mmu.c 50.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 */
18 19 20 21

#include <linux/mman.h>
#include <linux/kvm_host.h>
#include <linux/io.h>
22
#include <linux/hugetlb.h>
C
Christoffer Dall 已提交
23
#include <trace/events/kvm.h>
24
#include <asm/pgalloc.h>
25
#include <asm/cacheflush.h>
26 27
#include <asm/kvm_arm.h>
#include <asm/kvm_mmu.h>
C
Christoffer Dall 已提交
28
#include <asm/kvm_mmio.h>
29
#include <asm/kvm_asm.h>
30
#include <asm/kvm_emulate.h>
31
#include <asm/virt.h>
32 33

#include "trace.h"
34 35 36

extern char  __hyp_idmap_text_start[], __hyp_idmap_text_end[];

37
static pgd_t *boot_hyp_pgd;
38
static pgd_t *hyp_pgd;
39
static pgd_t *merged_hyp_pgd;
40 41
static DEFINE_MUTEX(kvm_hyp_pgd_mutex);

42 43 44 45
static unsigned long hyp_idmap_start;
static unsigned long hyp_idmap_end;
static phys_addr_t hyp_idmap_vector;

46
#define hyp_pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t))
47

48
#define kvm_pmd_huge(_x)	(pmd_huge(_x) || pmd_trans_huge(_x))
49
#define kvm_pud_huge(_x)	pud_huge(_x)
50

51 52 53 54 55 56
#define KVM_S2PTE_FLAG_IS_IOMAP		(1UL << 0)
#define KVM_S2_FLAG_LOGGING_ACTIVE	(1UL << 1)

static bool memslot_is_logging(struct kvm_memory_slot *memslot)
{
	return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
57 58 59 60 61 62 63 64 65 66 67
}

/**
 * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
 * @kvm:	pointer to kvm structure.
 *
 * Interface to HYP function to flush all VM TLB entries
 */
void kvm_flush_remote_tlbs(struct kvm *kvm)
{
	kvm_call_hyp(__kvm_tlb_flush_vmid, kvm);
68
}
69

70
static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
71
{
72 73 74 75 76 77 78 79
	/*
	 * This function also gets called when dealing with HYP page
	 * tables. As HYP doesn't have an associated struct kvm (and
	 * the HYP page tables are fairly static), we don't do
	 * anything there.
	 */
	if (kvm)
		kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa);
80 81
}

82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
/*
 * D-Cache management functions. They take the page table entries by
 * value, as they are flushing the cache using the kernel mapping (or
 * kmap on 32bit).
 */
static void kvm_flush_dcache_pte(pte_t pte)
{
	__kvm_flush_dcache_pte(pte);
}

static void kvm_flush_dcache_pmd(pmd_t pmd)
{
	__kvm_flush_dcache_pmd(pmd);
}

static void kvm_flush_dcache_pud(pud_t pud)
{
	__kvm_flush_dcache_pud(pud);
}

102 103 104 105 106
static bool kvm_is_device_pfn(unsigned long pfn)
{
	return !pfn_valid(pfn);
}

107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
/**
 * stage2_dissolve_pmd() - clear and flush huge PMD entry
 * @kvm:	pointer to kvm structure.
 * @addr:	IPA
 * @pmd:	pmd pointer for IPA
 *
 * Function clears a PMD entry, flushes addr 1st and 2nd stage TLBs. Marks all
 * pages in the range dirty.
 */
static void stage2_dissolve_pmd(struct kvm *kvm, phys_addr_t addr, pmd_t *pmd)
{
	if (!kvm_pmd_huge(*pmd))
		return;

	pmd_clear(pmd);
	kvm_tlb_flush_vmid_ipa(kvm, addr);
	put_page(virt_to_page(pmd));
}

126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
				  int min, int max)
{
	void *page;

	BUG_ON(max > KVM_NR_MEM_OBJS);
	if (cache->nobjs >= min)
		return 0;
	while (cache->nobjs < max) {
		page = (void *)__get_free_page(PGALLOC_GFP);
		if (!page)
			return -ENOMEM;
		cache->objects[cache->nobjs++] = page;
	}
	return 0;
}

static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
{
	while (mc->nobjs)
		free_page((unsigned long)mc->objects[--mc->nobjs]);
}

static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
{
	void *p;

	BUG_ON(!mc || !mc->nobjs);
	p = mc->objects[--mc->nobjs];
	return p;
}

158
static void clear_pgd_entry(struct kvm *kvm, pgd_t *pgd, phys_addr_t addr)
159
{
160 161 162 163 164
	pud_t *pud_table __maybe_unused = pud_offset(pgd, 0);
	pgd_clear(pgd);
	kvm_tlb_flush_vmid_ipa(kvm, addr);
	pud_free(NULL, pud_table);
	put_page(virt_to_page(pgd));
165 166
}

167
static void clear_pud_entry(struct kvm *kvm, pud_t *pud, phys_addr_t addr)
168
{
169 170 171 172 173
	pmd_t *pmd_table = pmd_offset(pud, 0);
	VM_BUG_ON(pud_huge(*pud));
	pud_clear(pud);
	kvm_tlb_flush_vmid_ipa(kvm, addr);
	pmd_free(NULL, pmd_table);
174 175
	put_page(virt_to_page(pud));
}
176

177
static void clear_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr)
178
{
179 180 181 182 183
	pte_t *pte_table = pte_offset_kernel(pmd, 0);
	VM_BUG_ON(kvm_pmd_huge(*pmd));
	pmd_clear(pmd);
	kvm_tlb_flush_vmid_ipa(kvm, addr);
	pte_free_kernel(NULL, pte_table);
184 185 186
	put_page(virt_to_page(pmd));
}

187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
/*
 * Unmapping vs dcache management:
 *
 * If a guest maps certain memory pages as uncached, all writes will
 * bypass the data cache and go directly to RAM.  However, the CPUs
 * can still speculate reads (not writes) and fill cache lines with
 * data.
 *
 * Those cache lines will be *clean* cache lines though, so a
 * clean+invalidate operation is equivalent to an invalidate
 * operation, because no cache lines are marked dirty.
 *
 * Those clean cache lines could be filled prior to an uncached write
 * by the guest, and the cache coherent IO subsystem would therefore
 * end up writing old data to disk.
 *
 * This is why right after unmapping a page/section and invalidating
 * the corresponding TLBs, we call kvm_flush_dcache_p*() to make sure
 * the IO subsystem will never hit in the cache.
 */
207 208
static void unmap_ptes(struct kvm *kvm, pmd_t *pmd,
		       phys_addr_t addr, phys_addr_t end)
209
{
210 211 212 213 214 215
	phys_addr_t start_addr = addr;
	pte_t *pte, *start_pte;

	start_pte = pte = pte_offset_kernel(pmd, addr);
	do {
		if (!pte_none(*pte)) {
216 217
			pte_t old_pte = *pte;

218 219
			kvm_set_pte(pte, __pte(0));
			kvm_tlb_flush_vmid_ipa(kvm, addr);
220 221

			/* No need to invalidate the cache for device mappings */
222
			if (!kvm_is_device_pfn(pte_pfn(old_pte)))
223 224 225
				kvm_flush_dcache_pte(old_pte);

			put_page(virt_to_page(pte));
226 227 228
		}
	} while (pte++, addr += PAGE_SIZE, addr != end);

229
	if (kvm_pte_table_empty(kvm, start_pte))
230
		clear_pmd_entry(kvm, pmd, start_addr);
231 232
}

233 234
static void unmap_pmds(struct kvm *kvm, pud_t *pud,
		       phys_addr_t addr, phys_addr_t end)
235
{
236 237
	phys_addr_t next, start_addr = addr;
	pmd_t *pmd, *start_pmd;
238

239 240 241 242 243
	start_pmd = pmd = pmd_offset(pud, addr);
	do {
		next = kvm_pmd_addr_end(addr, end);
		if (!pmd_none(*pmd)) {
			if (kvm_pmd_huge(*pmd)) {
244 245
				pmd_t old_pmd = *pmd;

246 247
				pmd_clear(pmd);
				kvm_tlb_flush_vmid_ipa(kvm, addr);
248 249 250

				kvm_flush_dcache_pmd(old_pmd);

251 252 253 254
				put_page(virt_to_page(pmd));
			} else {
				unmap_ptes(kvm, pmd, addr, next);
			}
255
		}
256
	} while (pmd++, addr = next, addr != end);
257

