mmu.c 18.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 */
18 19 20 21

#include <linux/mman.h>
#include <linux/kvm_host.h>
#include <linux/io.h>
C
Christoffer Dall 已提交
22
#include <trace/events/kvm.h>
23
#include <asm/pgalloc.h>
24
#include <asm/cacheflush.h>
25 26
#include <asm/kvm_arm.h>
#include <asm/kvm_mmu.h>
C
Christoffer Dall 已提交
27
#include <asm/kvm_mmio.h>
28
#include <asm/kvm_asm.h>
29
#include <asm/kvm_emulate.h>
30 31

#include "trace.h"
32 33 34

extern char  __hyp_idmap_text_start[], __hyp_idmap_text_end[];

35
static pgd_t *hyp_pgd;
36 37
static DEFINE_MUTEX(kvm_hyp_pgd_mutex);

38
static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
39
{
40
	kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa);
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
}

static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
				  int min, int max)
{
	void *page;

	BUG_ON(max > KVM_NR_MEM_OBJS);
	if (cache->nobjs >= min)
		return 0;
	while (cache->nobjs < max) {
		page = (void *)__get_free_page(PGALLOC_GFP);
		if (!page)
			return -ENOMEM;
		cache->objects[cache->nobjs++] = page;
	}
	return 0;
}

static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
{
	while (mc->nobjs)
		free_page((unsigned long)mc->objects[--mc->nobjs]);
}

static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
{
	void *p;

	BUG_ON(!mc || !mc->nobjs);
	p = mc->objects[--mc->nobjs];
	return p;
}

75
static void clear_pud_entry(pud_t *pud)
76
{
77 78 79 80 81
	pmd_t *pmd_table = pmd_offset(pud, 0);
	pud_clear(pud);
	pmd_free(NULL, pmd_table);
	put_page(virt_to_page(pud));
}
82

83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
static void clear_pmd_entry(pmd_t *pmd)
{
	pte_t *pte_table = pte_offset_kernel(pmd, 0);
	pmd_clear(pmd);
	pte_free_kernel(NULL, pte_table);
	put_page(virt_to_page(pmd));
}

static bool pmd_empty(pmd_t *pmd)
{
	struct page *pmd_page = virt_to_page(pmd);
	return page_count(pmd_page) == 1;
}

static void clear_pte_entry(pte_t *pte)
{
	if (pte_present(*pte)) {
		kvm_set_pte(pte, __pte(0));
		put_page(virt_to_page(pte));
102 103 104
	}
}

105 106 107 108 109 110 111
static bool pte_empty(pte_t *pte)
{
	struct page *pte_page = virt_to_page(pte);
	return page_count(pte_page) == 1;
}

static void unmap_range(pgd_t *pgdp, unsigned long long start, u64 size)
112 113 114 115
{
	pgd_t *pgd;
	pud_t *pud;
	pmd_t *pmd;
116 117 118
	pte_t *pte;
	unsigned long long addr = start, end = start + size;
	u64 range;
119

120 121 122 123 124 125 126
	while (addr < end) {
		pgd = pgdp + pgd_index(addr);
		pud = pud_offset(pgd, addr);
		if (pud_none(*pud)) {
			addr += PUD_SIZE;
			continue;
		}
127

128 129 130 131 132
		pmd = pmd_offset(pud, addr);
		if (pmd_none(*pmd)) {
			addr += PMD_SIZE;
			continue;
		}
133

134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
		pte = pte_offset_kernel(pmd, addr);
		clear_pte_entry(pte);
		range = PAGE_SIZE;

