rdma.c 42.5 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * NVMe over Fabrics RDMA target.
 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
 */
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/atomic.h>
#include <linux/ctype.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/nvme.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/wait.h>
#include <linux/inet.h>
#include <asm/unaligned.h>

#include <rdma/ib_verbs.h>
#include <rdma/rdma_cm.h>
#include <rdma/rw.h>

#include <linux/nvme-rdma.h>
#include "nvmet.h"

/*
28
 * We allow at least 1 page, up to 4 SGEs, and up to 16KB of inline data
29
 */
30 31 32
#define NVMET_RDMA_DEFAULT_INLINE_DATA_SIZE	PAGE_SIZE
#define NVMET_RDMA_MAX_INLINE_SGE		4
#define NVMET_RDMA_MAX_INLINE_DATA_SIZE		max_t(int, SZ_16K, PAGE_SIZE)
33

34 35 36
/* Assume mpsmin == device_page_size == 4KB */
#define NVMET_RDMA_MAX_MDTS			8

37
struct nvmet_rdma_cmd {
38
	struct ib_sge		sge[NVMET_RDMA_MAX_INLINE_SGE + 1];
39 40
	struct ib_cqe		cqe;
	struct ib_recv_wr	wr;
41
	struct scatterlist	inline_sg[NVMET_RDMA_MAX_INLINE_SGE];
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
	struct nvme_command     *nvme_cmd;
	struct nvmet_rdma_queue	*queue;
};

enum {
	NVMET_RDMA_REQ_INLINE_DATA	= (1 << 0),
	NVMET_RDMA_REQ_INVALIDATE_RKEY	= (1 << 1),
};

struct nvmet_rdma_rsp {
	struct ib_sge		send_sge;
	struct ib_cqe		send_cqe;
	struct ib_send_wr	send_wr;

	struct nvmet_rdma_cmd	*cmd;
	struct nvmet_rdma_queue	*queue;

	struct ib_cqe		read_cqe;
	struct rdma_rw_ctx	rw;

	struct nvmet_req	req;

64
	bool			allocated;
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
	u8			n_rdma;
	u32			flags;
	u32			invalidate_rkey;

	struct list_head	wait_list;
	struct list_head	free_list;
};

enum nvmet_rdma_queue_state {
	NVMET_RDMA_Q_CONNECTING,
	NVMET_RDMA_Q_LIVE,
	NVMET_RDMA_Q_DISCONNECTING,
};

struct nvmet_rdma_queue {
	struct rdma_cm_id	*cm_id;
81
	struct ib_qp		*qp;
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
	struct nvmet_port	*port;
	struct ib_cq		*cq;
	atomic_t		sq_wr_avail;
	struct nvmet_rdma_device *dev;
	spinlock_t		state_lock;
	enum nvmet_rdma_queue_state state;
	struct nvmet_cq		nvme_cq;
	struct nvmet_sq		nvme_sq;

	struct nvmet_rdma_rsp	*rsps;
	struct list_head	free_rsps;
	spinlock_t		rsps_lock;
	struct nvmet_rdma_cmd	*cmds;

	struct work_struct	release_work;
	struct list_head	rsp_wait_list;
	struct list_head	rsp_wr_wait_list;
	spinlock_t		rsp_wr_wait_lock;

	int			idx;
	int			host_qid;
	int			recv_queue_size;
	int			send_queue_size;

	struct list_head	queue_list;
};

109 110 111 112 113 114 115
struct nvmet_rdma_port {
	struct nvmet_port	*nport;
	struct sockaddr_storage addr;
	struct rdma_cm_id	*cm_id;
	struct delayed_work	repair_work;
};

116 117 118 119 120 121 122 123
struct nvmet_rdma_device {
	struct ib_device	*device;
	struct ib_pd		*pd;
	struct ib_srq		*srq;
	struct nvmet_rdma_cmd	*srq_cmds;
	size_t			srq_size;
	struct kref		ref;
	struct list_head	entry;
124 125
	int			inline_data_size;
	int			inline_page_count;
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
};

static bool nvmet_rdma_use_srq;
module_param_named(use_srq, nvmet_rdma_use_srq, bool, 0444);
MODULE_PARM_DESC(use_srq, "Use shared receive queue.");

static DEFINE_IDA(nvmet_rdma_queue_ida);
static LIST_HEAD(nvmet_rdma_queue_list);
static DEFINE_MUTEX(nvmet_rdma_queue_mutex);

static LIST_HEAD(device_list);
static DEFINE_MUTEX(device_list_mutex);

static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp);
static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc);
static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc);
static void nvmet_rdma_qp_event(struct ib_event *event, void *priv);
static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue);
145 146 147 148
static void nvmet_rdma_free_rsp(struct nvmet_rdma_device *ndev,
				struct nvmet_rdma_rsp *r);
static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device *ndev,
				struct nvmet_rdma_rsp *r);
149

150
static const struct nvmet_fabrics_ops nvmet_rdma_ops;
151

152 153 154 155 156
static int num_pages(int len)
{
	return 1 + (((len - 1) & PAGE_MASK) >> PAGE_SHIFT);
}

157 158 159
static inline bool nvmet_rdma_need_data_in(struct nvmet_rdma_rsp *rsp)
{
	return nvme_is_write(rsp->req.cmd) &&
160
		rsp->req.transfer_len &&
161 162 163 164 165 166
		!(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA);
}

static inline bool nvmet_rdma_need_data_out(struct nvmet_rdma_rsp *rsp)
{
	return !nvme_is_write(rsp->req.cmd) &&
167
		rsp->req.transfer_len &&
168
		!rsp->req.cqe->status &&
169 170 171 172 173 174 175 176 177 178
		!(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA);
}

static inline struct nvmet_rdma_rsp *
nvmet_rdma_get_rsp(struct nvmet_rdma_queue *queue)
{
	struct nvmet_rdma_rsp *rsp;
	unsigned long flags;

	spin_lock_irqsave(&queue->rsps_lock, flags);
179
	rsp = list_first_entry_or_null(&queue->free_rsps,
180
				struct nvmet_rdma_rsp, free_list);
181 182
	if (likely(rsp))
		list_del(&rsp->free_list);
183 184
	spin_unlock_irqrestore(&queue->rsps_lock, flags);

185
	if (unlikely(!rsp)) {
186 187 188
		int ret;

		rsp = kzalloc(sizeof(*rsp), GFP_KERNEL);
189 190
		if (unlikely(!rsp))
			return NULL;
191 192 193 194 195 196
		ret = nvmet_rdma_alloc_rsp(queue->dev, rsp);
		if (unlikely(ret)) {
			kfree(rsp);
			return NULL;
		}

197 198 199
		rsp->allocated = true;
	}

200 201 202 203 204 205 206 207
	return rsp;
}

static inline void
nvmet_rdma_put_rsp(struct nvmet_rdma_rsp *rsp)
{
	unsigned long flags;

208
	if (unlikely(rsp->allocated)) {
209
		nvmet_rdma_free_rsp(rsp->queue->dev, rsp);
210 211 212 213
		kfree(rsp);
		return;
	}

214 215 216 217 218
	spin_lock_irqsave(&rsp->queue->rsps_lock, flags);
	list_add_tail(&rsp->free_list, &rsp->queue->free_rsps);
	spin_unlock_irqrestore(&rsp->queue->rsps_lock, flags);
}

