rdma.c 39.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
/*
 * NVMe over Fabrics RDMA target.
 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 */
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/atomic.h>
#include <linux/ctype.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/nvme.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/wait.h>
#include <linux/inet.h>
#include <asm/unaligned.h>

#include <rdma/ib_verbs.h>
#include <rdma/rdma_cm.h>
#include <rdma/rw.h>

#include <linux/nvme-rdma.h>
#include "nvmet.h"

/*
36
 * We allow at least 1 page, up to 4 SGEs, and up to 16KB of inline data
37
 */
38 39 40
#define NVMET_RDMA_DEFAULT_INLINE_DATA_SIZE	PAGE_SIZE
#define NVMET_RDMA_MAX_INLINE_SGE		4
#define NVMET_RDMA_MAX_INLINE_DATA_SIZE		max_t(int, SZ_16K, PAGE_SIZE)
41 42

struct nvmet_rdma_cmd {
43
	struct ib_sge		sge[NVMET_RDMA_MAX_INLINE_SGE + 1];
44 45
	struct ib_cqe		cqe;
	struct ib_recv_wr	wr;
46
	struct scatterlist	inline_sg[NVMET_RDMA_MAX_INLINE_SGE];
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
	struct nvme_command     *nvme_cmd;
	struct nvmet_rdma_queue	*queue;
};

enum {
	NVMET_RDMA_REQ_INLINE_DATA	= (1 << 0),
	NVMET_RDMA_REQ_INVALIDATE_RKEY	= (1 << 1),
};

struct nvmet_rdma_rsp {
	struct ib_sge		send_sge;
	struct ib_cqe		send_cqe;
	struct ib_send_wr	send_wr;

	struct nvmet_rdma_cmd	*cmd;
	struct nvmet_rdma_queue	*queue;

	struct ib_cqe		read_cqe;
	struct rdma_rw_ctx	rw;

	struct nvmet_req	req;

	u8			n_rdma;
	u32			flags;
	u32			invalidate_rkey;

	struct list_head	wait_list;
	struct list_head	free_list;
};

enum nvmet_rdma_queue_state {
	NVMET_RDMA_Q_CONNECTING,
	NVMET_RDMA_Q_LIVE,
	NVMET_RDMA_Q_DISCONNECTING,
};

struct nvmet_rdma_queue {
	struct rdma_cm_id	*cm_id;
	struct nvmet_port	*port;
	struct ib_cq		*cq;
	atomic_t		sq_wr_avail;
	struct nvmet_rdma_device *dev;
	spinlock_t		state_lock;
	enum nvmet_rdma_queue_state state;
	struct nvmet_cq		nvme_cq;
	struct nvmet_sq		nvme_sq;

	struct nvmet_rdma_rsp	*rsps;
	struct list_head	free_rsps;
	spinlock_t		rsps_lock;
	struct nvmet_rdma_cmd	*cmds;

	struct work_struct	release_work;
	struct list_head	rsp_wait_list;
	struct list_head	rsp_wr_wait_list;
	spinlock_t		rsp_wr_wait_lock;

	int			idx;
	int			host_qid;
	int			recv_queue_size;
	int			send_queue_size;

	struct list_head	queue_list;
};

struct nvmet_rdma_device {
	struct ib_device	*device;
	struct ib_pd		*pd;
	struct ib_srq		*srq;
	struct nvmet_rdma_cmd	*srq_cmds;
	size_t			srq_size;
	struct kref		ref;
	struct list_head	entry;
120 121
	int			inline_data_size;
	int			inline_page_count;
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
};

static bool nvmet_rdma_use_srq;
module_param_named(use_srq, nvmet_rdma_use_srq, bool, 0444);
MODULE_PARM_DESC(use_srq, "Use shared receive queue.");

static DEFINE_IDA(nvmet_rdma_queue_ida);
static LIST_HEAD(nvmet_rdma_queue_list);
static DEFINE_MUTEX(nvmet_rdma_queue_mutex);

static LIST_HEAD(device_list);
static DEFINE_MUTEX(device_list_mutex);

static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp);
static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc);
static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc);
static void nvmet_rdma_qp_event(struct ib_event *event, void *priv);
static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue);

142
static const struct nvmet_fabrics_ops nvmet_rdma_ops;
143

144 145 146 147 148
static int num_pages(int len)
{
	return 1 + (((len - 1) & PAGE_MASK) >> PAGE_SHIFT);
}

149 150 151 152 153 154 155 156 157
/* XXX: really should move to a generic header sooner or later.. */
static inline u32 get_unaligned_le24(const u8 *p)
{
	return (u32)p[0] | (u32)p[1] << 8 | (u32)p[2] << 16;
}

static inline bool nvmet_rdma_need_data_in(struct nvmet_rdma_rsp *rsp)
{
	return nvme_is_write(rsp->req.cmd) &&
158
		rsp->req.transfer_len &&
159 160 161 162 163 164
		!(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA);
}

static inline bool nvmet_rdma_need_data_out(struct nvmet_rdma_rsp *rsp)
{
	return !nvme_is_write(rsp->req.cmd) &&
165
		rsp->req.transfer_len &&
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
		!rsp->req.rsp->status &&
		!(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA);
}

static inline struct nvmet_rdma_rsp *
nvmet_rdma_get_rsp(struct nvmet_rdma_queue *queue)
{
	struct nvmet_rdma_rsp *rsp;
	unsigned long flags;

	spin_lock_irqsave(&queue->rsps_lock, flags);
	rsp = list_first_entry(&queue->free_rsps,
				struct nvmet_rdma_rsp, free_list);
	list_del(&rsp->free_list);
	spin_unlock_irqrestore(&queue->rsps_lock, flags);

	return rsp;
}

static inline void
nvmet_rdma_put_rsp(struct nvmet_rdma_rsp *rsp)
{
	unsigned long flags;

	spin_lock_irqsave(&rsp->queue->rsps_lock, flags);
	list_add_tail(&rsp->free_list, &rsp->queue->free_rsps);
	spin_unlock_irqrestore(&rsp->queue->rsps_lock, flags);
}

195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
static void nvmet_rdma_free_inline_pages(struct nvmet_rdma_device *ndev,
				struct nvmet_rdma_cmd *c)
{
	struct scatterlist *sg;
	struct ib_sge *sge;
	int i;

	if (!ndev->inline_data_size)
		return;

	sg = c->inline_sg;
	sge = &c->sge[1];

	for (i = 0; i < ndev->inline_page_count; i++, sg++, sge++) {
		if (sge->length)
			ib_dma_unmap_page(ndev->device, sge->addr,
					sge->length, DMA_FROM_DEVICE);
		if (sg_page(sg))
			__free_page(sg_page(sg));
	}
}

static int nvmet_rdma_alloc_inline_pages(struct nvmet_rdma_device *ndev,
				struct nvmet_rdma_cmd *c)
{
	struct scatterlist *sg;
	struct ib_sge *sge;
	struct page *pg;
	int len;
	int i;

	if (!ndev->inline_data_size)
		return 0;

	sg = c->inline_sg;
	sg_init_table(sg, ndev->inline_page_count);
	sge = &c->sge[1];
	len = ndev->inline_data_size;

	for (i = 0; i < ndev->inline_page_count; i++, sg++, sge++) {
		pg = alloc_page(GFP_KERNEL);
		if (!pg)
			goto out_err;
		sg_assign_page(sg, pg);
		sge->addr = ib_dma_map_page(ndev->device,
			pg, 0, PAGE_SIZE, DMA_FROM_DEVICE);
		if (ib_dma_mapping_error(ndev->device, sge->addr))
			goto out_err;
		sge->length = min_t(int, len, PAGE_SIZE);
		sge->lkey = ndev->pd->local_dma_lkey;
		len -= sge->length;
	}

	return 0;
out_err:
	for (; i >= 0; i--, sg--, sge--) {
		if (sge->length)
			ib_dma_unmap_page(ndev->device, sge->addr,
					sge->length, DMA_FROM_DEVICE);
		if (sg_page(sg))
			__free_page(sg_page(sg));
	}
	return -ENOMEM;
}

