/* * Helper functions used by the EFI stub on multiple * architectures. This should be #included by the EFI stub * implementation files. * * Copyright 2011 Intel Corporation; author Matt Fleming * * This file is part of the Linux kernel, and is made available * under the terms of the GNU General Public License version 2. * */ #define EFI_READ_CHUNK_SIZE (1024 * 1024) struct initrd { efi_file_handle_t *handle; u64 size; }; static void efi_char16_printk(efi_system_table_t *sys_table_arg, efi_char16_t *str) { struct efi_simple_text_output_protocol *out; out = (struct efi_simple_text_output_protocol *)sys_table_arg->con_out; efi_call_phys2(out->output_string, out, str); } static void efi_printk(efi_system_table_t *sys_table_arg, char *str) { char *s8; for (s8 = str; *s8; s8++) { efi_char16_t ch[2] = { 0 }; ch[0] = *s8; if (*s8 == '\n') { efi_char16_t nl[2] = { '\r', 0 }; efi_char16_printk(sys_table_arg, nl); } efi_char16_printk(sys_table_arg, ch); } } static efi_status_t efi_get_memory_map(efi_system_table_t *sys_table_arg, efi_memory_desc_t **map, unsigned long *map_size, unsigned long *desc_size, u32 *desc_ver, unsigned long *key_ptr) { efi_memory_desc_t *m = NULL; efi_status_t status; unsigned long key; u32 desc_version; *map_size = sizeof(*m) * 32; again: /* * Add an additional efi_memory_desc_t because we're doing an * allocation which may be in a new descriptor region. */ *map_size += sizeof(*m); status = efi_call_phys3(sys_table_arg->boottime->allocate_pool, EFI_LOADER_DATA, *map_size, (void **)&m); if (status != EFI_SUCCESS) goto fail; status = efi_call_phys5(sys_table_arg->boottime->get_memory_map, map_size, m, &key, desc_size, &desc_version); if (status == EFI_BUFFER_TOO_SMALL) { efi_call_phys1(sys_table_arg->boottime->free_pool, m); goto again; } if (status != EFI_SUCCESS) efi_call_phys1(sys_table_arg->boottime->free_pool, m); if (key_ptr && status == EFI_SUCCESS) *key_ptr = key; if (desc_ver && status == EFI_SUCCESS) *desc_ver = desc_version; fail: *map = m; return status; } /* * Allocate at the highest possible address that is not above 'max'. */ static efi_status_t efi_high_alloc(efi_system_table_t *sys_table_arg, unsigned long size, unsigned long align, unsigned long *addr, unsigned long max) { unsigned long map_size, desc_size; efi_memory_desc_t *map; efi_status_t status; unsigned long nr_pages; u64 max_addr = 0; int i; status = efi_get_memory_map(sys_table_arg, &map, &map_size, &desc_size, NULL, NULL); if (status != EFI_SUCCESS) goto fail; /* * Enforce minimum alignment that EFI requires when requesting * a specific address. We are doing page-based allocations, * so we must be aligned to a page. */ if (align < EFI_PAGE_SIZE) align = EFI_PAGE_SIZE; nr_pages = round_up(size, EFI_PAGE_SIZE) / EFI_PAGE_SIZE; again: for (i = 0; i < map_size / desc_size; i++) { efi_memory_desc_t *desc; unsigned long m = (unsigned long)map; u64 start, end; desc = (efi_memory_desc_t *)(m + (i * desc_size)); if (desc->type != EFI_CONVENTIONAL_MEMORY) continue; if (desc->num_pages < nr_pages) continue; start = desc->phys_addr; end = start + desc->num_pages * (1UL << EFI_PAGE_SHIFT); if ((start + size) > end || (start + size) > max) continue; if (end - size > max) end = max; if (round_down(end - size, align) < start) continue; start = round_down(end - size, align); /* * Don't allocate at 0x0. It will confuse code that * checks pointers against NULL. */ if (start == 0x0) continue; if (start > max_addr) max_addr = start; } if (!max_addr) status = EFI_NOT_FOUND; else { status = efi_call_phys4(sys_table_arg->boottime->allocate_pages, EFI_ALLOCATE_ADDRESS, EFI_LOADER_DATA, nr_pages, &max_addr); if (status != EFI_SUCCESS) { max = max_addr; max_addr = 0; goto again; } *addr = max_addr; } free_pool: efi_call_phys1(sys_table_arg->boottime->free_pool, map); fail: return status; } /* * Allocate at the lowest possible address. */ static efi_status_t efi_low_alloc(efi_system_table_t *sys_table_arg, unsigned long size, unsigned long align, unsigned long *addr) { unsigned long map_size, desc_size; efi_memory_desc_t *map; efi_status_t status; unsigned long nr_pages; int i; status = efi_get_memory_map(sys_table_arg, &map, &map_size, &desc_size, NULL, NULL); if (status != EFI_SUCCESS) goto fail; /* * Enforce minimum alignment that EFI requires when requesting * a specific address. We are doing page-based allocations, * so we must be aligned to a page. */ if (align < EFI_PAGE_SIZE) align = EFI_PAGE_SIZE; nr_pages = round_up(size, EFI_PAGE_SIZE) / EFI_PAGE_SIZE; for (i = 0; i < map_size / desc_size; i++) { efi_memory_desc_t *desc; unsigned long m = (unsigned long)map; u64 start, end; desc = (efi_memory_desc_t *)(m + (i * desc_size)); if (desc->type != EFI_CONVENTIONAL_MEMORY) continue; if (desc->num_pages < nr_pages) continue; start = desc->phys_addr; end = start + desc->num_pages * (1UL << EFI_PAGE_SHIFT); /* * Don't allocate at 0x0. It will confuse code that * checks pointers against NULL. Skip the first 8 * bytes so we start at a nice even number. */ if (start == 0x0) start += 8; start = round_up(start, align); if ((start + size) > end) continue; status = efi_call_phys4(sys_table_arg->boottime->allocate_pages, EFI_ALLOCATE_ADDRESS, EFI_LOADER_DATA, nr_pages, &start); if (status == EFI_SUCCESS) { *addr = start; break; } } if (i == map_size / desc_size) status = EFI_NOT_FOUND; free_pool: efi_call_phys1(sys_table_arg->boottime->free_pool, map); fail: return status; } static void efi_free(efi_system_table_t *sys_table_arg, unsigned long size, unsigned long addr) { unsigned long nr_pages; nr_pages = round_up(size, EFI_PAGE_SIZE) / EFI_PAGE_SIZE; efi_call_phys2(sys_table_arg->boottime->free_pages, addr, nr_pages); } /* * Check the cmdline for a LILO-style initrd= arguments. * * We only support loading an initrd from the same filesystem as the * kernel image. */ static efi_status_t handle_ramdisks(efi_system_table_t *sys_table_arg, efi_loaded_image_t *image, struct setup_header *hdr) { struct initrd *initrds; unsigned long initrd_addr; efi_guid_t fs_proto = EFI_FILE_SYSTEM_GUID; u64 initrd_total; efi_file_io_interface_t *io; efi_file_handle_t *fh; efi_status_t status; int nr_initrds; char *str; int i, j, k; initrd_addr = 0; initrd_total = 0; str = (char *)(unsigned long)hdr->cmd_line_ptr; j = 0; /* See close_handles */ if (!str || !*str) return EFI_SUCCESS; for (nr_initrds = 0; *str; nr_initrds++) { str = strstr(str, "initrd="); if (!str) break; str += 7; /* Skip any leading slashes */ while (*str == '/' || *str == '\\') str++; while (*str && *str != ' ' && *str != '\n') str++; } if (!nr_initrds) return EFI_SUCCESS; status = efi_call_phys3(sys_table_arg->boottime->allocate_pool, EFI_LOADER_DATA, nr_initrds * sizeof(*initrds), &initrds); if (status != EFI_SUCCESS) { efi_printk(sys_table_arg, "Failed to alloc mem for initrds\n"); goto fail; } str = (char *)(unsigned long)hdr->cmd_line_ptr; for (i = 0; i < nr_initrds; i++) { struct initrd *initrd; efi_file_handle_t *h; efi_file_info_t *info; efi_char16_t filename_16[256]; unsigned long info_sz; efi_guid_t info_guid = EFI_FILE_INFO_ID; efi_char16_t *p; u64 file_sz; str = strstr(str, "initrd="); if (!str) break; str += 7; initrd = &initrds[i]; p = filename_16; /* Skip any leading slashes */ while (*str == '/' || *str == '\\') str++; while (*str && *str != ' ' && *str != '\n') { if ((u8 *)p >= (u8 *)filename_16 + sizeof(filename_16)) break; if (*str == '/') { *p++ = '\\'; *str++; } else { *p++ = *str++; } } *p = '\0'; /* Only open the volume once. */ if (!i) { efi_boot_services_t *boottime; boottime = sys_table_arg->boottime; status = efi_call_phys3(boottime->handle_protocol, image->device_handle, &fs_proto, &io); if (status != EFI_SUCCESS) { efi_printk(sys_table_arg, "Failed to handle fs_proto\n"); goto free_initrds; } status = efi_call_phys2(io->open_volume, io, &fh); if (status != EFI_SUCCESS) { efi_printk(sys_table_arg, "Failed to open volume\n"); goto free_initrds; } } status = efi_call_phys5(fh->open, fh, &h, filename_16, EFI_FILE_MODE_READ, (u64)0); if (status != EFI_SUCCESS) { efi_printk(sys_table_arg, "Failed to open initrd file: "); efi_char16_printk(sys_table_arg, filename_16); efi_printk(sys_table_arg, "\n"); goto close_handles; } initrd->handle = h; info_sz = 0; status = efi_call_phys4(h->get_info, h, &info_guid, &info_sz, NULL); if (status != EFI_BUFFER_TOO_SMALL) { efi_printk(sys_table_arg, "Failed to get initrd info size\n"); goto close_handles; } grow: status = efi_call_phys3(sys_table_arg->boottime->allocate_pool, EFI_LOADER_DATA, info_sz, &info); if (status != EFI_SUCCESS) { efi_printk(sys_table_arg, "Failed to alloc mem for initrd info\n"); goto close_handles; } status = efi_call_phys4(h->get_info, h, &info_guid, &info_sz, info); if (status == EFI_BUFFER_TOO_SMALL) { efi_call_phys1(sys_table_arg->boottime->free_pool, info); goto grow; } file_sz = info->file_size; efi_call_phys1(sys_table_arg->boottime->free_pool, info); if (status != EFI_SUCCESS) { efi_printk(sys_table_arg, "Failed to get initrd info\n"); goto close_handles; } initrd->size = file_sz; initrd_total += file_sz; } if (initrd_total) { unsigned long addr; /* * Multiple initrd's need to be at consecutive * addresses in memory, so allocate enough memory for * all the initrd's. */ status = efi_high_alloc(sys_table_arg, initrd_total, 0x1000, &initrd_addr, hdr->initrd_addr_max); if (status != EFI_SUCCESS) { efi_printk(sys_table_arg, "Failed to alloc highmem for initrds\n"); goto close_handles; } /* We've run out of free low memory. */ if (initrd_addr > hdr->initrd_addr_max) { efi_printk(sys_table_arg, "We've run out of free low memory\n"); status = EFI_INVALID_PARAMETER; goto free_initrd_total; } addr = initrd_addr; for (j = 0; j < nr_initrds; j++) { u64 size; size = initrds[j].size; while (size) { u64 chunksize; if (size > EFI_READ_CHUNK_SIZE) chunksize = EFI_READ_CHUNK_SIZE; else chunksize = size; status = efi_call_phys3(fh->read, initrds[j].handle, &chunksize, addr); if (status != EFI_SUCCESS) { efi_printk(sys_table_arg, "Failed to read initrd\n"); goto free_initrd_total; } addr += chunksize; size -= chunksize; } efi_call_phys1(fh->close, initrds[j].handle); } } efi_call_phys1(sys_table_arg->boottime->free_pool, initrds); hdr->ramdisk_image = initrd_addr; hdr->ramdisk_size = initrd_total; return status; free_initrd_total: efi_free(sys_table_arg, initrd_total, initrd_addr); close_handles: for (k = j; k < i; k++) efi_call_phys1(fh->close, initrds[k].handle); free_initrds: efi_call_phys1(sys_table_arg->boottime->free_pool, initrds); fail: hdr->ramdisk_image = 0; hdr->ramdisk_size = 0; return status; } /* * Relocate a kernel image, either