219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
static void nvmet_rdma_free_inline_pages(struct nvmet_rdma_device *ndev,
				struct nvmet_rdma_cmd *c)
{
	struct scatterlist *sg;
	struct ib_sge *sge;
	int i;

	if (!ndev->inline_data_size)
		return;

	sg = c->inline_sg;
	sge = &c->sge[1];

	for (i = 0; i < ndev->inline_page_count; i++, sg++, sge++) {
		if (sge->length)
			ib_dma_unmap_page(ndev->device, sge->addr,
					sge->length, DMA_FROM_DEVICE);
		if (sg_page(sg))
			__free_page(sg_page(sg));
	}
}

static int nvmet_rdma_alloc_inline_pages(struct nvmet_rdma_device *ndev,
				struct nvmet_rdma_cmd *c)
{
	struct scatterlist *sg;
	struct ib_sge *sge;
	struct page *pg;
	int len;
	int i;

	if (!ndev->inline_data_size)
		return 0;

	sg = c->inline_sg;
	sg_init_table(sg, ndev->inline_page_count);
	sge = &c->sge[1];
	len = ndev->inline_data_size;

	for (i = 0; i < ndev->inline_page_count; i++, sg++, sge++) {
		pg = alloc_page(GFP_KERNEL);
		if (!pg)
			goto out_err;
		sg_assign_page(sg, pg);
		sge->addr = ib_dma_map_page(ndev->device,
			pg, 0, PAGE_SIZE, DMA_FROM_DEVICE);
		if (ib_dma_mapping_error(ndev->device, sge->addr))
			goto out_err;
		sge->length = min_t(int, len, PAGE_SIZE);
		sge->lkey = ndev->pd->local_dma_lkey;
		len -= sge->length;
	}

	return 0;
out_err:
	for (; i >= 0; i--, sg--, sge--) {
		if (sge->length)
			ib_dma_unmap_page(ndev->device, sge->addr,
					sge->length, DMA_FROM_DEVICE);
		if (sg_page(sg))
			__free_page(sg_page(sg));
	}
	return -ENOMEM;
}

284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
static int nvmet_rdma_alloc_cmd(struct nvmet_rdma_device *ndev,
			struct nvmet_rdma_cmd *c, bool admin)
{
	/* NVMe command / RDMA RECV */
	c->nvme_cmd = kmalloc(sizeof(*c->nvme_cmd), GFP_KERNEL);
	if (!c->nvme_cmd)
		goto out;

	c->sge[0].addr = ib_dma_map_single(ndev->device, c->nvme_cmd,
			sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
	if (ib_dma_mapping_error(ndev->device, c->sge[0].addr))
		goto out_free_cmd;

	c->sge[0].length = sizeof(*c->nvme_cmd);
	c->sge[0].lkey = ndev->pd->local_dma_lkey;

300 301
	if (!admin && nvmet_rdma_alloc_inline_pages(ndev, c))
		goto out_unmap_cmd;
302 303 304 305 306

	c->cqe.done = nvmet_rdma_recv_done;

	c->wr.wr_cqe = &c->cqe;
	c->wr.sg_list = c->sge;
307
	c->wr.num_sge = admin ? 1 : ndev->inline_page_count + 1;
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323

	return 0;

out_unmap_cmd:
	ib_dma_unmap_single(ndev->device, c->sge[0].addr,
			sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
out_free_cmd:
	kfree(c->nvme_cmd);

out:
	return -ENOMEM;
}

static void nvmet_rdma_free_cmd(struct nvmet_rdma_device *ndev,
		struct nvmet_rdma_cmd *c, bool admin)
{
324 325
	if (!admin)
		nvmet_rdma_free_inline_pages(ndev, c);
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
	ib_dma_unmap_single(ndev->device, c->sge[0].addr,
				sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
	kfree(c->nvme_cmd);
}

static struct nvmet_rdma_cmd *
nvmet_rdma_alloc_cmds(struct nvmet_rdma_device *ndev,
		int nr_cmds, bool admin)
{
	struct nvmet_rdma_cmd *cmds;
	int ret = -EINVAL, i;

	cmds = kcalloc(nr_cmds, sizeof(struct nvmet_rdma_cmd), GFP_KERNEL);
	if (!cmds)
		goto out;

	for (i = 0; i < nr_cmds; i++) {
		ret = nvmet_rdma_alloc_cmd(ndev, cmds + i, admin);
		if (ret)
			goto out_free;
	}

	return cmds;

out_free:
	while (--i >= 0)
		nvmet_rdma_free_cmd(ndev, cmds + i, admin);
	kfree(cmds);
out:
	return ERR_PTR(ret);
}

static void nvmet_rdma_free_cmds(struct nvmet_rdma_device *ndev,
		struct nvmet_rdma_cmd *cmds, int nr_cmds, bool admin)
{
	int i;

	for (i = 0; i < nr_cmds; i++)
		nvmet_rdma_free_cmd(ndev, cmds + i, admin);
	kfree(cmds);
}

static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device *ndev,
		struct nvmet_rdma_rsp *r)
{
	/* NVMe CQE / RDMA SEND */
372 373
	r->req.cqe = kmalloc(sizeof(*r->req.cqe), GFP_KERNEL);
	if (!r->req.cqe)
374 375
		goto out;

376 377
	r->send_sge.addr = ib_dma_map_single(ndev->device, r->req.cqe,
			sizeof(*r->req.cqe), DMA_TO_DEVICE);
378 379 380
	if (ib_dma_mapping_error(ndev->device, r->send_sge.addr))
		goto out_free_rsp;

381
	r->req.p2p_client = &ndev->device->dev;
382
	r->send_sge.length = sizeof(*r->req.cqe);
383 384 385 386 387 388 389 390 391 392 393 394 395 396
	r->send_sge.lkey = ndev->pd->local_dma_lkey;

	r->send_cqe.done = nvmet_rdma_send_done;

	r->send_wr.wr_cqe = &r->send_cqe;
	r->send_wr.sg_list = &r->send_sge;
	r->send_wr.num_sge = 1;
	r->send_wr.send_flags = IB_SEND_SIGNALED;

	/* Data In / RDMA READ */
	r->read_cqe.done = nvmet_rdma_read_data_done;
	return 0;

out_free_rsp:
397
	kfree(r->req.cqe);
398 399 400 401 402 403 404 405
out:
	return -ENOMEM;
}

static void nvmet_rdma_free_rsp(struct nvmet_rdma_device *ndev,
		struct nvmet_rdma_rsp *r)
{
	ib_dma_unmap_single(ndev->device, r->send_sge.addr,
406 407
				sizeof(*r->req.cqe), DMA_TO_DEVICE);
	kfree(r->req.cqe);
408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
}

static int
nvmet_rdma_alloc_rsps(struct nvmet_rdma_queue *queue)
{
	struct nvmet_rdma_device *ndev = queue->dev;
	int nr_rsps = queue->recv_queue_size * 2;
	int ret = -EINVAL, i;

	queue->rsps = kcalloc(nr_rsps, sizeof(struct nvmet_rdma_rsp),
			GFP_KERNEL);
	if (!queue->rsps)
		goto out;

	for (i = 0; i < nr_rsps; i++) {
		struct nvmet_rdma_rsp *rsp = &queue->rsps[i];

		ret = nvmet_rdma_alloc_rsp(ndev, rsp);
		if (ret)
			goto out_free;

		list_add_tail(&rsp->free_list, &queue->free_rsps);
	}

	return 0;

out_free:
	while (--i >= 0) {
		struct nvmet_rdma_rsp *rsp = &queue->rsps[i];

		list_del(&rsp->free_list);
		nvmet_rdma_free_rsp(ndev, rsp);
	}
	kfree(queue->rsps);
out:
	return ret;
}

static void nvmet_rdma_free_rsps(struct nvmet_rdma_queue *queue)
{
	struct nvmet_rdma_device *ndev = queue->dev;
	int i, nr_rsps = queue->recv_queue_size * 2;

	for (i = 0; i < nr_rsps; i++) {
		struct nvmet_rdma_rsp *rsp = &queue->rsps[i];

		list_del(&rsp->free_list);
		nvmet_rdma_free_rsp(ndev, rsp);
	}
	kfree(queue->rsps);
}

static int nvmet_rdma_post_recv(struct nvmet_rdma_device *ndev,
		struct nvmet_rdma_cmd *cmd)
{
463
	int ret;
464

465 466 467 468
	ib_dma_sync_single_for_device(ndev->device,
		cmd->sge[0].addr, cmd->sge[0].length,
		DMA_FROM_DEVICE);