258
	if (kvm_pmd_table_empty(kvm, start_pmd))
259 260
		clear_pud_entry(kvm, pud, start_addr);
}
261

262 263 264 265 266
static void unmap_puds(struct kvm *kvm, pgd_t *pgd,
		       phys_addr_t addr, phys_addr_t end)
{
	phys_addr_t next, start_addr = addr;
	pud_t *pud, *start_pud;
267

268 269 270 271 272
	start_pud = pud = pud_offset(pgd, addr);
	do {
		next = kvm_pud_addr_end(addr, end);
		if (!pud_none(*pud)) {
			if (pud_huge(*pud)) {
273 274
				pud_t old_pud = *pud;

275 276
				pud_clear(pud);
				kvm_tlb_flush_vmid_ipa(kvm, addr);
277 278 279

				kvm_flush_dcache_pud(old_pud);

280 281 282
				put_page(virt_to_page(pud));
			} else {
				unmap_pmds(kvm, pud, addr, next);
283 284
			}
		}
285
	} while (pud++, addr = next, addr != end);
286

287
	if (kvm_pud_table_empty(kvm, start_pud))
288 289 290 291 292 293 294 295 296 297 298
		clear_pgd_entry(kvm, pgd, start_addr);
}


static void unmap_range(struct kvm *kvm, pgd_t *pgdp,
			phys_addr_t start, u64 size)
{
	pgd_t *pgd;
	phys_addr_t addr = start, end = start + size;
	phys_addr_t next;

299
	pgd = pgdp + kvm_pgd_index(addr);
300 301
	do {
		next = kvm_pgd_addr_end(addr, end);
302 303
		if (!pgd_none(*pgd))
			unmap_puds(kvm, pgd, addr, next);
304
	} while (pgd++, addr = next, addr != end);
305 306
}

307 308 309 310 311 312 313
static void stage2_flush_ptes(struct kvm *kvm, pmd_t *pmd,
			      phys_addr_t addr, phys_addr_t end)
{
	pte_t *pte;

	pte = pte_offset_kernel(pmd, addr);
	do {
314
		if (!pte_none(*pte) && !kvm_is_device_pfn(pte_pfn(*pte)))
315
			kvm_flush_dcache_pte(*pte);
316 317 318 319 320 321 322 323 324 325 326 327 328
	} while (pte++, addr += PAGE_SIZE, addr != end);
}

static void stage2_flush_pmds(struct kvm *kvm, pud_t *pud,
			      phys_addr_t addr, phys_addr_t end)
{
	pmd_t *pmd;
	phys_addr_t next;

	pmd = pmd_offset(pud, addr);
	do {
		next = kvm_pmd_addr_end(addr, end);
		if (!pmd_none(*pmd)) {
329 330 331
			if (kvm_pmd_huge(*pmd))
				kvm_flush_dcache_pmd(*pmd);
			else
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
				stage2_flush_ptes(kvm, pmd, addr, next);
		}
	} while (pmd++, addr = next, addr != end);
}

static void stage2_flush_puds(struct kvm *kvm, pgd_t *pgd,
			      phys_addr_t addr, phys_addr_t end)
{
	pud_t *pud;
	phys_addr_t next;

	pud = pud_offset(pgd, addr);
	do {
		next = kvm_pud_addr_end(addr, end);
		if (!pud_none(*pud)) {
347 348 349
			if (pud_huge(*pud))
				kvm_flush_dcache_pud(*pud);
			else
350 351 352 353 354 355 356 357 358 359 360 361 362
				stage2_flush_pmds(kvm, pud, addr, next);
		}
	} while (pud++, addr = next, addr != end);
}

static void stage2_flush_memslot(struct kvm *kvm,
				 struct kvm_memory_slot *memslot)
{
	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
	phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
	phys_addr_t next;
	pgd_t *pgd;

363
	pgd = kvm->arch.pgd + kvm_pgd_index(addr);
364 365 366 367 368 369 370 371 372 373 374 375 376
	do {
		next = kvm_pgd_addr_end(addr, end);
		stage2_flush_puds(kvm, pgd, addr, next);
	} while (pgd++, addr = next, addr != end);
}

/**
 * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
 * @kvm: The struct kvm pointer
 *
 * Go through the stage 2 page tables and invalidate any cache lines
 * backing memory already mapped to the VM.
 */
377
static void stage2_flush_vm(struct kvm *kvm)
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
	int idx;

	idx = srcu_read_lock(&kvm->srcu);
	spin_lock(&kvm->mmu_lock);

	slots = kvm_memslots(kvm);
	kvm_for_each_memslot(memslot, slots)
		stage2_flush_memslot(kvm, memslot);

	spin_unlock(&kvm->mmu_lock);
	srcu_read_unlock(&kvm->srcu, idx);
}

394 395 396 397 398 399 400 401 402 403
/**
 * free_boot_hyp_pgd - free HYP boot page tables
 *
 * Free the HYP boot page tables. The bounce page is also freed.
 */
void free_boot_hyp_pgd(void)
{
	mutex_lock(&kvm_hyp_pgd_mutex);

	if (boot_hyp_pgd) {
404 405
		unmap_range(NULL, boot_hyp_pgd, hyp_idmap_start, PAGE_SIZE);
		unmap_range(NULL, boot_hyp_pgd, TRAMPOLINE_VA, PAGE_SIZE);
406
		free_pages((unsigned long)boot_hyp_pgd, hyp_pgd_order);
407 408 409 410
		boot_hyp_pgd = NULL;
	}

	if (hyp_pgd)
411
		unmap_range(NULL, hyp_pgd, TRAMPOLINE_VA, PAGE_SIZE);
412 413 414 415

	mutex_unlock(&kvm_hyp_pgd_mutex);
}

416
/**
417
 * free_hyp_pgds - free Hyp-mode page tables
418
 *
419 420 421 422 423 424
 * Assumes hyp_pgd is a page table used strictly in Hyp-mode and
 * therefore contains either mappings in the kernel memory area (above
 * PAGE_OFFSET), or device mappings in the vmalloc range (from
 * VMALLOC_START to VMALLOC_END).
 *
 * boot_hyp_pgd should only map two pages for the init code.
425
 */
426
void free_hyp_pgds(void)
427 428 429
{
	unsigned long addr;

430
	free_boot_hyp_pgd();
431

432
	mutex_lock(&kvm_hyp_pgd_mutex);
433

434 435
	if (hyp_pgd) {
		for (addr = PAGE_OFFSET; virt_addr_valid(addr); addr += PGDIR_SIZE)
436
			unmap_range(NULL, hyp_pgd, KERN_TO_HYP(addr), PGDIR_SIZE);
437
		for (addr = VMALLOC_START; is_vmalloc_addr((void*)addr); addr += PGDIR_SIZE)
438 439
			unmap_range(NULL, hyp_pgd, KERN_TO_HYP(addr), PGDIR_SIZE);

440
		free_pages((unsigned long)hyp_pgd, hyp_pgd_order);
441
		hyp_pgd = NULL;
442
	}
443 444 445 446 447
	if (merged_hyp_pgd) {
		clear_page(merged_hyp_pgd);
		free_page((unsigned long)merged_hyp_pgd);
		merged_hyp_pgd = NULL;
	}
448

449 450 451 452
	mutex_unlock(&kvm_hyp_pgd_mutex);
}

static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
453 454
				    unsigned long end, unsigned long pfn,
				    pgprot_t prot)
455 456 457 458
{
	pte_t *pte;
	unsigned long addr;

459 460
	addr = start;
	do {
461 462
		pte = pte_offset_kernel(pmd, addr);
		kvm_set_pte(pte, pfn_pte(pfn, prot));
463
		get_page(virt_to_page(pte));
464
		kvm_flush_dcache_to_poc(pte, sizeof(*pte));
465
		pfn++;
466
	} while (addr += PAGE_SIZE, addr != end);
467 468 469
}

static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
470 471
				   unsigned long end, unsigned long pfn,
				   pgprot_t prot)
472 473 474 475 476
{
	pmd_t *pmd;
	pte_t *pte;
	unsigned long addr, next;

