efi-stub-helper.c 15.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*
 * Helper functions used by the EFI stub on multiple
 * architectures. This should be #included by the EFI stub
 * implementation files.
 *
 * Copyright 2011 Intel Corporation; author Matt Fleming
 *
 * This file is part of the Linux kernel, and is made available
 * under the terms of the GNU General Public License version 2.
 *
 */
#define EFI_READ_CHUNK_SIZE	(1024 * 1024)

struct initrd {
	efi_file_handle_t *handle;
	u64 size;
};




22 23
static void efi_char16_printk(efi_system_table_t *sys_table_arg,
			      efi_char16_t *str)
24 25 26
{
	struct efi_simple_text_output_protocol *out;

27
	out = (struct efi_simple_text_output_protocol *)sys_table_arg->con_out;
28 29 30
	efi_call_phys2(out->output_string, out, str);
}

31
static void efi_printk(efi_system_table_t *sys_table_arg, char *str)
32 33 34 35 36 37 38 39 40
{
	char *s8;

	for (s8 = str; *s8; s8++) {
		efi_char16_t ch[2] = { 0 };

		ch[0] = *s8;
		if (*s8 == '\n') {
			efi_char16_t nl[2] = { '\r', 0 };
41
			efi_char16_printk(sys_table_arg, nl);
42 43
		}

44
		efi_char16_printk(sys_table_arg, ch);
45 46 47 48
	}
}


49 50 51
static efi_status_t efi_get_memory_map(efi_system_table_t *sys_table_arg,
				       efi_memory_desc_t **map,
				       unsigned long *map_size,
R
Roy Franz 已提交
52 53 54
				       unsigned long *desc_size,
				       u32 *desc_ver,
				       unsigned long *key_ptr)
55 56 57 58 59 60 61 62 63 64 65 66 67
{
	efi_memory_desc_t *m = NULL;
	efi_status_t status;
	unsigned long key;
	u32 desc_version;

	*map_size = sizeof(*m) * 32;
again:
	/*
	 * Add an additional efi_memory_desc_t because we're doing an
	 * allocation which may be in a new descriptor region.
	 */
	*map_size += sizeof(*m);
68
	status = efi_call_phys3(sys_table_arg->boottime->allocate_pool,
69 70 71 72
				EFI_LOADER_DATA, *map_size, (void **)&m);
	if (status != EFI_SUCCESS)
		goto fail;

73 74
	status = efi_call_phys5(sys_table_arg->boottime->get_memory_map,
				map_size, m, &key, desc_size, &desc_version);
75
	if (status == EFI_BUFFER_TOO_SMALL) {
76
		efi_call_phys1(sys_table_arg->boottime->free_pool, m);
77 78 79 80
		goto again;
	}

	if (status != EFI_SUCCESS)
81
		efi_call_phys1(sys_table_arg->boottime->free_pool, m);
R
Roy Franz 已提交
82 83 84 85
	if (key_ptr && status == EFI_SUCCESS)
		*key_ptr = key;
	if (desc_ver && status == EFI_SUCCESS)
		*desc_ver = desc_version;
86 87 88 89 90 91 92 93 94

fail:
	*map = m;
	return status;
}

/*
 * Allocate at the highest possible address that is not above 'max'.
 */
95
static efi_status_t efi_high_alloc(efi_system_table_t *sys_table_arg,
96 97
			       unsigned long size, unsigned long align,
			       unsigned long *addr, unsigned long max)
98 99 100 101 102 103 104 105
{
	unsigned long map_size, desc_size;
	efi_memory_desc_t *map;
	efi_status_t status;
	unsigned long nr_pages;
	u64 max_addr = 0;
	int i;

R
Roy Franz 已提交
106 107
	status = efi_get_memory_map(sys_table_arg, &map, &map_size, &desc_size,
				    NULL, NULL);
108 109 110
	if (status != EFI_SUCCESS)
		goto fail;

111 112 113 114 115 116 117 118
	/*
	 * Enforce minimum alignment that EFI requires when requesting
	 * a specific address.  We are doing page-based allocations,
	 * so we must be aligned to a page.
	 */
	if (align < EFI_PAGE_SIZE)
		align = EFI_PAGE_SIZE;