260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
static int nvmet_rdma_alloc_cmd(struct nvmet_rdma_device *ndev,
			struct nvmet_rdma_cmd *c, bool admin)
{
	/* NVMe command / RDMA RECV */
	c->nvme_cmd = kmalloc(sizeof(*c->nvme_cmd), GFP_KERNEL);
	if (!c->nvme_cmd)
		goto out;

	c->sge[0].addr = ib_dma_map_single(ndev->device, c->nvme_cmd,
			sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
	if (ib_dma_mapping_error(ndev->device, c->sge[0].addr))
		goto out_free_cmd;

	c->sge[0].length = sizeof(*c->nvme_cmd);
	c->sge[0].lkey = ndev->pd->local_dma_lkey;

276 277
	if (!admin && nvmet_rdma_alloc_inline_pages(ndev, c))
		goto out_unmap_cmd;
278 279 280 281 282

	c->cqe.done = nvmet_rdma_recv_done;

	c->wr.wr_cqe = &c->cqe;
	c->wr.sg_list = c->sge;
283
	c->wr.num_sge = admin ? 1 : ndev->inline_page_count + 1;
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299

	return 0;

out_unmap_cmd:
	ib_dma_unmap_single(ndev->device, c->sge[0].addr,
			sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
out_free_cmd:
	kfree(c->nvme_cmd);

out:
	return -ENOMEM;
}

static void nvmet_rdma_free_cmd(struct nvmet_rdma_device *ndev,
		struct nvmet_rdma_cmd *c, bool admin)
{
300 301
	if (!admin)
		nvmet_rdma_free_inline_pages(ndev, c);
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
	ib_dma_unmap_single(ndev->device, c->sge[0].addr,
				sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
	kfree(c->nvme_cmd);
}

static struct nvmet_rdma_cmd *
nvmet_rdma_alloc_cmds(struct nvmet_rdma_device *ndev,
		int nr_cmds, bool admin)
{
	struct nvmet_rdma_cmd *cmds;
	int ret = -EINVAL, i;

	cmds = kcalloc(nr_cmds, sizeof(struct nvmet_rdma_cmd), GFP_KERNEL);
	if (!cmds)
		goto out;

	for (i = 0; i < nr_cmds; i++) {
		ret = nvmet_rdma_alloc_cmd(ndev, cmds + i, admin);
		if (ret)
			goto out_free;
	}

	return cmds;

out_free:
	while (--i >= 0)
		nvmet_rdma_free_cmd(ndev, cmds + i, admin);
	kfree(cmds);
out:
	return ERR_PTR(ret);
}

static void nvmet_rdma_free_cmds(struct nvmet_rdma_device *ndev,
		struct nvmet_rdma_cmd *cmds, int nr_cmds, bool admin)
{
	int i;

	for (i = 0; i < nr_cmds; i++)
		nvmet_rdma_free_cmd(ndev, cmds + i, admin);
	kfree(cmds);
}

static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device *ndev,
		struct nvmet_rdma_rsp *r)
{
	/* NVMe CQE / RDMA SEND */
	r->req.rsp = kmalloc(sizeof(*r->req.rsp), GFP_KERNEL);
	if (!r->req.rsp)
		goto out;

	r->send_sge.addr = ib_dma_map_single(ndev->device, r->req.rsp,
			sizeof(*r->req.rsp), DMA_TO_DEVICE);
	if (ib_dma_mapping_error(ndev->device, r->send_sge.addr))
		goto out_free_rsp;

	r->send_sge.length = sizeof(*r->req.rsp);
	r->send_sge.lkey = ndev->pd->local_dma_lkey;

	r->send_cqe.done = nvmet_rdma_send_done;

	r->send_wr.wr_cqe = &r->send_cqe;
	r->send_wr.sg_list = &r->send_sge;
	r->send_wr.num_sge = 1;
	r->send_wr.send_flags = IB_SEND_SIGNALED;

	/* Data In / RDMA READ */
	r->read_cqe.done = nvmet_rdma_read_data_done;
	return 0;

out_free_rsp:
	kfree(r->req.rsp);
out:
	return -ENOMEM;
}

static void nvmet_rdma_free_rsp(struct nvmet_rdma_device *ndev,
		struct nvmet_rdma_rsp *r)
{
	ib_dma_unmap_single(ndev->device, r->send_sge.addr,
				sizeof(*r->req.rsp), DMA_TO_DEVICE);
	kfree(r->req.rsp);
}

static int
nvmet_rdma_alloc_rsps(struct nvmet_rdma_queue *queue)
{
	struct nvmet_rdma_device *ndev = queue->dev;
	int nr_rsps = queue->recv_queue_size * 2;
	int ret = -EINVAL, i;

	queue->rsps = kcalloc(nr_rsps, sizeof(struct nvmet_rdma_rsp),
			GFP_KERNEL);
	if (!queue->rsps)
		goto out;

	for (i = 0; i < nr_rsps; i++) {
		struct nvmet_rdma_rsp *rsp = &queue->rsps[i];

		ret = nvmet_rdma_alloc_rsp(ndev, rsp);
		if (ret)
			goto out_free;

		list_add_tail(&rsp->free_list, &queue->free_rsps);
	}

	return 0;

out_free:
	while (--i >= 0) {
		struct nvmet_rdma_rsp *rsp = &queue->rsps[i];

		list_del(&rsp->free_list);
		nvmet_rdma_free_rsp(ndev, rsp);
	}
	kfree(queue->rsps);
out:
	return ret;
}

static void nvmet_rdma_free_rsps(struct nvmet_rdma_queue *queue)
{
	struct nvmet_rdma_device *ndev = queue->dev;
	int i, nr_rsps = queue->recv_queue_size * 2;

	for (i = 0; i < nr_rsps; i++) {
		struct nvmet_rdma_rsp *rsp = &queue->rsps[i];

		list_del(&rsp->free_list);
		nvmet_rdma_free_rsp(ndev, rsp);
	}
	kfree(queue->rsps);
}

static int nvmet_rdma_post_recv(struct nvmet_rdma_device *ndev,
		struct nvmet_rdma_cmd *cmd)
{
	struct ib_recv_wr *bad_wr;

440 441 442 443
	ib_dma_sync_single_for_device(ndev->device,
		cmd->sge[0].addr, cmd->sge[0].length,
		DMA_FROM_DEVICE);