		/* If we emptied the pte, walk back up the ladder */
		if (pte_empty(pte)) {
			clear_pmd_entry(pmd);
			range = PMD_SIZE;
			if (pmd_empty(pmd)) {
				clear_pud_entry(pud);
				range = PUD_SIZE;
			}
		}

		addr += range;
	}
150 151
}

152
/**
153
 * free_hyp_pgds - free Hyp-mode page tables
154
 *
155
 * Assumes hyp_pgd is a page table used strictly in Hyp-mode and therefore contains
156 157
 * either mappings in the kernel memory area (above PAGE_OFFSET), or
 * device mappings in the vmalloc range (from VMALLOC_START to VMALLOC_END).
158
 */
159
void free_hyp_pgds(void)
160 161 162 163
{
	unsigned long addr;

	mutex_lock(&kvm_hyp_pgd_mutex);
164 165 166 167 168 169 170 171 172

	if (hyp_pgd) {
		for (addr = PAGE_OFFSET; virt_addr_valid(addr); addr += PGDIR_SIZE)
			unmap_range(hyp_pgd, KERN_TO_HYP(addr), PGDIR_SIZE);
		for (addr = VMALLOC_START; is_vmalloc_addr((void*)addr); addr += PGDIR_SIZE)
			unmap_range(hyp_pgd, KERN_TO_HYP(addr), PGDIR_SIZE);
		kfree(hyp_pgd);
	}

173 174 175 176
	mutex_unlock(&kvm_hyp_pgd_mutex);
}

static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
177 178
				    unsigned long end, unsigned long pfn,
				    pgprot_t prot)
179 180 181 182
{
	pte_t *pte;
	unsigned long addr;

183 184
	addr = start;
	do {
185 186
		pte = pte_offset_kernel(pmd, addr);
		kvm_set_pte(pte, pfn_pte(pfn, prot));
187
		get_page(virt_to_page(pte));
188
		pfn++;
189
	} while (addr += PAGE_SIZE, addr != end);
190 191 192
}

static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
193 194
				   unsigned long end, unsigned long pfn,
				   pgprot_t prot)
195 196 197 198 199
{
	pmd_t *pmd;
	pte_t *pte;
	unsigned long addr, next;

200 201
	addr = start;
	do {
202
		pmd = pmd_offset(pud, addr);
203 204 205 206

		BUG_ON(pmd_sect(*pmd));

		if (pmd_none(*pmd)) {
207
			pte = pte_alloc_one_kernel(NULL, addr);
208 209 210 211 212
			if (!pte) {
				kvm_err("Cannot allocate Hyp pte\n");
				return -ENOMEM;
			}
			pmd_populate_kernel(NULL, pmd, pte);
213
			get_page(virt_to_page(pmd));
214 215 216 217
		}

		next = pmd_addr_end(addr, end);

218 219
		create_hyp_pte_mappings(pmd, addr, next, pfn, prot);
		pfn += (next - addr) >> PAGE_SHIFT;
220
	} while (addr = next, addr != end);
221 222 223 224

	return 0;
}

225 226 227
static int __create_hyp_mappings(pgd_t *pgdp,
				 unsigned long start, unsigned long end,
				 unsigned long pfn, pgprot_t prot)
228 229 230 231 232 233 234 235
{
	pgd_t *pgd;
	pud_t *pud;
	pmd_t *pmd;
	unsigned long addr, next;
	int err = 0;

	mutex_lock(&kvm_hyp_pgd_mutex);
236 237 238
	addr = start & PAGE_MASK;
	end = PAGE_ALIGN(end);
	do {
239 240
		pgd = pgdp + pgd_index(addr);
		pud = pud_offset(pgd, addr);
241 242

		if (pud_none_or_clear_bad(pud)) {
243
			pmd = pmd_alloc_one(NULL, addr);
244 245 246 247 248 249
			if (!pmd) {
				kvm_err("Cannot allocate Hyp pmd\n");
				err = -ENOMEM;
				goto out;
			}
			pud_populate(NULL, pud, pmd);
250
			get_page(virt_to_page(pud));
251 252 253
		}

		next = pgd_addr_end(addr, end);
254
		err = create_hyp_pmd_mappings(pud, addr, next, pfn, prot);
255 256
		if (err)
			goto out;
257
		pfn += (next - addr) >> PAGE_SHIFT;
258
	} while (addr = next, addr != end);
259 260 261 262 263 264
out:
	mutex_unlock(&kvm_hyp_pgd_mutex);
	return err;
}