119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
	nr_pages = round_up(size, EFI_PAGE_SIZE) / EFI_PAGE_SIZE;
again:
	for (i = 0; i < map_size / desc_size; i++) {
		efi_memory_desc_t *desc;
		unsigned long m = (unsigned long)map;
		u64 start, end;

		desc = (efi_memory_desc_t *)(m + (i * desc_size));
		if (desc->type != EFI_CONVENTIONAL_MEMORY)
			continue;

		if (desc->num_pages < nr_pages)
			continue;

		start = desc->phys_addr;
		end = start + desc->num_pages * (1UL << EFI_PAGE_SHIFT);

		if ((start + size) > end || (start + size) > max)
			continue;

		if (end - size > max)
			end = max;

		if (round_down(end - size, align) < start)
			continue;

		start = round_down(end - size, align);

		/*
		 * Don't allocate at 0x0. It will confuse code that
		 * checks pointers against NULL.
		 */
		if (start == 0x0)
			continue;

		if (start > max_addr)
			max_addr = start;
	}

	if (!max_addr)
		status = EFI_NOT_FOUND;
	else {
161
		status = efi_call_phys4(sys_table_arg->boottime->allocate_pages,
162 163 164 165 166 167 168 169 170 171 172 173
					EFI_ALLOCATE_ADDRESS, EFI_LOADER_DATA,
					nr_pages, &max_addr);
		if (status != EFI_SUCCESS) {
			max = max_addr;
			max_addr = 0;
			goto again;
		}

		*addr = max_addr;
	}

free_pool:
174
	efi_call_phys1(sys_table_arg->boottime->free_pool, map);
175 176 177 178 179 180 181 182

fail:
	return status;
}

/*
 * Allocate at the lowest possible address.
 */
183 184
static efi_status_t efi_low_alloc(efi_system_table_t *sys_table_arg,
			      unsigned long size, unsigned long align,
185 186 187 188 189 190 191 192
			      unsigned long *addr)
{
	unsigned long map_size, desc_size;
	efi_memory_desc_t *map;
	efi_status_t status;
	unsigned long nr_pages;
	int i;

R
Roy Franz 已提交
193 194
	status = efi_get_memory_map(sys_table_arg, &map, &map_size, &desc_size,
				    NULL, NULL);
195 196 197
	if (status != EFI_SUCCESS)
		goto fail;

198 199 200 201 202 203 204 205
	/*
	 * Enforce minimum alignment that EFI requires when requesting
	 * a specific address.  We are doing page-based allocations,
	 * so we must be aligned to a page.
	 */
	if (align < EFI_PAGE_SIZE)
		align = EFI_PAGE_SIZE;

206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
	nr_pages = round_up(size, EFI_PAGE_SIZE) / EFI_PAGE_SIZE;
	for (i = 0; i < map_size / desc_size; i++) {
		efi_memory_desc_t *desc;
		unsigned long m = (unsigned long)map;
		u64 start, end;

		desc = (efi_memory_desc_t *)(m + (i * desc_size));

		if (desc->type != EFI_CONVENTIONAL_MEMORY)
			continue;

		if (desc->num_pages < nr_pages)
			continue;

		start = desc->phys_addr;
		end = start + desc->num_pages * (1UL << EFI_PAGE_SHIFT);

		/*
		 * Don't allocate at 0x0. It will confuse code that
		 * checks pointers against NULL. Skip the first 8
		 * bytes so we start at a nice even number.
		 */
		if (start == 0x0)
			start += 8;

		start = round_up(start, align);
		if ((start + size) > end)
			continue;

235
		status = efi_call_phys4(sys_table_arg->boottime->allocate_pages,
236 237 238 239 240 241 242 243 244 245 246 247
					EFI_ALLOCATE_ADDRESS, EFI_LOADER_DATA,
					nr_pages, &start);
		if (status == EFI_SUCCESS) {
			*addr = start;
			break;
		}
	}

	if (i == map_size / desc_size)
		status = EFI_NOT_FOUND;

free_pool:
248
	efi_call_phys1(sys_table_arg->boottime->free_pool, map);
249 250 251 252
fail:
	return status;
}