469
	if (ndev->srq)
470
		ret = ib_post_srq_recv(ndev->srq, &cmd->wr, NULL);
471
	else
472
		ret = ib_post_recv(cmd->queue->qp, &cmd->wr, NULL);
473 474 475 476 477

	if (unlikely(ret))
		pr_err("post_recv cmd failed\n");

	return ret;
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
}

static void nvmet_rdma_process_wr_wait_list(struct nvmet_rdma_queue *queue)
{
	spin_lock(&queue->rsp_wr_wait_lock);
	while (!list_empty(&queue->rsp_wr_wait_list)) {
		struct nvmet_rdma_rsp *rsp;
		bool ret;

		rsp = list_entry(queue->rsp_wr_wait_list.next,
				struct nvmet_rdma_rsp, wait_list);
		list_del(&rsp->wait_list);

		spin_unlock(&queue->rsp_wr_wait_lock);
		ret = nvmet_rdma_execute_command(rsp);
		spin_lock(&queue->rsp_wr_wait_lock);

		if (!ret) {
			list_add(&rsp->wait_list, &queue->rsp_wr_wait_list);
			break;
		}
	}
	spin_unlock(&queue->rsp_wr_wait_lock);
}


static void nvmet_rdma_release_rsp(struct nvmet_rdma_rsp *rsp)
{
	struct nvmet_rdma_queue *queue = rsp->queue;

	atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail);

	if (rsp->n_rdma) {
511
		rdma_rw_ctx_destroy(&rsp->rw, queue->qp,
512 513 514 515
				queue->cm_id->port_num, rsp->req.sg,
				rsp->req.sg_cnt, nvmet_data_dir(&rsp->req));
	}

516
	if (rsp->req.sg != rsp->cmd->inline_sg)
517
		nvmet_req_free_sgl(&rsp->req);
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542

	if (unlikely(!list_empty_careful(&queue->rsp_wr_wait_list)))
		nvmet_rdma_process_wr_wait_list(queue);

	nvmet_rdma_put_rsp(rsp);
}

static void nvmet_rdma_error_comp(struct nvmet_rdma_queue *queue)
{
	if (queue->nvme_sq.ctrl) {
		nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl);
	} else {
		/*
		 * we didn't setup the controller yet in case
		 * of admin connect error, just disconnect and
		 * cleanup the queue
		 */
		nvmet_rdma_queue_disconnect(queue);
	}
}

static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
{
	struct nvmet_rdma_rsp *rsp =
		container_of(wc->wr_cqe, struct nvmet_rdma_rsp, send_cqe);
543
	struct nvmet_rdma_queue *queue = cq->cq_context;
544 545 546 547 548 549 550

	nvmet_rdma_release_rsp(rsp);

	if (unlikely(wc->status != IB_WC_SUCCESS &&
		     wc->status != IB_WC_WR_FLUSH_ERR)) {
		pr_err("SEND for CQE 0x%p failed with status %s (%d).\n",
			wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status);
551
		nvmet_rdma_error_comp(queue);
552 553 554 555 556 557 558 559
	}
}

static void nvmet_rdma_queue_response(struct nvmet_req *req)
{
	struct nvmet_rdma_rsp *rsp =
		container_of(req, struct nvmet_rdma_rsp, req);
	struct rdma_cm_id *cm_id = rsp->queue->cm_id;
560
	struct ib_send_wr *first_wr;
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575

	if (rsp->flags & NVMET_RDMA_REQ_INVALIDATE_RKEY) {
		rsp->send_wr.opcode = IB_WR_SEND_WITH_INV;
		rsp->send_wr.ex.invalidate_rkey = rsp->invalidate_rkey;
	} else {
		rsp->send_wr.opcode = IB_WR_SEND;
	}

	if (nvmet_rdma_need_data_out(rsp))
		first_wr = rdma_rw_ctx_wrs(&rsp->rw, cm_id->qp,
				cm_id->port_num, NULL, &rsp->send_wr);
	else
		first_wr = &rsp->send_wr;

	nvmet_rdma_post_recv(rsp->queue->dev, rsp->cmd);
576 577 578 579 580

	ib_dma_sync_single_for_device(rsp->queue->dev->device,
		rsp->send_sge.addr, rsp->send_sge.length,
		DMA_TO_DEVICE);

581
	if (unlikely(ib_post_send(cm_id->qp, first_wr, NULL))) {
582 583 584 585 586 587 588 589 590 591 592 593 594
		pr_err("sending cmd response failed\n");
		nvmet_rdma_release_rsp(rsp);
	}
}

static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc)
{
	struct nvmet_rdma_rsp *rsp =
		container_of(wc->wr_cqe, struct nvmet_rdma_rsp, read_cqe);
	struct nvmet_rdma_queue *queue = cq->cq_context;

	WARN_ON(rsp->n_rdma <= 0);
	atomic_add(rsp->n_rdma, &queue->sq_wr_avail);
595
	rdma_rw_ctx_destroy(&rsp->rw, queue->qp,
596 597 598 599 600
			queue->cm_id->port_num, rsp->req.sg,
			rsp->req.sg_cnt, nvmet_data_dir(&rsp->req));
	rsp->n_rdma = 0;

	if (unlikely(wc->status != IB_WC_SUCCESS)) {
601
		nvmet_req_uninit(&rsp->req);
602 603 604 605 606 607 608 609 610
		nvmet_rdma_release_rsp(rsp);
		if (wc->status != IB_WC_WR_FLUSH_ERR) {
			pr_info("RDMA READ for CQE 0x%p failed with status %s (%d).\n",
				wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status);
			nvmet_rdma_error_comp(queue);
		}
		return;
	}

611
	rsp->req.execute(&rsp->req);
612 613 614 615 616
}

static void nvmet_rdma_use_inline_sg(struct nvmet_rdma_rsp *rsp, u32 len,
		u64 off)
{
617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
	int sg_count = num_pages(len);
	struct scatterlist *sg;
	int i;

	sg = rsp->cmd->inline_sg;
	for (i = 0; i < sg_count; i++, sg++) {
		if (i < sg_count - 1)
			sg_unmark_end(sg);
		else
			sg_mark_end(sg);
		sg->offset = off;
		sg->length = min_t(int, len, PAGE_SIZE - off);
		len -= sg->length;
		if (!i)
			off = 0;
	}

	rsp->req.sg = rsp->cmd->inline_sg;
	rsp->req.sg_cnt = sg_count;
636 637 638 639 640 641 642 643
}

static u16 nvmet_rdma_map_sgl_inline(struct nvmet_rdma_rsp *rsp)
{
	struct nvme_sgl_desc *sgl = &rsp->req.cmd->common.dptr.sgl;
	u64 off = le64_to_cpu(sgl->addr);
	u32 len = le32_to_cpu(sgl->length);

644 645 646
	if (!nvme_is_write(rsp->req.cmd)) {
		rsp->req.error_loc =
			offsetof(struct nvme_common_command, opcode);
647
		return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
648
	}
649

650
	if (off + len > rsp->queue->dev->inline_data_size) {
651 652 653 654 655 656 657 658 659 660
		pr_err("invalid inline data offset!\n");
		return NVME_SC_SGL_INVALID_OFFSET | NVME_SC_DNR;
	}

	/* no data command? */
	if (!len)
		return 0;

	nvmet_rdma_use_inline_sg(rsp, len, off);
	rsp->flags |= NVMET_RDMA_REQ_INLINE_DATA;
661
	rsp->req.transfer_len += len;
662 663 664 665 666 667 668 669 670 671 672
	return 0;
}

static u16 nvmet_rdma_map_sgl_keyed(struct nvmet_rdma_rsp *rsp,
		struct nvme_keyed_sgl_desc *sgl, bool invalidate)
{
	struct rdma_cm_id *cm_id = rsp->queue->cm_id;
	u64 addr = le64_to_cpu(sgl->addr);
	u32 key = get_unaligned_le32(sgl->key);
	int ret;

673 674
	rsp->req.transfer_len = get_unaligned_le24(sgl->length);

675
	/* no data command? */
676
	if (!rsp->req.transfer_len)
677 678
		return 0;