444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
	if (ndev->srq)
		return ib_post_srq_recv(ndev->srq, &cmd->wr, &bad_wr);
	return ib_post_recv(cmd->queue->cm_id->qp, &cmd->wr, &bad_wr);
}

static void nvmet_rdma_process_wr_wait_list(struct nvmet_rdma_queue *queue)
{
	spin_lock(&queue->rsp_wr_wait_lock);
	while (!list_empty(&queue->rsp_wr_wait_list)) {
		struct nvmet_rdma_rsp *rsp;
		bool ret;

		rsp = list_entry(queue->rsp_wr_wait_list.next,
				struct nvmet_rdma_rsp, wait_list);
		list_del(&rsp->wait_list);

		spin_unlock(&queue->rsp_wr_wait_lock);
		ret = nvmet_rdma_execute_command(rsp);
		spin_lock(&queue->rsp_wr_wait_lock);

		if (!ret) {
			list_add(&rsp->wait_list, &queue->rsp_wr_wait_list);
			break;
		}
	}
	spin_unlock(&queue->rsp_wr_wait_lock);
}


static void nvmet_rdma_release_rsp(struct nvmet_rdma_rsp *rsp)
{
	struct nvmet_rdma_queue *queue = rsp->queue;

	atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail);

	if (rsp->n_rdma) {
		rdma_rw_ctx_destroy(&rsp->rw, queue->cm_id->qp,
				queue->cm_id->port_num, rsp->req.sg,
				rsp->req.sg_cnt, nvmet_data_dir(&rsp->req));
	}

485
	if (rsp->req.sg != rsp->cmd->inline_sg)
486
		sgl_free(rsp->req.sg);
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543

	if (unlikely(!list_empty_careful(&queue->rsp_wr_wait_list)))
		nvmet_rdma_process_wr_wait_list(queue);

	nvmet_rdma_put_rsp(rsp);
}

static void nvmet_rdma_error_comp(struct nvmet_rdma_queue *queue)
{
	if (queue->nvme_sq.ctrl) {
		nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl);
	} else {
		/*
		 * we didn't setup the controller yet in case
		 * of admin connect error, just disconnect and
		 * cleanup the queue
		 */
		nvmet_rdma_queue_disconnect(queue);
	}
}

static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
{
	struct nvmet_rdma_rsp *rsp =
		container_of(wc->wr_cqe, struct nvmet_rdma_rsp, send_cqe);

	nvmet_rdma_release_rsp(rsp);

	if (unlikely(wc->status != IB_WC_SUCCESS &&
		     wc->status != IB_WC_WR_FLUSH_ERR)) {
		pr_err("SEND for CQE 0x%p failed with status %s (%d).\n",
			wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status);
		nvmet_rdma_error_comp(rsp->queue);
	}
}

static void nvmet_rdma_queue_response(struct nvmet_req *req)
{
	struct nvmet_rdma_rsp *rsp =
		container_of(req, struct nvmet_rdma_rsp, req);
	struct rdma_cm_id *cm_id = rsp->queue->cm_id;
	struct ib_send_wr *first_wr, *bad_wr;

	if (rsp->flags & NVMET_RDMA_REQ_INVALIDATE_RKEY) {
		rsp->send_wr.opcode = IB_WR_SEND_WITH_INV;
		rsp->send_wr.ex.invalidate_rkey = rsp->invalidate_rkey;
	} else {
		rsp->send_wr.opcode = IB_WR_SEND;
	}

	if (nvmet_rdma_need_data_out(rsp))
		first_wr = rdma_rw_ctx_wrs(&rsp->rw, cm_id->qp,
				cm_id->port_num, NULL, &rsp->send_wr);
	else
		first_wr = &rsp->send_wr;

	nvmet_rdma_post_recv(rsp->queue->dev, rsp->cmd);
544 545 546 547 548

	ib_dma_sync_single_for_device(rsp->queue->dev->device,
		rsp->send_sge.addr, rsp->send_sge.length,
		DMA_TO_DEVICE);

549
	if (unlikely(ib_post_send(cm_id->qp, first_wr, &bad_wr))) {
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
		pr_err("sending cmd response failed\n");
		nvmet_rdma_release_rsp(rsp);
	}
}

static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc)
{
	struct nvmet_rdma_rsp *rsp =
		container_of(wc->wr_cqe, struct nvmet_rdma_rsp, read_cqe);
	struct nvmet_rdma_queue *queue = cq->cq_context;

	WARN_ON(rsp->n_rdma <= 0);
	atomic_add(rsp->n_rdma, &queue->sq_wr_avail);
	rdma_rw_ctx_destroy(&rsp->rw, queue->cm_id->qp,
			queue->cm_id->port_num, rsp->req.sg,
			rsp->req.sg_cnt, nvmet_data_dir(&rsp->req));
	rsp->n_rdma = 0;

	if (unlikely(wc->status != IB_WC_SUCCESS)) {
569
		nvmet_req_uninit(&rsp->req);
570 571 572 573 574 575 576 577 578
		nvmet_rdma_release_rsp(rsp);
		if (wc->status != IB_WC_WR_FLUSH_ERR) {
			pr_info("RDMA READ for CQE 0x%p failed with status %s (%d).\n",
				wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status);
			nvmet_rdma_error_comp(queue);
		}
		return;
	}

579
	nvmet_req_execute(&rsp->req);
580 581 582 583 584
}

static void nvmet_rdma_use_inline_sg(struct nvmet_rdma_rsp *rsp, u32 len,
		u64 off)
{
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
	int sg_count = num_pages(len);
	struct scatterlist *sg;
	int i;

	sg = rsp->cmd->inline_sg;
	for (i = 0; i < sg_count; i++, sg++) {
		if (i < sg_count - 1)
			sg_unmark_end(sg);
		else
			sg_mark_end(sg);
		sg->offset = off;
		sg->length = min_t(int, len, PAGE_SIZE - off);
		len -= sg->length;
		if (!i)
			off = 0;
	}

	rsp->req.sg = rsp->cmd->inline_sg;
	rsp->req.sg_cnt = sg_count;
604 605 606 607 608 609 610 611 612 613 614
}

static u16 nvmet_rdma_map_sgl_inline(struct nvmet_rdma_rsp *rsp)
{
	struct nvme_sgl_desc *sgl = &rsp->req.cmd->common.dptr.sgl;
	u64 off = le64_to_cpu(sgl->addr);
	u32 len = le32_to_cpu(sgl->length);

	if (!nvme_is_write(rsp->req.cmd))
		return NVME_SC_INVALID_FIELD | NVME_SC_DNR;

615
	if (off + len > rsp->queue->dev->inline_data_size) {
616 617 618 619 620 621 622 623 624 625
		pr_err("invalid inline data offset!\n");
		return NVME_SC_SGL_INVALID_OFFSET | NVME_SC_DNR;
	}

	/* no data command? */
	if (!len)
		return 0;

	nvmet_rdma_use_inline_sg(rsp, len, off);
	rsp->flags |= NVMET_RDMA_REQ_INLINE_DATA;
626
	rsp->req.transfer_len += len;
627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
	return 0;
}

static u16 nvmet_rdma_map_sgl_keyed(struct nvmet_rdma_rsp *rsp,
		struct nvme_keyed_sgl_desc *sgl, bool invalidate)
{
	struct rdma_cm_id *cm_id = rsp->queue->cm_id;
	u64 addr = le64_to_cpu(sgl->addr);
	u32 len = get_unaligned_le24(sgl->length);
	u32 key = get_unaligned_le32(sgl->key);
	int ret;