477 478
	addr = start;
	do {
479
		pmd = pmd_offset(pud, addr);
480 481 482 483

		BUG_ON(pmd_sect(*pmd));

		if (pmd_none(*pmd)) {
484
			pte = pte_alloc_one_kernel(NULL, addr);
485 486 487 488 489
			if (!pte) {
				kvm_err("Cannot allocate Hyp pte\n");
				return -ENOMEM;
			}
			pmd_populate_kernel(NULL, pmd, pte);
490
			get_page(virt_to_page(pmd));
491
			kvm_flush_dcache_to_poc(pmd, sizeof(*pmd));
492 493 494 495
		}

		next = pmd_addr_end(addr, end);

496 497
		create_hyp_pte_mappings(pmd, addr, next, pfn, prot);
		pfn += (next - addr) >> PAGE_SHIFT;
498
	} while (addr = next, addr != end);
499 500 501 502

	return 0;
}

503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
static int create_hyp_pud_mappings(pgd_t *pgd, unsigned long start,
				   unsigned long end, unsigned long pfn,
				   pgprot_t prot)
{
	pud_t *pud;
	pmd_t *pmd;
	unsigned long addr, next;
	int ret;

	addr = start;
	do {
		pud = pud_offset(pgd, addr);

		if (pud_none_or_clear_bad(pud)) {
			pmd = pmd_alloc_one(NULL, addr);
			if (!pmd) {
				kvm_err("Cannot allocate Hyp pmd\n");
				return -ENOMEM;
			}
			pud_populate(NULL, pud, pmd);
			get_page(virt_to_page(pud));
			kvm_flush_dcache_to_poc(pud, sizeof(*pud));
		}

		next = pud_addr_end(addr, end);
		ret = create_hyp_pmd_mappings(pud, addr, next, pfn, prot);
		if (ret)
			return ret;
		pfn += (next - addr) >> PAGE_SHIFT;
	} while (addr = next, addr != end);

	return 0;
}

537 538 539
static int __create_hyp_mappings(pgd_t *pgdp,
				 unsigned long start, unsigned long end,
				 unsigned long pfn, pgprot_t prot)
540 541 542 543 544 545 546
{
	pgd_t *pgd;
	pud_t *pud;
	unsigned long addr, next;
	int err = 0;

	mutex_lock(&kvm_hyp_pgd_mutex);
547 548 549
	addr = start & PAGE_MASK;
	end = PAGE_ALIGN(end);
	do {
550
		pgd = pgdp + pgd_index(addr);
551

552 553 554 555
		if (pgd_none(*pgd)) {
			pud = pud_alloc_one(NULL, addr);
			if (!pud) {
				kvm_err("Cannot allocate Hyp pud\n");
556 557 558
				err = -ENOMEM;
				goto out;
			}
559 560 561
			pgd_populate(NULL, pgd, pud);
			get_page(virt_to_page(pgd));
			kvm_flush_dcache_to_poc(pgd, sizeof(*pgd));
562 563 564
		}

		next = pgd_addr_end(addr, end);
565
		err = create_hyp_pud_mappings(pgd, addr, next, pfn, prot);
566 567
		if (err)
			goto out;
568
		pfn += (next - addr) >> PAGE_SHIFT;
569
	} while (addr = next, addr != end);
570 571 572 573 574
out:
	mutex_unlock(&kvm_hyp_pgd_mutex);
	return err;
}

575 576 577 578 579 580 581 582 583 584 585
static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
{
	if (!is_vmalloc_addr(kaddr)) {
		BUG_ON(!virt_addr_valid(kaddr));
		return __pa(kaddr);
	} else {
		return page_to_phys(vmalloc_to_page(kaddr)) +
		       offset_in_page(kaddr);
	}
}

586
/**
587
 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
588 589 590
 * @from:	The virtual kernel start address of the range
 * @to:		The virtual kernel end address of the range (exclusive)
 *
591 592 593
 * The same virtual address as the kernel virtual address is also used
 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
 * physical pages.
594 595 596
 */
int create_hyp_mappings(void *from, void *to)
{
597 598
	phys_addr_t phys_addr;
	unsigned long virt_addr;
599 600 601
	unsigned long start = KERN_TO_HYP((unsigned long)from);
	unsigned long end = KERN_TO_HYP((unsigned long)to);

602 603 604
	if (is_kernel_in_hyp_mode())
		return 0;

605 606
	start = start & PAGE_MASK;
	end = PAGE_ALIGN(end);
607

608 609
	for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
		int err;
610

611 612 613 614 615 616 617 618 619 620
		phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
		err = __create_hyp_mappings(hyp_pgd, virt_addr,
					    virt_addr + PAGE_SIZE,
					    __phys_to_pfn(phys_addr),
					    PAGE_HYP);
		if (err)
			return err;
	}

	return 0;
621 622 623
}

/**
624 625 626
 * create_hyp_io_mappings - duplicate a kernel IO mapping into Hyp mode
 * @from:	The kernel start VA of the range
 * @to:		The kernel end VA of the range (exclusive)
627
 * @phys_addr:	The physical start address which gets mapped
628 629 630
 *
 * The resulting HYP VA is the same as the kernel VA, modulo
 * HYP_PAGE_OFFSET.
631
 */
632
int create_hyp_io_mappings(void *from, void *to, phys_addr_t phys_addr)
633
{
634 635 636
	unsigned long start = KERN_TO_HYP((unsigned long)from);
	unsigned long end = KERN_TO_HYP((unsigned long)to);

637 638 639
	if (is_kernel_in_hyp_mode())
		return 0;

640 641 642 643 644 645
	/* Check for a valid kernel IO mapping */
	if (!is_vmalloc_addr(from) || !is_vmalloc_addr(to - 1))
		return -EINVAL;

	return __create_hyp_mappings(hyp_pgd, start, end,
				     __phys_to_pfn(phys_addr), PAGE_HYP_DEVICE);
646 647
}

648 649 650 651 652 653 654 655 656 657 658 659 660 661
/* Free the HW pgd, one page at a time */
static void kvm_free_hwpgd(void *hwpgd)
{
	free_pages_exact(hwpgd, kvm_get_hwpgd_size());
}

/* Allocate the HW PGD, making sure that each page gets its own refcount */
static void *kvm_alloc_hwpgd(void)
{
	unsigned int size = kvm_get_hwpgd_size();

	return alloc_pages_exact(size, GFP_KERNEL | __GFP_ZERO);
}

662 663 664 665
/**
 * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
 * @kvm:	The KVM struct pointer for the VM.
 *
666 667 668
 * Allocates only the stage-2 HW PGD level table(s) (can support either full
 * 40-bit input addresses or limited to 32-bit input addresses). Clears the
 * allocated pages.
669 670 671 672 673 674 675
 *
 * Note we don't need locking here as this is only called when the VM is
 * created, which can only be done once.
 */
int kvm_alloc_stage2_pgd(struct kvm *kvm)
{
	pgd_t *pgd;
676
	void *hwpgd;
677 678 679 680 681 682

	if (kvm->arch.pgd != NULL) {
		kvm_err("kvm_arch already initialized?\n");
		return -EINVAL;
	}

683 684 685 686 687 688 689 690 691 692 693 694 695 696
	hwpgd = kvm_alloc_hwpgd();
	if (!hwpgd)
		return -ENOMEM;

	/* When the kernel uses more levels of page tables than the
	 * guest, we allocate a fake PGD and pre-populate it to point
	 * to the next-level page table, which will be the real
	 * initial page table pointed to by the VTTBR.
	 *
	 * When KVM_PREALLOC_LEVEL==2, we allocate a single page for
	 * the PMD and the kernel will use folded pud.
	 * When KVM_PREALLOC_LEVEL==1, we allocate 2 consecutive PUD
	 * pages.
	 */
697
	if (KVM_PREALLOC_LEVEL > 0) {
698 699
		int i;

700 701 702 703 704
		/*
		 * Allocate fake pgd for the page table manipulation macros to
		 * work.  This is not used by the hardware and we have no
		 * alignment requirement for this allocation.
		 */
705 706
		pgd = kmalloc(PTRS_PER_S2_PGD * sizeof(pgd_t),
				GFP_KERNEL | __GFP_ZERO);
707 708 709 710 711 712 713 714 715 716 717 718 719 720 721

		if (!pgd) {
			kvm_free_hwpgd(hwpgd);
			return -ENOMEM;
		}

		/* Plug the HW PGD into the fake one. */
		for (i = 0; i < PTRS_PER_S2_PGD; i++) {
			if (KVM_PREALLOC_LEVEL == 1)
				pgd_populate(NULL, pgd + i,
					     (pud_t *)hwpgd + i * PTRS_PER_PUD);
			else if (KVM_PREALLOC_LEVEL == 2)
				pud_populate(NULL, pud_offset(pgd, 0) + i,
					     (pmd_t *)hwpgd + i * PTRS_PER_PMD);
		}
722 723 724 725 726
	} else {
		/*
		 * Allocate actual first-level Stage-2 page table used by the
		 * hardware for Stage-2 page table walks.
		 */
727
		pgd = (pgd_t *)hwpgd;
728 729
	}