679
	ret = nvmet_req_alloc_sgl(&rsp->req);
680
	if (unlikely(ret < 0))
681
		goto error_out;
682 683 684 685

	ret = rdma_rw_ctx_init(&rsp->rw, cm_id->qp, cm_id->port_num,
			rsp->req.sg, rsp->req.sg_cnt, 0, addr, key,
			nvmet_data_dir(&rsp->req));
686
	if (unlikely(ret < 0))
687
		goto error_out;
688 689 690 691 692 693 694 695
	rsp->n_rdma += ret;

	if (invalidate) {
		rsp->invalidate_rkey = key;
		rsp->flags |= NVMET_RDMA_REQ_INVALIDATE_RKEY;
	}

	return 0;
696 697 698 699

error_out:
	rsp->req.transfer_len = 0;
	return NVME_SC_INTERNAL;
700 701 702 703 704 705 706 707 708 709 710 711 712
}

static u16 nvmet_rdma_map_sgl(struct nvmet_rdma_rsp *rsp)
{
	struct nvme_keyed_sgl_desc *sgl = &rsp->req.cmd->common.dptr.ksgl;

	switch (sgl->type >> 4) {
	case NVME_SGL_FMT_DATA_DESC:
		switch (sgl->type & 0xf) {
		case NVME_SGL_FMT_OFFSET:
			return nvmet_rdma_map_sgl_inline(rsp);
		default:
			pr_err("invalid SGL subtype: %#x\n", sgl->type);
713 714
			rsp->req.error_loc =
				offsetof(struct nvme_common_command, dptr);
715 716 717 718 719 720 721 722 723 724
			return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
		}
	case NVME_KEY_SGL_FMT_DATA_DESC:
		switch (sgl->type & 0xf) {
		case NVME_SGL_FMT_ADDRESS | NVME_SGL_FMT_INVALIDATE:
			return nvmet_rdma_map_sgl_keyed(rsp, sgl, true);
		case NVME_SGL_FMT_ADDRESS:
			return nvmet_rdma_map_sgl_keyed(rsp, sgl, false);
		default:
			pr_err("invalid SGL subtype: %#x\n", sgl->type);
725 726
			rsp->req.error_loc =
				offsetof(struct nvme_common_command, dptr);
727 728 729 730
			return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
		}
	default:
		pr_err("invalid SGL type: %#x\n", sgl->type);
731
		rsp->req.error_loc = offsetof(struct nvme_common_command, dptr);
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
		return NVME_SC_SGL_INVALID_TYPE | NVME_SC_DNR;
	}
}

static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp)
{
	struct nvmet_rdma_queue *queue = rsp->queue;

	if (unlikely(atomic_sub_return(1 + rsp->n_rdma,
			&queue->sq_wr_avail) < 0)) {
		pr_debug("IB send queue full (needed %d): queue %u cntlid %u\n",
				1 + rsp->n_rdma, queue->idx,
				queue->nvme_sq.ctrl->cntlid);
		atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail);
		return false;
	}

	if (nvmet_rdma_need_data_in(rsp)) {
750
		if (rdma_rw_ctx_post(&rsp->rw, queue->qp,
751 752 753
				queue->cm_id->port_num, &rsp->read_cqe, NULL))
			nvmet_req_complete(&rsp->req, NVME_SC_DATA_XFER_ERROR);
	} else {
754
		rsp->req.execute(&rsp->req);
755 756 757 758 759 760 761 762 763 764
	}

	return true;
}

static void nvmet_rdma_handle_command(struct nvmet_rdma_queue *queue,
		struct nvmet_rdma_rsp *cmd)
{
	u16 status;

765 766 767 768 769 770 771
	ib_dma_sync_single_for_cpu(queue->dev->device,
		cmd->cmd->sge[0].addr, cmd->cmd->sge[0].length,
		DMA_FROM_DEVICE);
	ib_dma_sync_single_for_cpu(queue->dev->device,
		cmd->send_sge.addr, cmd->send_sge.length,
		DMA_TO_DEVICE);

772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
	if (!nvmet_req_init(&cmd->req, &queue->nvme_cq,
			&queue->nvme_sq, &nvmet_rdma_ops))
		return;

	status = nvmet_rdma_map_sgl(cmd);
	if (status)
		goto out_err;

	if (unlikely(!nvmet_rdma_execute_command(cmd))) {
		spin_lock(&queue->rsp_wr_wait_lock);
		list_add_tail(&cmd->wait_list, &queue->rsp_wr_wait_list);
		spin_unlock(&queue->rsp_wr_wait_lock);
	}

	return;

out_err:
	nvmet_req_complete(&cmd->req, status);
}

static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
{
	struct nvmet_rdma_cmd *cmd =
		container_of(wc->wr_cqe, struct nvmet_rdma_cmd, cqe);
	struct nvmet_rdma_queue *queue = cq->cq_context;
	struct nvmet_rdma_rsp *rsp;

	if (unlikely(wc->status != IB_WC_SUCCESS)) {
		if (wc->status != IB_WC_WR_FLUSH_ERR) {
			pr_err("RECV for CQE 0x%p failed with status %s (%d)\n",
				wc->wr_cqe, ib_wc_status_msg(wc->status),
				wc->status);
			nvmet_rdma_error_comp(queue);
		}
		return;
	}

	if (unlikely(wc->byte_len < sizeof(struct nvme_command))) {
		pr_err("Ctrl Fatal Error: capsule size less than 64 bytes\n");
		nvmet_rdma_error_comp(queue);
		return;
	}

	cmd->queue = queue;
	rsp = nvmet_rdma_get_rsp(queue);
817 818 819 820 821 822 823 824 825
	if (unlikely(!rsp)) {
		/*
		 * we get here only under memory pressure,
		 * silently drop and have the host retry
		 * as we can't even fail it.
		 */
		nvmet_rdma_post_recv(queue->dev, cmd);
		return;
	}
826
	rsp->queue = queue;
827 828 829
	rsp->cmd = cmd;
	rsp->flags = 0;
	rsp->req.cmd = cmd->nvme_cmd;
830 831
	rsp->req.port = queue->port;
	rsp->n_rdma = 0;
832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866

	if (unlikely(queue->state != NVMET_RDMA_Q_LIVE)) {
		unsigned long flags;

		spin_lock_irqsave(&queue->state_lock, flags);
		if (queue->state == NVMET_RDMA_Q_CONNECTING)
			list_add_tail(&rsp->wait_list, &queue->rsp_wait_list);
		else
			nvmet_rdma_put_rsp(rsp);
		spin_unlock_irqrestore(&queue->state_lock, flags);
		return;
	}

	nvmet_rdma_handle_command(queue, rsp);
}

static void nvmet_rdma_destroy_srq(struct nvmet_rdma_device *ndev)
{
	if (!ndev->srq)
		return;

	nvmet_rdma_free_cmds(ndev, ndev->srq_cmds, ndev->srq_size, false);
	ib_destroy_srq(ndev->srq);
}

static int nvmet_rdma_init_srq(struct nvmet_rdma_device *ndev)
{
	struct ib_srq_init_attr srq_attr = { NULL, };
	struct ib_srq *srq;
	size_t srq_size;
	int ret, i;

	srq_size = 4095;	/* XXX: tune */

	srq_attr.attr.max_wr = srq_size;
867
	srq_attr.attr.max_sge = 1 + ndev->inline_page_count;
868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
	srq_attr.attr.srq_limit = 0;
	srq_attr.srq_type = IB_SRQT_BASIC;
	srq = ib_create_srq(ndev->pd, &srq_attr);
	if (IS_ERR(srq)) {
		/*
		 * If SRQs aren't supported we just go ahead and use normal
		 * non-shared receive queues.
		 */
		pr_info("SRQ requested but not supported.\n");
		return 0;
	}

	ndev->srq_cmds = nvmet_rdma_alloc_cmds(ndev, srq_size, false);
	if (IS_ERR(ndev->srq_cmds)) {
		ret = PTR_ERR(ndev->srq_cmds);
		goto out_destroy_srq;
	}

	ndev->srq = srq;
	ndev->srq_size = srq_size;