253
static void efi_free(efi_system_table_t *sys_table_arg, unsigned long size,
254
		     unsigned long addr)
255 256 257 258
{
	unsigned long nr_pages;

	nr_pages = round_up(size, EFI_PAGE_SIZE) / EFI_PAGE_SIZE;
259
	efi_call_phys2(sys_table_arg->boottime->free_pages, addr, nr_pages);
260 261 262 263 264 265 266 267 268
}


/*
 * Check the cmdline for a LILO-style initrd= arguments.
 *
 * We only support loading an initrd from the same filesystem as the
 * kernel image.
 */
269 270
static efi_status_t handle_ramdisks(efi_system_table_t *sys_table_arg,
				    efi_loaded_image_t *image,
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
				    struct setup_header *hdr)
{
	struct initrd *initrds;
	unsigned long initrd_addr;
	efi_guid_t fs_proto = EFI_FILE_SYSTEM_GUID;
	u64 initrd_total;
	efi_file_io_interface_t *io;
	efi_file_handle_t *fh;
	efi_status_t status;
	int nr_initrds;
	char *str;
	int i, j, k;

	initrd_addr = 0;
	initrd_total = 0;

	str = (char *)(unsigned long)hdr->cmd_line_ptr;

	j = 0;			/* See close_handles */

	if (!str || !*str)
		return EFI_SUCCESS;

	for (nr_initrds = 0; *str; nr_initrds++) {
		str = strstr(str, "initrd=");
		if (!str)
			break;

		str += 7;

		/* Skip any leading slashes */
		while (*str == '/' || *str == '\\')
			str++;

		while (*str && *str != ' ' && *str != '\n')
			str++;
	}

	if (!nr_initrds)
		return EFI_SUCCESS;

312
	status = efi_call_phys3(sys_table_arg->boottime->allocate_pool,
313 314 315 316
				EFI_LOADER_DATA,
				nr_initrds * sizeof(*initrds),
				&initrds);
	if (status != EFI_SUCCESS) {
317
		efi_printk(sys_table_arg, "Failed to alloc mem for initrds\n");
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
		goto fail;
	}

	str = (char *)(unsigned long)hdr->cmd_line_ptr;
	for (i = 0; i < nr_initrds; i++) {
		struct initrd *initrd;
		efi_file_handle_t *h;
		efi_file_info_t *info;
		efi_char16_t filename_16[256];
		unsigned long info_sz;
		efi_guid_t info_guid = EFI_FILE_INFO_ID;
		efi_char16_t *p;
		u64 file_sz;

		str = strstr(str, "initrd=");
		if (!str)
			break;

		str += 7;

		initrd = &initrds[i];
		p = filename_16;

		/* Skip any leading slashes */
		while (*str == '/' || *str == '\\')
			str++;

		while (*str && *str != ' ' && *str != '\n') {
			if ((u8 *)p >= (u8 *)filename_16 + sizeof(filename_16))
				break;

			if (*str == '/') {
				*p++ = '\\';
				*str++;
			} else {
				*p++ = *str++;
			}
		}

		*p = '\0';

		/* Only open the volume once. */
		if (!i) {
			efi_boot_services_t *boottime;

363
			boottime = sys_table_arg->boottime;
364 365 366 367

			status = efi_call_phys3(boottime->handle_protocol,
					image->device_handle, &fs_proto, &io);
			if (status != EFI_SUCCESS) {
368
				efi_printk(sys_table_arg, "Failed to handle fs_proto\n");
369 370 371 372 373
				goto free_initrds;
			}

			status = efi_call_phys2(io->open_volume, io, &fh);
			if (status != EFI_SUCCESS) {
374
				efi_printk(sys_table_arg, "Failed to open volume\n");
375 376 377 378 379 380 381
				goto free_initrds;
			}
		}

		status = efi_call_phys5(fh->open, fh, &h, filename_16,
					EFI_FILE_MODE_READ, (u64)0);
		if (status != EFI_SUCCESS) {
382 383 384
			efi_printk(sys_table_arg, "Failed to open initrd file: ");
			efi_char16_printk(sys_table_arg, filename_16);
			efi_printk(sys_table_arg, "\n");
385 386 387 388 389 390 391 392 393
			goto close_handles;
		}