730
	kvm_clean_pgd(pgd);
731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
	kvm->arch.pgd = pgd;
	return 0;
}

/**
 * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
 * @kvm:   The VM pointer
 * @start: The intermediate physical base address of the range to unmap
 * @size:  The size of the area to unmap
 *
 * Clear a range of stage-2 mappings, lowering the various ref-counts.  Must
 * be called while holding mmu_lock (unless for freeing the stage2 pgd before
 * destroying the VM), otherwise another faulting VCPU may come in and mess
 * with things behind our backs.
 */
static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
{
748
	unmap_range(kvm, kvm->arch.pgd, start, size);
749 750
}

751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
static void stage2_unmap_memslot(struct kvm *kvm,
				 struct kvm_memory_slot *memslot)
{
	hva_t hva = memslot->userspace_addr;
	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
	phys_addr_t size = PAGE_SIZE * memslot->npages;
	hva_t reg_end = hva + size;

	/*
	 * A memory region could potentially cover multiple VMAs, and any holes
	 * between them, so iterate over all of them to find out if we should
	 * unmap any of them.
	 *
	 *     +--------------------------------------------+
	 * +---------------+----------------+   +----------------+
	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
	 * +---------------+----------------+   +----------------+
	 *     |               memory region                |
	 *     +--------------------------------------------+
	 */
	do {
		struct vm_area_struct *vma = find_vma(current->mm, hva);
		hva_t vm_start, vm_end;

		if (!vma || vma->vm_start >= reg_end)
			break;

		/*
		 * Take the intersection of this VMA with the memory region
		 */
		vm_start = max(hva, vma->vm_start);
		vm_end = min(reg_end, vma->vm_end);

		if (!(vma->vm_flags & VM_PFNMAP)) {
			gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
			unmap_stage2_range(kvm, gpa, vm_end - vm_start);
		}
		hva = vm_end;
	} while (hva < reg_end);
}

/**
 * stage2_unmap_vm - Unmap Stage-2 RAM mappings
 * @kvm: The struct kvm pointer
 *
 * Go through the memregions and unmap any reguler RAM
 * backing memory already mapped to the VM.
 */
void stage2_unmap_vm(struct kvm *kvm)
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
	int idx;

	idx = srcu_read_lock(&kvm->srcu);
	spin_lock(&kvm->mmu_lock);

	slots = kvm_memslots(kvm);
	kvm_for_each_memslot(memslot, slots)
		stage2_unmap_memslot(kvm, memslot);

	spin_unlock(&kvm->mmu_lock);
	srcu_read_unlock(&kvm->srcu, idx);
}

816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
/**
 * kvm_free_stage2_pgd - free all stage-2 tables
 * @kvm:	The KVM struct pointer for the VM.
 *
 * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
 * underlying level-2 and level-3 tables before freeing the actual level-1 table
 * and setting the struct pointer to NULL.
 *
 * Note we don't need locking here as this is only called when the VM is
 * destroyed, which can only be done once.
 */
void kvm_free_stage2_pgd(struct kvm *kvm)
{
	if (kvm->arch.pgd == NULL)
		return;

	unmap_stage2_range(kvm, 0, KVM_PHYS_SIZE);
833
	kvm_free_hwpgd(kvm_get_hwpgd(kvm));
834 835
	if (KVM_PREALLOC_LEVEL > 0)
		kfree(kvm->arch.pgd);
836

837 838 839
	kvm->arch.pgd = NULL;
}

840
static pud_t *stage2_get_pud(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
841
			     phys_addr_t addr)
842 843 844 845
{
	pgd_t *pgd;
	pud_t *pud;

846
	pgd = kvm->arch.pgd + kvm_pgd_index(addr);
847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
	if (WARN_ON(pgd_none(*pgd))) {
		if (!cache)
			return NULL;
		pud = mmu_memory_cache_alloc(cache);
		pgd_populate(NULL, pgd, pud);
		get_page(virt_to_page(pgd));
	}

	return pud_offset(pgd, addr);
}

static pmd_t *stage2_get_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
			     phys_addr_t addr)
{
	pud_t *pud;
	pmd_t *pmd;

	pud = stage2_get_pud(kvm, cache, addr);
865 866
	if (pud_none(*pud)) {
		if (!cache)
867
			return NULL;
868 869 870
		pmd = mmu_memory_cache_alloc(cache);
		pud_populate(NULL, pud, pmd);
		get_page(virt_to_page(pud));
871 872
	}

873 874 875 876 877 878 879 880 881 882
	return pmd_offset(pud, addr);
}

static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache
			       *cache, phys_addr_t addr, const pmd_t *new_pmd)
{
	pmd_t *pmd, old_pmd;

	pmd = stage2_get_pmd(kvm, cache, addr);
	VM_BUG_ON(!pmd);
883

884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
	/*
	 * Mapping in huge pages should only happen through a fault.  If a
	 * page is merged into a transparent huge page, the individual
	 * subpages of that huge page should be unmapped through MMU
	 * notifiers before we get here.
	 *
	 * Merging of CompoundPages is not supported; they should become
	 * splitting first, unmapped, merged, and mapped back in on-demand.
	 */
	VM_BUG_ON(pmd_present(*pmd) && pmd_pfn(*pmd) != pmd_pfn(*new_pmd));

	old_pmd = *pmd;
	kvm_set_pmd(pmd, *new_pmd);
	if (pmd_present(old_pmd))
		kvm_tlb_flush_vmid_ipa(kvm, addr);
	else
		get_page(virt_to_page(pmd));
	return 0;
}

static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
905 906
			  phys_addr_t addr, const pte_t *new_pte,
			  unsigned long flags)
907 908 909
{
	pmd_t *pmd;
	pte_t *pte, old_pte;
910 911 912 913
	bool iomap = flags & KVM_S2PTE_FLAG_IS_IOMAP;
	bool logging_active = flags & KVM_S2_FLAG_LOGGING_ACTIVE;

	VM_BUG_ON(logging_active && !cache);
914

915
	/* Create stage-2 page table mapping - Levels 0 and 1 */
916 917 918 919 920 921 922 923 924
	pmd = stage2_get_pmd(kvm, cache, addr);
	if (!pmd) {
		/*
		 * Ignore calls from kvm_set_spte_hva for unallocated
		 * address ranges.
		 */
		return 0;
	}

925 926 927 928 929 930 931
	/*
	 * While dirty page logging - dissolve huge PMD, then continue on to
	 * allocate page.
	 */
	if (logging_active)
		stage2_dissolve_pmd(kvm, addr, pmd);

932
	/* Create stage-2 page mappings - Level 2 */
933 934 935 936
	if (pmd_none(*pmd)) {
		if (!cache)
			return 0; /* ignore calls from kvm_set_spte_hva */
		pte = mmu_memory_cache_alloc(cache);
937
		kvm_clean_pte(pte);
938 939
		pmd_populate_kernel(NULL, pmd, pte);
		get_page(virt_to_page(pmd));
940 941 942
	}

	pte = pte_offset_kernel(pmd, addr);
943 944 945 946 947 948 949 950

	if (iomap && pte_present(*pte))
		return -EFAULT;

	/* Create 2nd stage page table mapping - Level 3 */
	old_pte = *pte;
	kvm_set_pte(pte, *new_pte);
	if (pte_present(old_pte))
951
		kvm_tlb_flush_vmid_ipa(kvm, addr);
952 953 954 955 956 957 958 959 960 961 962 963 964 965 966
	else
		get_page(virt_to_page(pte));

	return 0;
}

/**
 * kvm_phys_addr_ioremap - map a device range to guest IPA
 *
 * @kvm:	The KVM pointer
 * @guest_ipa:	The IPA at which to insert the mapping
 * @pa:		The physical address of the device
 * @size:	The size of the mapping
 */
int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
967
			  phys_addr_t pa, unsigned long size, bool writable)
968 969 970 971 972 973 974 975 976 977
{
	phys_addr_t addr, end;
	int ret = 0;
	unsigned long pfn;
	struct kvm_mmu_memory_cache cache = { 0, };

	end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
	pfn = __phys_to_pfn(pa);

	for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
978
		pte_t pte = pfn_pte(pfn, PAGE_S2_DEVICE);
979