889 890 891 892 893
	for (i = 0; i < srq_size; i++) {
		ret = nvmet_rdma_post_recv(ndev, &ndev->srq_cmds[i]);
		if (ret)
			goto out_free_cmds;
	}
894 895 896

	return 0;

897 898
out_free_cmds:
	nvmet_rdma_free_cmds(ndev, ndev->srq_cmds, ndev->srq_size, false);
899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921
out_destroy_srq:
	ib_destroy_srq(srq);
	return ret;
}

static void nvmet_rdma_free_dev(struct kref *ref)
{
	struct nvmet_rdma_device *ndev =
		container_of(ref, struct nvmet_rdma_device, ref);

	mutex_lock(&device_list_mutex);
	list_del(&ndev->entry);
	mutex_unlock(&device_list_mutex);

	nvmet_rdma_destroy_srq(ndev);
	ib_dealloc_pd(ndev->pd);

	kfree(ndev);
}

static struct nvmet_rdma_device *
nvmet_rdma_find_get_device(struct rdma_cm_id *cm_id)
{
922 923
	struct nvmet_rdma_port *port = cm_id->context;
	struct nvmet_port *nport = port->nport;
924
	struct nvmet_rdma_device *ndev;
925 926
	int inline_page_count;
	int inline_sge_count;
927 928 929 930 931 932 933 934 935 936 937 938 939
	int ret;

	mutex_lock(&device_list_mutex);
	list_for_each_entry(ndev, &device_list, entry) {
		if (ndev->device->node_guid == cm_id->device->node_guid &&
		    kref_get_unless_zero(&ndev->ref))
			goto out_unlock;
	}

	ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
	if (!ndev)
		goto out_err;

940
	inline_page_count = num_pages(nport->inline_data_size);
941
	inline_sge_count = max(cm_id->device->attrs.max_sge_rd,
942
				cm_id->device->attrs.max_recv_sge) - 1;
943 944
	if (inline_page_count > inline_sge_count) {
		pr_warn("inline_data_size %d cannot be supported by device %s. Reducing to %lu.\n",
945
			nport->inline_data_size, cm_id->device->name,
946
			inline_sge_count * PAGE_SIZE);
947
		nport->inline_data_size = inline_sge_count * PAGE_SIZE;
948 949
		inline_page_count = inline_sge_count;
	}
950
	ndev->inline_data_size = nport->inline_data_size;
951
	ndev->inline_page_count = inline_page_count;
952 953 954
	ndev->device = cm_id->device;
	kref_init(&ndev->ref);

955
	ndev->pd = ib_alloc_pd(ndev->device, 0);
956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
	if (IS_ERR(ndev->pd))
		goto out_free_dev;

	if (nvmet_rdma_use_srq) {
		ret = nvmet_rdma_init_srq(ndev);
		if (ret)
			goto out_free_pd;
	}

	list_add(&ndev->entry, &device_list);
out_unlock:
	mutex_unlock(&device_list_mutex);
	pr_debug("added %s.\n", ndev->device->name);
	return ndev;

out_free_pd:
	ib_dealloc_pd(ndev->pd);
out_free_dev:
	kfree(ndev);
out_err:
	mutex_unlock(&device_list_mutex);
	return NULL;
}

static int nvmet_rdma_create_queue_ib(struct nvmet_rdma_queue *queue)
{
	struct ib_qp_init_attr qp_attr;
	struct nvmet_rdma_device *ndev = queue->dev;
984
	int comp_vector, nr_cqe, ret, i, factor;
985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016

	/*
	 * Spread the io queues across completion vectors,
	 * but still keep all admin queues on vector 0.
	 */
	comp_vector = !queue->host_qid ? 0 :
		queue->idx % ndev->device->num_comp_vectors;

	/*
	 * Reserve CQ slots for RECV + RDMA_READ/RDMA_WRITE + RDMA_SEND.
	 */
	nr_cqe = queue->recv_queue_size + 2 * queue->send_queue_size;

	queue->cq = ib_alloc_cq(ndev->device, queue,
			nr_cqe + 1, comp_vector,
			IB_POLL_WORKQUEUE);
	if (IS_ERR(queue->cq)) {
		ret = PTR_ERR(queue->cq);
		pr_err("failed to create CQ cqe= %d ret= %d\n",
		       nr_cqe + 1, ret);
		goto out;
	}

	memset(&qp_attr, 0, sizeof(qp_attr));
	qp_attr.qp_context = queue;
	qp_attr.event_handler = nvmet_rdma_qp_event;
	qp_attr.send_cq = queue->cq;
	qp_attr.recv_cq = queue->cq;
	qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
	qp_attr.qp_type = IB_QPT_RC;
	/* +1 for drain */
	qp_attr.cap.max_send_wr = queue->send_queue_size + 1;
1017 1018 1019
	factor = rdma_rw_mr_factor(ndev->device, queue->cm_id->port_num,
				   1 << NVMET_RDMA_MAX_MDTS);
	qp_attr.cap.max_rdma_ctxs = queue->send_queue_size * factor;
1020
	qp_attr.cap.max_send_sge = max(ndev->device->attrs.max_sge_rd,
1021
					ndev->device->attrs.max_send_sge);
1022 1023 1024 1025 1026 1027

	if (ndev->srq) {
		qp_attr.srq = ndev->srq;
	} else {
		/* +1 for drain */
		qp_attr.cap.max_recv_wr = 1 + queue->recv_queue_size;
1028
		qp_attr.cap.max_recv_sge = 1 + ndev->inline_page_count;
1029 1030 1031 1032 1033 1034 1035
	}

	ret = rdma_create_qp(queue->cm_id, ndev->pd, &qp_attr);
	if (ret) {
		pr_err("failed to create_qp ret= %d\n", ret);
		goto err_destroy_cq;
	}
1036
	queue->qp = queue->cm_id->qp;
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046

	atomic_set(&queue->sq_wr_avail, qp_attr.cap.max_send_wr);

	pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n",
		 __func__, queue->cq->cqe, qp_attr.cap.max_send_sge,
		 qp_attr.cap.max_send_wr, queue->cm_id);

	if (!ndev->srq) {
		for (i = 0; i < queue->recv_queue_size; i++) {
			queue->cmds[i].queue = queue;
1047 1048 1049
			ret = nvmet_rdma_post_recv(ndev, &queue->cmds[i]);
			if (ret)
				goto err_destroy_qp;
1050 1051 1052 1053 1054 1055
		}
	}

out:
	return ret;

1056 1057
err_destroy_qp:
	rdma_destroy_qp(queue->cm_id);
1058 1059 1060 1061 1062 1063 1064
err_destroy_cq:
	ib_free_cq(queue->cq);
	goto out;
}

static void nvmet_rdma_destroy_queue_ib(struct nvmet_rdma_queue *queue)
{
1065 1066 1067 1068
	ib_drain_qp(queue->qp);
	if (queue->cm_id)
		rdma_destroy_id(queue->cm_id);
	ib_destroy_qp(queue->qp);
1069 1070 1071 1072 1073
	ib_free_cq(queue->cq);
}

static void nvmet_rdma_free_queue(struct nvmet_rdma_queue *queue)
{
1074
	pr_debug("freeing queue %d\n", queue->idx);
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095

	nvmet_sq_destroy(&queue->nvme_sq);

	nvmet_rdma_destroy_queue_ib(queue);
	if (!queue->dev->srq) {
		nvmet_rdma_free_cmds(queue->dev, queue->cmds,
				queue->recv_queue_size,
				!queue->host_qid);
	}
	nvmet_rdma_free_rsps(queue);
	ida_simple_remove(&nvmet_rdma_queue_ida, queue->idx);
	kfree(queue);
}

static void nvmet_rdma_release_queue_work(struct work_struct *w)
{
	struct nvmet_rdma_queue *queue =
		container_of(w, struct nvmet_rdma_queue, release_work);
	struct nvmet_rdma_device *dev = queue->dev;

	nvmet_rdma_free_queue(queue);
1096

1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
	kref_put(&dev->ref, nvmet_rdma_free_dev);
}

static int
nvmet_rdma_parse_cm_connect_req(struct rdma_conn_param *conn,
				struct nvmet_rdma_queue *queue)
{
	struct nvme_rdma_cm_req *req;

	req = (struct nvme_rdma_cm_req *)conn->private_data;
	if (!req || conn->private_data_len == 0)
		return NVME_RDMA_CM_INVALID_LEN;

	if (le16_to_cpu(req->recfmt) != NVME_RDMA_CM_FMT_1_0)
		return NVME_RDMA_CM_INVALID_RECFMT;

	queue->host_qid = le16_to_cpu(req->qid);