	/* no data command? */
	if (!len)
		return 0;

643 644 645
	rsp->req.sg = sgl_alloc(len, GFP_KERNEL, &rsp->req.sg_cnt);
	if (!rsp->req.sg)
		return NVME_SC_INTERNAL;
646 647 648 649 650 651

	ret = rdma_rw_ctx_init(&rsp->rw, cm_id->qp, cm_id->port_num,
			rsp->req.sg, rsp->req.sg_cnt, 0, addr, key,
			nvmet_data_dir(&rsp->req));
	if (ret < 0)
		return NVME_SC_INTERNAL;
652
	rsp->req.transfer_len += len;
653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
	rsp->n_rdma += ret;

	if (invalidate) {
		rsp->invalidate_rkey = key;
		rsp->flags |= NVMET_RDMA_REQ_INVALIDATE_RKEY;
	}

	return 0;
}

static u16 nvmet_rdma_map_sgl(struct nvmet_rdma_rsp *rsp)
{
	struct nvme_keyed_sgl_desc *sgl = &rsp->req.cmd->common.dptr.ksgl;

	switch (sgl->type >> 4) {
	case NVME_SGL_FMT_DATA_DESC:
		switch (sgl->type & 0xf) {
		case NVME_SGL_FMT_OFFSET:
			return nvmet_rdma_map_sgl_inline(rsp);
		default:
			pr_err("invalid SGL subtype: %#x\n", sgl->type);
			return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
		}
	case NVME_KEY_SGL_FMT_DATA_DESC:
		switch (sgl->type & 0xf) {
		case NVME_SGL_FMT_ADDRESS | NVME_SGL_FMT_INVALIDATE:
			return nvmet_rdma_map_sgl_keyed(rsp, sgl, true);
		case NVME_SGL_FMT_ADDRESS:
			return nvmet_rdma_map_sgl_keyed(rsp, sgl, false);
		default:
			pr_err("invalid SGL subtype: %#x\n", sgl->type);
			return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
		}
	default:
		pr_err("invalid SGL type: %#x\n", sgl->type);
		return NVME_SC_SGL_INVALID_TYPE | NVME_SC_DNR;
	}
}

static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp)
{
	struct nvmet_rdma_queue *queue = rsp->queue;

	if (unlikely(atomic_sub_return(1 + rsp->n_rdma,
			&queue->sq_wr_avail) < 0)) {
		pr_debug("IB send queue full (needed %d): queue %u cntlid %u\n",
				1 + rsp->n_rdma, queue->idx,
				queue->nvme_sq.ctrl->cntlid);
		atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail);
		return false;
	}

	if (nvmet_rdma_need_data_in(rsp)) {
		if (rdma_rw_ctx_post(&rsp->rw, queue->cm_id->qp,
				queue->cm_id->port_num, &rsp->read_cqe, NULL))
			nvmet_req_complete(&rsp->req, NVME_SC_DATA_XFER_ERROR);
	} else {
710
		nvmet_req_execute(&rsp->req);
711 712 713 714 715 716 717 718 719 720
	}

	return true;
}

static void nvmet_rdma_handle_command(struct nvmet_rdma_queue *queue,
		struct nvmet_rdma_rsp *cmd)
{
	u16 status;

721 722 723 724 725 726 727
	ib_dma_sync_single_for_cpu(queue->dev->device,
		cmd->cmd->sge[0].addr, cmd->cmd->sge[0].length,
		DMA_FROM_DEVICE);
	ib_dma_sync_single_for_cpu(queue->dev->device,
		cmd->send_sge.addr, cmd->send_sge.length,
		DMA_TO_DEVICE);

728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
	if (!nvmet_req_init(&cmd->req, &queue->nvme_cq,
			&queue->nvme_sq, &nvmet_rdma_ops))
		return;

	status = nvmet_rdma_map_sgl(cmd);
	if (status)
		goto out_err;

	if (unlikely(!nvmet_rdma_execute_command(cmd))) {
		spin_lock(&queue->rsp_wr_wait_lock);
		list_add_tail(&cmd->wait_list, &queue->rsp_wr_wait_list);
		spin_unlock(&queue->rsp_wr_wait_lock);
	}

	return;

out_err:
	nvmet_req_complete(&cmd->req, status);
}

static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
{
	struct nvmet_rdma_cmd *cmd =
		container_of(wc->wr_cqe, struct nvmet_rdma_cmd, cqe);
	struct nvmet_rdma_queue *queue = cq->cq_context;
	struct nvmet_rdma_rsp *rsp;

	if (unlikely(wc->status != IB_WC_SUCCESS)) {
		if (wc->status != IB_WC_WR_FLUSH_ERR) {
			pr_err("RECV for CQE 0x%p failed with status %s (%d)\n",
				wc->wr_cqe, ib_wc_status_msg(wc->status),
				wc->status);
			nvmet_rdma_error_comp(queue);
		}
		return;
	}

	if (unlikely(wc->byte_len < sizeof(struct nvme_command))) {
		pr_err("Ctrl Fatal Error: capsule size less than 64 bytes\n");
		nvmet_rdma_error_comp(queue);
		return;
	}

	cmd->queue = queue;
	rsp = nvmet_rdma_get_rsp(queue);
773
	rsp->queue = queue;
774 775 776
	rsp->cmd = cmd;
	rsp->flags = 0;
	rsp->req.cmd = cmd->nvme_cmd;
777 778
	rsp->req.port = queue->port;
	rsp->n_rdma = 0;
779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813

	if (unlikely(queue->state != NVMET_RDMA_Q_LIVE)) {
		unsigned long flags;

		spin_lock_irqsave(&queue->state_lock, flags);
		if (queue->state == NVMET_RDMA_Q_CONNECTING)
			list_add_tail(&rsp->wait_list, &queue->rsp_wait_list);
		else
			nvmet_rdma_put_rsp(rsp);
		spin_unlock_irqrestore(&queue->state_lock, flags);
		return;
	}

	nvmet_rdma_handle_command(queue, rsp);
}

static void nvmet_rdma_destroy_srq(struct nvmet_rdma_device *ndev)
{
	if (!ndev->srq)
		return;

	nvmet_rdma_free_cmds(ndev, ndev->srq_cmds, ndev->srq_size, false);
	ib_destroy_srq(ndev->srq);
}

static int nvmet_rdma_init_srq(struct nvmet_rdma_device *ndev)
{
	struct ib_srq_init_attr srq_attr = { NULL, };
	struct ib_srq *srq;
	size_t srq_size;
	int ret, i;

	srq_size = 4095;	/* XXX: tune */

	srq_attr.attr.max_wr = srq_size;
814
	srq_attr.attr.max_sge = 1 + ndev->inline_page_count;
815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863
	srq_attr.attr.srq_limit = 0;
	srq_attr.srq_type = IB_SRQT_BASIC;
	srq = ib_create_srq(ndev->pd, &srq_attr);
	if (IS_ERR(srq)) {
		/*
		 * If SRQs aren't supported we just go ahead and use normal
		 * non-shared receive queues.
		 */
		pr_info("SRQ requested but not supported.\n");
		return 0;
	}