980 981 982
		if (writable)
			kvm_set_s2pte_writable(&pte);

983 984
		ret = mmu_topup_memory_cache(&cache, KVM_MMU_CACHE_MIN_PAGES,
						KVM_NR_MEM_OBJS);
985 986 987
		if (ret)
			goto out;
		spin_lock(&kvm->mmu_lock);
988 989
		ret = stage2_set_pte(kvm, &cache, addr, &pte,
						KVM_S2PTE_FLAG_IS_IOMAP);
990 991 992 993 994 995 996 997 998 999 1000 1001
		spin_unlock(&kvm->mmu_lock);
		if (ret)
			goto out;

		pfn++;
	}

out:
	mmu_free_memory_cache(&cache);
	return ret;
}

D
Dan Williams 已提交
1002
static bool transparent_hugepage_adjust(kvm_pfn_t *pfnp, phys_addr_t *ipap)
1003
{
D
Dan Williams 已提交
1004
	kvm_pfn_t pfn = *pfnp;
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
	gfn_t gfn = *ipap >> PAGE_SHIFT;

	if (PageTransCompound(pfn_to_page(pfn))) {
		unsigned long mask;
		/*
		 * The address we faulted on is backed by a transparent huge
		 * page.  However, because we map the compound huge page and
		 * not the individual tail page, we need to transfer the
		 * refcount to the head page.  We have to be careful that the
		 * THP doesn't start to split while we are adjusting the
		 * refcounts.
		 *
		 * We are sure this doesn't happen, because mmu_notifier_retry
		 * was successful and we are holding the mmu_lock, so if this
		 * THP is trying to split, it will be blocked in the mmu
		 * notifier before touching any of the pages, specifically
		 * before being able to call __split_huge_page_refcount().
		 *
		 * We can therefore safely transfer the refcount from PG_tail
		 * to PG_head and switch the pfn from a tail page to the head
		 * page accordingly.
		 */
		mask = PTRS_PER_PMD - 1;
		VM_BUG_ON((gfn & mask) != (pfn & mask));
		if (pfn & mask) {
			*ipap &= PMD_MASK;
			kvm_release_pfn_clean(pfn);
			pfn &= ~mask;
			kvm_get_pfn(pfn);
			*pfnp = pfn;
		}

		return true;
	}

	return false;
}

1043 1044 1045 1046 1047 1048 1049 1050
static bool kvm_is_write_fault(struct kvm_vcpu *vcpu)
{
	if (kvm_vcpu_trap_is_iabt(vcpu))
		return false;

	return kvm_vcpu_dabt_iswrite(vcpu);
}

1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
/**
 * stage2_wp_ptes - write protect PMD range
 * @pmd:	pointer to pmd entry
 * @addr:	range start address
 * @end:	range end address
 */
static void stage2_wp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
{
	pte_t *pte;

	pte = pte_offset_kernel(pmd, addr);
	do {
		if (!pte_none(*pte)) {
			if (!kvm_s2pte_readonly(pte))
				kvm_set_s2pte_readonly(pte);
		}
	} while (pte++, addr += PAGE_SIZE, addr != end);
}

/**
 * stage2_wp_pmds - write protect PUD range
 * @pud:	pointer to pud entry
 * @addr:	range start address
 * @end:	range end address
 */
static void stage2_wp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
{
	pmd_t *pmd;
	phys_addr_t next;

	pmd = pmd_offset(pud, addr);

	do {
		next = kvm_pmd_addr_end(addr, end);
		if (!pmd_none(*pmd)) {
			if (kvm_pmd_huge(*pmd)) {
				if (!kvm_s2pmd_readonly(pmd))
					kvm_set_s2pmd_readonly(pmd);
			} else {
				stage2_wp_ptes(pmd, addr, next);
			}
		}
	} while (pmd++, addr = next, addr != end);
}

/**
  * stage2_wp_puds - write protect PGD range
  * @pgd:	pointer to pgd entry
  * @addr:	range start address
  * @end:	range end address
  *
  * Process PUD entries, for a huge PUD we cause a panic.
  */
static void  stage2_wp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
{
	pud_t *pud;
	phys_addr_t next;

	pud = pud_offset(pgd, addr);
	do {
		next = kvm_pud_addr_end(addr, end);
		if (!pud_none(*pud)) {
			/* TODO:PUD not supported, revisit later if supported */
			BUG_ON(kvm_pud_huge(*pud));
			stage2_wp_pmds(pud, addr, next);
		}
	} while (pud++, addr = next, addr != end);
}

/**
 * stage2_wp_range() - write protect stage2 memory region range
 * @kvm:	The KVM pointer
 * @addr:	Start address of range
 * @end:	End address of range
 */
static void stage2_wp_range(struct kvm *kvm, phys_addr_t addr, phys_addr_t end)
{
	pgd_t *pgd;
	phys_addr_t next;

1131
	pgd = kvm->arch.pgd + kvm_pgd_index(addr);
1132 1133 1134 1135
	do {
		/*
		 * Release kvm_mmu_lock periodically if the memory region is
		 * large. Otherwise, we may see kernel panics with
1136 1137
		 * CONFIG_DETECT_HUNG_TASK, CONFIG_LOCKUP_DETECTOR,
		 * CONFIG_LOCKDEP. Additionally, holding the lock too long
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
		 * will also starve other vCPUs.
		 */
		if (need_resched() || spin_needbreak(&kvm->mmu_lock))
			cond_resched_lock(&kvm->mmu_lock);

		next = kvm_pgd_addr_end(addr, end);
		if (pgd_present(*pgd))
			stage2_wp_puds(pgd, addr, next);
	} while (pgd++, addr = next, addr != end);
}

/**
 * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
 * @kvm:	The KVM pointer
 * @slot:	The memory slot to write protect
 *
 * Called to start logging dirty pages after memory region
 * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
 * all present PMD and PTEs are write protected in the memory region.
 * Afterwards read of dirty page log can be called.
 *
 * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
 * serializing operations for VM memory regions.
 */
void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
{
1164 1165
	struct kvm_memslots *slots = kvm_memslots(kvm);
	struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
1166 1167 1168 1169 1170 1171 1172 1173
	phys_addr_t start = memslot->base_gfn << PAGE_SHIFT;
	phys_addr_t end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;

	spin_lock(&kvm->mmu_lock);
	stage2_wp_range(kvm, start, end);
	spin_unlock(&kvm->mmu_lock);
	kvm_flush_remote_tlbs(kvm);
}
1174 1175

/**
1176
 * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
1177 1178 1179 1180 1181 1182 1183 1184 1185
 * @kvm:	The KVM pointer
 * @slot:	The memory slot associated with mask
 * @gfn_offset:	The gfn offset in memory slot
 * @mask:	The mask of dirty pages at offset 'gfn_offset' in this memory
 *		slot to be write protected
 *
 * Walks bits set in mask write protects the associated pte's. Caller must
 * acquire kvm_mmu_lock.
 */
1186
static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1187 1188 1189 1190 1191 1192 1193 1194 1195
		struct kvm_memory_slot *slot,
		gfn_t gfn_offset, unsigned long mask)
{
	phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
	phys_addr_t start = (base_gfn +  __ffs(mask)) << PAGE_SHIFT;
	phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;

	stage2_wp_range(kvm, start, end);
}
1196

1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
/*
 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
 * dirty pages.
 *
 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
 * enable dirty logging for them.
 */
void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
		struct kvm_memory_slot *slot,
		gfn_t gfn_offset, unsigned long mask)
{
	kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
}

D
Dan Williams 已提交
1211
static void coherent_cache_guest_page(struct kvm_vcpu *vcpu, kvm_pfn_t pfn,
1212 1213 1214 1215 1216
				      unsigned long size, bool uncached)
{
	__coherent_cache_guest_page(vcpu, pfn, size, uncached);
}

1217
static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
1218
			  struct kvm_memory_slot *memslot, unsigned long hva,
1219 1220 1221
			  unsigned long fault_status)
{
	int ret;
1222
	bool write_fault, writable, hugetlb = false, force_pte = false;
1223
	unsigned long mmu_seq;
1224 1225
	gfn_t gfn = fault_ipa >> PAGE_SHIFT;
	struct kvm *kvm = vcpu->kvm;
1226
	struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
1227
	struct vm_area_struct *vma;
D
Dan Williams 已提交
1228
	kvm_pfn_t pfn;
1229
	pgprot_t mem_type = PAGE_S2;
1230
	bool fault_ipa_uncached;
1231 1232
	bool logging_active = memslot_is_logging(memslot);
	unsigned long flags = 0;
1233