	/*
1116
	 * req->hsqsize corresponds to our recv queue size plus 1
1117 1118
	 * req->hrqsize corresponds to our send queue size
	 */
1119
	queue->recv_queue_size = le16_to_cpu(req->hsqsize) + 1;
1120 1121
	queue->send_queue_size = le16_to_cpu(req->hrqsize);

1122
	if (!queue->host_qid && queue->recv_queue_size > NVME_AQ_DEPTH)
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
		return NVME_RDMA_CM_INVALID_HSQSIZE;

	/* XXX: Should we enforce some kind of max for IO queues? */

	return 0;
}

static int nvmet_rdma_cm_reject(struct rdma_cm_id *cm_id,
				enum nvme_rdma_cm_status status)
{
	struct nvme_rdma_cm_rej rej;

1135 1136 1137
	pr_debug("rejecting connect request: status %d (%s)\n",
		 status, nvme_rdma_cm_msg(status));

1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
	rej.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
	rej.sts = cpu_to_le16(status);

	return rdma_reject(cm_id, (void *)&rej, sizeof(rej));
}

static struct nvmet_rdma_queue *
nvmet_rdma_alloc_queue(struct nvmet_rdma_device *ndev,
		struct rdma_cm_id *cm_id,
		struct rdma_cm_event *event)
{
	struct nvmet_rdma_queue *queue;
	int ret;

	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
	if (!queue) {
		ret = NVME_RDMA_CM_NO_RSC;
		goto out_reject;
	}

	ret = nvmet_sq_init(&queue->nvme_sq);
B
Bart Van Assche 已提交
1159 1160
	if (ret) {
		ret = NVME_RDMA_CM_NO_RSC;
1161
		goto out_free_queue;
B
Bart Van Assche 已提交
1162
	}
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182

	ret = nvmet_rdma_parse_cm_connect_req(&event->param.conn, queue);
	if (ret)
		goto out_destroy_sq;

	/*
	 * Schedules the actual release because calling rdma_destroy_id from
	 * inside a CM callback would trigger a deadlock. (great API design..)
	 */
	INIT_WORK(&queue->release_work, nvmet_rdma_release_queue_work);
	queue->dev = ndev;
	queue->cm_id = cm_id;

	spin_lock_init(&queue->state_lock);
	queue->state = NVMET_RDMA_Q_CONNECTING;
	INIT_LIST_HEAD(&queue->rsp_wait_list);
	INIT_LIST_HEAD(&queue->rsp_wr_wait_list);
	spin_lock_init(&queue->rsp_wr_wait_lock);
	INIT_LIST_HEAD(&queue->free_rsps);
	spin_lock_init(&queue->rsps_lock);
1183
	INIT_LIST_HEAD(&queue->queue_list);
1184 1185 1186 1187

	queue->idx = ida_simple_get(&nvmet_rdma_queue_ida, 0, 0, GFP_KERNEL);
	if (queue->idx < 0) {
		ret = NVME_RDMA_CM_NO_RSC;
1188
		goto out_destroy_sq;
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
	}

	ret = nvmet_rdma_alloc_rsps(queue);
	if (ret) {
		ret = NVME_RDMA_CM_NO_RSC;
		goto out_ida_remove;
	}

	if (!ndev->srq) {
		queue->cmds = nvmet_rdma_alloc_cmds(ndev,
				queue->recv_queue_size,
				!queue->host_qid);
		if (IS_ERR(queue->cmds)) {
			ret = NVME_RDMA_CM_NO_RSC;
			goto out_free_responses;
		}
	}

	ret = nvmet_rdma_create_queue_ib(queue);
	if (ret) {
		pr_err("%s: creating RDMA queue failed (%d).\n",
			__func__, ret);
		ret = NVME_RDMA_CM_NO_RSC;
		goto out_free_cmds;
	}

	return queue;

out_free_cmds:
	if (!ndev->srq) {
		nvmet_rdma_free_cmds(queue->dev, queue->cmds,
				queue->recv_queue_size,
				!queue->host_qid);
	}
out_free_responses:
	nvmet_rdma_free_rsps(queue);
out_ida_remove:
	ida_simple_remove(&nvmet_rdma_queue_ida, queue->idx);
out_destroy_sq:
	nvmet_sq_destroy(&queue->nvme_sq);
out_free_queue:
	kfree(queue);
out_reject:
	nvmet_rdma_cm_reject(cm_id, ret);
	return NULL;
}

static void nvmet_rdma_qp_event(struct ib_event *event, void *priv)
{
	struct nvmet_rdma_queue *queue = priv;

	switch (event->event) {
	case IB_EVENT_COMM_EST:
		rdma_notify(queue->cm_id, event->event);
		break;
	default:
1245 1246
		pr_err("received IB QP event: %s (%d)\n",
		       ib_event_msg(event->event), event->event);
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
		break;
	}
}

static int nvmet_rdma_cm_accept(struct rdma_cm_id *cm_id,
		struct nvmet_rdma_queue *queue,
		struct rdma_conn_param *p)
{
	struct rdma_conn_param  param = { };
	struct nvme_rdma_cm_rep priv = { };
	int ret = -ENOMEM;

	param.rnr_retry_count = 7;
	param.flow_control = 1;
	param.initiator_depth = min_t(u8, p->initiator_depth,
		queue->dev->device->attrs.max_qp_init_rd_atom);
	param.private_data = &priv;
	param.private_data_len = sizeof(priv);
	priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
	priv.crqsize = cpu_to_le16(queue->recv_queue_size);

	ret = rdma_accept(cm_id, &param);
	if (ret)
		pr_err("rdma_accept failed (error code = %d)\n", ret);

	return ret;
}

static int nvmet_rdma_queue_connect(struct rdma_cm_id *cm_id,
		struct rdma_cm_event *event)
{
1278
	struct nvmet_rdma_port *port = cm_id->context;
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
	struct nvmet_rdma_device *ndev;
	struct nvmet_rdma_queue *queue;
	int ret = -EINVAL;

	ndev = nvmet_rdma_find_get_device(cm_id);
	if (!ndev) {
		nvmet_rdma_cm_reject(cm_id, NVME_RDMA_CM_NO_RSC);
		return -ECONNREFUSED;
	}

	queue = nvmet_rdma_alloc_queue(ndev, cm_id, event);
	if (!queue) {
		ret = -ENOMEM;
		goto put_device;
	}
1294
	queue->port = port->nport;
1295

1296 1297
	if (queue->host_qid == 0) {
		/* Let inflight controller teardown complete */
1298
		flush_scheduled_work();
1299 1300
	}

1301
	ret = nvmet_rdma_cm_accept(cm_id, queue, &event->param.conn);
1302
	if (ret) {
1303 1304 1305 1306 1307 1308
		/*
		 * Don't destroy the cm_id in free path, as we implicitly
		 * destroy the cm_id here with non-zero ret code.
		 */
		queue->cm_id = NULL;
		goto free_queue;
1309
	}
1310 1311 1312 1313 1314 1315 1316

	mutex_lock(&nvmet_rdma_queue_mutex);
	list_add_tail(&queue->queue_list, &nvmet_rdma_queue_list);
	mutex_unlock(&nvmet_rdma_queue_mutex);

	return 0;