		initrd->handle = h;

		info_sz = 0;
		status = efi_call_phys4(h->get_info, h, &info_guid,
					&info_sz, NULL);
		if (status != EFI_BUFFER_TOO_SMALL) {
394
			efi_printk(sys_table_arg, "Failed to get initrd info size\n");
395 396 397 398
			goto close_handles;
		}

grow:
399
		status = efi_call_phys3(sys_table_arg->boottime->allocate_pool,
400 401
					EFI_LOADER_DATA, info_sz, &info);
		if (status != EFI_SUCCESS) {
402
			efi_printk(sys_table_arg, "Failed to alloc mem for initrd info\n");
403 404 405 406 407 408
			goto close_handles;
		}

		status = efi_call_phys4(h->get_info, h, &info_guid,
					&info_sz, info);
		if (status == EFI_BUFFER_TOO_SMALL) {
409 410
			efi_call_phys1(sys_table_arg->boottime->free_pool,
				       info);
411 412 413 414
			goto grow;
		}

		file_sz = info->file_size;
415
		efi_call_phys1(sys_table_arg->boottime->free_pool, info);
416 417

		if (status != EFI_SUCCESS) {
418
			efi_printk(sys_table_arg, "Failed to get initrd info\n");
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
			goto close_handles;
		}

		initrd->size = file_sz;
		initrd_total += file_sz;
	}

	if (initrd_total) {
		unsigned long addr;

		/*
		 * Multiple initrd's need to be at consecutive
		 * addresses in memory, so allocate enough memory for
		 * all the initrd's.
		 */
434 435
		status = efi_high_alloc(sys_table_arg, initrd_total, 0x1000,
				    &initrd_addr, hdr->initrd_addr_max);
436
		if (status != EFI_SUCCESS) {
437
			efi_printk(sys_table_arg, "Failed to alloc highmem for initrds\n");
438 439 440 441 442
			goto close_handles;
		}

		/* We've run out of free low memory. */
		if (initrd_addr > hdr->initrd_addr_max) {
443
			efi_printk(sys_table_arg, "We've run out of free low memory\n");
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
			status = EFI_INVALID_PARAMETER;
			goto free_initrd_total;
		}

		addr = initrd_addr;
		for (j = 0; j < nr_initrds; j++) {
			u64 size;

			size = initrds[j].size;
			while (size) {
				u64 chunksize;
				if (size > EFI_READ_CHUNK_SIZE)
					chunksize = EFI_READ_CHUNK_SIZE;
				else
					chunksize = size;
				status = efi_call_phys3(fh->read,
							initrds[j].handle,
							&chunksize, addr);
				if (status != EFI_SUCCESS) {
463
					efi_printk(sys_table_arg, "Failed to read initrd\n");
464 465 466 467 468 469 470 471 472 473 474
					goto free_initrd_total;
				}
				addr += chunksize;
				size -= chunksize;
			}

			efi_call_phys1(fh->close, initrds[j].handle);
		}

	}

475
	efi_call_phys1(sys_table_arg->boottime->free_pool, initrds);
476 477 478 479 480 481 482

	hdr->ramdisk_image = initrd_addr;
	hdr->ramdisk_size = initrd_total;

	return status;

free_initrd_total:
483
	efi_free(sys_table_arg, initrd_total, initrd_addr);
484 485 486 487 488

close_handles:
	for (k = j; k < i; k++)
		efi_call_phys1(fh->close, initrds[k].handle);
free_initrds:
489
	efi_call_phys1(sys_table_arg->boottime->free_pool, initrds);
490 491 492 493 494 495
fail:
	hdr->ramdisk_image = 0;
	hdr->ramdisk_size = 0;

	return status;
}
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
/*
 * Relocate a kernel image, either compressed or uncompressed.
 * In the ARM64 case, all kernel images are currently
 * uncompressed, and as such when we relocate it we need to
 * allocate additional space for the BSS segment. Any low
 * memory that this function should avoid needs to be
 * unavailable in the EFI memory map, as if the preferred
 * address is not available the lowest available address will
 * be used.
 */
static efi_status_t efi_relocate_kernel(efi_system_table_t *sys_table_arg,
					unsigned long *image_addr,
					unsigned long image_size,
					unsigned long alloc_size,
					unsigned long preferred_addr,
					unsigned long alignment)
512
{
513 514
	unsigned long cur_image_addr;
	unsigned long new_addr = 0;
515
	efi_status_t status;
516 517 518 519 520 521 522 523 524
	unsigned long nr_pages;
	efi_physical_addr_t efi_addr = preferred_addr;