1234
	write_fault = kvm_is_write_fault(vcpu);
1235 1236 1237 1238 1239
	if (fault_status == FSC_PERM && !write_fault) {
		kvm_err("Unexpected L2 read permission error\n");
		return -EFAULT;
	}

1240 1241 1242
	/* Let's check if we will get back a huge page backed by hugetlbfs */
	down_read(&current->mm->mmap_sem);
	vma = find_vma_intersection(current->mm, hva, hva + 1);
1243 1244 1245 1246 1247 1248
	if (unlikely(!vma)) {
		kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
		up_read(&current->mm->mmap_sem);
		return -EFAULT;
	}

1249
	if (is_vm_hugetlb_page(vma) && !logging_active) {
1250 1251
		hugetlb = true;
		gfn = (fault_ipa & PMD_MASK) >> PAGE_SHIFT;
1252 1253
	} else {
		/*
1254 1255 1256 1257 1258 1259 1260
		 * Pages belonging to memslots that don't have the same
		 * alignment for userspace and IPA cannot be mapped using
		 * block descriptors even if the pages belong to a THP for
		 * the process, because the stage-2 block descriptor will
		 * cover more than a single THP and we loose atomicity for
		 * unmapping, updates, and splits of the THP or other pages
		 * in the stage-2 block range.
1261
		 */
1262 1263
		if ((memslot->userspace_addr & ~PMD_MASK) !=
		    ((memslot->base_gfn << PAGE_SHIFT) & ~PMD_MASK))
1264
			force_pte = true;
1265 1266 1267
	}
	up_read(&current->mm->mmap_sem);

1268
	/* We need minimum second+third level pages */
1269 1270
	ret = mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES,
				     KVM_NR_MEM_OBJS);
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
	if (ret)
		return ret;

	mmu_seq = vcpu->kvm->mmu_notifier_seq;
	/*
	 * Ensure the read of mmu_notifier_seq happens before we call
	 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
	 * the page we just got a reference to gets unmapped before we have a
	 * chance to grab the mmu_lock, which ensure that if the page gets
	 * unmapped afterwards, the call to kvm_unmap_hva will take it away
	 * from us again properly. This smp_rmb() interacts with the smp_wmb()
	 * in kvm_mmu_notifier_invalidate_<page|range_end>.
	 */
	smp_rmb();

1286
	pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
1287 1288 1289
	if (is_error_pfn(pfn))
		return -EFAULT;

1290
	if (kvm_is_device_pfn(pfn)) {
1291
		mem_type = PAGE_S2_DEVICE;
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
		flags |= KVM_S2PTE_FLAG_IS_IOMAP;
	} else if (logging_active) {
		/*
		 * Faults on pages in a memslot with logging enabled
		 * should not be mapped with huge pages (it introduces churn
		 * and performance degradation), so force a pte mapping.
		 */
		force_pte = true;
		flags |= KVM_S2_FLAG_LOGGING_ACTIVE;

		/*
		 * Only actually map the page as writable if this was a write
		 * fault.
		 */
		if (!write_fault)
			writable = false;
	}
1309

1310 1311
	spin_lock(&kvm->mmu_lock);
	if (mmu_notifier_retry(kvm, mmu_seq))
1312
		goto out_unlock;
1313

1314 1315
	if (!hugetlb && !force_pte)
		hugetlb = transparent_hugepage_adjust(&pfn, &fault_ipa);
1316

1317
	fault_ipa_uncached = memslot->flags & KVM_MEMSLOT_INCOHERENT;
1318

1319
	if (hugetlb) {
1320
		pmd_t new_pmd = pfn_pmd(pfn, mem_type);
1321 1322 1323 1324 1325
		new_pmd = pmd_mkhuge(new_pmd);
		if (writable) {
			kvm_set_s2pmd_writable(&new_pmd);
			kvm_set_pfn_dirty(pfn);
		}
1326
		coherent_cache_guest_page(vcpu, pfn, PMD_SIZE, fault_ipa_uncached);
1327 1328
		ret = stage2_set_pmd_huge(kvm, memcache, fault_ipa, &new_pmd);
	} else {
1329
		pte_t new_pte = pfn_pte(pfn, mem_type);
1330

1331 1332 1333
		if (writable) {
			kvm_set_s2pte_writable(&new_pte);
			kvm_set_pfn_dirty(pfn);
1334
			mark_page_dirty(kvm, gfn);
1335
		}
1336
		coherent_cache_guest_page(vcpu, pfn, PAGE_SIZE, fault_ipa_uncached);
1337
		ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte, flags);
1338
	}
1339

1340
out_unlock:
1341
	spin_unlock(&kvm->mmu_lock);
1342
	kvm_set_pfn_accessed(pfn);
1343
	kvm_release_pfn_clean(pfn);
1344
	return ret;
1345 1346
}

1347 1348 1349 1350 1351 1352 1353 1354 1355
/*
 * Resolve the access fault by making the page young again.
 * Note that because the faulting entry is guaranteed not to be
 * cached in the TLB, we don't need to invalidate anything.
 */
static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
{
	pmd_t *pmd;
	pte_t *pte;
D
Dan Williams 已提交
1356
	kvm_pfn_t pfn;
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
	bool pfn_valid = false;

	trace_kvm_access_fault(fault_ipa);

	spin_lock(&vcpu->kvm->mmu_lock);

	pmd = stage2_get_pmd(vcpu->kvm, NULL, fault_ipa);
	if (!pmd || pmd_none(*pmd))	/* Nothing there */
		goto out;

	if (kvm_pmd_huge(*pmd)) {	/* THP, HugeTLB */
		*pmd = pmd_mkyoung(*pmd);
		pfn = pmd_pfn(*pmd);
		pfn_valid = true;
		goto out;
	}

	pte = pte_offset_kernel(pmd, fault_ipa);
	if (pte_none(*pte))		/* Nothing there either */
		goto out;

	*pte = pte_mkyoung(*pte);	/* Just a page... */
	pfn = pte_pfn(*pte);
	pfn_valid = true;
out:
	spin_unlock(&vcpu->kvm->mmu_lock);
	if (pfn_valid)
		kvm_set_pfn_accessed(pfn);
}

1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
/**
 * kvm_handle_guest_abort - handles all 2nd stage aborts
 * @vcpu:	the VCPU pointer
 * @run:	the kvm_run structure
 *
 * Any abort that gets to the host is almost guaranteed to be caused by a
 * missing second stage translation table entry, which can mean that either the
 * guest simply needs more memory and we must allocate an appropriate page or it
 * can mean that the guest tried to access I/O memory, which is emulated by user
 * space. The distinction is based on the IPA causing the fault and whether this
 * memory region has been registered as standard RAM by user space.
 */
1399 1400
int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
1401 1402 1403
	unsigned long fault_status;
	phys_addr_t fault_ipa;
	struct kvm_memory_slot *memslot;
1404 1405
	unsigned long hva;
	bool is_iabt, write_fault, writable;
1406 1407 1408
	gfn_t gfn;
	int ret, idx;

1409
	is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
1410
	fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
1411

1412 1413
	trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_hsr(vcpu),
			      kvm_vcpu_get_hfar(vcpu), fault_ipa);
1414 1415

	/* Check the stage-2 fault is trans. fault or write fault */
1416
	fault_status = kvm_vcpu_trap_get_fault_type(vcpu);
1417 1418
	if (fault_status != FSC_FAULT && fault_status != FSC_PERM &&
	    fault_status != FSC_ACCESS) {
1419 1420 1421 1422
		kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
			kvm_vcpu_trap_get_class(vcpu),
			(unsigned long)kvm_vcpu_trap_get_fault(vcpu),
			(unsigned long)kvm_vcpu_get_hsr(vcpu));
1423 1424 1425 1426 1427 1428
		return -EFAULT;
	}

	idx = srcu_read_lock(&vcpu->kvm->srcu);

	gfn = fault_ipa >> PAGE_SHIFT;
1429 1430
	memslot = gfn_to_memslot(vcpu->kvm, gfn);
	hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
1431
	write_fault = kvm_is_write_fault(vcpu);
1432
	if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
1433 1434
		if (is_iabt) {
			/* Prefetch Abort on I/O address */
1435
			kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1436 1437 1438 1439
			ret = 1;
			goto out_unlock;
		}