1317 1318
free_queue:
	nvmet_rdma_free_queue(queue);
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
put_device:
	kref_put(&ndev->ref, nvmet_rdma_free_dev);

	return ret;
}

static void nvmet_rdma_queue_established(struct nvmet_rdma_queue *queue)
{
	unsigned long flags;

	spin_lock_irqsave(&queue->state_lock, flags);
	if (queue->state != NVMET_RDMA_Q_CONNECTING) {
		pr_warn("trying to establish a connected queue\n");
		goto out_unlock;
	}
	queue->state = NVMET_RDMA_Q_LIVE;

	while (!list_empty(&queue->rsp_wait_list)) {
		struct nvmet_rdma_rsp *cmd;

		cmd = list_first_entry(&queue->rsp_wait_list,
					struct nvmet_rdma_rsp, wait_list);
		list_del(&cmd->wait_list);

		spin_unlock_irqrestore(&queue->state_lock, flags);
		nvmet_rdma_handle_command(queue, cmd);
		spin_lock_irqsave(&queue->state_lock, flags);
	}

out_unlock:
	spin_unlock_irqrestore(&queue->state_lock, flags);
}

static void __nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue)
{
	bool disconnect = false;
	unsigned long flags;

	pr_debug("cm_id= %p queue->state= %d\n", queue->cm_id, queue->state);

	spin_lock_irqsave(&queue->state_lock, flags);
	switch (queue->state) {
	case NVMET_RDMA_Q_CONNECTING:
	case NVMET_RDMA_Q_LIVE:
		queue->state = NVMET_RDMA_Q_DISCONNECTING;
1364
		disconnect = true;
1365 1366 1367 1368 1369 1370 1371 1372
		break;
	case NVMET_RDMA_Q_DISCONNECTING:
		break;
	}
	spin_unlock_irqrestore(&queue->state_lock, flags);

	if (disconnect) {
		rdma_disconnect(queue->cm_id);
1373
		schedule_work(&queue->release_work);
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
	}
}

static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue)
{
	bool disconnect = false;

	mutex_lock(&nvmet_rdma_queue_mutex);
	if (!list_empty(&queue->queue_list)) {
		list_del_init(&queue->queue_list);
		disconnect = true;
	}
	mutex_unlock(&nvmet_rdma_queue_mutex);

	if (disconnect)
		__nvmet_rdma_queue_disconnect(queue);
}

static void nvmet_rdma_queue_connect_fail(struct rdma_cm_id *cm_id,
		struct nvmet_rdma_queue *queue)
{
	WARN_ON_ONCE(queue->state != NVMET_RDMA_Q_CONNECTING);

1397 1398 1399 1400 1401 1402
	mutex_lock(&nvmet_rdma_queue_mutex);
	if (!list_empty(&queue->queue_list))
		list_del_init(&queue->queue_list);
	mutex_unlock(&nvmet_rdma_queue_mutex);

	pr_err("failed to connect queue %d\n", queue->idx);
1403
	schedule_work(&queue->release_work);
1404 1405
}

1406 1407
/**
 * nvme_rdma_device_removal() - Handle RDMA device removal
1408
 * @cm_id:	rdma_cm id, used for nvmet port
1409 1410 1411
 * @queue:      nvmet rdma queue (cm id qp_context)
 *
 * DEVICE_REMOVAL event notifies us that the RDMA device is about
1412 1413 1414
 * to unplug. Note that this event can be generated on a normal
 * queue cm_id and/or a device bound listener cm_id (where in this
 * case queue will be null).
1415
 *
1416 1417
 * We registered an ib_client to handle device removal for queues,
 * so we only need to handle the listening port cm_ids. In this case
1418 1419 1420 1421 1422 1423
 * we nullify the priv to prevent double cm_id destruction and destroying
 * the cm_id implicitely by returning a non-zero rc to the callout.
 */
static int nvmet_rdma_device_removal(struct rdma_cm_id *cm_id,
		struct nvmet_rdma_queue *queue)
{
1424
	struct nvmet_rdma_port *port;
1425

1426
	if (queue) {
1427
		/*
1428 1429 1430
		 * This is a queue cm_id. we have registered
		 * an ib_client to handle queues removal
		 * so don't interfear and just return.
1431
		 */
1432
		return 0;
1433 1434
	}

1435 1436 1437 1438 1439 1440 1441 1442
	port = cm_id->context;

	/*
	 * This is a listener cm_id. Make sure that
	 * future remove_port won't invoke a double
	 * cm_id destroy. use atomic xchg to make sure
	 * we don't compete with remove_port.
	 */
1443
	if (xchg(&port->cm_id, NULL) != cm_id)
1444 1445
		return 0;

1446 1447 1448 1449 1450 1451 1452
	/*
	 * We need to return 1 so that the core will destroy
	 * it's own ID.  What a great API design..
	 */
	return 1;
}

1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
static int nvmet_rdma_cm_handler(struct rdma_cm_id *cm_id,
		struct rdma_cm_event *event)
{
	struct nvmet_rdma_queue *queue = NULL;
	int ret = 0;

	if (cm_id->qp)
		queue = cm_id->qp->qp_context;

	pr_debug("%s (%d): status %d id %p\n",
		rdma_event_msg(event->event), event->event,
		event->status, cm_id);

	switch (event->event) {
	case RDMA_CM_EVENT_CONNECT_REQUEST:
		ret = nvmet_rdma_queue_connect(cm_id, event);
		break;
	case RDMA_CM_EVENT_ESTABLISHED:
		nvmet_rdma_queue_established(queue);
		break;
	case RDMA_CM_EVENT_ADDR_CHANGE:
1474 1475 1476 1477 1478 1479 1480
		if (!queue) {
			struct nvmet_rdma_port *port = cm_id->context;

			schedule_delayed_work(&port->repair_work, 0);
			break;
		}
		/* FALLTHROUGH */
1481 1482
	case RDMA_CM_EVENT_DISCONNECTED:
	case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1483
		nvmet_rdma_queue_disconnect(queue);
1484 1485 1486
		break;
	case RDMA_CM_EVENT_DEVICE_REMOVAL:
		ret = nvmet_rdma_device_removal(cm_id, queue);
1487 1488
		break;
	case RDMA_CM_EVENT_REJECTED:
1489 1490 1491
		pr_debug("Connection rejected: %s\n",
			 rdma_reject_msg(cm_id, event->status));
		/* FALLTHROUGH */
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
	case RDMA_CM_EVENT_UNREACHABLE:
	case RDMA_CM_EVENT_CONNECT_ERROR:
		nvmet_rdma_queue_connect_fail(cm_id, queue);
		break;
	default:
		pr_err("received unrecognized RDMA CM event %d\n",
			event->event);
		break;
	}

	return ret;
}

static void nvmet_rdma_delete_ctrl(struct nvmet_ctrl *ctrl)
{
	struct nvmet_rdma_queue *queue;

restart:
	mutex_lock(&nvmet_rdma_queue_mutex);
	list_for_each_entry(queue, &nvmet_rdma_queue_list, queue_list) {
		if (queue->nvme_sq.ctrl == ctrl) {
			list_del_init(&queue->queue_list);
			mutex_unlock(&nvmet_rdma_queue_mutex);

			__nvmet_rdma_queue_disconnect(queue);
			goto restart;
		}
	}
	mutex_unlock(&nvmet_rdma_queue_mutex);
}

1523
static void nvmet_rdma_disable_port(struct nvmet_rdma_port *port)
1524
{
1525
	struct rdma_cm_id *cm_id = xchg(&port->cm_id, NULL);
1526

1527 1528 1529
	if (cm_id)
		rdma_destroy_id(cm_id);
}
1530

1531 1532 1533 1534 1535
static int nvmet_rdma_enable_port(struct nvmet_rdma_port *port)
{
	struct sockaddr *addr = (struct sockaddr *)&port->addr;
	struct rdma_cm_id *cm_id;
	int ret;
1536 1537 1538 1539 1540 1541 1542 1543

	cm_id = rdma_create_id(&init_net, nvmet_rdma_cm_handler, port,
			RDMA_PS_TCP, IB_QPT_RC);
	if (IS_ERR(cm_id)) {
		pr_err("CM ID creation failed\n");
		return PTR_ERR(cm_id);
	}