/**
265
 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
266 267 268
 * @from:	The virtual kernel start address of the range
 * @to:		The virtual kernel end address of the range (exclusive)
 *
269 270 271
 * The same virtual address as the kernel virtual address is also used
 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
 * physical pages.
272 273 274
 */
int create_hyp_mappings(void *from, void *to)
{
275 276 277 278 279 280 281 282 283 284
	unsigned long phys_addr = virt_to_phys(from);
	unsigned long start = KERN_TO_HYP((unsigned long)from);
	unsigned long end = KERN_TO_HYP((unsigned long)to);

	/* Check for a valid kernel memory mapping */
	if (!virt_addr_valid(from) || !virt_addr_valid(to - 1))
		return -EINVAL;

	return __create_hyp_mappings(hyp_pgd, start, end,
				     __phys_to_pfn(phys_addr), PAGE_HYP);
285 286 287
}

/**
288 289 290
 * create_hyp_io_mappings - duplicate a kernel IO mapping into Hyp mode
 * @from:	The kernel start VA of the range
 * @to:		The kernel end VA of the range (exclusive)
291
 * @phys_addr:	The physical start address which gets mapped
292 293 294
 *
 * The resulting HYP VA is the same as the kernel VA, modulo
 * HYP_PAGE_OFFSET.
295
 */
296
int create_hyp_io_mappings(void *from, void *to, phys_addr_t phys_addr)
297
{
298 299 300 301 302 303 304 305 306
	unsigned long start = KERN_TO_HYP((unsigned long)from);
	unsigned long end = KERN_TO_HYP((unsigned long)to);

	/* Check for a valid kernel IO mapping */
	if (!is_vmalloc_addr(from) || !is_vmalloc_addr(to - 1))
		return -EINVAL;

	return __create_hyp_mappings(hyp_pgd, start, end,
				     __phys_to_pfn(phys_addr), PAGE_HYP_DEVICE);
307 308
}

309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
/**
 * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
 * @kvm:	The KVM struct pointer for the VM.
 *
 * Allocates the 1st level table only of size defined by S2_PGD_ORDER (can
 * support either full 40-bit input addresses or limited to 32-bit input
 * addresses). Clears the allocated pages.
 *
 * Note we don't need locking here as this is only called when the VM is
 * created, which can only be done once.
 */
int kvm_alloc_stage2_pgd(struct kvm *kvm)
{
	pgd_t *pgd;

	if (kvm->arch.pgd != NULL) {
		kvm_err("kvm_arch already initialized?\n");
		return -EINVAL;
	}

	pgd = (pgd_t *)__get_free_pages(GFP_KERNEL, S2_PGD_ORDER);
	if (!pgd)
		return -ENOMEM;

	/* stage-2 pgd must be aligned to its size */
	VM_BUG_ON((unsigned long)pgd & (S2_PGD_SIZE - 1));

	memset(pgd, 0, PTRS_PER_S2_PGD * sizeof(pgd_t));
337
	kvm_clean_pgd(pgd);
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
	kvm->arch.pgd = pgd;

	return 0;
}

/**
 * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
 * @kvm:   The VM pointer
 * @start: The intermediate physical base address of the range to unmap
 * @size:  The size of the area to unmap
 *
 * Clear a range of stage-2 mappings, lowering the various ref-counts.  Must
 * be called while holding mmu_lock (unless for freeing the stage2 pgd before
 * destroying the VM), otherwise another faulting VCPU may come in and mess
 * with things behind our backs.
 */
static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
{
356
	unmap_range(kvm->arch.pgd, start, size);
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
}

/**
 * kvm_free_stage2_pgd - free all stage-2 tables
 * @kvm:	The KVM struct pointer for the VM.
 *
 * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
 * underlying level-2 and level-3 tables before freeing the actual level-1 table
 * and setting the struct pointer to NULL.
 *
 * Note we don't need locking here as this is only called when the VM is
 * destroyed, which can only be done once.
 */
void kvm_free_stage2_pgd(struct kvm *kvm)
{
	if (kvm->arch.pgd == NULL)
		return;

	unmap_stage2_range(kvm, 0, KVM_PHYS_SIZE);
	free_pages((unsigned long)kvm->arch.pgd, S2_PGD_ORDER);
	kvm->arch.pgd = NULL;
}


static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
			  phys_addr_t addr, const pte_t *new_pte, bool iomap)
{
	pgd_t *pgd;
	pud_t *pud;
	pmd_t *pmd;
	pte_t *pte, old_pte;