	ndev->srq_cmds = nvmet_rdma_alloc_cmds(ndev, srq_size, false);
	if (IS_ERR(ndev->srq_cmds)) {
		ret = PTR_ERR(ndev->srq_cmds);
		goto out_destroy_srq;
	}

	ndev->srq = srq;
	ndev->srq_size = srq_size;

	for (i = 0; i < srq_size; i++)
		nvmet_rdma_post_recv(ndev, &ndev->srq_cmds[i]);

	return 0;

out_destroy_srq:
	ib_destroy_srq(srq);
	return ret;
}

static void nvmet_rdma_free_dev(struct kref *ref)
{
	struct nvmet_rdma_device *ndev =
		container_of(ref, struct nvmet_rdma_device, ref);

	mutex_lock(&device_list_mutex);
	list_del(&ndev->entry);
	mutex_unlock(&device_list_mutex);

	nvmet_rdma_destroy_srq(ndev);
	ib_dealloc_pd(ndev->pd);

	kfree(ndev);
}

static struct nvmet_rdma_device *
nvmet_rdma_find_get_device(struct rdma_cm_id *cm_id)
{
864
	struct nvmet_port *port = cm_id->context;
865
	struct nvmet_rdma_device *ndev;
866 867
	int inline_page_count;
	int inline_sge_count;
868 869 870 871 872 873 874 875 876 877 878 879 880
	int ret;

	mutex_lock(&device_list_mutex);
	list_for_each_entry(ndev, &device_list, entry) {
		if (ndev->device->node_guid == cm_id->device->node_guid &&
		    kref_get_unless_zero(&ndev->ref))
			goto out_unlock;
	}

	ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
	if (!ndev)
		goto out_err;

881 882 883 884 885 886 887 888 889 890 891 892
	inline_page_count = num_pages(port->inline_data_size);
	inline_sge_count = max(cm_id->device->attrs.max_sge_rd,
				cm_id->device->attrs.max_sge) - 1;
	if (inline_page_count > inline_sge_count) {
		pr_warn("inline_data_size %d cannot be supported by device %s. Reducing to %lu.\n",
			port->inline_data_size, cm_id->device->name,
			inline_sge_count * PAGE_SIZE);
		port->inline_data_size = inline_sge_count * PAGE_SIZE;
		inline_page_count = inline_sge_count;
	}
	ndev->inline_data_size = port->inline_data_size;
	ndev->inline_page_count = inline_page_count;
893 894 895
	ndev->device = cm_id->device;
	kref_init(&ndev->ref);

896
	ndev->pd = ib_alloc_pd(ndev->device, 0);
897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966
	if (IS_ERR(ndev->pd))
		goto out_free_dev;

	if (nvmet_rdma_use_srq) {
		ret = nvmet_rdma_init_srq(ndev);
		if (ret)
			goto out_free_pd;
	}

	list_add(&ndev->entry, &device_list);
out_unlock:
	mutex_unlock(&device_list_mutex);
	pr_debug("added %s.\n", ndev->device->name);
	return ndev;

out_free_pd:
	ib_dealloc_pd(ndev->pd);
out_free_dev:
	kfree(ndev);
out_err:
	mutex_unlock(&device_list_mutex);
	return NULL;
}

static int nvmet_rdma_create_queue_ib(struct nvmet_rdma_queue *queue)
{
	struct ib_qp_init_attr qp_attr;
	struct nvmet_rdma_device *ndev = queue->dev;
	int comp_vector, nr_cqe, ret, i;

	/*
	 * Spread the io queues across completion vectors,
	 * but still keep all admin queues on vector 0.
	 */
	comp_vector = !queue->host_qid ? 0 :
		queue->idx % ndev->device->num_comp_vectors;

	/*
	 * Reserve CQ slots for RECV + RDMA_READ/RDMA_WRITE + RDMA_SEND.
	 */
	nr_cqe = queue->recv_queue_size + 2 * queue->send_queue_size;

	queue->cq = ib_alloc_cq(ndev->device, queue,
			nr_cqe + 1, comp_vector,
			IB_POLL_WORKQUEUE);
	if (IS_ERR(queue->cq)) {
		ret = PTR_ERR(queue->cq);
		pr_err("failed to create CQ cqe= %d ret= %d\n",
		       nr_cqe + 1, ret);
		goto out;
	}

	memset(&qp_attr, 0, sizeof(qp_attr));
	qp_attr.qp_context = queue;
	qp_attr.event_handler = nvmet_rdma_qp_event;
	qp_attr.send_cq = queue->cq;
	qp_attr.recv_cq = queue->cq;
	qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
	qp_attr.qp_type = IB_QPT_RC;
	/* +1 for drain */
	qp_attr.cap.max_send_wr = queue->send_queue_size + 1;
	qp_attr.cap.max_rdma_ctxs = queue->send_queue_size;
	qp_attr.cap.max_send_sge = max(ndev->device->attrs.max_sge_rd,
					ndev->device->attrs.max_sge);

	if (ndev->srq) {
		qp_attr.srq = ndev->srq;
	} else {
		/* +1 for drain */
		qp_attr.cap.max_recv_wr = 1 + queue->recv_queue_size;
967
		qp_attr.cap.max_recv_sge = 1 + ndev->inline_page_count;
968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998
	}

	ret = rdma_create_qp(queue->cm_id, ndev->pd, &qp_attr);
	if (ret) {
		pr_err("failed to create_qp ret= %d\n", ret);
		goto err_destroy_cq;
	}

	atomic_set(&queue->sq_wr_avail, qp_attr.cap.max_send_wr);

	pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n",
		 __func__, queue->cq->cqe, qp_attr.cap.max_send_sge,
		 qp_attr.cap.max_send_wr, queue->cm_id);

	if (!ndev->srq) {
		for (i = 0; i < queue->recv_queue_size; i++) {
			queue->cmds[i].queue = queue;
			nvmet_rdma_post_recv(ndev, &queue->cmds[i]);
		}
	}

out:
	return ret;

err_destroy_cq:
	ib_free_cq(queue->cq);
	goto out;
}

static void nvmet_rdma_destroy_queue_ib(struct nvmet_rdma_queue *queue)
{
999 1000 1001 1002 1003
	struct ib_qp *qp = queue->cm_id->qp;

	ib_drain_qp(qp);
	rdma_destroy_id(queue->cm_id);
	ib_destroy_qp(qp);
1004 1005 1006 1007 1008
	ib_free_cq(queue->cq);
}

static void nvmet_rdma_free_queue(struct nvmet_rdma_queue *queue)
{
1009
	pr_debug("freeing queue %d\n", queue->idx);
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030

	nvmet_sq_destroy(&queue->nvme_sq);

	nvmet_rdma_destroy_queue_ib(queue);
	if (!queue->dev->srq) {
		nvmet_rdma_free_cmds(queue->dev, queue->cmds,
				queue->recv_queue_size,
				!queue->host_qid);
	}
	nvmet_rdma_free_rsps(queue);
	ida_simple_remove(&nvmet_rdma_queue_ida, queue->idx);
	kfree(queue);
}

static void nvmet_rdma_release_queue_work(struct work_struct *w)
{
	struct nvmet_rdma_queue *queue =
		container_of(w, struct nvmet_rdma_queue, release_work);
	struct nvmet_rdma_device *dev = queue->dev;

	nvmet_rdma_free_queue(queue);
1031

1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
	kref_put(&dev->ref, nvmet_rdma_free_dev);
}

static int
nvmet_rdma_parse_cm_connect_req(struct rdma_conn_param *conn,
				struct nvmet_rdma_queue *queue)
{
	struct nvme_rdma_cm_req *req;

	req = (struct nvme_rdma_cm_req *)conn->private_data;
	if (!req || conn->private_data_len == 0)
		return NVME_RDMA_CM_INVALID_LEN;

	if (le16_to_cpu(req->recfmt) != NVME_RDMA_CM_FMT_1_0)
		return NVME_RDMA_CM_INVALID_RECFMT;

	queue->host_qid = le16_to_cpu(req->qid);