compressed or uncompressed. * In the ARM64 case, all kernel images are currently * uncompressed, and as such when we relocate it we need to * allocate additional space for the BSS segment. Any low * memory that this function should avoid needs to be * unavailable in the EFI memory map, as if the preferred * address is not available the lowest available address will * be used. */ static efi_status_t efi_relocate_kernel(efi_system_table_t *sys_table_arg, unsigned long *image_addr, unsigned long image_size, unsigned long alloc_size, unsigned long preferred_addr, unsigned long alignment) { unsigned long cur_image_addr; unsigned long new_addr = 0; efi_status_t status; unsigned long nr_pages; efi_physical_addr_t efi_addr = preferred_addr; if (!image_addr || !image_size || !alloc_size) return EFI_INVALID_PARAMETER; if (alloc_size < image_size) return EFI_INVALID_PARAMETER; cur_image_addr = *image_addr; /* * The EFI firmware loader could have placed the kernel image * anywhere in memory, but the kernel has restrictions on the * max physical address it can run at. Some architectures * also have a prefered address, so first try to relocate * to the preferred address. If that fails, allocate as low * as possible while respecting the required alignment. */ nr_pages = round_up(alloc_size, EFI_PAGE_SIZE) / EFI_PAGE_SIZE; status = efi_call_phys4(sys_table_arg->boottime->allocate_pages, EFI_ALLOCATE_ADDRESS, EFI_LOADER_DATA, nr_pages, &efi_addr); new_addr = efi_addr; /* * If preferred address allocation failed allocate as low as * possible. */ if (status != EFI_SUCCESS) { status = efi_low_alloc(sys_table_arg, alloc_size, alignment, &new_addr); } if (status != EFI_SUCCESS) { efi_printk(sys_table_arg, "ERROR: Failed to allocate usable memory for kernel.\n"); return status; } /* * We know source/dest won't overlap since both memory ranges * have been allocated by UEFI, so we can safely use memcpy. */ memcpy((void *)new_addr, (void *)cur_image_addr, image_size); /* Zero any extra space we may have allocated for BSS. */ memset((void *)(new_addr + image_size), alloc_size - image_size, 0); /* Return the new address of the relocated image. */ *image_addr = new_addr; return status; } /* * Convert the unicode UEFI command line to ASCII to pass to kernel. * Size of memory allocated return in *cmd_line_len. * Returns NULL on error. */ static char *efi_convert_cmdline_to_ascii(efi_system_table_t *sys_table_arg, efi_loaded_image_t *image, int *cmd_line_len) { u16 *s2; u8 *s1 = NULL; unsigned long cmdline_addr = 0; int load_options_size = image->load_options_size / 2; /* ASCII */ void *options = image->load_options; int options_size = 0; efi_status_t status; int i; u16 zero = 0; if (options) { s2 = options; while (*s2 && *s2 != '\n' && options_size < load_options_size) { s2++; options_size++; } } if (options_size == 0) { /* No command line options, so return empty string*/ options_size = 1; options = &zero; } options_size++; /* NUL termination */ #ifdef CONFIG_ARM /* * For ARM, allocate at a high address to avoid reserved * regions at low addresses that we don't know the specfics of * at the time we are processing the command line. */ status = efi_high_alloc(sys_table_arg, options_size, 0, &cmdline_addr, 0xfffff000); #else status = efi_low_alloc(sys_table_arg, options_size, 0, &cmdline_addr); #endif if (status != EFI_SUCCESS) return NULL; s1 = (u8 *)cmdline_addr; s2 = (u16 *)options; for (i = 0; i < options_size - 1; i++) *s1++ = *s2++; *s1 = '\0'; *cmd_line_len = options_size; return (char *)cmdline_addr; }