1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
		/*
		 * Check for a cache maintenance operation. Since we
		 * ended-up here, we know it is outside of any memory
		 * slot. But we can't find out if that is for a device,
		 * or if the guest is just being stupid. The only thing
		 * we know for sure is that this range cannot be cached.
		 *
		 * So let's assume that the guest is just being
		 * cautious, and skip the instruction.
		 */
		if (kvm_vcpu_dabt_is_cm(vcpu)) {
			kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
			ret = 1;
			goto out_unlock;
		}

M
Marc Zyngier 已提交
1456 1457 1458 1459 1460 1461 1462
		/*
		 * The IPA is reported as [MAX:12], so we need to
		 * complement it with the bottom 12 bits from the
		 * faulting VA. This is always 12 bits, irrespective
		 * of the page size.
		 */
		fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
C
Christoffer Dall 已提交
1463
		ret = io_mem_abort(vcpu, run, fault_ipa);
1464 1465 1466
		goto out_unlock;
	}

1467 1468 1469
	/* Userspace should not be able to register out-of-bounds IPAs */
	VM_BUG_ON(fault_ipa >= KVM_PHYS_SIZE);

1470 1471 1472 1473 1474 1475
	if (fault_status == FSC_ACCESS) {
		handle_access_fault(vcpu, fault_ipa);
		ret = 1;
		goto out_unlock;
	}

1476
	ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
1477 1478 1479 1480 1481
	if (ret == 0)
		ret = 1;
out_unlock:
	srcu_read_unlock(&vcpu->kvm->srcu, idx);
	return ret;
1482 1483
}

1484 1485 1486 1487 1488 1489
static int handle_hva_to_gpa(struct kvm *kvm,
			     unsigned long start,
			     unsigned long end,
			     int (*handler)(struct kvm *kvm,
					    gpa_t gpa, void *data),
			     void *data)
1490 1491 1492
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
1493
	int ret = 0;
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516

	slots = kvm_memslots(kvm);

	/* we only care about the pages that the guest sees */
	kvm_for_each_memslot(memslot, slots) {
		unsigned long hva_start, hva_end;
		gfn_t gfn, gfn_end;

		hva_start = max(start, memslot->userspace_addr);
		hva_end = min(end, memslot->userspace_addr +
					(memslot->npages << PAGE_SHIFT));
		if (hva_start >= hva_end)
			continue;

		/*
		 * {gfn(page) | page intersects with [hva_start, hva_end)} =
		 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
		 */
		gfn = hva_to_gfn_memslot(hva_start, memslot);
		gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);

		for (; gfn < gfn_end; ++gfn) {
			gpa_t gpa = gfn << PAGE_SHIFT;
1517
			ret |= handler(kvm, gpa, data);
1518 1519
		}
	}
1520 1521

	return ret;
1522 1523
}

1524
static int kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
1525 1526
{
	unmap_stage2_range(kvm, gpa, PAGE_SIZE);
1527
	return 0;
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
}

int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
{
	unsigned long end = hva + PAGE_SIZE;

	if (!kvm->arch.pgd)
		return 0;

	trace_kvm_unmap_hva(hva);
	handle_hva_to_gpa(kvm, hva, end, &kvm_unmap_hva_handler, NULL);
	return 0;
}

int kvm_unmap_hva_range(struct kvm *kvm,
			unsigned long start, unsigned long end)
{
	if (!kvm->arch.pgd)
		return 0;

	trace_kvm_unmap_hva_range(start, end);
	handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
	return 0;
}

1553
static int kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, void *data)
1554 1555 1556
{
	pte_t *pte = (pte_t *)data;

1557 1558 1559 1560 1561 1562 1563 1564
	/*
	 * We can always call stage2_set_pte with KVM_S2PTE_FLAG_LOGGING_ACTIVE
	 * flag clear because MMU notifiers will have unmapped a huge PMD before
	 * calling ->change_pte() (which in turn calls kvm_set_spte_hva()) and
	 * therefore stage2_set_pte() never needs to clear out a huge PMD
	 * through this calling path.
	 */
	stage2_set_pte(kvm, NULL, gpa, pte, 0);
1565
	return 0;
1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581
}


void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
{
	unsigned long end = hva + PAGE_SIZE;
	pte_t stage2_pte;

	if (!kvm->arch.pgd)
		return;

	trace_kvm_set_spte_hva(hva);
	stage2_pte = pfn_pte(pte_pfn(pte), PAGE_S2);
	handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
}

1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642
static int kvm_age_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
{
	pmd_t *pmd;
	pte_t *pte;

	pmd = stage2_get_pmd(kvm, NULL, gpa);
	if (!pmd || pmd_none(*pmd))	/* Nothing there */
		return 0;

	if (kvm_pmd_huge(*pmd)) {	/* THP, HugeTLB */
		if (pmd_young(*pmd)) {
			*pmd = pmd_mkold(*pmd);
			return 1;
		}

		return 0;
	}

	pte = pte_offset_kernel(pmd, gpa);
	if (pte_none(*pte))
		return 0;

	if (pte_young(*pte)) {
		*pte = pte_mkold(*pte);	/* Just a page... */
		return 1;
	}

	return 0;
}

static int kvm_test_age_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
{
	pmd_t *pmd;
	pte_t *pte;

	pmd = stage2_get_pmd(kvm, NULL, gpa);
	if (!pmd || pmd_none(*pmd))	/* Nothing there */
		return 0;

	if (kvm_pmd_huge(*pmd))		/* THP, HugeTLB */
		return pmd_young(*pmd);

	pte = pte_offset_kernel(pmd, gpa);
	if (!pte_none(*pte))		/* Just a page... */
		return pte_young(*pte);

	return 0;
}

int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
{
	trace_kvm_age_hva(start, end);
	return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
}

int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
{
	trace_kvm_test_age_hva(hva);
	return handle_hva_to_gpa(kvm, hva, hva, kvm_test_age_hva_handler, NULL);
}

1643 1644 1645 1646 1647
void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
{
	mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
}

1648 1649
phys_addr_t kvm_mmu_get_httbr(void)
{
1650 1651 1652 1653
	if (__kvm_cpu_uses_extended_idmap())
		return virt_to_phys(merged_hyp_pgd);
	else
		return virt_to_phys(hyp_pgd);
1654 1655
}

1656 1657
phys_addr_t kvm_mmu_get_boot_httbr(void)
{
1658 1659 1660 1661
	if (__kvm_cpu_uses_extended_idmap())
		return virt_to_phys(merged_hyp_pgd);
	else
		return virt_to_phys(boot_hyp_pgd);
1662 1663 1664 1665 1666 1667 1668
}

phys_addr_t kvm_get_idmap_vector(void)
{
	return hyp_idmap_vector;
}

1669 1670
int kvm_mmu_init(void)
{
1671 1672
	int err;

1673 1674 1675
	hyp_idmap_start = kvm_virt_to_phys(__hyp_idmap_text_start);
	hyp_idmap_end = kvm_virt_to_phys(__hyp_idmap_text_end);
	hyp_idmap_vector = kvm_virt_to_phys(__kvm_hyp_init);
1676

1677 1678 1679 1680 1681
	/*
	 * We rely on the linker script to ensure at build time that the HYP
	 * init code does not cross a page boundary.
	 */
	BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
1682

1683 1684
	hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order);
	boot_hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order);
1685

1686
	if (!hyp_pgd || !boot_hyp_pgd) {
1687
		kvm_err("Hyp mode PGD not allocated\n");
1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
		err = -ENOMEM;
		goto out;
	}

	/* Create the idmap in the boot page tables */
	err = 	__create_hyp_mappings(boot_hyp_pgd,
				      hyp_idmap_start, hyp_idmap_end,
				      __phys_to_pfn(hyp_idmap_start),
				      PAGE_HYP);

	if (err) {
		kvm_err("Failed to idmap %lx-%lx\n",
			hyp_idmap_start, hyp_idmap_end);
		goto out;
1702 1703
	}

1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
	if (__kvm_cpu_uses_extended_idmap()) {
		merged_hyp_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
		if (!merged_hyp_pgd) {
			kvm_err("Failed to allocate extra HYP pgd\n");
			goto out;
		}
		__kvm_extend_hypmap(boot_hyp_pgd, hyp_pgd, merged_hyp_pgd,
				    hyp_idmap_start);
		return 0;
	}