	/* Create 2nd stage page table mapping - Level 1 */
	pgd = kvm->arch.pgd + pgd_index(addr);
	pud = pud_offset(pgd, addr);
	if (pud_none(*pud)) {
		if (!cache)
			return 0; /* ignore calls from kvm_set_spte_hva */
		pmd = mmu_memory_cache_alloc(cache);
		pud_populate(NULL, pud, pmd);
		get_page(virt_to_page(pud));
398 399 400
	}

	pmd = pmd_offset(pud, addr);
401 402 403 404 405 406

	/* Create 2nd stage page table mapping - Level 2 */
	if (pmd_none(*pmd)) {
		if (!cache)
			return 0; /* ignore calls from kvm_set_spte_hva */
		pte = mmu_memory_cache_alloc(cache);
407
		kvm_clean_pte(pte);
408 409
		pmd_populate_kernel(NULL, pmd, pte);
		get_page(virt_to_page(pmd));
410 411 412
	}

	pte = pte_offset_kernel(pmd, addr);
413 414 415 416 417 418 419 420

	if (iomap && pte_present(*pte))
		return -EFAULT;

	/* Create 2nd stage page table mapping - Level 3 */
	old_pte = *pte;
	kvm_set_pte(pte, *new_pte);
	if (pte_present(old_pte))
421
		kvm_tlb_flush_vmid_ipa(kvm, addr);
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
	else
		get_page(virt_to_page(pte));

	return 0;
}

/**
 * kvm_phys_addr_ioremap - map a device range to guest IPA
 *
 * @kvm:	The KVM pointer
 * @guest_ipa:	The IPA at which to insert the mapping
 * @pa:		The physical address of the device
 * @size:	The size of the mapping
 */
int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
			  phys_addr_t pa, unsigned long size)
{
	phys_addr_t addr, end;
	int ret = 0;
	unsigned long pfn;
	struct kvm_mmu_memory_cache cache = { 0, };

	end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
	pfn = __phys_to_pfn(pa);

	for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
448 449
		pte_t pte = pfn_pte(pfn, PAGE_S2_DEVICE);
		kvm_set_s2pte_writable(&pte);
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467

		ret = mmu_topup_memory_cache(&cache, 2, 2);
		if (ret)
			goto out;
		spin_lock(&kvm->mmu_lock);
		ret = stage2_set_pte(kvm, &cache, addr, &pte, true);
		spin_unlock(&kvm->mmu_lock);
		if (ret)
			goto out;

		pfn++;
	}

out:
	mmu_free_memory_cache(&cache);
	return ret;
}

468 469 470 471 472 473 474 475 476 477 478
static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
			  gfn_t gfn, struct kvm_memory_slot *memslot,
			  unsigned long fault_status)
{
	pte_t new_pte;
	pfn_t pfn;
	int ret;
	bool write_fault, writable;
	unsigned long mmu_seq;
	struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;

479
	write_fault = kvm_is_write_fault(kvm_vcpu_get_hsr(vcpu));
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
	if (fault_status == FSC_PERM && !write_fault) {
		kvm_err("Unexpected L2 read permission error\n");
		return -EFAULT;
	}

	/* We need minimum second+third level pages */
	ret = mmu_topup_memory_cache(memcache, 2, KVM_NR_MEM_OBJS);
	if (ret)
		return ret;

	mmu_seq = vcpu->kvm->mmu_notifier_seq;
	/*
	 * Ensure the read of mmu_notifier_seq happens before we call
	 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
	 * the page we just got a reference to gets unmapped before we have a
	 * chance to grab the mmu_lock, which ensure that if the page gets
	 * unmapped afterwards, the call to kvm_unmap_hva will take it away
	 * from us again properly. This smp_rmb() interacts with the smp_wmb()
	 * in kvm_mmu_notifier_invalidate_<page|range_end>.
	 */
	smp_rmb();

	pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write_fault, &writable);
	if (is_error_pfn(pfn))
		return -EFAULT;

	new_pte = pfn_pte(pfn, PAGE_S2);
	coherent_icache_guest_page(vcpu->kvm, gfn);

	spin_lock(&vcpu->kvm->mmu_lock);
	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
		goto out_unlock;
	if (writable) {
513
		kvm_set_s2pte_writable(&new_pte);
514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
		kvm_set_pfn_dirty(pfn);
	}
	stage2_set_pte(vcpu->kvm, memcache, fault_ipa, &new_pte, false);

out_unlock:
	spin_unlock(&vcpu->kvm->mmu_lock);
	kvm_release_pfn_clean(pfn);
	return 0;
}

/**
 * kvm_handle_guest_abort - handles all 2nd stage aborts
 * @vcpu:	the VCPU pointer
 * @run:	the kvm_run structure
 *
 * Any abort that gets to the host is almost guaranteed to be caused by a
 * missing second stage translation table entry, which can mean that either the
 * guest simply needs more memory and we must allocate an appropriate page or it
 * can mean that the guest tried to access I/O memory, which is emulated by user
 * space. The distinction is based on the IPA causing the fault and whether this
 * memory region has been registered as standard RAM by user space.
 */
536 537
int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
538 539 540 541 542 543 544
	unsigned long fault_status;
	phys_addr_t fault_ipa;
	struct kvm_memory_slot *memslot;
	bool is_iabt;
	gfn_t gfn;
	int ret, idx;

545
	is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
546
	fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
547

548 549
	trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_hsr(vcpu),
			      kvm_vcpu_get_hfar(vcpu), fault_ipa);
550 551

	/* Check the stage-2 fault is trans. fault or write fault */
552
	fault_status = kvm_vcpu_trap_get_fault(vcpu);
553
	if (fault_status != FSC_FAULT && fault_status != FSC_PERM) {
554 555
		kvm_err("Unsupported fault status: EC=%#x DFCS=%#lx\n",
			kvm_vcpu_trap_get_class(vcpu), fault_status);
556 557 558 559 560 561 562 563 564
		return -EFAULT;
	}

	idx = srcu_read_lock(&vcpu->kvm->srcu);

	gfn = fault_ipa >> PAGE_SHIFT;
	if (!kvm_is_visible_gfn(vcpu->kvm, gfn)) {
		if (is_iabt) {
			/* Prefetch Abort on I/O address */
565
			kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
566 567 568 569 570 571 572 573 574 575 576
			ret = 1;
			goto out_unlock;
		}

		if (fault_status != FSC_FAULT) {
			kvm_err("Unsupported fault status on io memory: %#lx\n",
				fault_status);
			ret = -EFAULT;
			goto out_unlock;
		}

M
Marc Zyngier 已提交
577 578 579 580 581 582 583
		/*
		 * The IPA is reported as [MAX:12], so we need to
		 * complement it with the bottom 12 bits from the
		 * faulting VA. This is always 12 bits, irrespective
		 * of the page size.
		 */
		fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
C
Christoffer Dall 已提交
584
		ret = io_mem_abort(vcpu, run, fault_ipa);
585 586 587 588 589 590 591 592 593 594 595
		goto out_unlock;
	}

	memslot = gfn_to_memslot(vcpu->kvm, gfn);

	ret = user_mem_abort(vcpu, fault_ipa, gfn, memslot, fault_status);
	if (ret == 0)
		ret = 1;
out_unlock:
	srcu_read_unlock(&vcpu->kvm->srcu, idx);
	return ret;
596 597
}

598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
static void handle_hva_to_gpa(struct kvm *kvm,
			      unsigned long start,
			      unsigned long end,
			      void (*handler)(struct kvm *kvm,
					      gpa_t gpa, void *data),
			      void *data)
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;

	slots = kvm_memslots(kvm);

	/* we only care about the pages that the guest sees */
	kvm_for_each_memslot(memslot, slots) {
		unsigned long hva_start, hva_end;
		gfn_t gfn, gfn_end;

		hva_start = max(start, memslot->userspace_addr);
		hva_end = min(end, memslot->userspace_addr +
					(memslot->npages << PAGE_SHIFT));
		if (hva_start >= hva_end)
			continue;