	if (!image_addr || !image_size || !alloc_size)
		return EFI_INVALID_PARAMETER;
	if (alloc_size < image_size)
		return EFI_INVALID_PARAMETER;

	cur_image_addr = *image_addr;
525 526 527

	/*
	 * The EFI firmware loader could have placed the kernel image
528 529 530 531 532
	 * anywhere in memory, but the kernel has restrictions on the
	 * max physical address it can run at.  Some architectures
	 * also have a prefered address, so first try to relocate
	 * to the preferred address.  If that fails, allocate as low
	 * as possible while respecting the required alignment.
533
	 */
534 535
	nr_pages = round_up(alloc_size, EFI_PAGE_SIZE) / EFI_PAGE_SIZE;
	status = efi_call_phys4(sys_table_arg->boottime->allocate_pages,
536
				EFI_ALLOCATE_ADDRESS, EFI_LOADER_DATA,
537 538 539 540 541 542
				nr_pages, &efi_addr);
	new_addr = efi_addr;
	/*
	 * If preferred address allocation failed allocate as low as
	 * possible.
	 */
543
	if (status != EFI_SUCCESS) {
544 545 546 547 548 549
		status = efi_low_alloc(sys_table_arg, alloc_size, alignment,
				       &new_addr);
	}
	if (status != EFI_SUCCESS) {
		efi_printk(sys_table_arg, "ERROR: Failed to allocate usable memory for kernel.\n");
		return status;
550 551
	}

552 553 554 555 556 557 558
	/*
	 * We know source/dest won't overlap since both memory ranges
	 * have been allocated by UEFI, so we can safely use memcpy.
	 */
	memcpy((void *)new_addr, (void *)cur_image_addr, image_size);
	/* Zero any extra space we may have allocated for BSS. */
	memset((void *)(new_addr + image_size), alloc_size - image_size, 0);
559

560 561
	/* Return the new address of the relocated image. */
	*image_addr = new_addr;
562 563 564

	return status;
}
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625

/*
 * Convert the unicode UEFI command line to ASCII to pass to kernel.
 * Size of memory allocated return in *cmd_line_len.
 * Returns NULL on error.
 */
static char *efi_convert_cmdline_to_ascii(efi_system_table_t *sys_table_arg,
				      efi_loaded_image_t *image,
				      int *cmd_line_len)
{
	u16 *s2;
	u8 *s1 = NULL;
	unsigned long cmdline_addr = 0;
	int load_options_size = image->load_options_size / 2; /* ASCII */
	void *options = image->load_options;
	int options_size = 0;
	efi_status_t status;
	int i;
	u16 zero = 0;

	if (options) {
		s2 = options;
		while (*s2 && *s2 != '\n' && options_size < load_options_size) {
			s2++;
			options_size++;
		}
	}

	if (options_size == 0) {
		/* No command line options, so return empty string*/
		options_size = 1;
		options = &zero;
	}

	options_size++;  /* NUL termination */
#ifdef CONFIG_ARM
	/*
	 * For ARM, allocate at a high address to avoid reserved
	 * regions at low addresses that we don't know the specfics of
	 * at the time we are processing the command line.
	 */
	status = efi_high_alloc(sys_table_arg, options_size, 0,
			    &cmdline_addr, 0xfffff000);
#else
	status = efi_low_alloc(sys_table_arg, options_size, 0,
			    &cmdline_addr);
#endif
	if (status != EFI_SUCCESS)
		return NULL;

	s1 = (u8 *)cmdline_addr;
	s2 = (u16 *)options;

	for (i = 0; i < options_size - 1; i++)
		*s1++ = *s2++;

	*s1 = '\0';

	*cmd_line_len = options_size;
	return (char *)cmdline_addr;
}