1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
	/* Map the very same page at the trampoline VA */
	err = 	__create_hyp_mappings(boot_hyp_pgd,
				      TRAMPOLINE_VA, TRAMPOLINE_VA + PAGE_SIZE,
				      __phys_to_pfn(hyp_idmap_start),
				      PAGE_HYP);
	if (err) {
		kvm_err("Failed to map trampoline @%lx into boot HYP pgd\n",
			TRAMPOLINE_VA);
		goto out;
	}

	/* Map the same page again into the runtime page tables */
	err = 	__create_hyp_mappings(hyp_pgd,
				      TRAMPOLINE_VA, TRAMPOLINE_VA + PAGE_SIZE,
				      __phys_to_pfn(hyp_idmap_start),
				      PAGE_HYP);
	if (err) {
		kvm_err("Failed to map trampoline @%lx into runtime HYP pgd\n",
			TRAMPOLINE_VA);
		goto out;
	}

1737
	return 0;
1738
out:
1739
	free_hyp_pgds();
1740
	return err;
1741
}
1742 1743

void kvm_arch_commit_memory_region(struct kvm *kvm,
1744
				   const struct kvm_userspace_memory_region *mem,
1745
				   const struct kvm_memory_slot *old,
1746
				   const struct kvm_memory_slot *new,
1747 1748
				   enum kvm_mr_change change)
{
1749 1750 1751 1752 1753 1754 1755
	/*
	 * At this point memslot has been committed and there is an
	 * allocated dirty_bitmap[], dirty pages will be be tracked while the
	 * memory slot is write protected.
	 */
	if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES)
		kvm_mmu_wp_memory_region(kvm, mem->slot);
1756 1757 1758 1759
}

int kvm_arch_prepare_memory_region(struct kvm *kvm,
				   struct kvm_memory_slot *memslot,
1760
				   const struct kvm_userspace_memory_region *mem,
1761 1762
				   enum kvm_mr_change change)
{
1763 1764 1765 1766 1767
	hva_t hva = mem->userspace_addr;
	hva_t reg_end = hva + mem->memory_size;
	bool writable = !(mem->flags & KVM_MEM_READONLY);
	int ret = 0;

1768 1769
	if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
			change != KVM_MR_FLAGS_ONLY)
1770 1771
		return 0;

1772 1773 1774 1775 1776 1777 1778 1779
	/*
	 * Prevent userspace from creating a memory region outside of the IPA
	 * space addressable by the KVM guest IPA space.
	 */
	if (memslot->base_gfn + memslot->npages >=
	    (KVM_PHYS_SIZE >> PAGE_SHIFT))
		return -EFAULT;

1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816
	/*
	 * A memory region could potentially cover multiple VMAs, and any holes
	 * between them, so iterate over all of them to find out if we can map
	 * any of them right now.
	 *
	 *     +--------------------------------------------+
	 * +---------------+----------------+   +----------------+
	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
	 * +---------------+----------------+   +----------------+
	 *     |               memory region                |
	 *     +--------------------------------------------+
	 */
	do {
		struct vm_area_struct *vma = find_vma(current->mm, hva);
		hva_t vm_start, vm_end;

		if (!vma || vma->vm_start >= reg_end)
			break;

		/*
		 * Mapping a read-only VMA is only allowed if the
		 * memory region is configured as read-only.
		 */
		if (writable && !(vma->vm_flags & VM_WRITE)) {
			ret = -EPERM;
			break;
		}

		/*
		 * Take the intersection of this VMA with the memory region
		 */
		vm_start = max(hva, vma->vm_start);
		vm_end = min(reg_end, vma->vm_end);

		if (vma->vm_flags & VM_PFNMAP) {
			gpa_t gpa = mem->guest_phys_addr +
				    (vm_start - mem->userspace_addr);
1817 1818 1819 1820
			phys_addr_t pa;

			pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
			pa += vm_start - vma->vm_start;
1821

1822 1823 1824 1825
			/* IO region dirty page logging not allowed */
			if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES)
				return -EINVAL;

1826 1827 1828 1829 1830 1831 1832 1833 1834
			ret = kvm_phys_addr_ioremap(kvm, gpa, pa,
						    vm_end - vm_start,
						    writable);
			if (ret)
				break;
		}
		hva = vm_end;
	} while (hva < reg_end);

1835 1836 1837
	if (change == KVM_MR_FLAGS_ONLY)
		return ret;

1838 1839
	spin_lock(&kvm->mmu_lock);
	if (ret)
1840
		unmap_stage2_range(kvm, mem->guest_phys_addr, mem->memory_size);
1841 1842 1843
	else
		stage2_flush_memslot(kvm, memslot);
	spin_unlock(&kvm->mmu_lock);
1844
	return ret;
1845 1846 1847 1848 1849 1850 1851 1852 1853 1854
}

void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
			   struct kvm_memory_slot *dont)
{
}

int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
			    unsigned long npages)
{
1855 1856 1857 1858 1859 1860 1861 1862 1863
	/*
	 * Readonly memslots are not incoherent with the caches by definition,
	 * but in practice, they are used mostly to emulate ROMs or NOR flashes
	 * that the guest may consider devices and hence map as uncached.
	 * To prevent incoherency issues in these cases, tag all readonly
	 * regions as incoherent.
	 */
	if (slot->flags & KVM_MEM_READONLY)
		slot->flags |= KVM_MEMSLOT_INCOHERENT;
1864 1865 1866
	return 0;
}

1867
void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
1868 1869 1870 1871 1872 1873 1874 1875 1876 1877
{
}

void kvm_arch_flush_shadow_all(struct kvm *kvm)
{
}

void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
				   struct kvm_memory_slot *slot)
{
1878 1879 1880 1881 1882 1883
	gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
	phys_addr_t size = slot->npages << PAGE_SHIFT;

	spin_lock(&kvm->mmu_lock);
	unmap_stage2_range(kvm, gpa, size);
	spin_unlock(&kvm->mmu_lock);
1884
}
1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952

/*
 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
 *
 * Main problems:
 * - S/W ops are local to a CPU (not broadcast)
 * - We have line migration behind our back (speculation)
 * - System caches don't support S/W at all (damn!)
 *
 * In the face of the above, the best we can do is to try and convert
 * S/W ops to VA ops. Because the guest is not allowed to infer the
 * S/W to PA mapping, it can only use S/W to nuke the whole cache,
 * which is a rather good thing for us.
 *
 * Also, it is only used when turning caches on/off ("The expected
 * usage of the cache maintenance instructions that operate by set/way
 * is associated with the cache maintenance instructions associated
 * with the powerdown and powerup of caches, if this is required by
 * the implementation.").
 *
 * We use the following policy:
 *
 * - If we trap a S/W operation, we enable VM trapping to detect
 *   caches being turned on/off, and do a full clean.
 *
 * - We flush the caches on both caches being turned on and off.
 *
 * - Once the caches are enabled, we stop trapping VM ops.
 */
void kvm_set_way_flush(struct kvm_vcpu *vcpu)
{
	unsigned long hcr = vcpu_get_hcr(vcpu);

	/*
	 * If this is the first time we do a S/W operation
	 * (i.e. HCR_TVM not set) flush the whole memory, and set the
	 * VM trapping.
	 *
	 * Otherwise, rely on the VM trapping to wait for the MMU +
	 * Caches to be turned off. At that point, we'll be able to
	 * clean the caches again.
	 */
	if (!(hcr & HCR_TVM)) {
		trace_kvm_set_way_flush(*vcpu_pc(vcpu),
					vcpu_has_cache_enabled(vcpu));
		stage2_flush_vm(vcpu->kvm);
		vcpu_set_hcr(vcpu, hcr | HCR_TVM);
	}
}

void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
{
	bool now_enabled = vcpu_has_cache_enabled(vcpu);

	/*
	 * If switching the MMU+caches on, need to invalidate the caches.
	 * If switching it off, need to clean the caches.
	 * Clean + invalidate does the trick always.
	 */
	if (now_enabled != was_enabled)
		stage2_flush_vm(vcpu->kvm);

	/* Caches are now on, stop trapping VM ops (until a S/W op) */
	if (now_enabled)
		vcpu_set_hcr(vcpu, vcpu_get_hcr(vcpu) & ~HCR_TVM);

	trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
}