ret;
1866

1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933
	nvmet_rdma_disable_port(port);
	ret = nvmet_rdma_enable_port(port);
	if (ret)
		schedule_delayed_work(&port->repair_work, 5 * HZ);
}

static int nvmet_rdma_add_port(struct nvmet_port *nport)
{
	struct nvmet_rdma_port *port;
	__kernel_sa_family_t af;
	int ret;

	port = kzalloc(sizeof(*port), GFP_KERNEL);
	if (!port)
		return -ENOMEM;

	nport->priv = port;
	port->nport = nport;
	INIT_DELAYED_WORK(&port->repair_work, nvmet_rdma_repair_port_work);

	switch (nport->disc_addr.adrfam) {
	case NVMF_ADDR_FAMILY_IP4:
		af = AF_INET;
		break;
	case NVMF_ADDR_FAMILY_IP6:
		af = AF_INET6;
		break;
	default:
		pr_err("address family %d not supported\n",
			nport->disc_addr.adrfam);
		ret = -EINVAL;
		goto out_free_port;
	}

	if (nport->inline_data_size < 0) {
		nport->inline_data_size = NVMET_RDMA_DEFAULT_INLINE_DATA_SIZE;
	} else if (nport->inline_data_size > NVMET_RDMA_MAX_INLINE_DATA_SIZE) {
		pr_warn("inline_data_size %u is too large, reducing to %u\n",
			nport->inline_data_size,
			NVMET_RDMA_MAX_INLINE_DATA_SIZE);
		nport->inline_data_size = NVMET_RDMA_MAX_INLINE_DATA_SIZE;
	}

	ret = inet_pton_with_scope(&init_net, af, nport->disc_addr.traddr,
			nport->disc_addr.trsvcid, &port->addr);
	if (ret) {
		pr_err("malformed ip/port passed: %s:%s\n",
			nport->disc_addr.traddr, nport->disc_addr.trsvcid);
		goto out_free_port;
	}

	ret = nvmet_rdma_enable_port(port);
	if (ret)
		goto out_free_port;

	pr_info("enabling port %d (%pISpcs)\n",
		le16_to_cpu(nport->disc_addr.portid),
		(struct sockaddr *)&port->addr);

	return 0;

out_free_port:
	kfree(port);
	return ret;
}

static void nvmet_rdma_remove_port(struct nvmet_port *nport)
1934
{
1935
	struct nvmet_rdma_port *port = nport->priv;
1936

1937 1938 1939
	cancel_delayed_work_sync(&port->repair_work);
	nvmet_rdma_disable_port(port);
	kfree(port);
1940 1941
}

1942
static void nvmet_rdma_disc_port_addr(struct nvmet_req *req,
1943
		struct nvmet_port *nport, char *traddr)
1944
{
1945 1946
	struct nvmet_rdma_port *port = nport->priv;
	struct rdma_cm_id *cm_id = port->cm_id;
1947 1948 1949 1950 1951 1952 1953 1954 1955

	if (inet_addr_is_any((struct sockaddr *)&cm_id->route.addr.src_addr)) {
		struct nvmet_rdma_rsp *rsp =
			container_of(req, struct nvmet_rdma_rsp, req);
		struct rdma_cm_id *req_cm_id = rsp->queue->cm_id;
		struct sockaddr *addr = (void *)&req_cm_id->route.addr.src_addr;

		sprintf(traddr, "%pISc", addr);
	} else {
1956
		memcpy(traddr, nport->disc_addr.traddr, NVMF_TRADDR_SIZE);
1957 1958 1959
	}
}

1960 1961
static u8 nvmet_rdma_get_mdts(const struct nvmet_ctrl *ctrl)
{
1962 1963
	if (ctrl->pi_support)
		return NVMET_RDMA_MAX_METADATA_MDTS;
1964 1965 1966
	return NVMET_RDMA_MAX_MDTS;
}

1967
static const struct nvmet_fabrics_ops nvmet_rdma_ops = {
1968 1969 1970 1971
	.owner			= THIS_MODULE,
	.type			= NVMF_TRTYPE_RDMA,
	.msdbd			= 1,
	.has_keyed_sgls		= 1,
1972
	.metadata_support	= 1,
1973 1974 1975 1976
	.add_port		= nvmet_rdma_add_port,
	.remove_port		= nvmet_rdma_remove_port,
	.queue_response		= nvmet_rdma_queue_response,
	.delete_ctrl		= nvmet_rdma_delete_ctrl,
1977
	.disc_traddr		= nvmet_rdma_disc_port_addr,
1978
	.get_mdts		= nvmet_rdma_get_mdts,
1979 1980
};

1981 1982
static void nvmet_rdma_remove_one(struct ib_device *ib_device, void *client_data)
{
1983
	struct nvmet_rdma_queue *queue, *tmp;
1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
	struct nvmet_rdma_device *ndev;
	bool found = false;

	mutex_lock(&device_list_mutex);
	list_for_each_entry(ndev, &device_list, entry) {
		if (ndev->device == ib_device) {
			found = true;
			break;
		}
	}
	mutex_unlock(&device_list_mutex);

	if (!found)
		return;
1998

1999 2000 2001 2002
	/*
	 * IB Device that is used by nvmet controllers is being removed,
	 * delete all queues using this device.
	 */
2003
	mutex_lock(&nvmet_rdma_queue_mutex);
2004 2005
	list_for_each_entry_safe(queue, tmp, &nvmet_rdma_queue_list,
				 queue_list) {
2006 2007 2008 2009
		if (queue->dev->device != ib_device)
			continue;

		pr_info("Removing queue %d\n", queue->idx);
2010
		list_del_init(&queue->queue_list);
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
		__nvmet_rdma_queue_disconnect(queue);
	}
	mutex_unlock(&nvmet_rdma_queue_mutex);

	flush_scheduled_work();
}

static struct ib_client nvmet_rdma_ib_client = {
	.name   = "nvmet_rdma",
	.remove = nvmet_rdma_remove_one
};

2023 2024
static int __init nvmet_rdma_init(void)
{
2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
	int ret;

	ret = ib_register_client(&nvmet_rdma_ib_client);
	if (ret)
		return ret;

	ret = nvmet_register_transport(&nvmet_rdma_ops);
	if (ret)
		goto err_ib_client;

	return 0;

err_ib_client:
	ib_unregister_client(&nvmet_rdma_ib_client);
	return ret;
2040 2041 2042 2043 2044
}

static void __exit nvmet_rdma_exit(void)
{
	nvmet_unregister_transport(&nvmet_rdma_ops);
2045
	ib_unregister_client(&nvmet_rdma_ib_client);
2046
	WARN_ON_ONCE(!list_empty(&nvmet_rdma_queue_list));
2047 2048 2049 2050 2051 2052 2053 2054
	ida_destroy(&nvmet_rdma_queue_ida);
}

module_init(nvmet_rdma_init);
module_exit(nvmet_rdma_exit);

MODULE_LICENSE("GPL v2");
MODULE_ALIAS("nvmet-transport-1"); /* 1 == NVMF_TRTYPE_RDMA */