	/*
1051
	 * req->hsqsize corresponds to our recv queue size plus 1
1052 1053
	 * req->hrqsize corresponds to our send queue size
	 */
1054
	queue->recv_queue_size = le16_to_cpu(req->hsqsize) + 1;
1055 1056
	queue->send_queue_size = le16_to_cpu(req->hrqsize);

1057
	if (!queue->host_qid && queue->recv_queue_size > NVME_AQ_DEPTH)
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
		return NVME_RDMA_CM_INVALID_HSQSIZE;

	/* XXX: Should we enforce some kind of max for IO queues? */

	return 0;
}

static int nvmet_rdma_cm_reject(struct rdma_cm_id *cm_id,
				enum nvme_rdma_cm_status status)
{
	struct nvme_rdma_cm_rej rej;

1070 1071 1072
	pr_debug("rejecting connect request: status %d (%s)\n",
		 status, nvme_rdma_cm_msg(status));

1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
	rej.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
	rej.sts = cpu_to_le16(status);

	return rdma_reject(cm_id, (void *)&rej, sizeof(rej));
}

static struct nvmet_rdma_queue *
nvmet_rdma_alloc_queue(struct nvmet_rdma_device *ndev,
		struct rdma_cm_id *cm_id,
		struct rdma_cm_event *event)
{
	struct nvmet_rdma_queue *queue;
	int ret;

	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
	if (!queue) {
		ret = NVME_RDMA_CM_NO_RSC;
		goto out_reject;
	}

	ret = nvmet_sq_init(&queue->nvme_sq);
B
Bart Van Assche 已提交
1094 1095
	if (ret) {
		ret = NVME_RDMA_CM_NO_RSC;
1096
		goto out_free_queue;
B
Bart Van Assche 已提交
1097
	}
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117

	ret = nvmet_rdma_parse_cm_connect_req(&event->param.conn, queue);
	if (ret)
		goto out_destroy_sq;

	/*
	 * Schedules the actual release because calling rdma_destroy_id from
	 * inside a CM callback would trigger a deadlock. (great API design..)
	 */
	INIT_WORK(&queue->release_work, nvmet_rdma_release_queue_work);
	queue->dev = ndev;
	queue->cm_id = cm_id;

	spin_lock_init(&queue->state_lock);
	queue->state = NVMET_RDMA_Q_CONNECTING;
	INIT_LIST_HEAD(&queue->rsp_wait_list);
	INIT_LIST_HEAD(&queue->rsp_wr_wait_list);
	spin_lock_init(&queue->rsp_wr_wait_lock);
	INIT_LIST_HEAD(&queue->free_rsps);
	spin_lock_init(&queue->rsps_lock);
1118
	INIT_LIST_HEAD(&queue->queue_list);
1119 1120 1121 1122

	queue->idx = ida_simple_get(&nvmet_rdma_queue_ida, 0, 0, GFP_KERNEL);
	if (queue->idx < 0) {
		ret = NVME_RDMA_CM_NO_RSC;
1123
		goto out_destroy_sq;
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
	}

	ret = nvmet_rdma_alloc_rsps(queue);
	if (ret) {
		ret = NVME_RDMA_CM_NO_RSC;
		goto out_ida_remove;
	}

	if (!ndev->srq) {
		queue->cmds = nvmet_rdma_alloc_cmds(ndev,
				queue->recv_queue_size,
				!queue->host_qid);
		if (IS_ERR(queue->cmds)) {
			ret = NVME_RDMA_CM_NO_RSC;
			goto out_free_responses;
		}
	}

	ret = nvmet_rdma_create_queue_ib(queue);
	if (ret) {
		pr_err("%s: creating RDMA queue failed (%d).\n",
			__func__, ret);
		ret = NVME_RDMA_CM_NO_RSC;
		goto out_free_cmds;
	}

	return queue;

out_free_cmds:
	if (!ndev->srq) {
		nvmet_rdma_free_cmds(queue->dev, queue->cmds,
				queue->recv_queue_size,
				!queue->host_qid);
	}
out_free_responses:
	nvmet_rdma_free_rsps(queue);
out_ida_remove:
	ida_simple_remove(&nvmet_rdma_queue_ida, queue->idx);
out_destroy_sq:
	nvmet_sq_destroy(&queue->nvme_sq);
out_free_queue:
	kfree(queue);
out_reject:
	nvmet_rdma_cm_reject(cm_id, ret);
	return NULL;
}

static void nvmet_rdma_qp_event(struct ib_event *event, void *priv)
{
	struct nvmet_rdma_queue *queue = priv;

	switch (event->event) {
	case IB_EVENT_COMM_EST:
		rdma_notify(queue->cm_id, event->event);
		break;
	default:
1180 1181
		pr_err("received IB QP event: %s (%d)\n",
		       ib_event_msg(event->event), event->event);
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
		break;
	}
}

static int nvmet_rdma_cm_accept(struct rdma_cm_id *cm_id,
		struct nvmet_rdma_queue *queue,
		struct rdma_conn_param *p)
{
	struct rdma_conn_param  param = { };
	struct nvme_rdma_cm_rep priv = { };
	int ret = -ENOMEM;

	param.rnr_retry_count = 7;
	param.flow_control = 1;
	param.initiator_depth = min_t(u8, p->initiator_depth,
		queue->dev->device->attrs.max_qp_init_rd_atom);
	param.private_data = &priv;
	param.private_data_len = sizeof(priv);
	priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
	priv.crqsize = cpu_to_le16(queue->recv_queue_size);

	ret = rdma_accept(cm_id, &param);
	if (ret)
		pr_err("rdma_accept failed (error code = %d)\n", ret);

	return ret;
}

static int nvmet_rdma_queue_connect(struct rdma_cm_id *cm_id,
		struct rdma_cm_event *event)
{
	struct nvmet_rdma_device *ndev;
	struct nvmet_rdma_queue *queue;
	int ret = -EINVAL;

	ndev = nvmet_rdma_find_get_device(cm_id);
	if (!ndev) {
		nvmet_rdma_cm_reject(cm_id, NVME_RDMA_CM_NO_RSC);
		return -ECONNREFUSED;
	}

	queue = nvmet_rdma_alloc_queue(ndev, cm_id, event);
	if (!queue) {
		ret = -ENOMEM;
		goto put_device;
	}
	queue->port = cm_id->context;

1230 1231 1232 1233 1234
	if (queue->host_qid == 0) {
		/* Let inflight controller teardown complete */
		flush_scheduled_work();
	}