1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
	/*
	 * Allow both IPv4 and IPv6 sockets to bind a single port
	 * at the same time.
	 */
	ret = rdma_set_afonly(cm_id, 1);
	if (ret) {
		pr_err("rdma_set_afonly failed (%d)\n", ret);
		goto out_destroy_id;
	}

1554
	ret = rdma_bind_addr(cm_id, addr);
1555
	if (ret) {
1556
		pr_err("binding CM ID to %pISpcs failed (%d)\n", addr, ret);
1557 1558 1559 1560 1561
		goto out_destroy_id;
	}

	ret = rdma_listen(cm_id, 128);
	if (ret) {
1562
		pr_err("listening to %pISpcs failed (%d)\n", addr, ret);
1563 1564 1565
		goto out_destroy_id;
	}

1566
	port->cm_id = cm_id;
1567 1568 1569 1570 1571 1572 1573
	return 0;

out_destroy_id:
	rdma_destroy_id(cm_id);
	return ret;
}

1574
static void nvmet_rdma_repair_port_work(struct work_struct *w)
1575
{
1576 1577 1578
	struct nvmet_rdma_port *port = container_of(to_delayed_work(w),
			struct nvmet_rdma_port, repair_work);
	int ret;
1579

1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
	nvmet_rdma_disable_port(port);
	ret = nvmet_rdma_enable_port(port);
	if (ret)
		schedule_delayed_work(&port->repair_work, 5 * HZ);
}

static int nvmet_rdma_add_port(struct nvmet_port *nport)
{
	struct nvmet_rdma_port *port;
	__kernel_sa_family_t af;
	int ret;

	port = kzalloc(sizeof(*port), GFP_KERNEL);
	if (!port)
		return -ENOMEM;

	nport->priv = port;
	port->nport = nport;
	INIT_DELAYED_WORK(&port->repair_work, nvmet_rdma_repair_port_work);

	switch (nport->disc_addr.adrfam) {
	case NVMF_ADDR_FAMILY_IP4:
		af = AF_INET;
		break;
	case NVMF_ADDR_FAMILY_IP6:
		af = AF_INET6;
		break;
	default:
		pr_err("address family %d not supported\n",
			nport->disc_addr.adrfam);
		ret = -EINVAL;
		goto out_free_port;
	}

	if (nport->inline_data_size < 0) {
		nport->inline_data_size = NVMET_RDMA_DEFAULT_INLINE_DATA_SIZE;
	} else if (nport->inline_data_size > NVMET_RDMA_MAX_INLINE_DATA_SIZE) {
		pr_warn("inline_data_size %u is too large, reducing to %u\n",
			nport->inline_data_size,
			NVMET_RDMA_MAX_INLINE_DATA_SIZE);
		nport->inline_data_size = NVMET_RDMA_MAX_INLINE_DATA_SIZE;
	}

	ret = inet_pton_with_scope(&init_net, af, nport->disc_addr.traddr,
			nport->disc_addr.trsvcid, &port->addr);
	if (ret) {
		pr_err("malformed ip/port passed: %s:%s\n",
			nport->disc_addr.traddr, nport->disc_addr.trsvcid);
		goto out_free_port;
	}

	ret = nvmet_rdma_enable_port(port);
	if (ret)
		goto out_free_port;

	pr_info("enabling port %d (%pISpcs)\n",
		le16_to_cpu(nport->disc_addr.portid),
		(struct sockaddr *)&port->addr);

	return 0;

out_free_port:
	kfree(port);
	return ret;
}

static void nvmet_rdma_remove_port(struct nvmet_port *nport)
1647
{
1648
	struct nvmet_rdma_port *port = nport->priv;
1649

1650 1651 1652
	cancel_delayed_work_sync(&port->repair_work);
	nvmet_rdma_disable_port(port);
	kfree(port);
1653 1654
}

1655
static void nvmet_rdma_disc_port_addr(struct nvmet_req *req,
1656
		struct nvmet_port *nport, char *traddr)
1657
{
1658 1659
	struct nvmet_rdma_port *port = nport->priv;
	struct rdma_cm_id *cm_id = port->cm_id;
1660 1661 1662 1663 1664 1665 1666 1667 1668

	if (inet_addr_is_any((struct sockaddr *)&cm_id->route.addr.src_addr)) {
		struct nvmet_rdma_rsp *rsp =
			container_of(req, struct nvmet_rdma_rsp, req);
		struct rdma_cm_id *req_cm_id = rsp->queue->cm_id;
		struct sockaddr *addr = (void *)&req_cm_id->route.addr.src_addr;

		sprintf(traddr, "%pISc", addr);
	} else {
1669
		memcpy(traddr, nport->disc_addr.traddr, NVMF_TRADDR_SIZE);
1670 1671 1672
	}
}

1673 1674 1675 1676 1677
static u8 nvmet_rdma_get_mdts(const struct nvmet_ctrl *ctrl)
{
	return NVMET_RDMA_MAX_MDTS;
}

1678
static const struct nvmet_fabrics_ops nvmet_rdma_ops = {
1679 1680 1681 1682 1683 1684 1685 1686
	.owner			= THIS_MODULE,
	.type			= NVMF_TRTYPE_RDMA,
	.msdbd			= 1,
	.has_keyed_sgls		= 1,
	.add_port		= nvmet_rdma_add_port,
	.remove_port		= nvmet_rdma_remove_port,
	.queue_response		= nvmet_rdma_queue_response,
	.delete_ctrl		= nvmet_rdma_delete_ctrl,
1687
	.disc_traddr		= nvmet_rdma_disc_port_addr,
1688
	.get_mdts		= nvmet_rdma_get_mdts,
1689 1690
};

1691 1692
static void nvmet_rdma_remove_one(struct ib_device *ib_device, void *client_data)
{
1693
	struct nvmet_rdma_queue *queue, *tmp;
1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
	struct nvmet_rdma_device *ndev;
	bool found = false;

	mutex_lock(&device_list_mutex);
	list_for_each_entry(ndev, &device_list, entry) {
		if (ndev->device == ib_device) {
			found = true;
			break;
		}
	}
	mutex_unlock(&device_list_mutex);

	if (!found)
		return;
1708

1709 1710 1711 1712
	/*
	 * IB Device that is used by nvmet controllers is being removed,
	 * delete all queues using this device.
	 */
1713
	mutex_lock(&nvmet_rdma_queue_mutex);
1714 1715
	list_for_each_entry_safe(queue, tmp, &nvmet_rdma_queue_list,
				 queue_list) {
1716 1717 1718 1719
		if (queue->dev->device != ib_device)
			continue;

		pr_info("Removing queue %d\n", queue->idx);
1720
		list_del_init(&queue->queue_list);
1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
		__nvmet_rdma_queue_disconnect(queue);
	}
	mutex_unlock(&nvmet_rdma_queue_mutex);

	flush_scheduled_work();
}

static struct ib_client nvmet_rdma_ib_client = {
	.name   = "nvmet_rdma",
	.remove = nvmet_rdma_remove_one
};

1733 1734
static int __init nvmet_rdma_init(void)
{
1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
	int ret;

	ret = ib_register_client(&nvmet_rdma_ib_client);
	if (ret)
		return ret;

	ret = nvmet_register_transport(&nvmet_rdma_ops);
	if (ret)
		goto err_ib_client;

	return 0;

err_ib_client:
	ib_unregister_client(&nvmet_rdma_ib_client);
	return ret;
1750 1751 1752 1753 1754
}

static void __exit nvmet_rdma_exit(void)
{
	nvmet_unregister_transport(&nvmet_rdma_ops);
1755
	ib_unregister_client(&nvmet_rdma_ib_client);
1756
	WARN_ON_ONCE(!list_empty(&nvmet_rdma_queue_list));
1757 1758 1759 1760 1761 1762 1763 1764
	ida_destroy(&nvmet_rdma_queue_ida);
}

module_init(nvmet_rdma_init);
module_exit(nvmet_rdma_exit);

MODULE_LICENSE("GPL v2");
MODULE_ALIAS("nvmet-transport-1"); /* 1 == NVMF_TRTYPE_RDMA */