		/*
		 * {gfn(page) | page intersects with [hva_start, hva_end)} =
		 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
		 */
		gfn = hva_to_gfn_memslot(hva_start, memslot);
		gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);

		for (; gfn < gfn_end; ++gfn) {
			gpa_t gpa = gfn << PAGE_SHIFT;
			handler(kvm, gpa, data);
		}
	}
}

static void kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
{
	unmap_stage2_range(kvm, gpa, PAGE_SIZE);
638
	kvm_tlb_flush_vmid_ipa(kvm, gpa);
639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
}

int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
{
	unsigned long end = hva + PAGE_SIZE;

	if (!kvm->arch.pgd)
		return 0;

	trace_kvm_unmap_hva(hva);
	handle_hva_to_gpa(kvm, hva, end, &kvm_unmap_hva_handler, NULL);
	return 0;
}

int kvm_unmap_hva_range(struct kvm *kvm,
			unsigned long start, unsigned long end)
{
	if (!kvm->arch.pgd)
		return 0;

	trace_kvm_unmap_hva_range(start, end);
	handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
	return 0;
}

static void kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, void *data)
{
	pte_t *pte = (pte_t *)data;

	stage2_set_pte(kvm, NULL, gpa, pte, false);
}


void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
{
	unsigned long end = hva + PAGE_SIZE;
	pte_t stage2_pte;

	if (!kvm->arch.pgd)
		return;

	trace_kvm_set_spte_hva(hva);
	stage2_pte = pfn_pte(pte_pfn(pte), PAGE_S2);
	handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
}

void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
{
	mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
}

690 691 692 693 694 695 696 697
phys_addr_t kvm_mmu_get_httbr(void)
{
	VM_BUG_ON(!virt_addr_valid(hyp_pgd));
	return virt_to_phys(hyp_pgd);
}

int kvm_mmu_init(void)
{
698 699 700 701 702
	unsigned long hyp_idmap_start = virt_to_phys(__hyp_idmap_text_start);
	unsigned long hyp_idmap_end = virt_to_phys(__hyp_idmap_text_end);
	int err;

	hyp_pgd = kzalloc(PTRS_PER_PGD * sizeof(pgd_t), GFP_KERNEL);
703 704
	if (!hyp_pgd) {
		kvm_err("Hyp mode PGD not allocated\n");
705 706 707 708 709 710 711 712 713 714 715 716 717 718
		err = -ENOMEM;
		goto out;
	}

	/* Create the idmap in the boot page tables */
	err = 	__create_hyp_mappings(boot_hyp_pgd,
				      hyp_idmap_start, hyp_idmap_end,
				      __phys_to_pfn(hyp_idmap_start),
				      PAGE_HYP);

	if (err) {
		kvm_err("Failed to idmap %lx-%lx\n",
			hyp_idmap_start, hyp_idmap_end);
		goto out;
719 720 721
	}

	return 0;
722
out:
723
	free_hyp_pgds();
724
	return err;
725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
}

/**
 * kvm_clear_idmap - remove all idmaps from the hyp pgd
 *
 * Free the underlying pmds for all pgds in range and clear the pgds (but
 * don't free them) afterwards.
 */
void kvm_clear_hyp_idmap(void)
{
	unsigned long addr, end;
	unsigned long next;
	pgd_t *pgd = hyp_pgd;
	pud_t *pud;
	pmd_t *pmd;

	addr = virt_to_phys(__hyp_idmap_text_start);
	end = virt_to_phys(__hyp_idmap_text_end);

	pgd += pgd_index(addr);
	do {
		next = pgd_addr_end(addr, end);
		if (pgd_none_or_clear_bad(pgd))
			continue;
		pud = pud_offset(pgd, addr);
		pmd = pmd_offset(pud, addr);

		pud_clear(pud);
753
		kvm_clean_pmd_entry(pmd);
754 755 756
		pmd_free(NULL, (pmd_t *)((unsigned long)pmd & PAGE_MASK));
	} while (pgd++, addr = next, addr < end);
}