1235
	ret = nvmet_rdma_cm_accept(cm_id, queue, &event->param.conn);
1236 1237 1238 1239 1240
	if (ret) {
		schedule_work(&queue->release_work);
		/* Destroying rdma_cm id is not needed here */
		return 0;
	}
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292

	mutex_lock(&nvmet_rdma_queue_mutex);
	list_add_tail(&queue->queue_list, &nvmet_rdma_queue_list);
	mutex_unlock(&nvmet_rdma_queue_mutex);

	return 0;

put_device:
	kref_put(&ndev->ref, nvmet_rdma_free_dev);

	return ret;
}

static void nvmet_rdma_queue_established(struct nvmet_rdma_queue *queue)
{
	unsigned long flags;

	spin_lock_irqsave(&queue->state_lock, flags);
	if (queue->state != NVMET_RDMA_Q_CONNECTING) {
		pr_warn("trying to establish a connected queue\n");
		goto out_unlock;
	}
	queue->state = NVMET_RDMA_Q_LIVE;

	while (!list_empty(&queue->rsp_wait_list)) {
		struct nvmet_rdma_rsp *cmd;

		cmd = list_first_entry(&queue->rsp_wait_list,
					struct nvmet_rdma_rsp, wait_list);
		list_del(&cmd->wait_list);

		spin_unlock_irqrestore(&queue->state_lock, flags);
		nvmet_rdma_handle_command(queue, cmd);
		spin_lock_irqsave(&queue->state_lock, flags);
	}

out_unlock:
	spin_unlock_irqrestore(&queue->state_lock, flags);
}

static void __nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue)
{
	bool disconnect = false;
	unsigned long flags;

	pr_debug("cm_id= %p queue->state= %d\n", queue->cm_id, queue->state);

	spin_lock_irqsave(&queue->state_lock, flags);
	switch (queue->state) {
	case NVMET_RDMA_Q_CONNECTING:
	case NVMET_RDMA_Q_LIVE:
		queue->state = NVMET_RDMA_Q_DISCONNECTING;
1293
		disconnect = true;
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
		break;
	case NVMET_RDMA_Q_DISCONNECTING:
		break;
	}
	spin_unlock_irqrestore(&queue->state_lock, flags);

	if (disconnect) {
		rdma_disconnect(queue->cm_id);
		schedule_work(&queue->release_work);
	}
}

static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue)
{
	bool disconnect = false;

	mutex_lock(&nvmet_rdma_queue_mutex);
	if (!list_empty(&queue->queue_list)) {
		list_del_init(&queue->queue_list);
		disconnect = true;
	}
	mutex_unlock(&nvmet_rdma_queue_mutex);

	if (disconnect)
		__nvmet_rdma_queue_disconnect(queue);
}

static void nvmet_rdma_queue_connect_fail(struct rdma_cm_id *cm_id,
		struct nvmet_rdma_queue *queue)
{
	WARN_ON_ONCE(queue->state != NVMET_RDMA_Q_CONNECTING);

1326 1327 1328 1329 1330 1331
	mutex_lock(&nvmet_rdma_queue_mutex);
	if (!list_empty(&queue->queue_list))
		list_del_init(&queue->queue_list);
	mutex_unlock(&nvmet_rdma_queue_mutex);

	pr_err("failed to connect queue %d\n", queue->idx);
1332 1333 1334
	schedule_work(&queue->release_work);
}

1335 1336
/**
 * nvme_rdma_device_removal() - Handle RDMA device removal
1337
 * @cm_id:	rdma_cm id, used for nvmet port
1338 1339 1340
 * @queue:      nvmet rdma queue (cm id qp_context)
 *
 * DEVICE_REMOVAL event notifies us that the RDMA device is about
1341 1342 1343
 * to unplug. Note that this event can be generated on a normal
 * queue cm_id and/or a device bound listener cm_id (where in this
 * case queue will be null).
1344
 *
1345 1346
 * We registered an ib_client to handle device removal for queues,
 * so we only need to handle the listening port cm_ids. In this case
1347 1348 1349 1350 1351 1352
 * we nullify the priv to prevent double cm_id destruction and destroying
 * the cm_id implicitely by returning a non-zero rc to the callout.
 */
static int nvmet_rdma_device_removal(struct rdma_cm_id *cm_id,
		struct nvmet_rdma_queue *queue)
{
1353
	struct nvmet_port *port;
1354

1355
	if (queue) {
1356
		/*
1357 1358 1359
		 * This is a queue cm_id. we have registered
		 * an ib_client to handle queues removal
		 * so don't interfear and just return.
1360
		 */
1361
		return 0;
1362 1363
	}

1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
	port = cm_id->context;

	/*
	 * This is a listener cm_id. Make sure that
	 * future remove_port won't invoke a double
	 * cm_id destroy. use atomic xchg to make sure
	 * we don't compete with remove_port.
	 */
	if (xchg(&port->priv, NULL) != cm_id)
		return 0;

1375 1376 1377 1378 1379 1380 1381
	/*
	 * We need to return 1 so that the core will destroy
	 * it's own ID.  What a great API design..
	 */
	return 1;
}

1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
static int nvmet_rdma_cm_handler(struct rdma_cm_id *cm_id,
		struct rdma_cm_event *event)
{
	struct nvmet_rdma_queue *queue = NULL;
	int ret = 0;

	if (cm_id->qp)
		queue = cm_id->qp->qp_context;

	pr_debug("%s (%d): status %d id %p\n",
		rdma_event_msg(event->event), event->event,
		event->status, cm_id);

	switch (event->event) {
	case RDMA_CM_EVENT_CONNECT_REQUEST:
		ret = nvmet_rdma_queue_connect(cm_id, event);
		break;
	case RDMA_CM_EVENT_ESTABLISHED:
		nvmet_rdma_queue_established(queue);
		break;
	case RDMA_CM_EVENT_ADDR_CHANGE:
	case RDMA_CM_EVENT_DISCONNECTED:
	case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1405
		nvmet_rdma_queue_disconnect(queue);
1406 1407 1408
		break;
	case RDMA_CM_EVENT_DEVICE_REMOVAL:
		ret = nvmet_rdma_device_removal(cm_id, queue);
1409 1410
		break;
	case RDMA_CM_EVENT_REJECTED:
1411 1412 1413
		pr_debug("Connection rejected: %s\n",
			 rdma_reject_msg(cm_id, event->status));
		/* FALLTHROUGH */
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
	case RDMA_CM_EVENT_UNREACHABLE:
	case RDMA_CM_EVENT_CONNECT_ERROR:
		nvmet_rdma_queue_connect_fail(cm_id, queue);
		break;
	default:
		pr_err("received unrecognized RDMA CM event %d\n",
			event->event);
		break;
	}

	return ret;
}

static void nvmet_rdma_delete_ctrl(struct nvmet_ctrl *ctrl)
{
	struct nvmet_rdma_queue *queue;

restart:
	mutex_lock(&nvmet_rdma_queue_mutex);
	list_for_each_entry(queue, &nvmet_rdma_queue_list, queue_list) {
		if (queue->nvme_sq.ctrl == ctrl) {
			list_del_init(&queue->queue_list);
			mutex_unlock(&nvmet_rdma_queue_mutex);

			__nvmet_rdma_queue_disconnect(queue);
			goto restart;
		}
	}
	mutex_unlock(&nvmet_rdma_queue_mutex);
}

static int nvmet_rdma_add_port(struct nvmet_port *port)
{
	struct rdma_cm_id *cm_id;
1448 1449
	struct sockaddr_storage addr = { };
	__kernel_sa_family_t af;
1450 1451 1452 1453
	int ret;

	switch (port->disc_addr.adrfam) {
	case NVMF_ADDR_FAMILY_IP4:
1454 1455 1456 1457
		af = AF_INET;
		break;
	case NVMF_ADDR_FAMILY_IP6:
		af = AF_INET6;
1458 1459 1460 1461 1462 1463 1464
		break;
	default:
		pr_err("address family %d not supported\n",
				port->disc_addr.adrfam);
		return -EINVAL;
	}

1465 1466 1467 1468 1469 1470 1471 1472 1473
	if (port->inline_data_size < 0) {
		port->inline_data_size = NVMET_RDMA_DEFAULT_INLINE_DATA_SIZE;
	} else if (port->inline_data_size > NVMET_RDMA_MAX_INLINE_DATA_SIZE) {
		pr_warn("inline_data_size %u is too large, reducing to %u\n",
			port->inline_data_size,
			NVMET_RDMA_MAX_INLINE_DATA_SIZE);
		port->inline_data_size = NVMET_RDMA_MAX_INLINE_DATA_SIZE;
	}

1474 1475 1476 1477 1478
	ret = inet_pton_with_scope(&init_net, af, port->disc_addr.traddr,
			port->disc_addr.trsvcid, &addr);
	if (ret) {
		pr_err("malformed ip/port passed: %s:%s\n",
			port->disc_addr.traddr, port->disc_addr.trsvcid);
1479
		return ret;
1480
	}
1481 1482 1483 1484 1485 1486 1487 1488

	cm_id = rdma_create_id(&init_net, nvmet_rdma_cm_handler, port,
			RDMA_PS_TCP, IB_QPT_RC);
	if (IS_ERR(cm_id)) {
		pr_err("CM ID creation failed\n");
		return PTR_ERR(cm_id);
	}

1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
	/*
	 * Allow both IPv4 and IPv6 sockets to bind a single port
	 * at the same time.
	 */
	ret = rdma_set_afonly(cm_id, 1);
	if (ret) {
		pr_err("rdma_set_afonly failed (%d)\n", ret);
		goto out_destroy_id;
	}

	ret = rdma_bind_addr(cm_id, (struct sockaddr *)&addr);
1500
	if (ret) {
1501 1502
		pr_err("binding CM ID to %pISpcs failed (%d)\n",
			(struct sockaddr *)&addr, ret);
1503 1504 1505 1506 1507
		goto out_destroy_id;
	}

	ret = rdma_listen(cm_id, 128);
	if (ret) {
1508 1509
		pr_err("listening to %pISpcs failed (%d)\n",
			(struct sockaddr *)&addr, ret);
1510 1511 1512
		goto out_destroy_id;
	}

1513 1514
	pr_info("enabling port %d (%pISpcs)\n",
		le16_to_cpu(port->disc_addr.portid), (struct sockaddr *)&addr);
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
	port->priv = cm_id;
	return 0;

out_destroy_id:
	rdma_destroy_id(cm_id);
	return ret;
}

static void nvmet_rdma_remove_port(struct nvmet_port *port)
{
1525
	struct rdma_cm_id *cm_id = xchg(&port->priv, NULL);
1526

1527 1528
	if (cm_id)
		rdma_destroy_id(cm_id);
1529 1530
}

1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
static void nvmet_rdma_disc_port_addr(struct nvmet_req *req,
		struct nvmet_port *port, char *traddr)
{
	struct rdma_cm_id *cm_id = port->priv;

	if (inet_addr_is_any((struct sockaddr *)&cm_id->route.addr.src_addr)) {
		struct nvmet_rdma_rsp *rsp =
			container_of(req, struct nvmet_rdma_rsp, req);
		struct rdma_cm_id *req_cm_id = rsp->queue->cm_id;
		struct sockaddr *addr = (void *)&req_cm_id->route.addr.src_addr;

		sprintf(traddr, "%pISc", addr);
	} else {
		memcpy(traddr, port->disc_addr.traddr, NVMF_TRADDR_SIZE);
	}
}

1548
static const struct nvmet_fabrics_ops nvmet_rdma_ops = {
1549 1550 1551 1552 1553 1554 1555 1556
	.owner			= THIS_MODULE,
	.type			= NVMF_TRTYPE_RDMA,
	.msdbd			= 1,
	.has_keyed_sgls		= 1,
	.add_port		= nvmet_rdma_add_port,
	.remove_port		= nvmet_rdma_remove_port,
	.queue_response		= nvmet_rdma_queue_response,
	.delete_ctrl		= nvmet_rdma_delete_ctrl,
1557
	.disc_traddr		= nvmet_rdma_disc_port_addr,
1558 1559
};

1560 1561
static void nvmet_rdma_remove_one(struct ib_device *ib_device, void *client_data)
{
1562
	struct nvmet_rdma_queue *queue, *tmp;
1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
	struct nvmet_rdma_device *ndev;
	bool found = false;

	mutex_lock(&device_list_mutex);
	list_for_each_entry(ndev, &device_list, entry) {
		if (ndev->device == ib_device) {
			found = true;
			break;
		}
	}
	mutex_unlock(&device_list_mutex);

	if (!found)
		return;
1577

1578 1579 1580 1581
	/*
	 * IB Device that is used by nvmet controllers is being removed,
	 * delete all queues using this device.
	 */
1582
	mutex_lock(&nvmet_rdma_queue_mutex);
1583 1584
	list_for_each_entry_safe(queue, tmp, &nvmet_rdma_queue_list,
				 queue_list) {
1585 1586 1587 1588
		if (queue->dev->device != ib_device)
			continue;

		pr_info("Removing queue %d\n", queue->idx);
1589
		list_del_init(&queue->queue_list);
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
		__nvmet_rdma_queue_disconnect(queue);
	}
	mutex_unlock(&nvmet_rdma_queue_mutex);

	flush_scheduled_work();
}

static struct ib_client nvmet_rdma_ib_client = {
	.name   = "nvmet_rdma",
	.remove = nvmet_rdma_remove_one
};

1602 1603
static int __init nvmet_rdma_init(void)
{
1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
	int ret;

	ret = ib_register_client(&nvmet_rdma_ib_client);
	if (ret)
		return ret;

	ret = nvmet_register_transport(&nvmet_rdma_ops);
	if (ret)
		goto err_ib_client;

	return 0;

err_ib_client:
	ib_unregister_client(&nvmet_rdma_ib_client);
	return ret;
1619 1620 1621 1622 1623
}

static void __exit nvmet_rdma_exit(void)
{
	nvmet_unregister_transport(&nvmet_rdma_ops);
1624
	ib_unregister_client(&nvmet_rdma_ib_client);
1625
	WARN_ON_ONCE(!list_empty(&nvmet_rdma_queue_list));
1626 1627 1628 1629 1630 1631 1632 1633
	ida_destroy(&nvmet_rdma_queue_ida);
}

module_init(nvmet_rdma_init);
module_exit(nvmet_rdma_exit);

MODULE_LICENSE("GPL v2");
MODULE_ALIAS("nvmet-transport-1"); /* 1 == NVMF_TRTYPE_RDMA */